Sample records for root morphological traits

  1. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.).

    PubMed

    Tang, Hongliang; Shen, Jianbo; Zhang, Fusuo; Rengel, Zed

    2013-04-01

    White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.

  2. Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; Nie, Yuanyuan; Bai, Shahla Hosseini; Zhou, Lingyan; Shao, Junjiong; Cheng, Weisong; Wang, Jiawei; Hu, Fengqin; Fu, Yuling

    2018-06-07

    Extreme drought is likely to become more frequent and intense as a result of global climate change, which may significantly impact plant root traits and responses (i.e., morphology, production, turnover, and biomass). However, a comprehensive understanding of how drought affects root traits and responses remains elusive. Here, we synthesized data from 128 published studies under field conditions to examine the responses of 17 variables associated with root traits to drought. Our results showed that drought significantly decreased root length and root length density by 38.29% and 11.12%, respectively, but increased root diameter by 3.49%. However, drought significantly increased root: shoot mass ratio and root cortical aerenchyma by 13.54% and 90.7%, respectively. Our results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root: shoot mass ratio. The cascading effects of drought on root traits and responses may need to be incorporated into terrestrial biosphere models to improve prediction of the climate-biosphere feedback. This article is protected by copyright. All rights reserved.

  3. Genetic analysis of root morphological traits in wheat.

    PubMed

    Petrarulo, Maria; Marone, Daniela; Ferragonio, Pina; Cattivelli, Luigi; Rubiales, Diego; De Vita, Pasquale; Mastrangelo, Anna Maria

    2015-06-01

    Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.

  4. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  5. Functional traits and root morphology of alpine plants

    PubMed Central

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-01-01

    Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278

  6. Plant traits and decomposition: are the relationships for roots comparable to those for leaves?

    PubMed Central

    Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine

    2012-01-01

    Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881

  7. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments

    PubMed Central

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48–68°N) in Norway spruce (Picea abies (L.) Karst) and (53–66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994–2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages. PMID:24032035

  8. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments.

    PubMed

    Ostonen, Ivika; Rosenvald, Katrin; Helmisaari, Heljä-Sisko; Godbold, Douglas; Parts, Kaarin; Uri, Veiko; Lõhmus, Krista

    2013-01-01

    Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

  9. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  10. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms

    DOE PAGES

    Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.; ...

    2016-02-10

    In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less

  11. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.

    In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less

  12. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  13. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    PubMed Central

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-01-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology. PMID:25247056

  14. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    PubMed

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  15. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses.

    PubMed

    Arredondo, J Tulio; Johnson, Douglas A

    2011-11-01

    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.

  16. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  17. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

  18. Linking fine root morphology, hydraulic functioning, and shade tolerance of trees

    USDA-ARS?s Scientific Manuscript database

    Understanding root traits and trade-offs in their functioning is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of fine roots...

  19. Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit1[OPEN

    PubMed Central

    Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Dingkuhn, Michael

    2017-01-01

    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly related to root morphology and anatomy, involving 45,000 root-scanning images and nearly 25,000 cross sections from the root-shoot junction. The phenotypic plasticity of these traits was quantified as the relative change in trait value under water-deficit compared with control conditions. We then carried out a genome-wide association analysis on these traits and their plasticity, using 45,608 high-quality single-nucleotide polymorphisms. One hundred four significant loci were detected for these traits under control conditions, 106 were detected under water-deficit stress, and 76 were detected for trait plasticity. We predicted 296 (control), 284 (water-deficit stress), and 233 (plasticity) a priori candidate genes within linkage disequilibrium blocks for these loci. We identified key a priori candidate genes regulating root growth and development and relevant alleles that, upon validation, can help improve rice adaptation to water-deficit stress. PMID:28600346

  20. Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P.

    PubMed

    Azevedo, Gabriel C; Cheavegatti-Gianotto, Adriana; Negri, Bárbara F; Hufnagel, Bárbara; E Silva, Luciano da Costa; Magalhaes, Jurandir V; Garcia, Antonio Augusto F; Lana, Ubiraci G P; de Sousa, Sylvia M; Guimaraes, Claudia T

    2015-07-07

    Modifications in root morphology are important strategies to maximize soil exploitation under phosphorus starvation in plants. Here, we used two multiple interval models to map QTLs related to root traits, biomass accumulation and P content in a maize RIL population cultivated in nutrient solution. In addition, we searched for putative maize homologs to PSTOL1, a gene responsible to enhance early root growth, P uptake and grain yield in rice and sorghum. Based on path analysis, root surface area was the root morphology component that most strongly contributed to total dry weight and to P content in maize seedling under low-P availability. Multiple interval mapping models for single (MIM) and multiple traits (MT-MIM) were combined and revealed 13 genomic regions significantly associated with the target traits in a complementary way. The phenotypic variances explained by all QTLs and their epistatic interactions using MT-MIM (23.4 to 35.5 %) were higher than in previous studies, and presented superior statistical power. Some of these QTLs were coincident with QTLs for root morphology traits and grain yield previously mapped, whereas others harbored ZmPSTOL candidate genes, which shared more than 55 % of amino acid sequence identity and a conserved serine/threonine kinase domain with OsPSTOL1. Additionally, four ZmPSTOL candidate genes co-localized with QTLs for root morphology, biomass accumulation and/or P content were preferentially expressed in roots of the parental lines that contributed the alleles enhancing the respective phenotypes. QTL mapping strategies adopted in this study revealed complementary results for single and multiple traits with high accuracy. Some QTLs, mainly the ones that were also associated with yield performance in other studies, can be good targets for marker-assisted selection to improve P-use efficiency in maize. Based on the co-localization with QTLs, the protein domain conservation and the coincidence of gene expression, we selected novel maize genes as putative homologs to PSTOL1 that will require further validation studies.

  1. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  2. Morphological and Biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  3. Morphological and biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  4. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    PubMed

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.

  5. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits.

    PubMed

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-08-17

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Effects of elevated CO2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress*

    PubMed Central

    Jia, Yan; Tang, Shi-rong; Ju, Xue-hai; Shu, Li-na; Tu, Shu-xing; Feng, Ren-wei; Giusti, Lorenzino

    2011-01-01

    This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO2 increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO2 than under ambient CO2, especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO2. The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO2 than under ambient CO2. Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. PMID:21462388

  7. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  8. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  9. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  10. Effects of peach tree root system morphology and transpiration on leaf nitrogen and phosphorus

    USDA-ARS?s Scientific Manuscript database

    Adequate mineral nutrition is critical for high fruit quality and sustained yield of fruit trees. It is likely that nutritional competence of a fruit tree depends on several physiological and morphological traits that affect nutrient uptake. Fruit trees with improved root systems (own-rooted or as ...

  11. Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.).

    PubMed

    Zhou, Yong; Dong, Guichun; Tao, Yajun; Chen, Chen; Yang, Bin; Wu, Yue; Yang, Zefeng; Liang, Guohua; Wang, Baohe; Wang, Yulong

    2016-01-01

    Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.

  12. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.

  13. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees

    PubMed Central

    Chen, Weile; Koide, Roger T.; Adams, Thomas S.; DeForest, Jared L.; Cheng, Lei; Eissenstat, David M.

    2016-01-01

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986

  14. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    PubMed

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  15. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    PubMed

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  17. Introduction to a Virtual Issue on root traits

    DOE PAGES

    Norby, Richard J.; Iversen, Colleen M.

    2017-05-31

    Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less

  18. Introduction to a Virtual Issue on root traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, Richard J.; Iversen, Colleen M.

    Plant traits – ‘morphological, anatomical, physiological, biochem-ical and phenological characteristics of plants and their organs’(Kattge et al., 2011) – are increasingly being harnessed byempiricists and modelers as a framework to understand patternsin the structure and function of specie s across the globe. Trait-basedecology, which emphasizes functional traits over the taxonomicalrelationships among organisms (Laliberte, 2017), promises toimprove generality, synthesis, and predictive ability across ecolog-ical scales (Shipley et al., 2016). Indeed, plant trait studies areincreasingly prominent in the literature: a simple Web of Sciencesearch on the term indicates a surge in publications from 2576during the three-year period from 1999 to 2001 tomore » 13 234 in thethree-year period between 2014 and 2016. However, the mostcommon plant traits described in the literature relate to above -ground organs and their function, including leaf morphology,photosynthetic parameters, and above ground growth rate. Roottraits, particularly those of fine roots associated with criticalbelowground plant functions, are much less studied – they are, afterall, harder to measure and less likely to have a role in ecosystemmodels as they are encoded today. Although the TRY database ofplant traits (Kattge et al., 2011) has been a highly valuable resourcefor plant and ecosystem ecologists, < 1% of the data entries describefine-root functional traits. This glaring gap in our knowledge of thebelowground half of ecosystem function has led to a chorus of pleasin recent years for a stronger emphasis on the measurement andunderstanding of root traits (e.g . Bardgett et al., 2014).« less

  19. Different Phylogenetic and Environmental Controls of First-order Root Morphological and Chemical Traits

    NASA Astrophysics Data System (ADS)

    Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.

    2017-12-01

    Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast with individual species-level trait, community-aggregated root traits could be used to improve our ability to predict how the distribution of vegetation will change in response to a changing climate.

  20. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    PubMed

    Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  1. Differences in hydraulic architecture between mesic and xeric Pinus pinaster populations at the seedling stage.

    PubMed

    Corcuera, Leyre; Gil-Pelegrín, Eustaquio; Notivol, Eduardo

    2012-12-01

    We studied the intraspecific variability of maritime pine in a set of morphological and physiological traits: soil-to-leaf hydraulic conductance, intrinsic water-use efficiency (WUE, estimated by carbon isotope composition, δ(13)C), root morphology, xylem anatomy, growth and carbon allocation patterns. The data were collected from Pinus pinaster Aiton seedlings (25 half-sib families from five populations) grown in a greenhouse and subjected to water and water-stress treatments. The aims were to relate this variability to differences in water availability at the geographic location of the populations, and to study the potential trade-offs among traits. The drought-stressed seedlings demonstrated a decrease in hydraulic conductance and root surface area and increased WUE and root tip number. The relationships among the growth, morphological, anatomical and physiological traits changed with the scale of study: within the species, among/within populations. The populations showed a highly significant relationship between the percentage reduction in whole-plant hydraulic conductance and WUE. The differences among the populations in root morphology, whole-plant conductance, carbon allocation, plant growth and WUE were significant and consistent with dryness of the site of seed origin. The xeric populations exhibited lower growth and a conservative water use, as opposed to the fast-growing, less water-use-efficient populations from mesic habitats. The xeric and mesic populations, Tamrabta and San Cipriano, respectively, showed the most contrasting traits and were clustered in opposite directions along the main axis in the canonical discriminant analysis under both the control and drought treatments. The results suggest the possibility of selecting the Arenas population, which presents a combination of traits that confer increased growth and drought resistance.

  2. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients

    PubMed Central

    Isaac, Marney E.; Martin, Adam R.; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another. PMID:28747919

  3. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients.

    PubMed

    Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.

  4. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms.

    PubMed

    Larson, Julie E; Funk, Jennifer L

    2016-05-01

    Root trait variation and plasticity could be key factors differentiating plant performance under drought. However, water manipulation and root measurements are rarely coupled empirically across growth forms to identify whether belowground strategies are generalizable across species. We measured seedling root traits across three moisture levels in 18 Mediterranean forbs, grasses, and woody species. Drought increased the root mass fraction (RMF) and decreased the relative proportion of thin roots (indicated by increased root diameters and decreased specific root length (SRL)), rates of root elongation and growth, plant nitrogen uptake, and plant growth. Although responses varied across species, plasticity was not associated with growth form. Woody species differed from forbs and grasses in many traits, but herbaceous groups were similar. Across water treatments, trait correlations suggested a single spectrum of belowground trade-offs related to resource acquisition and plant growth. While effects of SRL and RMF on plant growth shifted with drought, root elongation rate consistently represented this spectrum. We demonstrate that general patterns of root morphology and plasticity are identifiable across diverse species. Root trait measurements should enhance our understanding of belowground strategy and performance across growth forms, but it will be critical to incorporate plasticity and additional aspects of root function into these efforts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    PubMed

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  6. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2018-01-09

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  7. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  8. Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils1[C][W][OPEN

    PubMed Central

    Hufnagel, Barbara; de Sousa, Sylvia M.; Assis, Lidianne; Guimaraes, Claudia T.; Leiser, Willmar; Azevedo, Gabriel C.; Negri, Barbara; Larson, Brandon G.; Shaff, Jon E.; Pastina, Maria Marta; Barros, Beatriz A.; Weltzien, Eva; Rattunde, Henry Frederick W.; Viana, Joao H.; Clark, Randy T.; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F.; Schaffert, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.

    2014-01-01

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil. PMID:25189534

  9. Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities

    PubMed Central

    Kembel, Steven W.; Cahill, James F.

    2011-01-01

    In this study, we used data from temperate grassland plant communities in Alberta, Canada to test two longstanding hypotheses in ecology: 1) that there has been correlated evolution of the leaves and roots of plants due to selection for an integrated whole-plant resource uptake strategy, and 2) that trait diversity in ecological communities is generated by adaptations to the conditions in different habitats. We tested the first hypothesis using phylogenetic comparative methods to test for evidence of correlated evolution of suites of leaf and root functional traits in these grasslands. There were consistent evolutionary correlations among traits related to plant resource uptake strategies within leaf tissues, and within root tissues. In contrast, there were inconsistent correlations between the traits of leaves and the traits of roots, suggesting different evolutionary pressures on the above and belowground components of plant morphology. To test the second hypothesis, we evaluated the relative importance of two components of trait diversity: within-community variation (species trait values relative to co-occurring species; α traits) and among-community variation (the average trait value in communities where species occur; β traits). Trait diversity was mostly explained by variation among co-occurring species, not among-communities. Additionally, there was a phylogenetic signal in the within-community trait values of species relative to co-occurring taxa, but not in their habitat associations or among-community trait variation. These results suggest that sorting of pre-existing trait variation into local communities can explain the leaf and root trait diversity in these grasslands. PMID:21687704

  10. Pre-Breeding for root rot resistance using root morphology traits

    USDA-ARS?s Scientific Manuscript database

    Root rot caused by the fungal pathogen Rhizoctonia solani can be a major yield-limiting disease in minimal tillage or direct-seeded cereal production systems. Reduced tillage greatly influences the plant residue retained on the soil surfaces. This retained residue (green bridge) provides increased d...

  11. A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

    PubMed

    Ghestem, Murielle; Cao, Kunfang; Ma, Wenzhang; Rowe, Nick; Leclerc, Raphaëlle; Gadenne, Clément; Stokes, Alexia

    2014-01-01

    Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

  12. A Framework for Identifying Plant Species to Be Used as ‘Ecological Engineers’ for Fixing Soil on Unstable Slopes

    PubMed Central

    Ghestem, Murielle; Cao, Kunfang; Ma, Wenzhang; Rowe, Nick; Leclerc, Raphaëlle; Gadenne, Clément; Stokes, Alexia

    2014-01-01

    Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits. PMID:25105571

  13. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less

  15. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE PAGES

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...

    2017-03-08

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less

  16. Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching?

    PubMed

    Pagès, Loïc; Picon-Cochard, Catherine

    2014-10-01

    Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  17. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.

    PubMed

    Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2016-03-01

    Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  19. Nutrient Foraging Traits in 10 Co-occurring Plant Species of Contrasting Life Forms

    Treesearch

    Juliet C. Einsmann; Robert H. Jones; Mou Pu; Robert J. Mitchell

    1999-01-01

    1 Responses to spatial heterogeneity of soil nutrients were tested in 10 plant species that differ in life form and successional status, but which co-occur in the South Carolina coastal plain. The morphological responses of the root system were tested by assessing scale (represented by root mass and root length densities), precision (preferential...

  20. Effect of simulated climate warming on the morphological and physiological traits of Elsholtzia haichowensis in copper contaminated soil.

    PubMed

    Guan, Ming; Jin, Zexin; Li, Junmin; Pan, Xiaocui; Wang, Suizi; Li, Yuelin

    2016-01-01

    The aim of this study was to investigate the effects of temperature and Cu on the morphological and physiological traits of Elsholtzia haichowensis grown in soils amended with four Cu concentrations (0, 50, 500, and 1000 mg kg(-1)) under ambient temperature and slight warming. At the same Cu concentration, the height, shoot dry weight, total plant dry weight, and root morphological parameters such as length, surface area and tip number of E. haichowensis increased due to the slight warming. The net photosynthetic rate, stomatal conductance, transpiration, light use efficiency were also higher under the slight warming than under ambient temperature. The increased Cu concentrations, total Cu uptake, bioaccumulation factors and tolerance indexes of shoots and roots were also observed at the slight warming. The shoot dry weight, root dry weight, total plant dry weight and the bioaccumulation factors of shoots and roots at 50 mg Cu kg(-1) were significantly higher than those at 500 and 1000 mg Cu kg(-1) under the slight warming. Therefore, the climate warming may improve the ability of E. haichowensis to phytoremediate Cu-contaminated soil, and the ability improvement greatly depended on the Cu concentrations in soils.

  1. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    PubMed

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  2. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the changes of tissue N concentration and anatomical structure along root branch orders in both tree species, which provide deeper understanding in the mechanism of how root traits affect root respiration in woody plants.

  3. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  4. Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar1[C][W][OA

    PubMed Central

    Elias, Ani A.; Busov, Victor B.; Kosola, Kevin R.; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W.; Rood, Stewart B.; Strauss, Steven H.

    2012-01-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164

  5. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value.

    PubMed

    Pacheco-Villalobos, David; Hardtke, Christian S

    2012-06-05

    Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.

  6. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs

    PubMed Central

    Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.

    2017-01-01

    Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have root traits associated with rapid uptake of soil nutrients may be more likely to increase in abundance, while species without such traits may be less likely to keep pace with more productive species. PMID:28119293

  7. Loblolly pine cutting morphological traits: effects on rooting and field performance

    Treesearch

    G. Sam Foster; H.E. Stelzer; J.B. McRae

    2000-01-01

    Shoot cuttings were harvested from 4-year-old loblolly pine hedges in March and September of 1987, and placed into a series of factorial combinations of cutting length, diameter class, and the presence/absence of a terminal bud to assess effects on rooting and field performance. Average rooting in the March trial was 50 percent and only 20 percent for the September...

  8. Adaptive fine root foraging patterns in climate experiments and natural gradients

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak

    2017-04-01

    Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and rhizosphere bacterial communities. We suggest a multidimensional concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in root-mycorhizosphere along environmental gradients and in climate experiments.

  9. Genetic Dissection of Root Morphological Traits Related to Nitrogen Use Efficiency in Brassica napus L. under Two Contrasting Nitrogen Conditions

    PubMed Central

    Wang, Jie; Dun, Xiaoling; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2017-01-01

    As the major determinant for nutrient uptake, root system architecture (RSA) has a massive impact on nitrogen use efficiency (NUE). However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL) was used to investigate root morphology (RM, an important component for RSA) and NUE-related traits under high-nitrogen (HN) and low-nitrogen (LN) conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE), providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels) were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly) and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23) detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed. PMID:29033971

  10. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis

    PubMed Central

    Khowaja, Farkhanda S; Norton, Gareth J; Courtois, Brigitte; Price, Adam H

    2009-01-01

    Background Meta-analysis of QTLs combines the results of several QTL detection studies and provides narrow confidence intervals for meta-QTLs, permitting easier positional candidate gene identification. It is usually applied to multiple mapping populations, but can be applied to one. Here, a meta-analysis of drought related QTLs in the Bala × Azucena mapping population compiles data from 13 experiments and 25 independent screens providing 1,650 individual QTLs separated into 5 trait categories; drought avoidance, plant height, plant biomass, leaf morphology and root traits. A heat map of the overlapping 1 LOD confidence intervals provides an overview of the distribution of QTLs. The programme BioMercator is then used to conduct a formal meta-analysis at example QTL clusters to illustrate the value of meta-analysis of QTLs in this population. Results The heat map graphically illustrates the genetic complexity of drought related traits in rice. QTLs can be linked to their physical position on the rice genome using Additional file 1 provided. Formal meta-analysis on chromosome 1, where clusters of QTLs for all trait categories appear close, established that the sd1 semi-dwarfing gene coincided with a plant height meta-QTL, that the drought avoidance meta-QTL was not likely to be associated with this gene, and that this meta-QTL was not pleiotropic with close meta-QTLs for leaf morphology and root traits. On chromosome 5, evidence suggests that a drought avoidance meta-QTL was pleiotropic with leaf morphology and plant biomass meta-QTLs, but not with meta-QTLs for root traits and plant height 10 cM lower down. A region of dense root QTL activity graphically visible on chromosome 9 was dissected into three meta-QTLs within a space of 35 cM. The confidence intervals for meta-QTLs obtained ranged from 5.1 to 14.5 cM with an average of 9.4 cM, which is approximately 180 genes in rice. Conclusion The meta-analysis is valuable in providing improved ability to dissect the complex genetic structure of traits, and distinguish between pleiotropy and close linkage. It also provides relatively small target regions for the identification of positional candidate genes. PMID:19545420

  11. Plastic responses of native plant root systems to the presence of an invasive annual grass.

    PubMed

    Phillips, Allison J; Leger, Elizabeth A

    2015-01-01

    • The ability to respond to environmental change via phenotypic plasticity may be important for plants experiencing disturbances such as climate change and plant invasion. Responding to belowground competition through root plasticity may allow native plants to persist in highly invaded systems such as the cold deserts of the Intermountain West, USA.• We investigated whether Poa secunda, a native bunchgrass, could alter root morphology in response to nutrient availability and the presence of a competitive annual grass. Seeds from 20 families were grown with high and low nutrients and harvested after 50 d, and seeds from 48 families, grown with and without Bromus tectorum, were harvested after ∼2 or 6 mo. We measured total biomass, root mass fraction, specific root length (SRL), root tips, allocation to roots of varying diameter, and plasticity in allocation.• Plants had many parallel responses to low nutrients and competition, including increased root tip production, a trait associated with tolerance to reduced resources, though families differed in almost every trait and correlations among trait changes varied among experiments, indicating flexibility in plant responses. Seedlings actively increased SRL and fine root allocation under competition, while older seedlings also increased coarse root allocation, a trait associated with increased tolerance, and increased root mass fraction.• The high degree of genetic variation for root plasticity within natural populations could aid in the long-term persistence of P. secunda because phenotypic plasticity may allow native species to persist in invaded and fluctuating resource environments. © 2015 Botanical Society of America, Inc.

  12. Plasticity of the Arabidopsis Root System under Nutrient Deficiencies1[C][W][OPEN

    PubMed Central

    Gruber, Benjamin D.; Giehl, Ricardo F.H.; Friedel, Swetlana; von Wirén, Nicolaus

    2013-01-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440

  13. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    PubMed

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  14. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs.

    PubMed

    Caplan, Joshua S; Stone, Bram W G; Faillace, Cara A; Lafond, Jonathan J; Baumgarten, Joni M; Mozdzer, Thomas J; Dighton, John; Meiners, Scott J; Grabosky, Jason C; Ehrenfeld, Joan G

    2017-04-01

    Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have root traits associated with rapid uptake of soil nutrients may be more likely to increase in abundance, while species without such traits may be less likely to keep pace with more productive species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    PubMed

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  17. Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits

    PubMed Central

    LAMBERS, HANS; SHANE, MICHAEL W.; CRAMER, MICHAEL D.; PEARSE, STUART J.; VENEKLAAS, ERIK J.

    2006-01-01

    • Background Global phosphorus (P) reserves are being depleted, with half-depletion predicted to occur between 2040 and 2060. Most of the P applied in fertilizers may be sorbed by soil, and not be available for plants lacking specific adaptations. On the severely P-impoverished soils of south-western Australia and the Cape region in South Africa, non-mycorrhizal species exhibit highly effective adaptations to acquire P. A wide range of these non-mycorrhizal species, belonging to two monocotyledonous and eight dicotyledonous families, produce root clusters. Non-mycorrhizal species with root clusters appear to be particularly effective at accessing P when its availability is extremely low. • Scope There is a need to develop crops that are highly effective at acquiring inorganic P (Pi) from P-sorbing soils. Traits such as those found in non-mycorrhizal root-cluster-bearing species in Australia, South Africa and other P-impoverished environments are highly desirable for future crops. Root clusters combine a specialized structure with a specialized metabolism. Native species with such traits could be domesticated or crossed with existing crop species. An alternative approach would be to develop future crops with root clusters based on knowledge of the genes involved in development and functioning of root clusters. • Conclusions Root clusters offer enormous potential for future research of both a fundamental and a strategic nature. New discoveries of the development and functioning of root clusters in both monocotyledonous and dicotyledonous families are essential to produce new crops with superior P-acquisition traits. PMID:16769731

  18. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    NASA Astrophysics Data System (ADS)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  19. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  20. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    PubMed

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation

    USDA-ARS?s Scientific Manuscript database

    In plants, the formation of hypocotyl-derived adventitious roots (AR) is an important morphological acclimation to waterlogging stress, but its genetic basis is largely unknown. In the present study, with combined use of bulked segregant analysis-based high throughput next-gen whole genome sequencin...

  2. Domestication syndrome in cassava (Manihot esculenta Crantz): Assessing morphological traits and differentially expressed genes associated with genetic diversity of storage root

    USDA-ARS?s Scientific Manuscript database

    Cassava is a starchy root crop that provides a staple food source for millions of people in tropical and subtropical regions of Asia, Latin America, and Africa. Brazil is considered the major center of diversification for species of the genus Manihot. It is also a center of domestication for the cul...

  3. Influence of rol genes in floriculture.

    PubMed

    Casanova, Eva; Trillas, Maria Isabel; Moysset, Lluïsa; Vainstein, Alexander

    2005-01-01

    Traditionally, new traits have been introduced into ornamental plants through classical breeding. However, genetic engineering now enables specific alterations of single traits in already successful varieties. New or improved varieties of floricultural crops can be obtained by acting on floral traits, such as color, shape or fragrance, on vase life in cut-flower species, and on rooting potential or overall plant morphology. Overexpression of the rol genes of the Ri plasmid of Agrobacterium rhizogenes in plants alters several of the plant's developmental processes and affects their architecture. Both A. rhizogenes- and rol-transgenic plants display the "hairy-root phenotype", although specific differences are found between species and between transgenic lines. In general, these plants show a dwarfed phenotype, reduced apical dominance, smaller, wrinkled leaves, increased rooting, altered flowering and reduced fertility. Among the rol genes, termed rolA, B, C and D, rolC has been the most widely studied because its effects are the most advantageous in terms of improving ornamental and horticultural traits. In addition to the dwarfness and the increase in lateral shoots that lead to a bushy phenotype, rolC-plants display more, smaller flowers, and advanced flowering; surprisingly, these plants may have better rooting capacity and they show almost no undesirable traits. rolD, the least studied among the rol genes, offers promising applications due to its promotion of flowering. Although the biochemical functions of rol genes remain poorly understood, they are useful tools for improving ornamental flowers, as their expression in transgenic plants yields many beneficial traits.

  4. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    PubMed

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  5. Automated body weight prediction of dairy cows using 3-dimensional vision.

    PubMed

    Song, X; Bokkers, E A M; van der Tol, P P J; Groot Koerkamp, P W G; van Mourik, S

    2018-05-01

    The objectives of this study were to quantify the error of body weight prediction using automatically measured morphological traits in a 3-dimensional (3-D) vision system and to assess the influence of various sources of uncertainty on body weight prediction. In this case study, an image acquisition setup was created in a cow selection box equipped with a top-view 3-D camera. Morphological traits of hip height, hip width, and rump length were automatically extracted from the raw 3-D images taken of the rump area of dairy cows (n = 30). These traits combined with days in milk, age, and parity were used in multiple linear regression models to predict body weight. To find the best prediction model, an exhaustive feature selection algorithm was used to build intermediate models (n = 63). Each model was validated by leave-one-out cross-validation, giving the root mean square error and mean absolute percentage error. The model consisting of hip width (measurement variability of 0.006 m), days in milk, and parity was the best model, with the lowest errors of 41.2 kg of root mean square error and 5.2% mean absolute percentage error. Our integrated system, including the image acquisition setup, image analysis, and the best prediction model, predicted the body weights with a performance similar to that achieved using semi-automated or manual methods. Moreover, the variability of our simplified morphological trait measurement showed a negligible contribution to the uncertainty of body weight prediction. We suggest that dairy cow body weight prediction can be improved by incorporating more predictive morphological traits and by improving the prediction model structure. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  6. There's a World Going on Underground: Imaging Technologies to Understand Root Growth Dynamics and Rhizosphere Interactions

    NASA Astrophysics Data System (ADS)

    Topp, C. N.

    2016-12-01

    Our ability to harness the power of plant genomics for basic and applied science depends on how well and how fast we can quantify the phenotypic ramifications of genetic variation. Plants can be considered from many vantage points: at scales from cells to organs, over the course of development or evolution, and from biophysical, physiological, and ecological perspectives. In all of these ways, our understanding of plant form and function is greatly limited by our ability to study subterranean structures and processes. The limitations to accessing this knowledge are well known - soil is opaque, roots are morphologically complex, and root growth can be heavily influenced by a myriad of environmental factors. Nonetheless, recent technological innovations in imaging science have generated a renewed focus on roots and thus new opportunities to understand the plant as a whole. The Topp Lab is interested in crop root system growth dynamics and function in response to environmental stresses such as drought, rhizosphere interactions, and as a consequence of artificial selection for agronomically important traits such as nitrogen uptake and high plant density. Studying roots requires the development of imaging technologies, computational infrastructure, and statistical methods that can capture and analyze morphologically complex networks over time and at high-throughput. The lab uses several imaging tools (optical, X-ray CT, PET, etc.) along with quantitative genetics and molecular biology to understand the dynamics of root growth and physiology. We aim to understand the relationships among root traits that can be effectively measured both in controlled laboratory environments and in the field, and to identify genes and gene networks that control root, and ultimately whole plant architectural features useful for crop improvement.

  7. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    PubMed

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P < 2.9 × 10-6) on chromosomes SBI-02, SBI-03, SBI-05 and SBI-09. Co-localization of significant and suggestive (P < 5.7 × 10-5) associations for several traits indicated hotspots controlling root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions of the present study. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that Dryas roots appear to be quite strong compared to other alpine species with a mean tensile strength of 22,63 N mm -². (B) On a micro scale, morphological and biomechanical features of above and below-ground biomass were qualitatively studied through field observations on D. octopetala individuals. Findings indicate that D. octopetala's dense cushions, covering many square meters of the moraines surface, traps fine sediment, stores moisture and significantly reduces erosion through wind and water. Furthermore, Dryas is well adapted to rock fall or burial by forming stabilized patches of ground despite steep slope inclinations and strong, episodic surface runoff and creep processes. Anchorage is provided by its strong root, which in all studied cases grew upslope parallel to the moraines surface. Insights from this study allow to relate root tensile strength and other specific plant traits of Dryas octopetala to an engineering mechanism and effect on geomorphic processes on lateral moraine slopes. Knowledge about Dryas as an engineering species may help to understand its biotic influence on the geomorphic system of a lateral moraine and aid in the selection of species for erosion control or rehabilitation of ecosystems, where Dryas is native.

  9. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In conclusion, these new insights from basic ecology and practical management guidance represent a great opportunity for practitioners to move forward with the success of roadslope restoration in semiarid environments.

  10. Partially incorrect fossil data augment analyses of discrete trait evolution in living species.

    PubMed

    Puttick, Mark N

    2016-08-01

    Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data. © 2016 The Authors.

  11. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  12. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  14. Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding

    PubMed Central

    Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.

    2009-01-01

    Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824

  15. Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective

    PubMed Central

    Bai, Shu-Nong

    2017-01-01

    This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., “morphological traits”) mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a “structure-based perspective,” evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called “Plant Morphogenesis 123.” This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants. PMID:28360919

  16. Three-dimensional evaluation of root canal morphology in lower second premolars of early and middle Pleistocene human populations from Atapuerca (Burgos, Spain).

    PubMed

    Prado-Simón, Leyre; Martinón-Torres, María; Baca, Pilar; Olejniczak, Anthony J; Gómez-Robles, Aida; Lapresa, María; Luis Arsuaga, Juan; María Bermúdez de Castro, José

    2012-03-01

    The aim of this study is to describe the morphology of the roots and root canals of permanent lower second premolars (LP4s) with fully developed roots of five hominin groups: Homo sp. (ATE9-1 specimen) from Atapuerca-Sima del Elefante locality, H. antecessor (ATD6-4 and ATD6-125) from Atapuerca-Gran Dolina TD6 locality, H. heidelbergensis from Atapuerca-Sima de los Huesos locality, H. neanderthalensis from Krapina, Regourdou, and Abri Bourgeois-Delaunay localities, and two contemporary H. sapiens groups. The teeth were scanned by means of microtomography. The roots were divided into three virtual segments by three planes: cemento-enamel junction (CEJ), mid-root (MR), and mid-apex (MA). Volumetric and planar direct measurements of the whole teeth and each segment were taken. Descriptive statistical analyses and nonparametric Mann-Whiney test were performed to test for significant differences (P < 0.025) between groups. ATE9-1 and Gran Dolina-TD6 fossils present intricate radicular complexes that might be transitional between the morphologies of Australopithecus robustus and African early Homo and the derived conditions typically found in later Homo. In H. neanderthalensis and H. heidelbergensis, the root canals are wide, with small apical convergence. This trait is particularly pronounced in the Sima de los Huesos sample which may reflect a particularity of this population. Our study demonstrates the potential of hominin roots and root canals as untapped sources of taxonomic information when the tooth crown is fragmented. Future studies, including more fossil specimens and species will shed light in the polarity of the morphologies observed. Copyright © 2012 Wiley Periodicals, Inc.

  17. Does Morphological and Anatomical Plasticity during the Vegetative Stage Make Wheat More Tolerant of Water Deficit Stress Than Rice?1[OPEN

    PubMed Central

    Kadam, Niteen N.; Yin, Xinyou; Bindraban, Prem S.; Struik, Paul C.; Jagadish, Krishna S.V.

    2015-01-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice ‘IR64’ and ‘Apo’ adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice ‘Nagina 22’ had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. PMID:25614066

  18. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    PubMed

    Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V

    2015-04-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?

    PubMed Central

    Poot, Pieter; Hopper, Stephen D.; van Diggelen, Josepha M.H.

    2012-01-01

    Background and Aims Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats. Previous research has shown that species endemic to ironstone communities in SW Australia have a specialized root morphology that enhances their chance to access fissures in the underlying rock. Here we test the generality of these findings for species that are confined to a shallow-soil habitat that is of much greater global significance: granite outcrops. Methods We compared temporal and spatial root growth and allocation of three endemic woody perennials of SW Australian granite outcrop communities with those of congeners occurring on nearby deeper soils. Seedlings of all species were grown in 1·2 m long custom-made containers with a transparent bottom that allowed monitoring of root growth over time. Key Results The granite outcrop endemics mostly differed in a predictable way from their congeners from deeper soils. They generally invested a larger portion of their biomass in roots, distributed their roots faster and more evenly over the container and had a lower specific root length. In different species pairs the outcrop endemics achieved their apparent advantage by a different combination of the aforementioned traits. Conclusions Our results are consistent with earlier work, indicating that species restricted to different types of drought-prone shallow-soil communities have undergone similar selection pressures. Although adaptive in their own habitat in terms of obtaining access to fissures in the underlying rock, these root system traits are likely to be maladaptive in deeper soil habitats. Therefore, our results may provide an explanation for the narrow endemism of many shallow-soil endemics. PMID:22238122

  20. Exploring rock fissures: does a specialized root morphology explain endemism on granite outcrops?

    PubMed

    Poot, Pieter; Hopper, Stephen D; van Diggelen, Josepha M H

    2012-07-01

    Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats. Previous research has shown that species endemic to ironstone communities in SW Australia have a specialized root morphology that enhances their chance to access fissures in the underlying rock. Here we test the generality of these findings for species that are confined to a shallow-soil habitat that is of much greater global significance: granite outcrops. We compared temporal and spatial root growth and allocation of three endemic woody perennials of SW Australian granite outcrop communities with those of congeners occurring on nearby deeper soils. Seedlings of all species were grown in 1·2 m long custom-made containers with a transparent bottom that allowed monitoring of root growth over time. The granite outcrop endemics mostly differed in a predictable way from their congeners from deeper soils. They generally invested a larger portion of their biomass in roots, distributed their roots faster and more evenly over the container and had a lower specific root length. In different species pairs the outcrop endemics achieved their apparent advantage by a different combination of the aforementioned traits. Our results are consistent with earlier work, indicating that species restricted to different types of drought-prone shallow-soil communities have undergone similar selection pressures. Although adaptive in their own habitat in terms of obtaining access to fissures in the underlying rock, these root system traits are likely to be maladaptive in deeper soil habitats. Therefore, our results may provide an explanation for the narrow endemism of many shallow-soil endemics.

  1. Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao L.

    PubMed

    Bertolde, Fabiana Zanelato; De Almeida, Alex-Alan Furtado; Corrêa, Ronan Xavier; Gomes, Fábio Pinto; Gaiotto, Fernanda Amato; Baligar, Virupax C; Loguercio, Leandro Lopes

    2010-01-01

    In soil, anoxia conditions generated by waterlogging induce changes in genetic, morphological and physiological processes, altering the growth and development of plants. Mass propagation of cacao (Theobroma cacao L.) plantlets (clones) is affected by waterlogging caused by heavy rains and irrigation methods used to induce rooting. An experiment was undertaken to assess the effects of a 45-day flooding (anoxia) on physiological and morphological traits of 35 elite cacao genotypes, aiming at potentially identifying those with greater tolerance to flooding of the growth substrate. Eighteen fluorochrome-labeled microsatellite (SSR) primer pairs were used to assess genetic variability among clones, with 248 alleles being amplified and used to calculate similarity coefficients. The resulting dendrogram indicated the presence of four major groups, in which two represented 60% and 31% of the genotypes tested. A general trend toward high levels of heterozygosity was also found for physiological and morphological traits. The survival index (IS) for flood tolerance observed varied from 30 to 96%. Clones TSA-654, TSA-656, TSA-792, CA-1.4, CEPEC-2009 and PH-17 showed an IS value above 94%, whereas CEPEC-2010, CEPEC-2002, CA-7.1 and VB-903 clones were those mostly affected by waterlogging, with IS value below 56%. All genotypes displayed lenticel and adventitious root formation in response to waterlogging, although with different intensities. To determine whether patterns of physiological response could be associated with tolerance to anoxia, a similarity-grouping analysis was performed using the ratio between waterlogged and control values obtained for a series of physiological variables assessed. No specific pattern of physiological and morphological responses to waterlogging was strictly associated with survival of plantlets. However, results revealed by the dendrogram suggest that absence of leaf chlorosis may be a proper trait to indicate cacao clones with higher survival rates under flooding conditions. Consequences of these findings are discussed in the context of developing improved strategies for mass production of clones from elite cacao genotypes.

  2. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants.

    PubMed

    Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B

    2017-09-01

    Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  4. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE PAGES

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...

    2017-02-28

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  5. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  6. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    PubMed

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.

  7. Impacts of root traits and genotypic diversity in switchgrass cropping systems on biogeochemical cycling of soil carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    De Graaff, M. A.; Jastrow, J. D.; Adkins, J.; Johns, A. C.; Morris, G.; Six, J.

    2016-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt by enhancing soil C sequestration upon land-use change, particularly when grown in diverse mixtures. Here we investigated how root traits and genotypic diversity in switchgrass (Panicum virgatum) impacts yield, nitrogen (N) cycling and soil C stabilization. Owing to extensive within-species variation in root morphology and architecture among the switchgrass cultivars, we hypothesized that increasing cultivar diversity would enhance belowground niche differentiation, thereby increasing N use efficiency, yield, and ultimately soil C stabilization. Our experiment was conducted at the Fermilab National Environmental Research Park, in northeastern Illinois, USA, where we varied the level of switchgrass genotypic diversity using various local and non-local cultivars (1, 2, 4, or 6 cultivars per plot) in a replicated field trial. We found that genotypic mixtures had one-third higher biomass production than the average monoculture, and no monoculture was significantly higher yielding than the average mixture. Further, year-to-year variation in yields was reduced in the mixture of switchgrass relative to the species monocultures. Despite positive impacts of increased intraspecific diversity on biomass production, we found no effect on N use efficiency, or soil C sequestration. However there were differences among cultivars in soil C input and soil C stabilization. These differences were related to specific root length (SRL), where greater SRL was accompanied by more root-derived soil C. Our findings suggest SRL is a root trait that affects soil C input, and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.

  8. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    PubMed

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  9. Seasonal changes in morphophysiological traits of two native Patagonian shrubs from Argentina with different drought resistance strategies.

    PubMed

    Varela, M Celeste; Reinoso, Herminda; Luna, Virginia; Cenzano, Ana M

    2018-06-01

    In semi-arid regions, plants develop various biochemical and physiological strategies to adapt to dry periods. Understanding the resistance mechanisms to dry periods under field conditions is an important topic in ecology. Larrea divaricata and Lycium chilense provide various ecological services. The aim of this work is to elucidate new morpho-histological, biochemical and hormonal traits that contribute to the drought resistance strategies of two native shrubs. Green leaves and fine roots from L. divaricata and L. chilense were collected in each season for one year, and various traits were measured. The hormone (abscisic acid, ABA-glucose ester, gibberellins A 1 and A 3 , and indole acetic acid) contents were determined by liquid chromatography coupled to mass spectrometry. Rainfall data and the soil water content were also measured. A multivariate analysis showed that green leaves from L. divaricata showed high values for the leaf dry weight, blade leaf thickness and ABA content in the summer compared with those from L. chilense. Fine roots from L. divaricata had high RWC and high IAA levels during the autumn-dry period compared with those from L. chilense, but both had similar levels during the winter and spring. Our results support the notion that species with different drought resistance mechanisms (avoidance or tolerance) display different responses to dry periods throughout the year. Larrea divaricata, which exhibits more xerophytic traits, modified its morphology and maintained its physiological parameters (high RWC in leaves and roots, high ABA levels in leaves during summer, high GA 3 in leaves and high IAA in roots during autumn) to tolerate dry periods, whereas Lycium chilense, which displays more mesophytic traits, uses strategies to avoid dry periods (loss of leaves during autumn and winter, high RWC in leaves, high ABA-GE and GA 3 in leaves during summer, high GA 1 and GA 3 in roots during summer, and high IAA in roots during autumn and summer) and thus has a metabolism that is more dependent on water availability for growth. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  11. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    PubMed

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  12. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.

    PubMed

    Suriyagoda, Lalith D B; Ryan, Megan H; Renton, Michael; Lambers, Hans

    2012-10-01

    Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.

  13. Genome-wide association mapping and agronomic impact of cowpea root architecture.

    PubMed

    Burridge, James D; Schneider, Hannah M; Huynh, Bao-Lam; Roberts, Philip A; Bucksch, Alexander; Lynch, Jonathan P

    2017-02-01

    Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.

  14. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    PubMed Central

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335

  15. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply.

    PubMed

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C; Yang, Ru-Ping; Siddique, Kadambot H M; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [ Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg -1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought.

  16. Evidences of adaptive traits to rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio

    2015-03-01

    Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present.

  17. Fixed allocation patterns, rather than plasticity, benefit recruitment and recovery from drought in seedlings of a desert shrub

    PubMed Central

    Zhang, Yao; Li, Yan; Xie, Jiang-Bo

    2016-01-01

    The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns respond to drought. In this study, we performed a greenhouse experiment with first-year seedlings of a desert shrub in control, drought and re-water treatments, to examine their physiological and morphological traits during drought and subsequent recovery. We found that (i) biomass was preferentially allocated to roots along a fixed allometric trajectory throughout the first year of development, irrespective of the variation in water availability; and (ii) this fixed biomass allocation pattern benefited the post-drought recovery. These results suggest that, in a stressful environment, natural selection has favoured a fixed biomass allocation pattern rather than plastic responses to environmental variation. The fixed ‘preferential allocation to root’ biomass suggests that roots may play a critical role in determining the fate of this desert shrub during prolonged drought. As the major organ for resource acquisition and storage, how the root system functions during drought requires further investigation. PMID:27073036

  18. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE PAGES

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...

    2017-03-13

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  19. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  20. Genomic Regions Influencing Seminal Root Traits in Barley.

    PubMed

    Robinson, Hannah; Hickey, Lee; Richard, Cecile; Mace, Emma; Kelly, Alison; Borrell, Andrew; Franckowiak, Jerome; Fox, Glen

    2016-03-01

    Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley ( L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (/) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat ( L.), and sorghum [ (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley. Copyright © 2016 Crop Science Society of America.

  1. Adventitious root production and plastic resource allocation to biomass determine burial tolerance in woody plants from central Canadian coastal dunes.

    PubMed

    Dech, Jeffery P; Maun, M Anwar

    2006-11-01

    Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25-50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. Adventitious root production and plastic resource allocation to biomass are adaptive traits of coastal dune woody plants in central Canada, and provide a basis for assessing burial tolerance in woody plants on coastal dunes throughout the world.

  2. Fine-Root Ecology Database (FRED): A Global Collection of Root Trait Data with Coincident Site, Vegetation, Edaphic, and Climatic Data, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, C. M.; Powell, A. S.; McCormack, M. L.

    To address the need for a centralized root trait database, we are compiling the Fine-Root Ecology Database (FRED) from published literature and unpublished data. FRED Version 1 (FRED 1.0) currently houses more than 70,000 observations of root traits and their associated site, vegetation, edaphic, and climatic conditions from across the globe (see image below, which shows the more than 1000 distinct locations associated with observations in FRED 1.0). Data collection is ongoing and will continue for the foreseeable future. The more than 300 root traits currently housed in FRED 1.0 are described in detail here. FRED is focused on finemore » roots (less than 2 mm), as coarse roots are studied using different methodology, often at very different scales, and have different traits and trait interpretations.« less

  3. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits

    PubMed Central

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris

    2016-01-01

    Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding – especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) – Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0–5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars. PMID:27999587

  4. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale.

    PubMed

    de la Peña, Eduardo; Bonte, Dries

    2014-08-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.

  5. Nonmetric traits of permanent posterior teeth in Kerala population: A forensic overview

    PubMed Central

    Baby, Tibin K; Sunil, S; Babu, Sharlene Sara

    2017-01-01

    Introduction: Dental morphology is a highly heritable characteristic which is stable with time and has a fairly high state of preservation. Nonmetric dental traits have crucial role in ethnic classifications of a population that helps in forensic racial identification purposes. Aims and Objectives: To determine the frequency and variability of possible nonmetric tooth traits using extracted permanent posterior teeth from Kerala population for discerning racial ethnicity. Materials and Methods: This qualitative, cross-sectional study was carried out using 1743 extracted intact permanent posterior teeth collected from different dental clinics situated all over Kerala. Results: The more common features on premolars were multiple lingual cusps (31.21%), distal accessary ridges (16.28%) and Tom's root (17.9%). In upper first molars, Carabelli trait expression was 17.78% and other common features included metaconulo, cusp 5 and enamel extensions. Conclusion: Posterior tooth traits had variable expression in the study population. Low prevalence rate of Carabelli trait in this study is characteristic of Asian population. This research explored new elements of invaluable tooth traits values to understand racial ethnicity of Kerala population. PMID:28932045

  6. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    NASA Astrophysics Data System (ADS)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.

  7. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  8. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  9. Evidences of adaptive traits to rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica

    PubMed Central

    Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio

    2015-01-01

    Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present. PMID:25740176

  10. Small peptide signaling pathways modulating macronutrient utilization in plants.

    PubMed

    de Bang, Thomas C; Lay, Katerina S; Scheible, Wolf-Rüdiger; Takahashi, Hideki

    2017-10-01

    Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    PubMed Central

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought, root traits also contribute to high nutrient uptake efficiency and benefit yield under drought. PMID:28912792

  12. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem.

    PubMed

    Guo, Xiaohong; Gong, Jun

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.

  13. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  14. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    PubMed

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  15. Legacy effects of land-use modulate tree growth responses to climate extremes.

    PubMed

    Mausolf, Katharina; Härdtle, Werner; Jansen, Kirstin; Delory, Benjamin M; Hertel, Dietrich; Leuschner, Christoph; Temperton, Vicky M; von Oheimb, Goddert; Fichtner, Andreas

    2018-05-10

    Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.

  16. A global exploration of fine-root trait variation: opening the black box

    USDA-ARS?s Scientific Manuscript database

    A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...

  17. A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes.

    PubMed

    Adu, Michael O; Chatot, Antoine; Wiesel, Lea; Bennett, Malcolm J; Broadley, Martin R; White, Philip J; Dupuy, Lionel X

    2014-05-01

    The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with high throughput. This paper describes the construction of a low-cost, high-resolution root phenotyping platform, requiring no sophisticated equipment and adaptable to most laboratory and glasshouse environments, and its application to quantify environmental and temporal variation in root traits between genotypes of Brassica rapa L. Plants were supplied with a complete nutrient solution through the wick of a germination paper. Images of root systems were acquired without manual intervention, over extended periods, using multiple scanners controlled by customized software. Mixed-effects models were used to describe the sources of variation in root traits contributing to root system architecture estimated from digital images. It was calculated that between one and 43 replicates would be required to detect a significant difference (95% CI 50% difference between traits). Broad-sense heritability was highest for shoot biomass traits (>0.60), intermediate (0.25-0.60) for the length and diameter of primary roots and lateral root branching density on the primary root, and lower (<0.25) for other root traits. Models demonstrate that root traits show temporal variations of various types. The phenotyping platform described here can be used to quantify environmental and temporal variation in traits contributing to root system architecture in B. rapa and can be extended to screen the large populations required for breeding for efficient resource acquisition.

  18. Late Neandertals in Southeastern Iberia: Sima de las Palomas del Cabezo Gordo, Murcia, Spain

    PubMed Central

    Walker, Michael J.; Gibert, Josep; López, Mariano V.; Lombardi, A. Vincent; Pérez-Pérez, Alejandro; Zapata, Josefina; Ortega, Jon; Higham, Thomas; Pike, Alistair; Schwenninger, Jean-Luc; Zilhão, João; Trinkaus, Erik

    2008-01-01

    Middle Paleolithic fossil human remains from the Sima de las Palomas in southeastern Iberia (dated to ≤43,000–40,000 calendar years before present) present a suite of derived Neandertal and/or retained ancestral morphological features in the mandibular symphysis, mandibular ramus, dental occlusal morphology, and distal hand phalanx. These traits are combined with variation in the mandibular corpus, discrete dental morphology, tooth root lengths, and anterior dental size that indicate a frequency difference with earlier Iberian and more northern European Neandertals. The Palomas Neandertals therefore confirm the late presence of Neandertals associated with the Iberian persistence of the Middle Paleolithic, but suggest microevolutionary processes and/or population contact with contemporaneous modern humans to the north. PMID:19074275

  19. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances.

    PubMed

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  1. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    PubMed Central

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  2. Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits.

    PubMed

    van der Sande, Masha T; Poorter, Lourens; Schnitzer, Stefan A; Markesteijn, Lars

    2013-08-01

    Lianas are an important component of neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P50) and maximum hydraulic conductivity (K(h)), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forests.

  3. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2017-04-26

    Plants compete for nutrients using a range of strategies. We investigated nutrient foraging within nutrient hot-spots simultaneously available to plant species with diverse root traits. We hypothesized that there would be more root proliferation by thin-root species than by thick-root species, and that root proliferation by thin-root species would limit root proliferation by thick-root species. We conducted a root ingrowth experiment in a temperate forest in eastern USA where root systems of different tree species could interact. Tree species varied in the thickness of their absorptive roots, and were associated with either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM) fungi. Thus,more » there were thin- and thick-root AM and thin- and thick-root EM plant functional groups. Half the ingrowth cores were amended with organic nutrients (dried green leaves). Relative root length abundance, the proportion of total root length in a given soil volume occupied by a particular plant functional group, was calculated for the original root population and ingrowth roots after 6 months. The shift in relative root length abundance from original to ingrowth roots was positive in thin-root species but negative in thick-root species (p < .001), especially in unamended patches (AM: +6% vs. -7%; EM: +8% vs. -9%). Being thin-rooted may thus allow a species to more rapidly recolonize soil after a disturbance, which may influence competition for nutrients. Moreover, we observed that nutrient additions amplified the shift in root length abundance of thin over thick roots in AM trees (+13% vs. -14%), but not in EM trees (+1% vs -3%). In contrast, phospholipid fatty acid biomarkers suggested that EM fungal hyphae strongly proliferated in nutrient hot-spots whereas AM fungal hyphae exhibited only modest proliferation. We found no evidence that when growing in the shared patch, the proliferation of thin roots inhibited the growth of thick roots. As a result, knowledge of root morphology and mycorrhizal type of co-existing tree species may improve prediction of patch exploitation and nutrient acquisition in heterogeneous soils.« less

  4. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    Plants compete for nutrients using a range of strategies. We investigated nutrient foraging within nutrient hot-spots simultaneously available to plant species with diverse root traits. We hypothesized that there would be more root proliferation by thin-root species than by thick-root species, and that root proliferation by thin-root species would limit root proliferation by thick-root species. We conducted a root ingrowth experiment in a temperate forest in eastern USA where root systems of different tree species could interact. Tree species varied in the thickness of their absorptive roots, and were associated with either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM) fungi. Thus,more » there were thin- and thick-root AM and thin- and thick-root EM plant functional groups. Half the ingrowth cores were amended with organic nutrients (dried green leaves). Relative root length abundance, the proportion of total root length in a given soil volume occupied by a particular plant functional group, was calculated for the original root population and ingrowth roots after 6 months. The shift in relative root length abundance from original to ingrowth roots was positive in thin-root species but negative in thick-root species (p < .001), especially in unamended patches (AM: +6% vs. -7%; EM: +8% vs. -9%). Being thin-rooted may thus allow a species to more rapidly recolonize soil after a disturbance, which may influence competition for nutrients. Moreover, we observed that nutrient additions amplified the shift in root length abundance of thin over thick roots in AM trees (+13% vs. -14%), but not in EM trees (+1% vs -3%). In contrast, phospholipid fatty acid biomarkers suggested that EM fungal hyphae strongly proliferated in nutrient hot-spots whereas AM fungal hyphae exhibited only modest proliferation. We found no evidence that when growing in the shared patch, the proliferation of thin roots inhibited the growth of thick roots. As a result, knowledge of root morphology and mycorrhizal type of co-existing tree species may improve prediction of patch exploitation and nutrient acquisition in heterogeneous soils.« less

  5. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings.

    PubMed

    Kumar, Bharath; Abdel-Ghani, Adel H; Pace, Jordon; Reyes-Matamoros, Jenaro; Hochholdinger, Frank; Lübberstedt, Thomas

    2014-07-01

    Several genes involved in maize root development have been isolated. Identification of SNPs associated with root traits would enable the selection of maize lines with better root architecture that might help to improve N uptake, and consequently plant growth particularly under N deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with seedling root traits in maize suggesting that all four tested genes are involved in the maize root development. Thus considerable allelic variation present in these root genes can be exploited for improving maize root characteristics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest.

    PubMed

    Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B

    2018-03-01

    Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.

  7. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    USDA-ARS?s Scientific Manuscript database

    Despite large variation in root traits among species, we have limited understanding of how traits are related to diverse soil resource acquisition strategies. We examined root trait variation among 33 species co-existing in Northeastern US forests that form the two most common mutualisms with mycorr...

  8. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Genome-wide association analysis of seedling root development in maize (Zea mays L.).

    PubMed

    Pace, Jordon; Gardner, Candice; Romay, Cinta; Ganapathysubramanian, Baskar; Lübberstedt, Thomas

    2015-02-05

    Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped. Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10(-7)). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots. This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.

  10. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    PubMed

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The contribution of fine roots to peatland stability under changing environmental conditions

    NASA Astrophysics Data System (ADS)

    Malhotra, A.; Brice, D. J.; Childs, J.; Phillips, J.; Hanson, P. J.; Iversen, C. M.

    2017-12-01

    Fine-root production and traits are closely linked with ecosystem nutrient and water fluxes, and may regulate these fluxes in response to environmental change. Plant strategies can shift to favoring below- over aboveground biomass allocation when nutrients or moisture are limited. Fine-roots traits such as root tissue density (RTD) or specific root length (SRL) can also adapt to the environment, for example, by maximizing the area of soil exploited by decreasing RTD and increasing SRL during dry conditions. Fine-root trait plasticity could contribute to the stability of peatland carbon function in response to environmental change. However, the extent and mechanisms of peatland fine-root plasticity are unknown. We investigated fine-root growth and traits and their link to environmental factors and aboveground dynamics at SPRUCE (Spruce and Peatland Responses Under Changing Environments), a warming and elevated CO2 (eCO2) experiment in an ombrotrophic peatland. In the first growing season of whole ecosystem warming, fine-root production increased with warming and drying. Above- versus belowground allocation strategies varied by plant functional type (PFT). In shrubs, contrary to our expectation, aboveground- to fine-root production allocation ratio increased with dryer conditions, perhaps as a response to a concurrent increase in nutrients. Trait response hypotheses were largely supported, with RTD decreasing and SRL increasing with warming; however, response varied among PFTs. Once eCO2 was turned on in the second growing season, preliminary results suggest interactive effects of warming and eCO2 on total fine-root production: production decreased or increased with warming in ambient or elevated CO2 plots, respectively. Both trait and production responses to warming and eCO2 varied by microtopography and depth. Our results highlight plasticity of fine-root traits and biomass allocation strategies; the extent and mechanism of which varies by PFT. We will summarize our results using a trait-based approach as a first step toward modeling fine-root contributions to peatland carbon stability in response to environmental change.

  12. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius.

    PubMed

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed

    2016-06-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius

    PubMed Central

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed

    2016-01-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020

  14. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  15. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  16. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana.

    PubMed

    Cousins, Elsa A; Murren, Courtney J

    2017-12-01

    Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.

  17. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    A trait is defined as a distinct, quantitative property of organisms, usually measured at the individual level and used comparatively across species. Plant quantitative traits are extremely important for understanding the local ecology of any site. Plant height, architecture, root depth, wood density, leaf size and leaf nitrogen concentration control ecosystem processes and define habitat for other taxa. An engineer conjecturing as to how plant traits may directly influence physical processes occurring on sloping land just needs to consider how e.g. canopy architecture and litter properties influence the partitioning of rainfall among interception loss, infiltration and runoff. Plant traits not only influence abiotic processes occurring at a site, but also the habitat for animals and invertebrates. Depending on the goal of the landslide engineer, the immediate and long-term effects of plant traits in an environment must be considered if a site is to remain viable and ecologically successful. When vegetation is considered in models of slope stability, usually the only root parameters taken into consideration are tensile strength and root area ratio. Root system spatial structure is not considered, although the length, orientation and diameter of roots are recognized as being of importance. Thick roots act like soil nails on slopes, reinforcing soil in the same way that concrete is reinforced with steel rods. The spatial position of these thick roots also has an indirect effect on soil fixation in that the location of thin and fine roots will depend on the arrangement of thick roots. Thin and fine roots act in tension during failure on slopes and if they cross the slip surface, are largely responsible for reinforcing soil on slopes. Therefore, the most important trait to consider initially is rooting depth. To stabilize a slope against a shallow landslide, roots must cross the shear surface. The number and thickness of roots in this zone will therefore largely determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  18. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply.

    PubMed

    Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei

    2017-08-01

    Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. Image-Based High-Throughput Field Phenotyping of Crop Roots1[W][OPEN

    PubMed Central

    Bucksch, Alexander; Burridge, James; York, Larry M.; Das, Abhiram; Nord, Eric; Weitz, Joshua S.; Lynch, Jonathan P.

    2014-01-01

    Current plant phenotyping technologies to characterize agriculturally relevant traits have been primarily developed for use in laboratory and/or greenhouse conditions. In the case of root architectural traits, this limits phenotyping efforts, largely, to young plants grown in specialized containers and growth media. Hence, novel approaches are required to characterize mature root systems of older plants grown under actual soil conditions in the field. Imaging methods able to address the challenges associated with characterizing mature root systems are rare due, in part, to the greater complexity of mature root systems, including the larger size, overlap, and diversity of root components. Our imaging solution combines a field-imaging protocol and algorithmic approach to analyze mature root systems grown in the field. Via two case studies, we demonstrate how image analysis can be utilized to estimate localized root traits that reliably capture heritable architectural diversity as well as environmentally induced architectural variation of both monocot and dicot plants. In the first study, we show that our algorithms and traits (including 13 novel traits inaccessible to manual estimation) can differentiate nine maize (Zea mays) genotypes 8 weeks after planting. The second study focuses on a diversity panel of 188 cowpea (Vigna unguiculata) genotypes to identify which traits are sufficient to differentiate genotypes even when comparing plants whose harvesting date differs up to 14 d. Overall, we find that automatically derived traits can increase both the speed and reproducibility of the trait estimation pipeline under field conditions. PMID:25187526

  20. [Rationality of commodity criteria and traditional breeding of Polygala tenuifolia based on agronomic traits and determination of chemical components].

    PubMed

    Wang, Dan-Dan; Bai, Lu; Xu, Xiao-Shuang; Zhang, Fu-Sheng; Xing, Jie; Jia, Jin-Ping; Tian, Hong-Ling; Qin, Xue-Mei

    2016-10-01

    The agronomic traits (plant height, root diameter, root length, first lateral root height, lateral root amount, root weight) of 18 Polygala tenuifolia samples with different agronomic traits were analyzed, respectively. HPLC was used to analyze three main characteristic components including tenuifolin, polygalaxanthone Ⅲ, and 3,6'-disinapoyl sucrose. At last, the correlation between six agronomic traits and three main characteristic components were analyzed by scatter plot. We found no significant correlation between root diameter and three main characteristic components. There were no obvious correlations between tenuifolin and the remaining five agronomic traits. Short root length and first lateral root height as well as high lateral root amount resulted in high levels of polygalaxanthone Ⅲ in P. tenuifolia samples. High levels of 3,6'-disinapoyl sucrose were observed in P. tenuifolia samples with longer root. So, the current commodity criteria and traditional breeding of P. tenuifolia did not conform to pharmacopoeia standards, which excellent medicinal materials should have high contents of the main characteristic components. It was urgent to revise the current commodity criteria and breeding methods. Copyright© by the Chinese Pharmaceutical Association.

  1. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations

    PubMed Central

    Edy, Nur; Meyer, Marike; Corre, Marife D.; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems. PMID:26366576

  2. Degradation of Root Community Traits as Indicator for Transformation of Tropical Lowland Rain Forests into Oil Palm and Rubber Plantations.

    PubMed

    Sahner, Josephine; Budi, Sri Wilarso; Barus, Henry; Edy, Nur; Meyer, Marike; Corre, Marife D; Polle, Andrea

    2015-01-01

    Conversion of tropical forests into intensely managed plantations is a threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis guineensis) plantations are rapidly expanding, displacing rain forests and extensively used rubber (Hevea brasiliensis) agro-forests. Here, we tested the influence of land use systems on root traits including chemical traits (carbon, nitrogen, mineral nutrients, potentially toxic elements [aluminium, iron] and performance traits (root mass, vitality, mycorrhizal colonization). Traits were measured as root community-weighed traits (RCWTs) in lowland rain forests, in rubber agro-forests mixed with rain forest trees, in rubber and oil palm plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). We hypothesized that RCWTs vary with land use system indicating increasing transformation intensity and loss of ecosystem functions. The main factors found to be related to increasing transformation intensity were declining root vitality and root sulfur, nitrogen, carbon, manganese concentrations and increasing root aluminium and iron concentrations as well as increasing spore densities of arbuscular mycorrhizas. Mycorrhizal abundance was high for arbuscular and low for ectomycorrhizas and unrelated to changes in RCWTs. The decline in RCWTs showed significant correlations with soil nitrogen, soil pH and litter carbon. Thus, our study uncovered a relationship between deteriorating root community traits and loss of ecosystem functionality and showed that increasing transformation intensity resulted in decreasing root nutrition and health. Based on these results we suggest that land management that improves root vitality may enhance the ecological functions of intense tropical production systems.

  3. Effect of salinity on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    PubMed

    Fallah, F; Nokhasi, F; Ghaheri, M; Kahrizi, D; Beheshti Ale Agha, A; Ghorbani, T; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana Bertoni is a famous medicinal plant for its low calorific value compounds which are named steviol glycosides (SGs) and they are 150-300 times sweeter than sugar. Among various SGs, stevioside and rebaudioside A considered to be the main sweetening compounds.  Soil salinity is one of the most essential stress in the world. Salinity affects the survival and yield of crops. In current study the effects of salinity and osmotic stress caused by different concentration of NaCl (0, 20, 40, 60 and 80 mM) on morphological traits, genes expressionand amount of both stevioside and rebaudioside Aunder in vitro conditions has been investigated. The morphological traits such as bud numbers, root numbers, shoot length (after 15 and 30 days) were evaluated. With increasing salinity, the values of all studied morphological traits decreased. To investigation of UGT74G1 and UGT76G1 genes expression that are involved in the synthesis of SGs, RT-PCR was done and there were significant differences between all media. The highest expression of both genes was observed in plantlets grown on MS media (with NaCl-free). Also, the lowest amounts of gene expression of the both genes were seen in MS+ 60 mM NaCl. Based on HPLC results, the highest amount of both stevioside and rebaudioside A were observed in plantlets grown in MS media (with NaCl-free). Finally, it can be concluded that stevia can survive under salt stress, but it has the best performance in the lower salinity.

  4. Association analysis of genes involved in maize (Zea mays L.) root development with seedling and agronomic traits under contrasting nitrogen levels.

    PubMed

    Abdel-Ghani, Adel H; Kumar, Bharath; Pace, Jordon; Jansen, Constantin; Gonzalez-Portilla, Pedro J; Reyes-Matamoros, Jenaro; San Martin, Juan Pablo; Lee, Michael; Lübberstedt, Thomas

    2015-05-01

    A better understanding of the genetic control of root development might allow one to develop lines with root systems with the potential to adapt to soils with limited nutrient availability. For this purpose, an association study (AS) panel consisting of 74 diverse set of inbred maize lines were screened for seedling root traits and adult plant root traits under two contrasting nitrogen (N) levels (low and high N). Allele re-sequencing of RTCL, RTH3, RUM1, and RUL1 genes related to root development was carried out for AS panel lines. Association analysis was carried out between individual polymorphisms, and both seedling and adult plant traits, while controlling for spurious associations due to population structure and kinship relations. Based on the SNPs identified in RTCL, RTH3, RUM1, and RUL1, lines within the AS panel were grouped into 16, 9, 22, and 7 haplotypes, respectively. Association analysis revealed several polymorphisms within root genes putatively associated with the variability in seedling root and adult plant traits development under contrasting N levels. The highest number of significantly associated SNPs with seedling root traits were found in RTCL (19 SNPs) followed by RUM1 (4 SNPs) and in case of RTH3 and RUL1, two and three SNPs, respectively, were significantly associated with root traits. RTCL and RTH3 were also found to be associated with grain yield. Thus considerable allelic diversity is present within the candidate genes studied and can be utilized to develop functional markers that allow identification of maize lines with improved root architecture and yield under N stress conditions.

  5. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study

    PubMed Central

    Li, Xiaokai; Guo, Zilong; Lv, Yan; Cen, Xiang; Ding, Xipeng; Wu, Hua; Li, Xianghua; Huang, Jianping

    2017-01-01

    A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance. PMID:28686596

  6. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    NASA Astrophysics Data System (ADS)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  7. Identifying seedling root architectural traits associated with yield and yield components in wheat.

    PubMed

    Xie, Quan; Fernando, Kurukulasuriya M C; Mayes, Sean; Sparkes, Debbie L

    2017-05-01

    Plant roots growing underground are critical for soil resource acquisition, anchorage and plant-environment interactions. In wheat ( Triticum aestivum ), however, the target root traits to improve yield potential still remain largely unknown. This study aimed to identify traits of seedling root system architecture (RSA) associated with yield and yield components in 226 recombinant inbred lines (RILs) derived from a cross between the bread wheat Triticum aestivum 'Forno' (small, wide root system) and spelt Triticum spelta 'Oberkulmer' (large, narrow root system). A 'pouch and wick' high-throughput phenotyping pipeline was used to determine the RSA traits of 13-day-old RIL seedlings. Two field experiments and one glasshouse experiment were carried out to investigate the yield, yield components and phenology, followed by identification of quantitative trait loci (QTLs). There was substantial variation in RSA traits between genotypes. Seminal root number and total root length were both positively associated with grains m -2 , grains per spike, above-ground biomass m -2 and grain yield. More seminal roots and longer total root length were also associated with delayed maturity and extended grain filling, likely to be a consequence of more grains being defined before anthesis. Additionally, the maximum width of the root system displayed positive relationships with spikes m -2 , grains m -2 and grain yield. Ten RILs selected for the longest total roots exhibited the same effects on yield and phenology as described above, compared with the ten lines with the shortest total roots. Genetic analysis revealed 38 QTLs for the RSA, and QTL coincidence between the root and yield traits was frequently observed, indicating tightly linked genes or pleiotropy, which concurs with the results of phenotypic correlation analysis. Based on the results from the Forno × Oberkulmer population, it is proposed that vigorous early root growth, particularly more seminal roots and longer total root length, is important to improve yield potential, and should be incorporated into wheat ideotypes in breeding. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.

    PubMed

    Matsunaga, Kelly K S; Tomescu, Alexandru M F

    2016-04-01

    The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian-Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant-substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding.

    PubMed

    Rose, T J; Impa, S M; Rose, M T; Pariasca-Tanaka, J; Mori, A; Heuer, S; Johnson-Beebout, S E; Wissuwa, M

    2013-07-01

    Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.

  10. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    PubMed

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids.

    PubMed

    Hauck, Andrew L; Novais, Joana; Grift, Tony E; Bohn, Martin O

    2015-01-01

    The mature root system is a vital plant organ, which is critical to plant performance. Commercial maize (Zea mays L.) breeding has resulted in a steady increase in plant performance over time, along with noticeable changes in above ground vegetative traits, but the corresponding changes in the root system are not presently known. In this study, roughly 2500 core root systems from field trials of a set of 10 diverse elite inbreds formerly protected by Plant Variety Protection plus B73 and Mo17 and the 66 diallel intercrosses among them were evaluated for root traits using high throughput image-based phenotyping. Overall root architecture was modeled by root angle (RA) and stem diameter (SD), while root complexity, the amount of root branching, was quantified using fractal analysis to obtain values for fractal dimension (FD) and fractal abundance (FA). For each trait, per se line effects were highly significant and the most important contributor to trait performance. Mid-parent heterosis and specific combining ability was also highly significant for FD, FA, and RA, while none of the traits showed significant general combining ability. The interaction between the environment and the additive line effect was also significant for all traits. Within the inbred and hybrid generations, FD and FA were highly correlated (rp ≥ 0.74), SD was moderately correlated to FD and FA (0.69 ≥ rp ≥ 0.48), while the correlation between RA and other traits was low (0.13 ≥ rp ≥ -0.40). Inbreds with contrasting effects on complexity and architecture traits were observed, suggesting that root complexity and architecture traits are inherited independently. A more comprehensive understanding of the maize root system and the way it interacts with the environment will be useful for defining adaptation to nutrient acquisition and tolerance to stress from drought and high plant densities, critical factors in the yield gains of modern hybrids.

  12. Genomic Regions Associated with Root Traits under Drought Stress in Tropical Maize (Zea mays L.)

    PubMed Central

    Zaidi, P. H.; Krishna, Girish; Krishnamurthy, L.; Gajanan, S.; Babu, Raman; Zerka, M.; Vinayan, M. T.; Vivek, B. S.

    2016-01-01

    An association mapping panel, named as CIMMYT Asia association mapping (CAAM) panel, involving 396 diverse tropical maize lines were phenotyped for various structural and functional traits of roots under drought and well-watered conditions. The experiment was conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facility at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690 SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associated for root functional (transpiration efficiency, flowering period water use) and structural traits (rooting depth, root dry weight, root length, root volume, root surface area and root length density), respectively. In addition to this, 37 SNPs were identified for grain yield and shoot biomass under well-watered and drought stress. Though many SNPs were found to have significant association with the traits under study, SNPs that were common for more than one trait were discussed in detail. A total 18 SNPs were found to have common association with more than one trait, out of which 12 SNPs were found within or near the various gene functional regions. In this study we attempted to identify the trait specific maize lines based on the presence of favorable alleles for the SNPs associated with multiple traits. Two SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency, shoot biomass and grain yield under well-watered condition. Based on favorable allele for these SNPs seven inbred lines were identified. Similarly, four lines were identified for transpiration efficiency and shoot biomass under drought stress based on the presence of favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified for flowering period water-use, transpiration efficiency, root dry weight and root volume based on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139. PMID:27768702

  13. Can diversity in root architecture explain plant water use efficiency? A modeling study

    PubMed Central

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-01-01

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment. PMID:26412932

  14. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    PubMed

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  15. Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population

    PubMed Central

    Idrissi, Omar; Udupa, Sripada M.; De Keyser, Ellen; McGee, Rebecca J.; Coyne, Clarice J.; Saha, Gopesh C.; Muehlbauer, Fred J.; Van Damme, Patrick; De Riek, Jan

    2016-01-01

    Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods. PMID:27602034

  16. FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits.

    PubMed

    Himuro, Yasuyo; Tanaka, Hidenori; Hashiguchi, Masatsugu; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Fujita, Miki; Shinozaki, Kazuo; Matsui, Minami; Akashi, Ryo; Hoffmann, Franz

    2011-01-15

    Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    PubMed

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.

  18. Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?

    PubMed Central

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  19. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding

    PubMed Central

    Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.

    2013-01-01

    Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218

  20. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  1. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism.

    PubMed

    Takahashi, Hideyuki; Miyazawa, Yutaka; Fujii, Nobuharu

    2009-03-01

    Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny-Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.

  2. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree.

    PubMed

    Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R

    2012-04-01

    Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.

  3. Novel seed adaptations of a monocotyledon seagrass in the wavy sea.

    PubMed

    Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan

    2013-01-01

    Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species.

  4. Novel Seed Adaptations of a Monocotyledon Seagrass in the Wavy Sea

    PubMed Central

    Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan

    2013-01-01

    Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species. PMID:24040188

  5. The outcome of ecosystem manipulation by elevating atmospheric CO2 is influenced by tree identity and mixture

    NASA Astrophysics Data System (ADS)

    Godbold, Douglas; Smith, Andrew; Lukac, Martin

    2013-04-01

    Free Air Carbon dioxide Enrichment (FACE) has often been used predict the response of forest ecosystems to a future high CO2 world. Many of these investigations have been restricted to exposure of single species or genotypes to elevated CO2. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 for 4 years. Aboveground woody biomass was increased in polyculture under both ambient and elevated CO2, but the response to elevated CO2 was smaller in polyculture than in the monocultures. In some years, a longer leaf retention was shown under high CO2, and is an indication that environmental factors may moderate tree response to high CO2. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were also measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots, and fine root area index. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our results show that the aboveground and belowground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits but also that other environmental factors may induce previously unseen effects.

  6. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  7. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  8. Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    PubMed Central

    Wade, Len J.; Bartolome, Violeta; Mauleon, Ramil; Vasant, Vivek Deshmuck; Prabakar, Sumeet Mankar; Chelliah, Muthukumar; Kameoka, Emi; Nagendra, K.; Reddy, K. R. Kamalnath; Varma, C. Mohan Kumar; Patil, Kalmeshwar Gouda; Shrestha, Roshi; Al-Shugeairy, Zaniab; Al-Ogaidi, Faez; Munasinghe, Mayuri; Gowda, Veeresh; Semon, Mande; Suralta, Roel R.; Shenoy, Vinay; Vadez, Vincent; Serraj, Rachid; Shashidhar, H. E.; Yamauchi, Akira; Babu, Ranganathan Chandra; Price, Adam; McNally, Kenneth L.; Henry, Amelia

    2015-01-01

    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions. PMID:25909711

  9. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119

  10. Morphological Variation and Inter-Relationships of Quantitative Traits in Enset (Ensete ventricosum (welw.) Cheesman) Germplasm from South and South-Western Ethiopia

    PubMed Central

    Yemataw, Zerihun; Chala, Alemayehu; Grant, Murray R.

    2017-01-01

    Enset (Ensete ventricosum (Welw.) Cheesman) is Ethiopia’s most important root crop. A total of 387 accessions collected from nine different regions of Ethiopia were evaluated for 15 quantitative traits at Areka Agricultural Research Centre to determine the extent and pattern of distribution of morphological variation. The variations among the accessions and regions were significant (p ≤ 0.01) for all the 15 traits studied. Mean for plant height, central shoot weight before grating, and fermented squeezed kocho yield per hectare per year showed regional variation along an altitude gradient and across cultural differences related to the origin of the collection. Furthermore, there were significant correlations among most of the characters. This included the correlation among agronomic characteristics of primary interest in enset breeding such as plant height, pseudostem height, and fermented squeezed kocho yield per hectare per year. Altitude of the collection sites also significantly impacted the various characteristics studied. These results reveal the existence of significant phenotypic variations among the 387 accessions as a whole. Regional differentiations were also evident among the accessions. The implication of the current results for plant breeding, germplasm collection, and in situ and ex situ genetic resource conservation are discussed. PMID:29210979

  11. The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

    PubMed Central

    Cruz-Ramírez, Alfredo; López-Bucio, José; Ramírez-Pimentel, Gabriel; Zurita-Silva, Andrés; Sánchez-Calderon, Lenin; Ramírez-Chávez, Enrique; González-Ortega, Emmanuel; Herrera-Estrella, Luis

    2004-01-01

    Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity. PMID:15295103

  12. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  13. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  14. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  15. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  16. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    PubMed

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  17. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand

    PubMed Central

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch (Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N2O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity. PMID:28421053

  18. Rhizosphere hydrophobicity: A positive trait in the competition for water.

    PubMed

    Zeppenfeld, Thorsten; Balkenhol, Niko; Kóvacs, Kristóf; Carminati, Andrea

    2017-01-01

    The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage) that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation) and from high to low precipitation frequencies (1, 7, and 14 days). Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species.

  19. Rhizosphere hydrophobicity: A positive trait in the competition for water

    PubMed Central

    Balkenhol, Niko; Kóvacs, Kristóf; Carminati, Andrea

    2017-01-01

    The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage) that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation) and from high to low precipitation frequencies (1, 7, and 14 days). Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species. PMID:28753673

  20. Root traits predict decomposition across a landscape-scale grazing experiment

    PubMed Central

    Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René

    2014-01-01

    Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886

  1. Molecular Physiology of Root System Architecture in Model Grasses

    NASA Astrophysics Data System (ADS)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR) and leaf node axile root (LNR) during developmental stages of root formation. The root exudates also will be quantified and preliminary data will be used to engineer our microbial consortium to improve plant growth.

  2. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater.

    PubMed

    Farahat, Emad A; Galal, Tarek M; Elawa, Omar E; Hassan, Loutfy M

    2017-10-02

    The present study evaluated the effect of untreated wastewater irrigation and its health risks in Triticum aestivum (wheat) and Zea mays (maize) cultivated at south Cairo, Egypt. Morphological measurements (stem and root lengths, number of leaves per plant, and dry weights of main organs) as well as soil, irrigation water, and plant analyses for nutrients and heavy metals were conducted in polluted and unpolluted sites. Wastewater irrigations leads to reduction in the morphological traits of the plants and reduced its vegetative biomass and yield production, with more negative impacts on maize than wheat. The concentrations of Pb, Cd, Cr, and Fe in roots and leaves of wheat were above the phytotoxic limits. Conversely, Pb, Cd, and Fe were significantly high and at phytotoxic concentrations in the leaves of maize at polluted site. The present study indicated that wheat plants tend to phytostabilize heavy metals in their roots, while maize accumulates it more in their leaves. Maize and wheat had toxic concentrations of Pb and Cd in their grains under wastewater irrigation. The health risk index showed values > 1 for Pb and Cd in polluted site for both crops, in addition to maize in unpolluted site. Consequently, this will have greatest potential to pose health risk to the consumers.

  3. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana.

    PubMed

    Bukowski, Alexandra R; Petermann, Jana S

    2014-06-01

    Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant-soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.

  4. Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana

    PubMed Central

    Bukowski, Alexandra R; Petermann, Jana S

    2014-01-01

    Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. PMID:25360284

  5. Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating Upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita).

    PubMed

    Wubben, Martin J; Callahan, Franklin E; Velten, Jeff; Burke, John J; Jenkins, Johnie N

    2015-02-01

    Transgene-based analysis of the MIC-3 gene provides the first report of a cotton gene having a direct role in mediating cotton resistance to root-knot nematode. Major quantitative trait loci have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita); however, nearly nothing is known regarding the underlying molecular determinants of this RKN-resistant phenotype. Multiple lines of circumstantial evidence have strongly suggested that the MIC (Meloidogyne Induced Cotton) gene family plays an integral role in mediating cotton resistance to RKN. In this report, we demonstrate that overexpression of MIC-3 in the RKN-susceptible genetic background Coker 312 reduces RKN egg production by ca. 60-75 % compared to non-transgenic controls and transgene-null sibling lines. MIC-3 transcript and protein overexpression were confirmed in root tissues of multiple independent transgenic lines with each line showing a similar level of increased resistance to RKN. In contrast to RKN fecundity, transgenic lines showed RKN-induced root galling similar to the susceptible controls. In addition, we determined that this effect of MIC-3 overexpression was specific to RKN as no effect was observed on reniform nematode (Rotylenchulus reniformis) reproduction. Transgenic lines did not show obvious alterations in growth, morphology, flowering, or fiber quality traits. Gene expression analyses showed that MIC-3 transcript levels in uninfected transgenic roots exceeded levels observed in RKN-infected roots of naturally resistant plants and that overexpression did not alter the regulation of native MIC genes in the genome. These results are the first report describing a direct role for a specific gene family in mediating cotton resistance to a plant-parasitic nematode.

  6. GiA Roots: software for the high throughput analysis of plant root system architecture.

    PubMed

    Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S

    2012-07-26

    Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

  7. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities.

    PubMed

    Deveautour, Coline; Donn, Suzanne; Power, Sally A; Bennett, Alison E; Powell, Jeff R

    2018-04-01

    Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem. © 2018 John Wiley & Sons Ltd.

  8. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    PubMed Central

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association mapping. PMID:27280445

  9. Development of cassava periclinal chimera may boost production.

    PubMed

    Bomfim, N; Nassar, N M A

    2014-02-10

    Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.

  10. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species

    PubMed Central

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides. PMID:28257454

  11. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    PubMed

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.

  12. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23–24 × SEA 5 of Common Bean

    PubMed Central

    Polania, Jose; Rao, Idupulapati M.; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E.

    2017-01-01

    Drought is the major abiotic stress factor limiting yield of common bean (Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23–24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean. PMID:28316609

  13. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23-24 × SEA 5 of Common Bean.

    PubMed

    Polania, Jose; Rao, Idupulapati M; Cajiao, Cesar; Grajales, Miguel; Rivera, Mariela; Velasquez, Federico; Raatz, Bodo; Beebe, Stephen E

    2017-01-01

    Drought is the major abiotic stress factor limiting yield of common bean ( Phaseolus vulgaris L.) in smallholder systems in Latin America and eastern and southern Africa; where it is a main source of protein in the daily diet. Identification of shoot and root traits associated with drought resistance contributes to improving the process of designing bean genotypes adapted to drought. Field and greenhouse studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia to determine the relationship between grain yield and different shoot and root traits using a recombinant inbred lines (RILs) population (MD23-24 × SEA 5) of common bean. The main objectives of this study were to identify: (i) specific shoot and root morpho-physiological traits that contribute to improved resistance to drought and that could be useful as selection criteria in breeding beans for drought resistance; and (ii) superior genotypes with desirable shoot and root traits that could serve as parents in breeding programs that are aimed at improving drought resistance. A set of 121 bean genotypes (111 RILs, 2 parents, 8 checks) belonging to the Mesoamerican gene pool and one cowpea variety were evaluated under field conditions with two levels of water supply (irrigated and rainfed) over three seasons. To complement field studies, a greenhouse study was conducted using plastic cylinders with soil inserted into PVC pipes, to determine the relationship between grain yield obtained under field conditions with different root traits measured under greenhouse conditions. Resistance to drought stress was positively associated with a deeper and vigorous root system, better shoot growth, and superior mobilization of photosynthates to pod and seed production. The drought resistant lines differed in their root characteristics, some of them with a vigorous and deeper root system while others with a moderate to shallow root system. Among the shoot traits measured, pod harvest index, and seed number per area could serve as useful selection criteria for assessing sink strength and for genetic improvement of drought resistance in common bean.

  14. Root traits and soil properties in harvested perennial grassland, annual wheat, and never-tilled annual wheat

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Root functional traits are determinants of soil carbon storage; plant productivity; and ecosystemproperties. However, few studies look at both annual and perennial roots, soil properties, and productivity in the context of field scale agricultural systems. Methods: In Long Term...

  15. Screening of inbred popcorn lines for tolerance to low phosphorus.

    PubMed

    Santos, O J A P; Gonçalves, L S A; Scapim, C A; S M de Sousa, de; Castro, C R; Y Baba, V; de Oliveira, A L M

    2016-05-06

    Increasing phosphorus use efficiency in agriculture is essential for sustainable food production. Thus, the aims of this study were: i) to identify phosphorus use efficiency (PUE) in popcorn lines during the early plant stages, ii) to study the relationship between traits correlated with PUE, and iii) to analyze genetic diversity among lines. To accomplish this, 35 popcorn lines from Universidade Estadual de Maringá breeding program were studied. The experiment was conducted in a growth chamber using a nutrient solution containing two concentrations of phosphorus (P): 2.5 μM or low P (LP) and 250 μM or high P (HP). After 13 days in the nutrient solution, root morphology traits, shoot and root dry weight, and P content of the maize seedlings were measured. A deviance analysis showed there was a high level of genetic variability. An unweighted pair group method with arithmetic mean (UPGMA) clustering analysis identified three groups for the LP treatment (efficient, intermediate, and inefficient) and three groups for the HP treatment (responsive, moderately responsive, and unresponsive). The results of a principal component analysis and selection index were consistent with the UPGMA analysis, and lines 1, 2, 13, 17, 26, and 31 were classified as PUE.

  16. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae).

    PubMed

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy.

  17. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species.

    PubMed

    Sánchez-Gómez, David; Valladares, Fernando; Zavala, Miguel A

    2006-11-01

    We investigated the differential roles of physiological and morphological features on seedling survivorship along an experimental irradiance gradient in four dominant species of cool temperate-Mediterranean forests (Quercus robur L., Quercus pyrenaica Willd., Pinus sylvestris L. and Pinus pinaster Ait.). The lowest photochemical efficiency (F(v)/F(m) in dark-adapted leaves) was reached in deep shade (1% of full sunlight) in all species except Q. robur, which had the lowest photochemical efficiency in both deep shade and 100% of full sunlight. Species differed significantly in their survival in 1% of full sunlight but exhibited similar survivorship in 6, 20 and 100% of full sunlight. Shade-tolerant oaks had lower leaf area ratios, shoot to root ratios, foliage allocation ratios and higher rates of allocation to structural biomass (stem plus thick roots) than shade-intolerant pines. Overall phenotypic plasticity for each species, estimated as the difference between the minimum and the maximum mean values of the ecophysiological variables studied at the various irradiances divided by the maximum mean value of those variables, was inversely correlated with shade tolerance. Observed morphology, allocation and plasticity conformed to a conservative resource-use strategy, although observed differences in specific leaf area, which was higher in shade-tolerant species, supported a carbon gain maximization strategy. Lack of a congruent suite of traits underlying shade tolerance in the studied species provides evidence of adaptation to multiple selective forces. Although the study was based on only four species, the importance of ecophysiological variables as determinants of interspecific differences in survival in limiting light was demonstrated.

  18. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number.

    PubMed

    Prince, Silvas J; Valliyodan, Babu; Ye, Heng; Yang, Ming; Tai, Shuaishuai; Hu, Wushu; Murphy, Mackensie; Durnell, Lorellin A; Song, Li; Joshi, Trupti; Liu, Yang; Van de Velde, Jan; Vandepoele, Klaas; Grover Shannon, J; Nguyen, Henry T

    2018-05-10

    Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural (RSA) traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNP) based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, three significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions. This article is protected by copyright. All rights reserved.

  19. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies.

    PubMed

    Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M

    2017-10-01

    Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.

  20. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies

    PubMed Central

    Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus

    2017-01-01

    Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748

  1. Path analysis of phenotypic traits in young cacao plants under drought conditions.

    PubMed

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.

  2. Path analysis of phenotypic traits in young cacao plants under drought conditions

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854

  3. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  4. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    PubMed

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  5. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    USDA-ARS?s Scientific Manuscript database

    Abstract. Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the mag...

  6. Root and canal morphology of mandibular third molars in an Iranian population.

    PubMed

    Kuzekanani, Maryam; Haghani, Jahangir; Nosrati, Hossein

    2012-01-01

    A through knowledge of the root canal morphology is required for successful endodontic ther-apy. The aim of this study was to investigate the root and canal morphology of mandibular third molars in Kerman, a prov-ince in southeast of Iran. One-hundred-fifty extracted mandibular third molars were collected randomly from different dental clinics in Kerman. The root canal anatomy and morphology of each tooth was carefully studied using a clearing tech-nique. Root number and morphology, number of canals per root, root canal configuration according to Vertucci classifica-tion, and incidence of dilacerated roots and C-shaped canals in mandibular third molars were evaluated under stereomicro-scope with ×2 to ×3 magnifications. From the total of 150 mandibular third molars studied, 21% had one root. The majority of teeth (73%) had two roots. 5.5% of the teeth had three roots. The incidence of C-shaped canal was 3.5% in this study and 8% of the teeth had at least one dilacerated root. Although root canal anatomy and morphology of mandibular third molars is very variable having two roots seems to be the normal anatomy for these teeth.

  7. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  8. Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides.

    PubMed

    Jiménez, M D; de Torre, R; Mola, I; Casado, M A; Balaguer, L

    2018-04-15

    The growing number of road vehicles is a major source of regional and global atmospheric pollution increasing concentrations of CO 2 in the air, and levels of metals in air and soil. Nevertheless, the effects of these pollutants on plants growing at roadsides are poorly documented. We carried out an observational study of unmanipulated plants growing by the road, to identify the morpho-physiological responses in a perennial grass Dactylis glomerata. Firstly, we wanted to know the general effect of traffic intensity and ambient CO 2 and its interactions on different plant traits. Accordingly, we analyzed the photosynthetic response by field A/Ci Response Curves, SLA, pigment pools, foliar nitrogen, carbohydrates and morphological traits in plants at three distances to the road. Secondly, we wanted to know if Dactylis glomerata plants can accumulate metals present on the roadside (Pb, Zn, Cu, and Sr) in their tissues and rhizosphere, and the effect of these metals on morphological traits. The MANCOVA whole model results shown: 1) a significant effect of road ambient CO 2 concentration on morphological traits (not affected by traffic intensity, P interaction CO2 x traffic intensity >0.05), that was mainly driven by a significant negative relationship between the inflorescence number and ambient CO 2 ; 2) a positive and significant relationship between ambient CO 2 and the starch content in leaves (unaffected by traffic intensity); 3) a reduction in J max (electron transport rate) at high traffic intensity. These lines of evidences suggest a decreased photosynthetic capacity due to high traffic intensity and high levels of ambient CO 2 . In addition, Pb, Cu, Zn and Sr were detected in Dactylis glomerata tissues, and Cu accumulated in roots. Finally, we observed that Dactylis glomerata individuals growing at the roadside under high levels of CO 2 and in the presence of metal pollutants, reduced their production of inflorescences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    PubMed

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity resistances. Such a programme with field and laboratory evaluation at the outset will speed up delivery of varieties with improved root systems for higher yield.

  10. Consequences of hydraulic trait coordination and their associated uncertainties for tropical forest function

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Koven, C.; Fisher, R.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; McDowell, N.

    2017-12-01

    Recent syntheses of variation in woody plant traits have emphasized how hydraulic traits - those related to the acquisition, transport and retention of water across roots, stems and leaves - are coordinated along a limited set of dimensions or sequence of responses (Reich 2014, Bartlett et al. 2016). However, in many hydraulic trait-trait relationships, there is considerable residual variation, despite the fact that many bivariate relationships are statistically significant. In other instances, such as the relationship between root-stem-leaf vulnerability to embolism, data are so limited that testing the trait coordination hypothesis is not yet possible. The impacts on plant hydraulic function of competing hypotheses regarding trait coordination (or the lack thereof) and residual trait variation have not yet been comprehensively tested and thus remain unknown. We addressed this knowledge gap with a parameter sensitivity analysis using a plant hydraulics model in which all parameters are biologically-interpretable and measurable plant hydraulic traits, as embedded within a size- and demographically-structured ecosystem model, the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES). We focused on tropical forests, where co-existing species have been observed to possess large variability in their hydraulic traits. Assembling 10 distinct datasets of hydraulic traits of stomata, leaves, stems, and roots, we determined the best-fit theoretical distribution for each trait and quantified interspecific (between-species) trait-trait coordination in tropical forests as a rank correlation matrix. We imputed missing correlations with values based on competing hypotheses of trait coordination, such as coordinated shifts in embolism vulnerability from roots to shoots (the hydraulic fuse hypothesis). Based on the Fourier Amplitude Sensitivity Test and our correlation matrix, we generated thousands of parameter sets for an ensemble of hydraulics model simulations at a tropical forest site in central Amazonia. We explore the sensitivity of simulated leaf water potential and stem sap flux in the context of hypotheses of trait-trait coordination and their associated uncertainties.

  11. Genera of the human lineage

    PubMed Central

    Cela-Conde, Camilo J.; Ayala, Francisco J.

    2003-01-01

    Human fossils dated between 3.5 and nearly 7 million years old discovered during the last 8 years have been assigned to as many as four new genera of the family Hominidae: Ardipithecus, Orrorin, Kenyanthropus, and Sahelanthropus. These specimens are described as having morphological traits that justify placing them in the family Hominidae while creating a new genus for the classification of each. The discovery of these fossils pushed backward by >2 million years the date of the oldest hominids known. Only two or three hominid genera, Australopithecus, Paranthropus, and Homo, had been previously accepted, with Paranthropus considered a subgenus of Australopithecus by some authors. Two questions arise from the classification of the newly discovered fossils: (i) Should each one of these specimens be placed in the family Hominidae? (ii) Are these specimens sufficiently distinct to justify the creation of four new genera? The answers depend, in turn, on the concepts of what is a hominid and how the genus category is defined. These specimens seem to possess a sufficient number of morphological traits to be placed in the Hominidae. However, the nature of the morphological evidence and the adaptation-rooted concept of what a genus is do not justify the establishment of four new genera. We propose a classification that includes four well defined genera: Praeanthropus, Ardipithecus, Australopithecus, and Homo, plus one tentative incertae sedis genus: Sahelanthropus. PMID:12794185

  12. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    PubMed

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  13. Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments

    PubMed Central

    Mao, Peili; Zang, Runguo; Shao, Hongbo; Yu, Junbao

    2014-01-01

    Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, and 10%) in order to explore the adaptive strategies of tropical trees to light conditions. Under each light intensity level, the pioneer species, Endospermum chinense (Euphorbiaceae), had higher relative growth rate (RGR), stem mass ratio (SMR), specific leaf area (SLA), and morphological plasticity while the shade tolerant climax species, Parakmeria lotungensis (Magnoliaceae), had higher root mass ratio (RMR) and leaf mass ratio (LMR). RGR of both species was positively related to SMR and SLA under each light level but was negatively correlated with RMR under lower light (30% and 10% full light). The climax species increased its survival by a conservative resource use strategy through increasing leaf defense and root biomass investment at the expense of growth rate in low light. In contrast, the pioneer increased its growth by an exploitative resource use strategy through increasing leaf photosynthetic capacity and stem biomass investment at the expense of survival under low light. There was a trade-off between growth and survival for species under different light conditions. Our study suggests that tree species in the tropical rainforest adopt different strategies in stands of different successional stages. Species in the earlier successional stages have functional traits more advantageous to grow faster in the high light conditions, whereas species in the late successional stages have traits more favorable to survive in the low light conditions. PMID:25019095

  14. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches . This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.

  15. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties. PMID:29354146

  16. Life in the dark: Roots and how they regulate plant-soil interactions

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Chou, C.; Peruzzo, L.; Riley, W. J.; Hao, Z.; Petrov, P.; Newman, G. A.; Versteeg, R.; Blancaflor, E.; Ma, X.; Dafflon, B.; Brodie, E.; Hubbard, S. S.

    2017-12-01

    Roots play a key role in regulating interactions between soil and plants, an important biosphere process critical for soil development and health, global food security, carbon sequestration, and the cycling of elements (water, carbon, nutrients, and environmental contaminants). However, their underground location has hindered studies of plant roots and the role they play in regulating plant-soil interactions. Technological limitations for root phenotyping and the lack of an integrated approach capable of linking root development, its environmental adaptation/modification with subsequent impact on plant health and productivity are major challenges faced by scientists as they seek to understand the plant's hidden half. To overcome these challenges, we combine novel experimental methods with numerical simulations, and conduct controlled studies to explore the dynamic growth of crop roots. We ask how roots adapt to and change the soil environment and their subsequent impacts on plant health and productivity. Specifically, our efforts are focused on (1) developing novel geophysical approaches for non-invasive plant root and rhizosphere characterization; (2) correlating root developments with key canopy traits indicative of plant health and productivity; (3) developing numerical algorithms for novel geophysical root signal processing; (4) establishing plant growth models to explore root-soil interactions and above and below ground traits co-variabilities; and (5) exploring how root development modifies rhizosphere physical, hydrological, and geochemical environments for adaptation and survival. Our preliminary results highlight the potential of using electro-geophysical methods to quantifying key rhizosphere traits, the capability of the ecosys model for mechanistic plant growth simulation and traits correlation exploration, and the combination of multi-physics and numerical approach for a systematic understanding of root growth dynamics, impacts on soil physicochemical environments, and plant health and productivity.

  17. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  18. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. ROOT TRAITS AND NODULATION OF RECOMBINANT INBRED BEAN LINES FROM A ‘JAMAPA × CALIMA’ POPULATION INOCULATED WITH TWO STRAINS OF RHIZOBIUM

    USDA-ARS?s Scientific Manuscript database

    Bean cultivars of Andean and Middle American origin often have contrasting above-ground traits. Less is known, however, of possible differences in root traits of beans from different gene pools. Recombinant inbred lines (RIL) derived from a cross between the Andean cultivar ‘Calima’ and the Middle A...

  20. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

    DOE PAGES

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.; ...

    2015-12-01

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series ofmore » 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (M area), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ 15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R 2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R 2 > 0.65 and carbon and cellulose with R 2 > 0.45. Although R 2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ 15N was the lowest (R 2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.« less

  1. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis.

    PubMed

    Li, Pengcheng; Chen, Fanjun; Cai, Hongguang; Liu, Jianchao; Pan, Qingchun; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Zhang, Fusuo; Yuan, Lixing

    2015-06-01

    That root system architecture (RSA) has an essential role in nitrogen acquisition is expected in maize, but the genetic relationship between RSA and nitrogen use efficiency (NUE) traits remains to be elucidated. Here, the genetic basis of RSA and NUE traits was investigated in maize using a recombination inbred line population that was derived from two lines contrasted for both traits. Under high-nitrogen and low-nitrogen conditions, 10 NUE- and 9 RSA-related traits were evaluated in four field environments and three hydroponic experiments, respectively. In contrast to nitrogen utilization efficiency (NutE), nitrogen uptake efficiency (NupE) had significant phenotypic correlations with RSA, particularly the traits of seminal roots (r = 0.15-0.31) and crown roots (r = 0.15-0.18). A total of 331 quantitative trait loci (QTLs) were detected, including 184 and 147 QTLs for NUE- and RSA-related traits, respectively. These QTLs were assigned into 64 distinct QTL clusters, and ~70% of QTLs for nitrogen-efficiency (NUE, NupE, and NutE) coincided in clusters with those for RSA. Five important QTLs clusters at the chromosomal regions bin1.04, 2.04, 3.04, 3.05/3.06, and 6.07/6.08 were found in which QTLs for both traits had favourable effects from alleles coming from the large-rooted and high-NupE parent. Introgression of these QTL clusters in the advanced backcross-derived lines conferred mean increases in grain yield of ~14.8% for the line per se and ~15.9% in the testcross. These results reveal a significant genetic relationship between RSA and NUE traits, and uncover the most promising genomic regions for marker-assisted selection of RSA to improve NUE in maize. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

  3. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  4. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    PubMed

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.

  5. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation.

    PubMed

    Jeudy, Christian; Adrian, Marielle; Baussard, Christophe; Bernard, Céline; Bernaud, Eric; Bourion, Virginie; Busset, Hughes; Cabrera-Bosquet, Llorenç; Cointault, Frédéric; Han, Simeng; Lamboeuf, Mickael; Moreau, Delphine; Pivato, Barbara; Prudent, Marion; Trouvelot, Sophie; Truong, Hoai Nam; Vernoud, Vanessa; Voisin, Anne-Sophie; Wipf, Daniel; Salon, Christophe

    2016-01-01

    In order to maintain high yields while saving water and preserving non-renewable resources and thus limiting the use of chemical fertilizer, it is crucial to select plants with more efficient root systems. This could be achieved through an optimization of both root architecture and root uptake ability and/or through the improvement of positive plant interactions with microorganisms in the rhizosphere. The development of devices suitable for high-throughput phenotyping of root structures remains a major bottleneck. Rhizotrons suitable for plant growth in controlled conditions and non-invasive image acquisition of plant shoot and root systems (RhizoTubes) are described. These RhizoTubes allow growing one to six plants simultaneously, having a maximum height of 1.1 m, up to 8 weeks, depending on plant species. Both shoot and root compartment can be imaged automatically and non-destructively throughout the experiment thanks to an imaging cabin (RhizoCab). RhizoCab contains robots and imaging equipment for obtaining high-resolution pictures of plant roots. Using this versatile experimental setup, we illustrate how some morphometric root traits can be determined for various species including model (Medicago truncatula), crops (Pisum sativum, Brassica napus, Vitis vinifera, Triticum aestivum) and weed (Vulpia myuros) species grown under non-limiting conditions or submitted to various abiotic and biotic constraints. The measurement of the root phenotypic traits using this system was compared to that obtained using "classic" growth conditions in pots. This integrated system, to include 1200 Rhizotubes, will allow high-throughput phenotyping of plant shoots and roots under various abiotic and biotic environmental conditions. Our system allows an easy visualization or extraction of roots and measurement of root traits for high-throughput or kinetic analyses. The utility of this system for studying root system architecture will greatly facilitate the identification of genetic and environmental determinants of key root traits involved in crop responses to stresses, including interactions with soil microorganisms.

  6. Root Traits Enhancing Rice Grain Yield under Alternate Wetting and Drying Condition

    PubMed Central

    Sandhu, Nitika; Subedi, Sushil R.; Yadaw, Ram B.; Chaudhary, Bedanand; Prasai, Hari; Iftekharuddaula, Khandakar; Thanak, Tho; Thun, Vathany; Battan, Khushi R.; Ram, Mangat; Venkateshwarlu, Challa; Lopena, Vitaliano; Pablico, Paquito; Maturan, Paul C.; Cruz, Ma. Teresa Sta.; Raman, K. Anitha; Collard, Bertrand; Kumar, Arvind

    2017-01-01

    Reducing water requirements and lowering environmental footprints require attention to minimize risks to food security. The present study was conducted with the aim to identify appropriate root traits enhancing rice grain yield under alternate wetting and drying conditions (AWD) and identify stable, high-yielding genotypes better suited to the AWD across variable ecosystems. Advanced breeding lines, popular rice varieties and drought-tolerant lines were evaluated in a series of 23 experiments conducted in the Philippines, India, Bangladesh, Nepal and Cambodia in 2015 and 2016. A large variation in grain yield under AWD conditions enabled the selection of high-yielding and stable genotypes across locations, seasons and years. Water savings of 5.7–23.4% were achieved without significant yield penalty across different ecosystems. The mean grain yield of genotypes across locations ranged from 3.5 to 5.6 t/ha and the mean environment grain yields ranged from 3.7 (Cambodia) to 6.6 (India) t/ha. The best-fitting Finlay-Wilkinson regression model identified eight stable genotypes with mean grain yield of more than 5.0 t/ha across locations. Multidimensional preference analysis represented the strong association of root traits (nodal root number, root dry weight at 22 and 30 days after transplanting) with grain yield. The genotype IR14L253 outperformed in terms of root traits and high mean grain yield across seasons and six locations. The 1.0 t/ha yield advantage of IR14L253 over the popular cultivar IR64 under AWD shall encourage farmers to cultivate IR14L253 and also adopt AWD. The results suggest an important role of root architectural traits in term of more number of nodal roots and root dry weight at 10–20 cm depth on 22–30 days after transplanting (DAT) in providing yield stability and preventing yield reduction under AWD compared to continuous flooded conditions. Genotypes possessing increased number of nodal roots provided higher yield over IR64 as well as no yield reduction under AWD compared to flooded irrigation. The identification of appropriate root architecture traits at specific depth and specific growth stage shall help breeding programs develop better rice varieties for AWD conditions. PMID:29163604

  7. Morphology, Carbohydrate Composition and Vernalization Response in a Genetically Diverse Collection of Asian and European Turnips (Brassica rapa subsp. rapa)

    PubMed Central

    Zhang, Ningwen; Zhao, Jianjun; Lens, Frederic; de Visser, Joan; Menamo, Temesgen; Fang, Wen; Xiao, Dong; Bucher, Johan; Basnet, Ram Kumar; Lin, Ke; Cheng, Feng; Wang, Xiaowu; Bonnema, Guusje

    2014-01-01

    Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization. PMID:25474111

  8. Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions.

    PubMed

    Chiatante, D; Tognetti, R; Scippa, G S; Congiu, T; Baesso, B; Terzaghi, M; Montagnoli, A

    2015-07-01

    To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.

  9. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way

    PubMed Central

    Rodrigues, Maria Aurineide; Matiz, Alejandra; Cruz, Aline Bertinatto; Matsumura, Aline Tiemi; Takahashi, Cassia Ayumi; Hamachi, Leonardo; Félix, Lucas Macedo; Pereira, Paula Natália; Latansio-Aidar, Sabrina Ribeiro; Aidar, Marcos Pereira Marinho; Demarco, Diego; Freschi, Luciano; Mercier, Helenice; Kerbauy, Gilberto Barbante

    2013-01-01

    Background and Aims A positive correlation between tissue thickness and crassulacean acid metabolism (CAM) expression has been frequently suggested. Therefore, this study addressed the question of whether water availability modulates photosynthetic plasticity in different organs of two epiphytic orchids with distinct leaf thickness. Methods Tissue morphology and photosynthetic mode (C3 and/or CAM) were examined in leaves, pseudobulbs and roots of a thick-leaved (Cattleya walkeriana) and a thin-leaved (Oncidium ‘Aloha’) epiphytic orchid. Morphological features were studied comparing the drought-induced physiological responses observed in each organ after 30 d of either drought or well-watered treatments. Key Results Cattleya walkeriana, which is considered a constitutive CAM orchid, displayed a clear drought-induced up-regulation of CAM in its thick leaves but not in its non-leaf organs (pseudobulbs and roots). The set of morphological traits of Cattleya leaves suggested the drought-inducible CAM up-regulation as a possible mechanism of increasing water-use efficiency and carbon economy. Conversely, although belonging to an orchid genus classically considered as performing C3 photosynthesis, Oncidium ‘Aloha’ under drought seemed to express facultative CAM in its roots and pseudobulbs but not in its leaves, indicating that such photosynthetic responses might compensate for the lack of capacity to perform CAM in its thin leaves. Morphological features of Oncidium leaves also indicated lower efficiency in preventing water and CO2 losses, while aerenchyma ducts connecting pseudobulbs and leaves suggested a compartmentalized mechanism of nighttime carboxylation via phosphoenolpyruvate carboxylase (PEPC) (pseudobulbs) and daytime carboxylation via Rubisco (leaves) in drought-exposed Oncidium plants. Conclusions Water availability modulated CAM expression in an organ-compartmented manner in both orchids studied. As distinct regions of the same orchid could perform different photosynthetic pathways and variable degrees of CAM expression depending on the water availability, more attention should be addressed to this in future studies concerning the abundance of CAM plants. PMID:23618898

  11. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply.

    PubMed

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.

  12. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    PubMed Central

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060

  13. Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings.

    PubMed

    Ruiz, M; Quiñones, A; Martínez-Cuenca, M R; Aleza, P; Morillon, R; Navarro, L; Primo-Millo, E; Martínez-Alcántara, B

    2016-10-20

    Tetraploid citrus seedlings are more tolerant to salt stress than diploid genotypes. To provide insight into the causes of differences in salt tolerance due to ploidy and thus to better understand Cl - exclusion mechanisms in citrus, diploid and tetraploid seedlings of Carrizo citrange (CC) were grown at 0 (control) and 40mM NaCl (salt-treated) medium for 20 days. Chloride uptake and root-to-shoot translocation rates were on average 1.4-fold higher in diploid than in tetraploid salt-treated plants, which resulted in a greater (1.6-fold) Cl - build up in the leaves of the former. Root hydraulic conductance and leaf transpiration rate were 58% and 17% lower, respectively, in tetraploid than in diploid control plants. Differences remained after salt treatment which reduced these parameters by 30-40% in both genotypes. Morphology of the root system was significantly influenced by ploidy. Tetraploid roots were less branched and with lower number of root tips than those of diploid plants. The cross-section diameter and area were lower in the diploid, and consequently specific root length was higher (1.7-fold) than in tetraploid plants. The exodermis in sections close to the root apex was broader and with higher deposition of suberin in cell walls in the tetraploid than in the diploid genotype. Net CO 2 assimilation rate in tetraploid salt-treated seedlings was 1.5-fold higher than in diploid salt-treated plants, likely due to the loss of photosynthetic capacity of diploid plants induced by Cl - toxicity. Leaf damage was much higher, in terms of burnt area and defoliation, in diploid than in tetraploid salt-treated plants (8- and 6-fold, respectively). Salt treatment significantly reduced (37%) the dry weight of the diploid plants, but did not affect the tetraploids. In conclusion, tetraploid CC plants appear more tolerant to salinization and this effect seems mainly due to differences in morphological and histological traits of roots affecting hydraulic conductance and transpiration rate. These results may suggest that tetraploid CC used as rootstock could improve salt tolerance in citrus trees. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Morphological evaluation of maxillary second molars with fused roots: a micro-CT study.

    PubMed

    Ordinola-Zapata, R; Martins, J N R; Bramante, C M; Villas-Boas, M H; Duarte, M H; Versiani, M A

    2017-12-01

    To evaluate the internal and external morphologies of fused-rooted maxillary second molars by means of micro-computed tomography (micro-CT) analysis. A total of 100 fused-rooted maxillary second molars from a Brazilian subpopulation were divided into six groups according to the root morphology. The samples were scanned at a resolution of 19.6 μm and evaluated with regard to the external morphology of the roots, the root canal configuration, the percentage frequency of C-shaped canals and isthmuses, as well as the morphology of the root canal system at 1, 2 and 3 mm from the anatomical apex of the fused roots. The most prevalent root canal fusions were type 1, mesiobuccal root fused with distobuccal root (32%), followed by type 3, DB root fused with P root (27%), and type 4, MB root fused with DB root, and P root fused with MB or DB roots (21%). The prevalence of C-shaped root canal systems were 22%. Depending on the type of root fusion, the percentage frequency of isthmuses in the apical level varied from 9.3% to 42.8%, whilst the presence of apical deltas ranged from 18.5% to 57.1% of teeth. The root canal system of maxillary second molars with fused roots may have a high incidence of merging canals, isthmuses, apical deltas and C-shaped configurations. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep rooted species and phreatophytes, which seem to depend heavily on access to GW.

  16. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  17. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato.

    PubMed

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig

    2017-03-01

    Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.

  18. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato

    PubMed Central

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig

    2017-01-01

    Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391

  19. Responses of nutrient capture and fine root morphology of subalpine coniferous tree Picea asperata to nutrient heterogeneity and competition

    PubMed Central

    Nan, Hongwei; Liang, Jin; Cheng, Xinying; Zhao, ChunZhang; Yin, HuaJun; Yin, ChunYing; Liu, Qing

    2017-01-01

    Investigating the responses of trees to the heterogeneous distribution of nutrients in soil and simultaneous presence of neighboring roots could strengthen the understanding of an influential mechanism on tree growth and provide a scientific basis for forest management. Here, we conducted two split-pot experiments to investigate the effects of nutrient heterogeneity and intraspecific competition on the fine root morphology and nutrient capture of Picea asperata. The results showed that P. asperata efficiently captured nutrients by increasing the specific root length (SRL) and specific root area (SRA) of first-and second-order roots and decreasing the tissue density of first-order roots to avoid competition for resources and space with neighboring roots. The nutrient heterogeneity and addition of fertilization did not affect the fine root morphology, but enhanced the P and K concentrations in the fine roots in the absence of a competitor. On the interaction between nutrient heterogeneity and competition, competition decreased the SRL and SRA but enhanced the capture of K under heterogeneous soil compared with under homogeneous soil. Additionally, the P concentration, but not the K concentration, was linearly correlated to root morphology in heterogeneous soil, even when competition was present. The results suggested that root morphological features were only stimulated when the soil nutrients were insufficient for plant growth and the nutrients accumulations by root were mainly affected by the soil nutrients more than the root morphology. PMID:29095947

  20. Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat1[W

    PubMed Central

    Placido, Dante F.; Campbell, Malachy T.; Folsom, Jing J.; Cui, Xinping; Kruger, Greg R.; Baenziger, P. Stephen; Walia, Harkamal

    2013-01-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat. PMID:23426195

  1. Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics

    PubMed Central

    Kato, A; Ziegler, A; Higuchi, N; Nakata, K; Nakamura, H; Ohno, N

    2014-01-01

    The C-shaped root canal constitutes an unusual root morphology that can be found primarily in mandibular second permanent molars. Due to the complexity of their structure, C-shaped root canal systems may complicate endodontic interventions. A thorough understanding of root canal morphology is therefore imperative for proper diagnosis and successful treatment. This review aims to summarize current knowledge regarding C-shaped roots and root canals, from basic morphology to advanced endodontic procedures. To this end, a systematic search was conducted using the MEDLINE, BIOSIS, Cochrane Library, EMBASE, Google Scholar, Web of Science, PLoS and BioMed Central databases, and many rarely cited articles were included. Furthermore, four interactive 3D models of extracted teeth are introduced that will allow for a better understanding of the complex C-shaped root canal morphology. In addition, the present publication includes an embedded best-practice video showing an exemplary root canal procedure on a tooth with a pronounced C-shaped root canal. The survey of this unusual structure concludes with a number of suggestions concerning future research efforts. PMID:24483229

  2. Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?

    PubMed

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  3. Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation?

    PubMed Central

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area. PMID:24009616

  4. The radix entomolaris in mandibular first molars: an endodontic challenge.

    PubMed

    De Moor, R J G; Deroose, C A J G; Calberson, F L G

    2004-11-01

    To present cases of mandibular first molars with an additional distolingual root (radix entomolaris, RE) and to survey the literature on the incidence of this anatomical feature. A major anatomical variant of the two-rooted mandibular first molar is a tooth with an additional distolingual and third root: the RE. The prevalence of these three-rooted mandibular first molars appears to be less than 3% in African populations, not to exceed 4.2% in Caucasians, to be less than 5% in Eurasian and Asian populations, and to be higher than 5% (even up to 40%) in populations with Mongolian traits. A total of 18 cases (12 root filled and six extracted mandibular first molars) with an RE were collected during the years 2000-2003 in patients of Caucasian origin. As far as the access was concerned, entering the root canal in the RE required a modification of the opening in a distolingual direction resulting in a trapezoidal opening cavity. None of the orifices was located midway between the mesial and distal root component. Based on the anatomy of the extracted samples and the bending of ISO 10 files after scouting of the root canal in the RE, three types of curvature were detected: (I) straight or no curvature (two cases); (II) coronal third curved and straight continuation to the apex (five cases); and (III) curvature in the coronal third and buccal curvature from the middle third or apical third of the root (11 cases). Clinicians should be aware of this unusual root morphology in mandibular first molars in Caucasian people. Radiographs exposed at two different horizontal angles are needed to identify this additional root. The access cavity must be modified in a distolingual direction in order to visualize and treat the RE, this results in a trapezoidal access cavity.

  5. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busov, Victor

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula - Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in mostmore » transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood development, they were much greater in the transgenics with suppressed PtGA2ox4 and PtGA2ox5. The degree of gene suppression in independent events was strongly associated with phenotypes, demonstrating dose-dependent control of growth by GA2ox RNA concentrations. ? The expression and transgenic modifications reported here show that shoot- and leaf-expressed PtGA2ox4 and PtGA2ox5 specifically restrain aerial shoot growth, while root-expressed PtGA2ox2 and PtGA2ox7 promote root development. Genes controlling plant growth and form are of considerable interest, because they affect survival and productivity traits, and are largely unknown or poorly characterized. The SHORT INTERNODES(SHI) gene is one of a 10-member SHI-RELATED SEQUENCE (SRS) gene family in Arabidopsis that includes important developmental regulators. ? Using comparative sequence analysis of the SRS gene families in poplar and Arabidopsis, we identified two poplar proteins that are most similar to SHI and its closely related gene STYLISH1 (STY1). The two poplar genes are very similar in sequence and expression and are therefore probably paralogs with redundant functions. ? RNAi suppression of the two Populus genes enhanced shoot and root growth, whereas the overexpression of Arabidopsis SHI in poplar reduced internode and petiole length. The suppression of the two genes increased fiber length and the proportion of xylem tissue, mainly through increased xylem cell proliferation. The transgenic modifications were also associated with significant changes in the concentrations of gibberellins and cytokinin. ? We conclude that Populus SHI-RELATED SEQUENCE (SRS) genes play an important role in the regulation of vegetative growth, including wood formation, and thus could be useful tools for the modification of biomass productivity, wood quality or plant form. We studied the effects on plant growth from insertion of five cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula - alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2?kb of 5' and 1?kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.« less

  6. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants

    PubMed Central

    Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas

    2017-01-01

    Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little tolerant species. Lack of abiotic tolerance might hence constrain accessible resources and thereby impose a stronger synchronization with biotic partners such as pollinators. PMID:28301580

  7. 3-Rooted Maxillary First Premolars: An Ex Vivo Study of External and Internal Morphologies.

    PubMed

    Beltes, Panagiotis; Kalaitzoglou, Maria-Elpida; Kantilieraki, Eleni; Beltes, Charalampos; Angelopoulos, Christos

    2017-08-01

    This study aimed to analyze the external and internal morphologies of 3-rooted maxillary first premolars using cone-beam computed tomographic (CBCT) imaging. Fifty-six three-rooted maxillary first premolars were imaged by CBCT imaging and classified into 4 groups on the basis of external root morphology. Internal morphologic features, including the shapes of the buccal and palatal orifices and distances of bifurcation of the buccal-palatal and mesiobuccal-distobuccal root canals from the cementoenamel junction (CEJ), were measured. The teeth were classified into 4 groups on the basis of external morphology: group A, separation of the buccal and palatal roots with bifurcation of the former into the mesiobuccal and distobuccal roots (n = 22); group B, fusion of 2 buccal roots with the palatal root being separate (n = 19); group C, complete or partial fusion of the distobuccal and palatal roots (n = 9); and group D, fusion of all 3 roots (n = 6). The buccal orifice was mainly triangular/heart shaped. The distance of bifurcation of the buccal-palatal root canals from the CEJ in group A differed significantly from those in groups B and C (P < .05). There were significant differences in the distance of bifurcation of the mesiobuccal-distobuccal root canals from the CEJ among groups A, B, and C (P < .05). Four teeth exhibited C-shaped root canal systems of different configurations. The external and internal morphologies of 3-rooted maxillary first premolars vary considerably. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    PubMed

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Searching for plant root traits to improve soil cohesion and resist soil erosion

    NASA Astrophysics Data System (ADS)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  10. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    PubMed Central

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity. PMID:28303148

  12. Next Generation Image-Based Phenotyping of Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.

    2016-12-01

    The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.

  13. Quantitative and Qualitative Differences in Morphological Traits Revealed between Diploid Fragaria Species

    PubMed Central

    SARGENT, DANIEL J.; GEIBEL, M.; HAWKINS, J. A.; WILKINSON, M. J.; BATTEY, N. H.; SIMPSON, D. W.

    2004-01-01

    • Background and Aims The aims of this investigation were to highlight the qualitative and quantitative diversity apparent between nine diploid Fragaria species and produce interspecific populations segregating for a large number of morphological characters suitable for quantitative trait loci analysis. • Methods A qualitative comparison of eight described diploid Fragaria species was performed and measurements were taken of 23 morphological traits from 19 accessions including eight described species and one previously undescribed species. A principal components analysis was performed on 14 mathematically unrelated traits from these accessions, which partitioned the species accessions into distinct morphological groups. Interspecific crosses were performed with accessions of species that displayed significant quantitative divergence and, from these, populations that should segregate for a range of quantitative traits were raised. • Key Results Significant differences between species were observed for all 23 morphological traits quantified and three distinct groups of species accessions were observed after the principal components analysis. Interspecific crosses were performed between these groups, and F2 and backcross populations were raised that should segregate for a range of morphological characters. In addition, the study highlighted a number of distinctive morphological characters in many of the species studied. • Conclusions Diploid Fragaria species are morphologically diverse, yet remain highly interfertile, making the group an ideal model for the study of the genetic basis of phenotypic differences between species through map-based investigation using quantitative trait loci. The segregating interspecific populations raised will be ideal for such investigations and could also provide insights into the nature and extent of genome evolution within this group. PMID:15469944

  14. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae)

    PubMed Central

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy. PMID:28542570

  15. Do key dimensions of seed and seedling functional trait variation capture variation in recruitment probability?

    PubMed

    Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J

    2016-05-01

    Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.

  16. Form matters: morphological aspects of lateral root development

    PubMed Central

    Szymanowska-Pułka, Joanna

    2013-01-01

    Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952

  17. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  18. Exploring plant root traits and fungal interactions governing plant community structure: Re-focusing long standing questions.

    USDA-ARS?s Scientific Manuscript database

    Resource availability has long been recognized for playing a major role in structuring plant communities. Nonetheless, a functional understanding of root traits and interactions with soil organisms involved in acquiring those resources has largely remained out of focus and outside mainstream ecolog...

  19. A maize inbred exhibits resistance against western corn root worm, Diabrotica vergifera vergifera.

    USDA-ARS?s Scientific Manuscript database

    Plants respond to insect infestations with a suite of natural defenses that vary depending on their genetic and phenotypic traits. Insect resistance traits against root herbivores like western corn rootworm (WCR, Diabrotica virgifera) are not well understood in non-transgenic maize. Using biomechani...

  20. Do root traits affect a plant's ability to influence soil erosion?

    NASA Astrophysics Data System (ADS)

    Burak, Emma; Quinton, John; Dodd, Ian

    2017-04-01

    With the ever increasing global population the agricultural sector is put under increasing pressure. This pressure is imposed on the soil and results in wide spread degradation that ultimately decreases productivity. Soil erosion is one of the main features of this degradation. Much focus has been put on the ability of plant canopies to mitigate soil erosion but little research has assessed the impact of below ground biomass. It is understood that woody roots reinforce slopes and lateral roots are believed to support the soil surface but the impact of root hairs is completely unknown. This study used two root hairless mutants one of barley (brb) and one of maize (rth3) along with their wild types (WT) to assess the capacity of different root traits to bind soil particles to the root system, creating a physical coating called a rhizosheath. The two genotypes were grown in a clay loam and periodically harvested during vegetative development. Rhizosheath weight was used to measure the ability of the root system to effectively bind soil particles, while root length was measured to standardise the results between genotypes. Overall, rhizosheath weight increased linearly with root length. When compared to WT plants of the same age, the root length of brb was, on average, 37% greater, suggesting that they compensated for the absence of root hairs by proliferating lateral roots. However, WT plants were far superior at binding soil particles as the rhizosheath weights were 5 fold greater, when expressed per unit root length. Thus root hairs are more important in binding soil particles than lateral roots. Whether these genotypic differences in root traits affect soil erosion will be assessed using mesocosm and field trials. Keywords: Soil erosion, Roots, Barley, Rhizosheath

  1. [Effects of Cuscuta australis parasitism on the growth, reproduction and defense of Solidago canadensis].

    PubMed

    Yang, Bei-fen; Du, Le-shan; Li, Jun-min

    2015-11-01

    In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.

  2. Linking the response of bacterial populations to plant development through analysis of rhizosphere-competence traits of soil bacteria

    NASA Astrophysics Data System (ADS)

    Cho, H. J.; Karaoz, U.; Zhalnina, K.; Firestone, M. K.; Brodie, E.

    2016-12-01

    A growing plant root exudes changing combinations of compounds including root litter and other detritus throughout its developmental stages, providing a major source of organic C for rhizosphere bacteria. Clear patterns of microbial succession have been observed in the rhizosphere of a number of plants. These patterns of microbial succession are likely key to the processing of soil organic carbon and nutrient recycling. What is less well understood are the microbial traits, or combinations of traits, selected for during plant development. Are these traits or trait-combinations conserved, and is phylogeny a useful integrator of traits? Understanding the mechanisms underlying ecological succession would enable improved prediction of future rhizosphere states and consequences for C and nutrient cycles. In this study, we resolve the responses of rhizosphere bacteria at strain-level during plant (Avena fatua) developmental stages using both isolation and metagenomic approaches. Metagenome reads from bulk and rhizosphere soils were mapped to the genomes of thirty nine bacterial isolates numerically abundant ( 0.5% in relative abundance) and phylogenetically representative of these soils, and also to ninety six metagenome-derived genome bins. Analysis of temporal coverage patterns demonstrate that bacteria can be classified as positive and negative rhizosphere responders, with traits associated with root exudate utilization being important. Significant strain level diversity was observed and variance in the temporal coverage patterns further distinguished closely related strains of the same genera. For example, while a number of strains from the Bradyrhizobia, Mesorhizobia and Mycobacteria all increased in coverage with root growth, suggesting that recently acquired traits are selected for. Candidate traits distinguishing closely related strains included those related to xylose and other plant cell-wall derived sugar utilization, motility and aromatic organic acid utilization. These combinations of traits act together to influence rhizosphere bacterial succession, and developing linkages to other traits related to carbon and nutrient cycling will be key to understanding the feedbacks between plant response to environmental change and soil biogeochemical cycles.

  3. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE PAGES

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...

    2016-12-23

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  4. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  5. Genetic Divergence and Heritability of 42 Coloured Upland Rice Genotypes (Oryzasativa) as Revealed by Microsatellites Marker and Agro-Morphological Traits

    PubMed Central

    Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor

    2015-01-01

    Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807

  6. Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation.

    PubMed

    Tomkins, Joseph L; Kotiaho, Janne S; Lebas, Natasha R

    2005-03-07

    Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.

  7. Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species

    PubMed Central

    Pagès, Loïc

    2014-01-01

    Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886

  8. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

    PubMed Central

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227

  9. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    PubMed Central

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710

  10. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. The effect of parity on morphological evolution among phrynosomatid lizards.

    PubMed

    Oufiero, C E; Gartner, G E A

    2014-11-01

    The shift from egg laying to live-bearing is one of the most well-studied transitions in evolutionary biology. Few studies, however, have assessed the effect of this transition on morphological evolution. Here, we evaluated the effect of reproductive mode on the morphological evolution of 10 traits, among 108 species of phrynosomatid lizards. We assess whether the requirement for passing shelled eggs through the pelvic girdle has led to morphological constraints in oviparous species and whether long gestation times in viviparous species have led to constraints in locomotor morphology. We fit models to the data that vary both in their tempo (strength and rate of selection) and mode of evolution (Brownian or Ornstein-Uhlenbeck) and estimates of trait optima. We found that most traits are best fit by a generalized multipeak OU model, suggesting differing trait optima for viviparous vs. oviparous species. Additionally, rates (σ(2) ) of both pelvic girdle and forelimb trait evolution varied with parity; viviparous species had higher rates. Hindlimb traits, however, exhibited no difference in σ(2) between parity modes. In a functional context, our results suggest that the passage of shelled eggs constrains the morphology of the pelvic girdle, but we found no evidence of morphological constraint of the locomotor apparatus in viviparous species. Our results are consistent with recent lineage diversification analyses, leading to the conclusion that transitions to viviparity increase both lineage and morphological diversification. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in foraging with AM trees showing high precision in root foraging and EM trees showing high precision in mycorrhizal hyphal foraging. Collectively, these results indicate that we can improve our understanding of how trees forage for nutrients by considering both root morphology and type of mycorrhizas (AM or EM).

  13. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica.

    PubMed

    Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia

    2017-01-05

    Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal instability in early generation allotetraploids may allow Brassica species to explore new trait space and potentially reach higher adaptive peaks than their progenitor species could, despite temporary fitness costs associated with unstable genomes. The trait correlations that disappear after hybridization as well as the novel trait correlations observed in allotetraploid hybrids may represent relatively evolutionarily labile associations and therefore could be ideal targets for artificial selection and crop improvement.

  14. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    PubMed

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  15. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  16. Plant mycorrhizal traits and carbon fates from plot to globe

    NASA Astrophysics Data System (ADS)

    Soudzilovskaia, N.; Cornelissen, H. H. C.

    2016-12-01

    Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and (thereby) atmospheric carbon.

  17. Divergent morphological and acoustic traits in sympatric communities of Asian barbets

    PubMed Central

    Tamma, Krishnapriya

    2016-01-01

    The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589

  18. Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis

    PubMed Central

    Smirnakou, Sonia; Ouzounis, Theoharis; Radoglou, Kalliopi M.

    2017-01-01

    Regulation of the growth, development, and quality of plants by the control of light quality has attracted extensive attention worldwide. The aim of this study was to examine the effects of continuous LED spectrum for indoor plant pre-cultivation and to investigate the morphological and physiological responses of a common broadleaved tree species in Mediterranean environment, Quercus ithaburensis var. macrolepis at seedling developmental stage. Thus, the seedlings were pre-cultivated for 28 days, under five different LED light qualities: (1) Fluorescent (FL) as control light (2) L20AP67 (high in green and moderate in far-red), (3) AP673L (high in green and red), (4) G2 (highest in red and far-red), AP67 (high in blue, red, and far-red), and (5) NS1 (highest in blue and green and lowest in far-red) LEDs. Further examination was held at the nursery for 1 year, on several seedling quality traits. Indeed, AP67 and AP673L triggered higher leaf formation, while L20AP67 positively affected seedling shoot development. NS1 and AP67 LED pre-cultivated seedlings showed significantly higher root fibrosity than those of FL light. Furthermore, NS1 and AP673L LEDs induced fourfold increase on seedling root dry weight than FL light. Hence, evaluating the seedling nursery performance attributes, most of those photomorphogenetic responses previously obtained were still detectable. Even more so, LED pre-cultivated seedlings showed higher survival and faster growth indicating better adaptation even under natural light conditions, a fact further reinforced by the significantly higher Dickson’s quality index acquired. In conclusion, the goal of each nursery management program is the production of high quality seedlings with those desirable traits, which in turn satisfy the specific needs for a particular reforestation site. Thus, the enhanced oak seedling quality traits formed under continuous LEDs spectrum especially of NS1 and AP673L pre-cultivation may potentially fulfill this goal. PMID:28261244

  19. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops

    PubMed Central

    Khan, M. A.; Gemenet, Dorcus C.; Villordon, Arthur

    2016-01-01

    The challenge to produce more food for a rising global population on diminishing agricultural land is complicated by the effects of climate change on agricultural productivity. Although great progress has been made in crop improvement, so far most efforts have targeted above-ground traits. Roots are essential for plant adaptation and productivity, but are less studied due to the difficulty of observing them during the plant life cycle. Root system architecture (RSA), made up of structural features like root length, spread, number, and length of lateral roots, among others, exhibits great plasticity in response to environmental changes, and could be critical to developing crops with more efficient roots. Much of the research on root traits has thus far focused on the most common cereal crops and model plants. As cereal yields have reached their yield potential in some regions, understanding their root system may help overcome these plateaus. However, root and tuber crops (RTCs) such as potato, sweetpotato, cassava, and yam may hold more potential for providing food security in the future, and knowledge of their root system additionally focuses directly on the edible portion. Root-trait modeling for multiple stress scenarios, together with high-throughput phenotyping and genotyping techniques, robust databases, and data analytical pipelines, may provide a valuable base for a truly inclusive ‘green revolution.’ In the current review, we discuss RSA with special reference to RTCs, and how knowledge on genetics of RSA can be manipulated to improve their tolerance to abiotic stresses. PMID:27847508

  20. Morphology, sociality, and ecology: can morphology predict pairing behavior in coral reef fishes?

    NASA Astrophysics Data System (ADS)

    Brandl, S. J.; Bellwood, D. R.

    2013-09-01

    Morphology can contain valuable information about the ecological performance of reef fishes, but it has rarely been used in combination with social traits. Social behavior is known to influence the ecological role of fishes; however, the ecological basis for pairing in reef fishes is not well understood. Field observations of 2,753 individuals, in 47 species in six families of biting reef fishes (Acanthuridae, Chaetodontidae, Kyphosidae, Labridae, Pomacanthidae, Siganidae), were used in combination with six morphological measurements, to examine the morphology of fishes in different social systems. A principal components analysis of morphological traits segregated species with high proportions of pairing individuals from non-pairing species along principal component 1, explaining 40.8 % of the variation. Pairing species were characterized by large eyes, concave foreheads, pointed snouts, deep bodies, and small maximum sizes. There was a significant positive relationship between these morphological traits (i.e., scores on PC1) and the prevalence of pairing within the Chaetodontidae ( r 2 = 0.59; P = 0.026), Siganidae ( r 2 = 0.72; P = 0.004), and Acanthuridae ( r 2 = 0.82; P < 0.001). This was consistent when traits were corrected for phylogenetic effects. No pattern was evident in the scarine Labridae ( r 2 = 0.15; P = 0.17). The morphological characteristics found among pairing species suggest that pairing species share common ecological traits, including foraging for small prey items in micro-topographically complex environments such as reef crevices. These ecological traits may have played a role in the evolution of pairing behavior and subsequently led to the development of reproductive patterns based on monogamy.

  1. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  2. Shaping an Optimal Soil by Root-Soil Interaction.

    PubMed

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Root distribution and interactions between allelopathic rice and c4 grass weed species as determined by 13c isotope discrimination analysis

    USDA-ARS?s Scientific Manuscript database

    Cultivars which carry allelopathic traits (traits that enable them to suppress weeds) could improve the economical management and sustainability of rice production. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but ...

  4. Root traits contributing to plant productivity under drought

    USDA-ARS?s Scientific Manuscript database

    ROOT TRAITS CONTRIBUTING TO PLANT PRODUCTIVITY UNDER DROUGHT L.H. Comas1, S.R. Becker2, V.M.V. Cruz3,4, P.F. Byrne2, D.A. Dierig3 1USDA-ARS, Water Management Research Unit, Fort Collins, CO, USA 2Colorado State University, Soil and Crop Sciences, Fort Collins, CO, USA 3USDA-ARS, National Center fo...

  5. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi.

    PubMed

    Powell, Jeff R; Parrent, Jeri L; Hart, Miranda M; Klironomos, John N; Rillig, Matthias C; Maherali, Hafiz

    2009-12-07

    The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.

  6. Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches

    PubMed Central

    Ertani, Andrea; Francioso, Ornella; Tinti, Anna; Schiavon, Michela; Pizzeghello, Diego; Nardi, Serenella

    2018-01-01

    Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B–F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5 mL L−1 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features, which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933 mg L−1) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts. PMID:29681909

  7. Endodontic management of maxillary first molar with atypical canal morphology: Report of three cases

    PubMed Central

    Sherwani, Osama Adeel Khan; Kapoor, Bhumika; Sharma, Rajat; Mishra, Surendra Kumar

    2016-01-01

    Maxillary first molar with three roots and 3–4 canals is a common occurrence. However, extreme variations in their canal morphology have been reported ranging from one single canal and one root to as many as eight root canals. This article presents three cases of successful endodontic management of maxillary first molars with atypical canal morphologies, thus highlighting the fact that variations do occur and an endodontist should always be aware of aberrancies in root canal system apart from the knowledge of normal root canal anatomy. PMID:27994427

  8. Asymmetry in mesial root number and morphology in mandibular second molars: a case report

    PubMed Central

    Shetty, Shashit; Shekhar, Rhitu

    2014-01-01

    Ambiguity in the root morphology of the mandibular second molars is quite common. The most common root canal configuration is 2 roots and 3 canals, nonetheless other possibilities may still exist. The presence of accessory roots is an interesting example of anatomic root variation. While the presence of radix entomolaris or radix paramolaris is regarded as a typical clinical finding of a three-rooted mandibular second permanent molar, the occurrence of an additional mesial root is rather uncommon and represents a possibility of deviation from the regular norms. This case report describes successful endodontic management of a three-rooted mandibular second molar presenting with an unusual accessory mesial root, which was identified with the aid of multiangled radiographs and cone-beam computed tomography imaging. This article also discusses the prevalence, etiology, morphological variations, clinical approach to diagnosis, and significance of supernumerary roots in contemporary clinical dentistry. PMID:24516829

  9. Physiological differences between root suckers and saplings enlarge the regeneration niche in Eucryphia cordifolia Cav.

    PubMed

    Escandón, Antonio B; Rojas, Roke; Morales, Loreto V; Corcuera, Luis J; Coopman, Rafael E; Paula, Susana

    2018-01-01

    Many clonal plants produce vegetative recruits that remain connected to the parent plant. Such connections permit resource sharing among ramets, explaining the high survival rates of vegetative recruits during establishment under suboptimal conditions for sexual regeneration. We propose that differences in the regeneration niches of sexual and vegetative recruits reflect different physiological adjustments caused by parental supply of resources to the ramets. We conducted ecophysiological measurements in saplings and root suckers of Eucryphia cordifolia Cav., a tree species of the temperate rainforest of southern South America. We compared the following traits of saplings and suckers: gas exchange at the leaf level, crown architecture, daily crown carbon balance, biomass allocation to above-ground tissues (leaf-to-stem mass ratio, leaf mass area and leaf area ratio), xylem anatomy traits (lumen vessel fraction, vessel density and size) and stem ring width. We also correlated the growth rates of saplings and suckers with relevant environmental data (light and climate). Saplings showed morphological, architectural and physiological traits that enhance daily crown carbon balance and increase water-use efficiency, in order to supply their growth demands while minimizing water loss per unit of carbon gained. The radial growth of saplings diminished under dry conditions, which suggests a strong stomatal sensitivity to water availability. Suckers have low stomatal conductance, likely because the carbon supplied by the parent plant diminishes the necessity of high rates of photosynthesis. The low responsiveness of sucker growth to temporal changes in water availability also supports the existence of parental supply. The physiological differences between sexual and vegetative recruits satisfactorily explain the ecological niche of E. cordifolia, with saplings restricted to more closed and humid sites. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil.

    PubMed

    Chu, Qun; Wang, Xinxin; Yang, Yang; Chen, Fanjun; Zhang, Fusuo; Feng, Gu

    2013-08-01

    The aim of this study was to compare the mycorrhizal responsiveness among old and recent Chinese maize genotypes (released from 1950s to 2008) in low- and high-Olsen-P soils and to identify parameters that would indicate the relationships between the mycorrhizal responsiveness and the functional traits related to P uptake of maize. A greenhouse factorial experiment was conducted. The factors were maize genotype [Huangmaya (HMY), Zhongdan 2 (ZD2), Nongda 108 (ND108), and NE15], inoculation with or without arbuscular mycorrhizal fungi (AMF) (Rhizophagus irregularis), and Olsen-P levels (4, 9, 18, 36, or 60 mg P kg(-1)). Old and recently released genotypes differed in their response to AMF under low- and high-P supply. Three kinds of responses (in terms of shoot growth) were observed: the response was positive if the soil P content was low, but negative if the soil Olsen-P content was high (HMY and ND108); the response was neutral regardless of soil P content (ZD2); and the response was positive regardless of soil P content (NE15). Principle component (PC) analysis showed that the first PC comprised morphological and physiological traits of maize roots, and the second PC comprised mycorrhizal traits. The opposite was the case, however, in high-P soil. It is concluded that maize breeding selection from 1950s to 2000s is not always against the AM association and that AMF play positive roles in promoting the growth of some maize genotypes in high-P soil. The root length colonization by efficient AMF might be a useful parameter for breeding varieties with increased mycorrhizal responsiveness.

  11. Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Sugimoto, Takanobu; Tanikawa, Toko; Ishii, Hiroaki

    2015-12-01

    Soil N fertility has an effect on belowground C allocation, but the physiological and morphological responses of individual fine root segments to variations in N availability under field conditions are still unclear. In this study, the direction and magnitude of the physiological and morphological function of fine roots in response to variable in situ soil N fertility in a forest site were determined. We measured the specific root respiration (Rr) rate, N concentration and morphology of fine root segments with 1-3 branching orders in a 100-year-old coniferous forest of Chamaecyparis obtusa. Higher soil N fertility induced higher Rr rates, root N concentration, and specific root length (SRL), and lower root tissue density (RTD). In all fertility levels, the Rr rates were significantly correlated positively with root N and SRL and negatively with RTD. The regression slopes of respiration with root N and RTD were significantly higher along the soil N fertility gradient. Although no differences in the slopes of Rr and SRL relationship were found across the levels, there were significant shifts in the intercept along the common slope. These results suggest that a contrasting pattern in intraspecific relationships between specific Rr and N, RTD, and SRL exists among soils with different N fertility. Consequently, substantial increases in soil N fertility would exert positive effects on organ-scale root performance by covarying the Rr, root N, and morphology for their potential nutrient and water uptake.

  12. Can ectomycorrhizal symbiosis and belowground plant traits be used as ecological tools to mitigate erosion on degraded slopes in the ultramafic soils of New Caledonia?

    NASA Astrophysics Data System (ADS)

    Demenois, Julien; Carriconde, Fabian; Rey, Freddy; Stokes, Alexia

    2015-04-01

    New Caledonia is an archipelago in the South West Pacific located just above the Tropic of Capricorn. The main island is bisected by a continuous mountain chain whose highest peaks reach more than 1 600 m. With mean annual rainfall above 2 000 mm in the South of the main island, frequent downpours and steep slopes, its soils are prone to water erosion. Deforestation, fires and mining activity are the main drivers of water erosion. Stakes are high to mitigate the phenomenon: extraction of nickel from ultramafic substrates (one third of the whole territory) is the main economic activity; New Caledonia is considered as a biodiversity hotspot. Restoration ecology is seen as a key approach for tackling such environmental challenges. Soil microorganisms could play significant roles in biological processes such as plant nutrition and plant resistance to abiotic and biotic stresses. Microorganisms could increase soil aggregate stability and thus mitigate soil erodibility. Plant roots increase soil cohesion through exudation and decomposition processes. To date, few studies have collected data on the soil aggregate stability of steep slopes affected by erosion and, to our knowledge, interactions between ectomycorrhizas (ECM), roots and erodibility of ultramafic soils have never been considered. The objective of our study is to assess the influence of ECM symbiosis and plant root traits on the erodibility of ultramafic soils of New Caledonia and answer the following questions: 1/ What is the influence of plant root traits of vegetal communities and ECM fungal diversity on soil erodibility? 2/ What are the belowground plant traits of some mycorrhized endemic species used in ecological restoration? 3/ What is the influence of plant root traits and ECM fungal inoculation on soil erodibility? At the scale of plant communities, five types of vegetation have been chosen in the South of the main island: degraded ligno-herbaceous shrubland, ligno-herbaceous shrubland, degraded humid forest with dominance of Arillastrum gummiferum, dense humid forest with dominance of Nothofagus aequilateralis, and finally mixed dense humid forest. These types of vegetation are widely represented on ultramafic soils of New Caledonia and are likely to correspond to different successional phases. At the scale of species, dominant species in the above-mentioned types of vegetation are considered for herbaceous, shrubs and trees strata. Root traits of Costularia nervosa, Tristaniopsis glauca, Nothofagus aequilateralis and Arillastrum gummiferum are then characterized in situ. These species are of particular interest for post-mining ecological restoration in New Caledonia as they are light-tolerant, endemic, associated with ECM (except for Costularia nervosa) and of particular interest or already used by mining operators for post-mining ecological restoration. For both scales (community and species), soil characteristics will be collected. Very fine and fine roots, mean root diameter, root diameter diversity, root mass density, root length density, and specific root length will be considered. Degree of ectomycorrhization and fungal biomass through qPCR will be determined. Soil aggregate stability will be measured according to the standardized method NF X 31-515. Besides, greenhouse trials with Costularia nervosa, Tristaniopsis glauca and Arillastrum gummiferum are carried out to assess the influence of plant root traits, fungal inoculation and soil aggregate stability. Controlled plant inoculations are performed using available pure fungal strains isolated from New Caledonian ultramafic soils. Plants have been bred on sterilized soil samples from the field sites. Through this study, we target to identify associations between ECM fungi and plant species that could mitigate the erodibility of degraded ultramafic soils and then water erosion. A better knowledge of interactions between soil aggregate stability, ECM fungi and plant root traits is then expected to answer the following question: can soil aggregate stability be used as a bio-indicator of ecosystem functioning and services?

  13. Intraspecific variability and reaction norms of forest understory plant species traits

    USGS Publications Warehouse

    Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.

    2017-01-01

    Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species rankings and scale between community and ecosystem levels using trait-based models. Investigators may therefore focus on obtaining a sufficient sample size within a single set of conditions rather than characterizing trait variation across entire gradients in order to optimize sampling efforts.

  14. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono

    PubMed Central

    Zhang, Peng; Shen, Hai-long; Salahuddin

    2017-01-01

    Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period. PMID:28234921

  15. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa

    PubMed Central

    Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.

    2014-01-01

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705

  16. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    PubMed

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  17. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (P<0.01). The Wild and Old genotype had a more positive response to compost for root length and diameter, N-cycling enzyme activities, microbial biomass, and soil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts should consider incorporating root traits of older genotypes to better support the beneficial interactions between crop roots and their rhizosphere microbiome.

  18. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor

    PubMed Central

    Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.

    2015-01-01

    The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant height suggested G X E interactions for these traits. PMID:26579183

  19. Hydrodynamic Trait Coordination and Cost-Benefit Tradeoffs throughout the Isohydric-Anisohydric Continuum in Trees

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Matheny, A. M.; Bohrer, G.

    2017-12-01

    Whole-plant hydraulic performance depends on the integrated function of complexes of traits, such as embolism resistance and xylem anatomy, stomatal closure mechanisms, hydraulic architecture, and root properties. The diversity of such traits produces a wide range of response strategies to both short-term variation of soil moisture and VPD, and to long-term changes to climate and hydrological cycles which affect water availability. This study aims to assess the role of different hydraulic trait combinations in trees' vulnerability to limitations in soil water availability. We use a quantitative hydrodynamic modeling framework which allows studying the influence of each suits of plant hydraulic traits independently, and assess how the different trait groups interact with each other to form viable hydraulic strategies in response to reduced soil moisture availability. We utilize the advanced plant hydrodynamic model, FETCH2, which resolves plant functional hydrodynamics, using parameters that represent emergent physiological traits at the root, stem and leaf levels. FETCH2 simulates the integrated plant-level transpiration and water capacitance, provided hydraulic traits and environmental forcing. We define a multi-dimensional hydraulic "trait space" by considering a broad continuum of hydraulic traits at each of the leaf, stem, and root levels. We test the consequences of different strategies under a range of environmental conditions, representing typical wet, intermediate, and dry conditions, based on as observations in a research forest in Northern Michigan, USA. We evaluate the degree to which simulated trees suffer hydraulic failure due to cavitation, resulting in loss of xylem conductivity, or carbon starvation, through leaf water-potential-driven reduction of stomatal conductance. Our result demonstrated that risk-prone leaf strategy when combined with risk-adverse xylem traits may expose plant to the risk of hydraulic failure due to declining water potential during period of low soil moisture and high VPD. However, if this strategy is coupled with deep roots, the plant is less likely to experience water stress even during periods of low soil water availability and high evaporative demand.

  20. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.

  1. RootScan: Software for high-throughput analysis of root anatomical traits

    USDA-ARS?s Scientific Manuscript database

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  2. Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular first and second molars in Turkish individuals

    PubMed Central

    Sekerci, Ahmet E.; Dinçer, Asiye N.; Cayabatmaz, Muhammed; Zorba, Yahya O.

    2013-01-01

    Objective: The aim of this study was to investigate the root and canal morphology of mandibular first and second molars in a Turkish population by using cone beam computed tomography (CBCT). Study design: CBCT images of mandibular first (n = 823) and second molar (n = 925) teeth from 605 Turkish patients were analyzed. The root canal configurations were classified according to the method of Vertucci. Results: The majority of mandibular molars (95.8% of first molars, 85.4% of second molars) had two separate roots; however, three roots were identified in 2.06% of first molars and 3.45% of second molars. C-shaped canals occurred 0.85% of first molars and 4.1% of second molars. Three canals were found in 79.9% of first molars and 72.8% of second molars. Most distal roots had a simple type I configuration, whereas mesial roots had more complex canal systems, with more than one canal. The most common root morphology of first and second molars is the two rooted morphology with three canals. Both the mesial and distal roots showed wide variations in canal anatomy with type IV and type I canal configuration predominating in the mesial and distal roots, respectively. Conclusion: Vertucci type I and IV canal configurations were the most prevalent in the distal and mesial roots, respectively, of both the mandibular first and second permanent molar teeth. Key words:Cone-beam CT, Turkish, mandibular molars, root and canal morphology. PMID:23524421

  3. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Identification of quantitative trait loci controlling root and shoot traits associated to drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population

    USDA-ARS?s Scientific Manuscript database

    Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding. In all, 252 co-dominant and dominant markers were used for genetic linkage map c...

  5. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  6. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests.

    PubMed

    Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe

    2007-11-01

    Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.

  7. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary morphological traits occur among the studied woody plants of the Tumbesian dry forest. The latter favors a plethora of behavioral mechanisms to coexist among woody species of the dry forest in response to the environmental stress that is typical of arid areas.

  8. Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments

    PubMed Central

    Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.

    2013-01-01

    Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603

  9. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: an in vitro study.

    PubMed

    Gaurav, Vivek; Srivastava, Nikhil; Rana, Vivek; Adlakha, Vivek Kumar

    2013-01-01

    Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.

  10. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  11. Parallel evolution of storage roots in Morning Glories (Convolvulaceae)

    USDA-ARS?s Scientific Manuscript database

    Storage roots are an ecologically and agriculturally important plant trait. In morning glories, storage roots are well characterized in the crop species sweetpotato. Storage roots have evolved numerous times across the morning glory family. This study aims to understand whether this was through para...

  12. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  13. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.

    PubMed

    Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J

    2014-08-19

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Plant traits and trait-based vegetation modeling in the Arctic

    NASA Astrophysics Data System (ADS)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  15. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  16. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System.

    PubMed

    Liu, Zhigang; Gao, Kun; Shan, Shengchen; Gu, Riling; Wang, Zhangkui; Craft, Eric J; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2017-01-01

    Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency ( r = 0.17-0.31) and Phosphorus (PupE) uptake efficiency ( r = 0.22-0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs.

  17. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System

    PubMed Central

    Liu, Zhigang; Gao, Kun; Shan, Shengchen; Gu, Riling; Wang, Zhangkui; Craft, Eric J.; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2017-01-01

    Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency (r = 0.17–0.31) and Phosphorus (PupE) uptake efficiency (r = 0.22–0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs. PMID:28424719

  18. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens.

    PubMed

    Kupczik, Kornelius; Hublin, Jean-Jacques

    2010-11-01

    Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n=127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M(1) and M(2) is small. In contrast, Aterian H. sapiens root surface areas peak at M(2). Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.)

    PubMed Central

    Thomas, C. L.; Graham, N. S.; Hayden, R.; Meacham, M. C.; Neugebauer, K.; Nightingale, M.; Dupuy, L. X.; Hammond, J. P.; White, P. J.; Broadley, M. R.

    2016-01-01

    Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. PMID:27052342

  20. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones.

    PubMed

    Xu, Liang; Zhou, Zhen-Feng

    2016-01-01

    Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets.

  1. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones

    PubMed Central

    Zhou, Zhen-Feng

    2016-01-01

    Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets. PMID:27736932

  2. Get Tough, Get Toxic, or Get a Bodyguard: Identifying Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses

    PubMed Central

    Moore, Ben D.; Johnson, Scott N.

    2017-01-01

    Grasses (Poaceae) are the fifth-largest plant family by species and their uses for crops, forage, fiber, and fuel make them the most economically important. In grasslands, which broadly-defined cover 40% of the Earth's terrestrial surface outside of Greenland and Antarctica, 40–60% of net primary productivity and 70–98% of invertebrate biomass occurs belowground, providing extensive scope for interactions between roots and rhizosphere invertebrates. Grasses invest 50–70% of fixed carbon into root construction, which suggests roots are high value tissues that should be defended from herbivores, but we know relatively little about such defenses. In this article, we identify candidate grass root defenses, including physical (tough) and chemical (toxic) resistance traits, together with indirect defenses involving recruitment of root herbivores' natural enemies. We draw on relevant literature to establish whether these defenses are present in grasses, and specifically in grass roots, and which herbivores of grasses are affected by these defenses. Physical defenses could include structural macro-molecules such as lignin, cellulose, suberin, and callose in addition to silica and calcium oxalate. Root hairs and rhizosheaths, a structural adaptation unique to grasses, might also play defensive roles. To date, only lignin and silica have been shown to negatively affect root herbivores. In terms of chemical resistance traits, nitrate, oxalic acid, terpenoids, alkaloids, amino acids, cyanogenic glycosides, benzoxazinoids, phenolics, and proteinase inhibitors have the potential to negatively affect grass root herbivores. Several good examples demonstrate the existence of indirect defenses in grass roots, including maize, which can recruit entomopathogenic nematodes (EPNs) via emission of (E)-β-caryophyllene, and similar defenses are likely to be common. In producing this review, we aimed to equip researchers with candidate root defenses for further research. PMID:28105030

  3. Sexual selection and the evolution of genital shape and complexity in water striders.

    PubMed

    Rowe, Locke; Arnqvist, Göran

    2012-01-01

    Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  4. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties.

    PubMed

    Ghobadi, Mohammad Eghbal; Ghobadi, Mokhtar; Zebarjadi, Alireza

    2017-04-01

    Excess rainfalls may be the cause of waterlogging in soil, which affects the growth and development of wheat. Therefore, the objectives of this study were to examine the effects of waterlogging on shoot and root growth and physiological characteristics of wheat. Three experiments were conducted: experiment 1 (E1): evaluation of seedling growth on ten Iranian winter wheat varieties with waterlogging periods (1-4, 4-8, 8-12, and 12-16 days starting from seed germination). Seminal roots and plumule were investigated at seedling. The others are E2: pretreatment of waterlogging (15 days) at tillering and stem elongation stages and its effects on shoot and root growth at anthesis stage and experiment 3 (E3): pretreatment of waterlogging (15 days) at tillering and jointing stages and its effects on yield and yield components and also evaluation of stress tolerance indexes. The results of the seedling growth test (E1) showed that 1-4- and 4-8-day waterlogging severity reduced seminal root length (94.5 to 93.7 %) and plumule length (86.2 to 50.0 %) compared to control. Results of E2 indicated that waterlogging stress decreased shoot dry weight, root dry weight, total secondary root length, and chlorophyll a + b content of flag leaf by 28-31, 44-35, 20-31, and 28-35 %, respectively. Also, result of E3 showed that the grain yields of wheat varieties at two conditions of stress were different in base tolerance indexes. In general, the responses of wheat varieties to waterlogging were different at the three experiments. The varieties that had the most of dry weight and length of the root were tolerant. Thus, it is possible to use these characteristics as an index for selecting the varieties with tolerance to waterlogging.

  5. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties

    NASA Astrophysics Data System (ADS)

    Ghobadi, Mohammad Eghbal; Ghobadi, Mokhtar; Zebarjadi, Alireza

    2017-04-01

    Excess rainfalls may be the cause of waterlogging in soil, which affects the growth and development of wheat. Therefore, the objectives of this study were to examine the effects of waterlogging on shoot and root growth and physiological characteristics of wheat. Three experiments were conducted: experiment 1 (E1): evaluation of seedling growth on ten Iranian winter wheat varieties with waterlogging periods (1-4, 4-8, 8-12, and 12-16 days starting from seed germination). Seminal roots and plumule were investigated at seedling. The others are E2: pretreatment of waterlogging (15 days) at tillering and stem elongation stages and its effects on shoot and root growth at anthesis stage and experiment 3 (E3): pretreatment of waterlogging (15 days) at tillering and jointing stages and its effects on yield and yield components and also evaluation of stress tolerance indexes. The results of the seedling growth test (E1) showed that 1-4- and 4-8-day waterlogging severity reduced seminal root length (94.5 to 93.7 %) and plumule length (86.2 to 50.0 %) compared to control. Results of E2 indicated that waterlogging stress decreased shoot dry weight, root dry weight, total secondary root length, and chlorophyll a + b content of flag leaf by 28-31, 44-35, 20-31, and 28-35 %, respectively. Also, result of E3 showed that the grain yields of wheat varieties at two conditions of stress were different in base tolerance indexes. In general, the responses of wheat varieties to waterlogging were different at the three experiments. The varieties that had the most of dry weight and length of the root were tolerant. Thus, it is possible to use these characteristics as an index for selecting the varieties with tolerance to waterlogging.

  6. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes.

    PubMed

    Sutka, Moira R; Manzur, Milena E; Vitali, Victoria A; Micheletto, Sandra; Amodeo, Gabriela

    2016-03-15

    Sorghum bicolor (L.) Moench is an ancient drought-tolerant crop with potential to sustain high yields even in those environments where water is limiting. Understanding the performance of this species in early phenological stages could be a useful tool for future yield improvement programs. The aim of this work was to study the response of Sorghum seedlings under water deficit conditions in two genotypes (RedLandB2 and IS9530) that are currently employed in Argentina. Morphological and physiological traits were studied to present an integrated analysis of the shoot and root responses. Although both genotypes initially developed a conserved and indistinguishable response in terms of drought tolerance parameters (growth rate, biomass reallocation, etc.), water regulation displayed different underlying strategies. To avoid water loss, both genotypes adjusted their plant hydraulic resistance at different levels: RedLandB2 regulated shoot resistance through stomata (isohydric strategy), while IS9530 controlled root resistance (anisohydric strategy). Moreover, only in IS9530 was root hydraulic conductance restricted in the presence of HgCl2, in agreement with water movement through cell-to-cell pathways and aquaporins activity. The different responses between genotypes suggest a distinct strategy at the seedling stage and add new information that should be considered when evaluating Sorghum phenotypic plasticity in changing environments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Retrospective Study of Root Canal Configurations of Mandibular Third Molars Using CBCT- Part-II.

    PubMed

    Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, Shefali; Uthappa, Roshan; Shivagange, Vinay; Khan, Sheeba

    2017-06-01

    Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucci's classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. There was a high prevalence of two rooted mandibular third molars with three canals.

  8. Retrospective Study of Root Canal Configurations of Mandibular Third Molars Using CBCT- Part-II

    PubMed Central

    Somasundaram, Pavithra; Wadhwani, Shefali; Uthappa, Roshan; Shivagange, Vinay; Khan, Sheeba

    2017-01-01

    Introduction Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. Aim The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. Materials and Methods CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucci’s classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Results Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. Conclusion There was a high prevalence of two rooted mandibular third molars with three canals. PMID:28764294

  9. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    NASA Astrophysics Data System (ADS)

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance growth rates and water productivity in rice through an improved photosynthetic capacity.

  10. Root morphology and growth of bare-root seedlings of Oregon white oak

    Treesearch

    Peter J. Gould; Constance A. Harrington

    2009-01-01

    Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...

  11. Understanding alfalfa root systems and their rold in abiotic stress tolerance

    USDA-ARS?s Scientific Manuscript database

    The root system architecture (RSA) impacts the capacity of the plant for efficient water and nutrient uptake. Root phenes have been associated with productivity under stress conditions and persistence of perennial species. The objectives of this study were to identify root traits that increase produ...

  12. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat

    PubMed Central

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-01-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. PMID:26880749

  13. Root canal morphology and variations in mandibular second molar teeth of an Indian population: an in vivo cone-beam computed tomography analysis.

    PubMed

    Pawar, Ajinkya Mansing; Pawar, Mansing; Kfir, Anda; Singh, Shishir; Salve, Prashant; Thakur, Bhagyashree; Neelakantan, Prasanna

    2017-12-01

    This study aims to investigate the root canal morphology of permanent mandibular second molars of an Indian population in vivo using cone-beam computed tomography (CBCT) images. CBCT images (n = 983; males = 489, females = 494) of untreated, completely developed permanent mandibular second molar teeth were examined. CBCT scans were acquired as part of diagnosis and treatment planning for treatments unrelated to the present study. The number of roots and root canals were recorded. Canal configuration was classified based on Vertucci's and Fan's classifications. The most common configuration was two-root (79.35%) and three-root canals (53.50%). The incidence of three-rooted molars was 7.53%, whereas 13.12% of the studied teeth studied have fused roots with C-shaped canals. The predominant canal morphology in the mesial roots was Vertucci's type IV (45.17%), followed by type II (32.55%), type I (7.23%), type V (1.02%), and type III (0.91%). The distal root in contrast showed type I (61.14%) as the predominant canal configuration, followed by type II (18.21%) and type IV (7.53%). The incidence of three-rooted molars was higher in males (n = 55; 5.59%) than in females (n = 19; 1.94%) (p < 0.01). The canals in the extra roots exhibited type I (100%) root canal morphology. In teeth with C-shaped root canal (13.12%), the variations in the coronal, middle, and apical third ranged from C1 to C4. Root canal systems of the mesial roots of mandibular second molars of the study population demonstrated a high degree of variability. While three roots were rare, there was a sexual predisposition. Fused roots with C-shaped canals were rare and demonstrated significant variations from the coronal to apical third. Root canal morphology can demonstrate variations based on race and sex of patients. Clinicians must always consider the possible variations to ensure successful endodontic treatment.

  14. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.

    PubMed

    Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang

    2008-05-01

    We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.

  15. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice

    PubMed Central

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-01-01

    Deep rooting is a very important trait for plants’ drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. PMID:26022253

  16. Single-rooted maxillary first molar with a single canal: endodontic retreatment.

    PubMed

    de la Torre, Francisco; Cisneros-Cabello, Rafael; Aranguren, José Luis; Estévez, Roberto; Velasco-Ortega, Eugenio; Segura-Egea, Juan José

    2008-12-01

    This case report presents an unusual root canal system in a maxillary first molar tooth: a single canal in a single root. The endodontic access cavity displayed only 1 canal orifice. This case demonstrated that: 1) clinicians must have adequate knowledge about root canal morphology and its variations; 2) the location and morphology of root canals should be identified radiologically before the root canal treatment; and 3) careful examination of radiographs and the internal anatomy of teeth is essential.

  17. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.).

    PubMed

    Riaz, M; Farooq, J; Sakhawat, G; Mahmood, A; Sadiq, M A; Yaseen, M

    2013-02-27

    Research pertaining to genetic variability parameters, heritability, and genotypic, phenotypic, simple, and environmental correlations for various seedling traits in five elite advanced cotton (Gossypium hirsutum L.) lines (FH-113, FH-114, FH-941, FH-942, and FH-2015) and one check (CIM-496) was carried out during October and November 2010 under greenhouse conditions at the Cotton Research Institute (Faisalabad, Pakistan). Material was raised in plastic tubes with a randomized complete block design replicated three times. Three drought shocks were applied by withholding water from the tube-sown plants for 8-, 10-, and 12-day intervals. After 60 days of sowing, data on root/shoot traits like root length (cm), shoot length (cm), root weight (g), shoot fresh weight (g), lateral root number, root dry weight (g) shoot dry weight (g), and total plant weight (g) were recorded. Considerable genotypic variations existed between genotypes for all seedling characters. Higher broad-sense heritability estimates were found for all traits studied. Maximum broad-sense heritability coupled with high genetic advance in root length (0.99, 17.34), lateral root number (0.91, 2.89), and shoot length (0.90, 4.35) suggested a potential for genetic improvement through breeding and selection. The correlation coefficients among root length, shoot length, root dry weight, fresh shoot weight, and total plant weight were positively and significantly correlated; thus, they can be selected simultaneously as drought tolerance selection indexes owing to the absence of undesired relationships. Genotypes FH-942 and FH-113 had the lowest excised leaf water loss during the first 4 h and also for the next 4 h. Therefore, these two advanced lines (FH-942 and FH-113) with high initial water content and lower excised leaf water loss had better adaptation to water stress.

  18. A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcís

    2016-05-01

    Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic-based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon-based studies assemblage-specific. To illustrate the benefits of the trait-based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Barbus meridionalis. We hypothesized that B. meridionalis is a selective predator which food choice depends on several prey morphological and behavioral traits, and thus, its top-down pressure may lead to changes in the functional composition of in-stream macroinvertebrate communities. Feeding selectivity was inferred by comparing taxonomic and functional composition (13 traits) between ingested and free-living potential prey using the Jacob's electivity index. Our results showed that the fish diet was influenced by 10 of the 13 traits tested. Barbus meridionalis preferred prey with a potential size of 5-10 mm, with a medium-high drift tendency, and that drift during daylight. Potential prey with no body flexibility, conical shape, concealment traits (presence of nets and/or cases, or patterned coloration), and high aggregation tendency had a low predation risk. Similarly, surface swimmers and interstitial taxa were low vulnerable to predation. Feeding selectivity altered the functional composition of the macroinvertebrate communities. Fish absence favored taxa with weak aggregation tendency, weak flexibility, and a relatively large size (10-20 mm of potential size). Besides, predatory invertebrates may increase in fish absence. In conclusion, our study shows that the incorporation of the trait-based approach in diet studies is a promising avenue to improve our mechanistic understanding of predator-prey interactions and to help predict the ecological outcomes of predator invasions and extinctions.

  19. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    PubMed

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  20. Evaluation of the human hair root for DNA typing subsequent to microscopic comparison.

    PubMed

    Linch, C A; Smith, S L; Prahlow, J A

    1998-03-01

    Telogen human hairs are one of the most common useful evidence findings at crime scenes and/or on homicide victims. Occasionally, the microscopic characterization of the found telogen hair is the only physical evidence association to a victim or suspect. Recently efforts to characterize these hairs by mitochondrial DNA (mtDNA) methods have progressed. The nature of the telogen hair root morphology and ultrastructure has, however, been largely ignored. Examiners have recognized these hairs are unlikely to be typable by nuclear DNA (nuDNA) methods. Most forensic biologists have little knowledge of the complex cellular composition of anagen, catagen, and telogen hair roots or their morphogenesis. This paper reviews ex situ human hair root morphology as it relates to the likelihood of successful nuclear DNA typing. Dermatology texts of hair root morphology always demonstrate their microscopic appearance in the skin. This study investigates the use of fluorescence in situ hybridization (FISH) methods to sex type telogen head hairs, and it further investigates hair root morphology as it relates to the potential nuclear DNA content of evidence hairs. There is a need for the use of appropriate, consensus terminology for describing hair root morphology. There is also a need for standardized laboratory light microscopic methods in evaluating a hair root for DNA typing. FISH was found to be an unsuitable technique for sex determination of telogen hair clubs. It was determined that anagen/catagen hair roots without translucent sheath material are excellent candidates for nuDNA PCR-based typing and that hairs with telogen club root material only should not be submitted for nuDNA typing attempts.

  1. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research

    PubMed Central

    Pierret, Alain; Maeght, Jean-Luc; Clément, Corentin; Montoroi, Jean-Pierre; Hartmann, Christian; Gonkhamdee, Santimaitree

    2016-01-01

    Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems. PMID:27390351

  2. Maxillary molars with morphologic variations of the palatal root canals: a report of four cases.

    PubMed

    Holderrieth, Silke; Gernhardt, Christian Ralf

    2009-07-01

    The purpose of this article was to show the importance of the knowledge of the anatomy of root canals. Unusual root and root canal morphologies associated with both buccal roots of upper molars have been recorded in several studies in the literature. However, scientific information focusing on variations of the palatal root is rare. In this report, four cases are presented involving the root canal treatment of maxillary first and second molars with unusual morphologic configurations of the palatal root canals. During root canal treatment, type IV and V configurations as defined by Vertucci of the palatal canals of two first and two second maxillary molars were identified. After mechanical instrumentation, the canals were obturated. Radiologic and clinical re-evaluation showed no signs of inflammation. This report describes and discusses the possibility of different root and canal variations of the maxillary molars from a clinical point of view. Anatomic variations can occur in any tooth, and palatal roots of maxillary first and second molars are no exception. Therefore, careful examination of radiographs and internal anatomy of teeth is essential.

  3. Root system morphology of Oregon white oak on a glacial outwash soil.

    Treesearch

    Warren D. Devine; Constance A. Harrington

    2005-01-01

    Oregon white oak is reportedly a deeply rooted species, but its rooting habit on coarse-textured soils is undocumented. In the Puget Trough of western Washington, Oregon white oak grows in coarse-textured glacial outwash soils on lowland sites. Our objective was to quantify the gross root system morphology of Oregon white oak in these soils, thereby improving our...

  4. Root canal morphology of Chalcolithic and early bronze age human populations of El Mirador Cave (Sierra de Atapuerca, Spain).

    PubMed

    Ceperuelo, Dolors; Lozano, Marina; Duran-Sindreu, Fernando; Mercadé, Montse

    2014-12-01

    This study provides a morphological characterization of the inner anatomy of the root canals of permanent first and second molars in Chalcolithic and early Bronze Age human fossils using cone-beam computed tomography. The general evolutionary trend in present-day human dentition is related to morphological simplification. As little is known about when this trend appeared in Homo sapiens populations, the aim of this work is to test the presence of modern radicular morphology 4,400 years ago. Fifty-four permanent first and second maxillary and mandibular molars of 17 individuals were included in the study. All maxillary first and second molars showed three separate roots. Almost all the lower molars analyzed (100% of first molars and 75% of second molars) had two separate roots. More differences in the canal system configuration were documented in the maxillary mesiobuccal roots than in the palatal or distobuccal roots. The most variable tooth in root and canal configuration is the maxillary second molar. It should be pointed out that 12.5% of the teeth analyzed showed a C-shaped root configuration. © 2014 Wiley Periodicals, Inc.

  5. Personality and morphological traits affect pigeon survival from raptor attacks.

    PubMed

    Santos, Carlos D; Cramer, Julia F; Pârâu, Liviu G; Miranda, Ana C; Wikelski, Martin; Dechmann, Dina K N

    2015-10-22

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances.

  6. Personality and morphological traits affect pigeon survival from raptor attacks

    PubMed Central

    Santos, Carlos D.; Cramer, Julia F.; Pârâu, Liviu G.; Miranda, Ana C.; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  7. Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology.

    PubMed Central

    Wood, B A; Abbott, S A; Uytterschaut, H

    1988-01-01

    The subocclusal morphology of 168 permanent mandibular premolars (N = 77) and molars (N = 91) of Plio-Pleistocene hominids has been investigated. The taxonomic allocation of the teeth, which represent at least 46 individuals, was based on nondental evidence. Specimens were allocated to one of two major taxonomic categories, (EAFROB or EAFHOM), East African Homo erectus (EAFHER), or their taxonomic affinity was regarded as 'unknown' (N = 17). Information about the root system was derived from radiography and direct observation. Morphometric data were in the form of nine linear and two angular measurements based on eighteen reference points. Root form was also assessed using a scheme which recognised four classes of root morphology. Data were compared using both univariate and multivariate techniques, including Principal Component and Canonical Variate analysis. Posterior probabilities derived from the latter were used (in a two-taxon design model) to assess the affinities of the 'unknown' specimens. The variation in hominid mandibular premolar root form was interpreted as two morphoclines, based on the presumed primitive condition of the P3 (with mesiobuccal and distal roots, 2R: MB and D) and P4 (with mesial and distal root, 2R: M and D) root systems. One trend apparently leads towards root reduction (i.e. P3 = 1 R; P4 = 1 R), and the other to root elaboration (i.e. P3 and P4 = 2R: M and D). The extreme form of the latter is the 'molarisation' of the premolar roots seen in EAFROB. Despite major differences in root form there was relatively little taxonomic variation in root metrics, except for a more robust distal root system in EAFROB. Molar root form showed little interspecific variation except for M2 in which the roots in EAFROB were larger and more robust, with differences in root height being greater for the distal than for the mesial roots. Root form and metrics enable four of the 'unknown' specimens (KMN-ER 819, 1482, 1483 and 1801) to be tentatively allocated to EAFHOM, and a single specimen, KMN-ER 3731, to EAFROB. Published assessments of the root morphology of the 'robust' australopithecines from Swartkrans suggest that the premolar root form of Australopithecus (Paranthropus) robustus is not obviously intermediate between the presumed ancestral condition, and the 'molarised' mandibular premolar root systems of Australopithecus (Paranthropus) boisei. PMID:3047096

  8. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    PubMed

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response. © 2015 John Wiley & Sons Ltd.

  9. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  10. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  11. Malagasy cichlids differentially limit impacts of body shape evolution on oral jaw functional morphology.

    PubMed

    Martinez, Christopher M; Sparks, John S

    2017-09-01

    Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Classification and phylogenetic analysis of Chinese hawthorn assessed by plant and pollen morphology.

    PubMed

    Ma, S L Y; Lu, Y M

    2016-09-19

    The Chinese hawthorn (Crataegus pinnatifida Bge. var. major N.E.Br.) is uniquely originated in northern China. The ecological and horticultural importance of Chinese hawthorn is considerable and some varieties are valued for their fruit or medicine extracts. Its taxonomy and phylogeny remain poorly understood. Apart from general plant morphological traits, pollen is an important trait for the classification of plants and their evolutionary origin. However, few studies have investigated the pollen of Chinese hawthorn. Here, an analysis of plant and pollen morphological characteristics was conducted in 57 cultivars from the Shenyang region. Thirty plant morphological characters and nine pollen grain characters were investigated. The plant morphological analysis revealed that the coefficient of variation for 13 traits was >20%, which indicates a high degree of variability. We also found that the pollen grains varied greatly in size, shape (from prolate to perprolate), and exine pattern (striate-perforate predominantly). The number of apertures was typically three. Based on these findings, we suggest that pollen morphology associated with plant morphological traits can be used for classification and phylogenetic analysis of Chinese hawthorn cultivars. In sum, our results provide new insights and constitute a scientific basis for future studies on the classification and evolution of Chinese hawthorn.

  13. Rooting traits of peanut genotypes with different yield response to terminal drought

    USDA-ARS?s Scientific Manuscript database

    Drought at pod filling and maturity stages can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. The goal of this study was to investigate the responses to terminal drought of peanut genotypes for root dry weight and root length density. A field experiment was ...

  14. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  15. Heritability of climate-relevant traits in a rainforest skink.

    PubMed

    Martins, Felipe; Kruuk, Loeske; Llewelyn, John; Moritz, Craig; Phillips, Ben

    2018-05-22

    There is justified concern about the impact of global warming on the persistence of tropical ectotherms. There is also growing evidence for strong selection on climate-relevant physiological traits. Understanding the evolutionary potential of populations is especially important for low dispersal organisms in isolated populations, because these populations have little choice but to adapt. Despite this, direct estimates of heritability and genetic correlations for physiological traits in ectotherms-which will determine their evolutionary responses to selection-are sparse, especially for reptiles. Here we examine the heritabilities and genetic correlations for a set of four morphological and six climate-relevant physiological traits in an isolated population of an Australian rainforest lizard, Lampropholis coggeri. These traits show considerable variation across populations in this species, suggesting local adaptation. From laboratory crosses, we estimated very low to moderate heritability of temperature-related physiological traits (h 2  < 0.31), but significant and higher heritability of desiccation resistance (h 2 ~0.42). These values contrasted with uniformly higher heritabilities (h 2  > 0.51) for morphological traits. At the phenotypic level, there were positive associations among the morphological traits and between thermal limits. Growth rate was positively correlated with thermal limits, but there was no indication that morphology and physiology were linked in any other way. We found some support for a specialist-generalist trade-off in the thermal performance curve, but otherwise there was no evidence for evolutionary constraints, suggesting broadly labile multivariate trait structure. Our results indicate little potential to respond to selection on thermal traits in this population and provide new insights into the capacity of tropical ectotherms to adapt in situ to rapid climate change.

  16. Impact of selection on maize root traits and rhizosphere interactions

    NASA Astrophysics Data System (ADS)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  17. Endodontic treatment of a mandibular second premolar with three root canals.

    PubMed

    Aguiar, Carlos; Mendes, Daniela; Câmara, Andréa; Figueiredo, Jose

    2010-03-01

    The purpose of this case report is to describe a nonsurgical endodontic treatment of a mandibular left second premolar with two separate roots and three distinct root canals. In endodontics, the possible existence of extra canals must be considered before endodontic treatment is instituted. A wide morphological variation of the root canal system is known to exist. A 36-year-old male patient was referred for endodontic treatment on the left mandibular second premolar. Radiographic examination of the involved tooth revealed an unusual, complex root canal anatomy. There was an irregular root morphology consisting of two distinct roots and three canals. This case report describes the successful nonsurgical endodontic treatment of a mandibular left second premolar with two separate roots and three distinct root canals filled using size 35 Thermafil gutta-percha carriers and AH Plus sealer. On the one-year follow-up radiograph, the tooth was asymptomatic, confirming adequate healing with no complications. Even in a tooth with an extremely complex root canal morphology, conventional endodontic treatment without surgical intervention can result in adequate healing without any complications.

  18. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N/P increased, while N/K and P/K decreased, which implied that roots in water absorbed oxygen and nutrients could help P. rivalis adapt to long-term waterlogged environment effectively.

  19. Middle School Learners' Use of Latin Roots to Infer the Meaning of Unfamiliar Words

    ERIC Educational Resources Information Center

    Crosson, Amy C.; McKeown, Margaret G.

    2016-01-01

    This study investigated how middle school students leverage information about bound Latin roots (e.g., "voc" in "advocate" and "vociferous") to infer meanings of unfamiliar words, and how instruction may facilitate morphological analysis using roots. A dynamic assessment of morphological analysis was administered to…

  20. Root Gravitropism: Quantification, Challenges, and Solutions.

    PubMed

    Muller, Lukas; Bennett, Malcolm J; French, Andy; Wells, Darren M; Swarup, Ranjan

    2018-01-01

    Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This chapter describes a high-throughput, automated image analysis method to trace Arabidopsis (Arabidopsis thaliana) seedling roots grown on agar plates. The method combines a "particle-filtering algorithm with a graph-based method" to trace the center line of a root and can be adopted for the analysis of several root parameters such as length, curvature, and stimulus from original root traces.

  1. Two-rooted maxillary first molars with two canals: a case series.

    PubMed

    Shakouie, Sahar; Mokhtari, Hadi; Ghasemi, Negin; Gholizadeh, Seddigheh

    2013-01-01

    Thorough understanding of the anatomic and internal morphology of a root canal system is absolutely essential for the success of endodontic treatment. Since permanent maxillary first molars have shown variation in internal anatomy, morphology, this tooth has been reviewed extensively. Presence of two canals in a two-rooted maxillary first molar has rarely been reported in studies describing tooth and root canal anatomies. In this report, three cases are presented, which involve the root canal treatment of maxillary first molars with fusion of the two buccal roots.

  2. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  3. Correlated evolution of personality, morphology and performance

    PubMed Central

    Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian

    2018-01-01

    Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712

  4. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  5. Maxillary first molar with three buccal roots evaluated with cone-beam computed tomography: a rare case report.

    PubMed

    Kottoor, Jojo; Nandini, Suresh; Velmurugan, Natanasabapathy

    2012-01-01

    This case report describes the nonsurgical endodontic management of a maxillary first molar with the unusual morphology of three separate buccal roots. An accurate assessment of this morphology was made with the help of cone-beam computed tomography (CBCT). This report also describes the varied root morphology associated with maxillary first molars and the role of CBCT as a diagnostic tool for managing these complex cases successfully.

  6. Tracking changes in life-history traits related to unnecessary virulence in a plant-parasitic nematode

    PubMed Central

    Castagnone-Sereno, Philippe; Mulet, Karine; Iachia, Cathy

    2015-01-01

    Evaluating trade-offs in life-history traits of plant pathogens is essential to understand the evolution and epidemiology of diseases. In particular, virulence costs when the corresponding host resistance gene is lacking play a major role in the adaptive biology of pathogens and contribute to the maintenance of their genetic diversity. Here, we investigated whether life-history traits directly linked to the establishment of plant–nematode interactions, that is, ability to locate and move toward the roots of the host plant, and to invade roots and develop into mature females, are affected in Meloidogyne incognita lines virulent against the tomato Mi-1.2 resistance gene. Virulent and avirulent near-isogenic lines only differing in their capacity to reproduce or not on resistant tomatoes were compared in single inoculation or pairwise competition experiments. Data highlighted (1) a global lack of trade-off in traits associated with unnecessary virulence with respect to the nematode ability to successfully infest plant roots and (2) variability in these traits when the genetic background of the nematode is considered irrespective of its (a)virulence status. These data suggest that the variation detected here is independent from the adaptation of M. incognita to host resistance, but rather reflects some genetic polymorphism in this asexual organism. PMID:26380696

  7. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  8. Plant hydraulic traits govern forest water use and growth

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric species, like red maple. Advanced plant hydrodynamic models, including the FETCH2 model, are able to capture the effects that traits regulating water loss (e. g. isohydry/anisohydry, conductivity of woody tissue, and rooting depth) impose upon transpiration at scales of a single tree to a whole forest. The integration of detailed knowledge of species-specific hydraulic traits, available through the TRY Global Plant Trait Database, provides biologically relevant constraints for the governing parameters within these modeling systems. By incorporating the effects of plant hydraulic traits at the leaf, stem, and root levels, with mechanistically based predictions of transpiration, growth, and mortality, we can improve simulations of the surface energy budget and global carbon and water balances.

  9. Bio-engineering traits of Pinus radiata D.Don

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Marden, Michael; Marrosu, Roberto; Schwarz, Massimiliano; Phillips, Chris John; Cohen, Denis; Niedda, Marcello

    2017-04-01

    Pinus radiata is widely cultivated in New Zealand. Due to steep slopes and intense rainfall, the silviculture of Pinus radiata forests is important to control erosion and slope stability. Bio-engineering traits such as root distribution and root tensile strength are fundamental to understand the effectiveness of Pinus radiata. This information is needed to use the state of the art root reinforcement model (the Root Bundle Model) and the physically-based slope stability model SOSlope. Yet, little is known about root distribution and tensile strength for this specie. We measured soil moisture and carried out 30 field tensile tests on roots of Pinus radiata. We also measured root distribution data from 5 plants, digging arc of circles 0.6 radian around the trees in four opposite directions. We fully excavated the root system of two trees. Using the Root Bundle Model, results of our measurements allow estimation of root reinforcement. With the slope stability model SOSlope, information on the intensity and frequency of harvesting and on the development of weak zones that can be supported by a stand of Pinus radiata in relation to slope stability can be calculated. An added value is that the collected data allow us to make inferences between number and sizes of roots, and growth direction.

  10. Bouldering: an alternative strategy to long-vertical climbing in root-climbing hortensias

    PubMed Central

    Granados Mendoza, Carolina; Isnard, Sandrine; Charles-Dominique, Tristan; Van den Bulcke, Jan; Rowe, Nick P.; Van Acker, Joris; Goetghebeur, Paul; Samain, Marie-Stéphanie

    2014-01-01

    In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short ‘shrub-like’ climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed. PMID:25079869

  11. Evaluation of the Root and Canal Morphology of Maxillary Permanent Molars and the Incidence of the Second Mesiobuccal Root Canal in Greek Population Using Cone-beam Computed Tomography

    PubMed Central

    Nikoloudaki, Georgia E.; Kontogiannis, Taxiarchis G.; Kerezoudis, Nikolaos P.

    2015-01-01

    Objectives: Cone-Beam Computed Tomography is an alternative imaging technique which has been recently introduced in the field of Oral & Maxillofacial Radiology. It has rapidly gained great popularity among clinicians due to its ability to detect lesions and defects of the orofacial region and provide three-dimensional information about them. In the field of Endodontics, CBCT can be a useful tool to reveal tooth morphology irregularities, additional root canals and vertical root fractures. The objective of this study is to evaluate the root and root canal morphology of the maxillary permanent molars in Greek population using Cone-Beam Computed Tomography. Materials and Methods : 273 cone-beam computed tomography (CBCT) images were examined. The number of roots and root canals of the first and second maxillary molars were evaluated. Root canal configuration was classified according to Weine’s classification by two independent examiners and statistical analysis was performed. Results : A total of 812 molars (410 first and 402 second ones) were evaluated. The vast majority of both first and second molars had three roots (89.26% and 85.07%, respectively). Most first molars had four canals, while most second molars had three. In the mesiobuccal roots, one foramen was recorded in 80.91% of all teeth. Other rare morphologic variations were also found, such as fusion of a maxillary second molar with a supernumerary tooth. Conclusion : Within the limitations of this study, it can be concluded that more attention should be given to the detection of additional canals during root canal treatment in maxillary permanent molars. Towards this effort, CBCT can provide the clinician with supplemental information about the different root canal configurations for successful Root Canal Treatment. PMID:26464594

  12. Response of Korean pine’s functional traits to geography and climate

    PubMed Central

    Dong, Yichen

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053

  13. Response of Korean pine's functional traits to geography and climate.

    PubMed

    Dong, Yichen; Liu, Yanhong

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.

  14. Endodontic management of an unusual maxillary first molar with a single buccal root.

    PubMed

    Nayak, Gurudutt; Dahiya, Surya; Singh, Inderpreet; Mohammad, Faiz Hasan

    2014-05-01

    The aim of this clinical article is to describe the unusual anatomy that was detected in a maxillary first molar during routine endodontic treatment. Variation in Root and Root canal morphology especially in multirooted teeth presents a constant challenge for a clinician in their detection and management. The literature is replete with cases that have extra canal or Root but cases with fused Root and fewer numbers of canals are sparse. This case report describes the endodontic management of one such unusual case of maxillary first molar presenting with a single fused buccal and a palatal Root. The confirmatory diagnosis of this morphologic aberration was done with the help of spiral computerized tomography, which revealed that the contralateral tooth also had a similar morphology. Dental practitioners should always be aware of the fact that abnormalities need not be in form of extra Roots or Root canals; anomalies can also be in form of fewer number of Roots or Root canals. A thorough knowledge of the complexities and variations of the Root canal system would help in avoiding some of the common iatrogenic access opening errors like perforations and excessive tooth removal caused during the search for the missing or extracanal.

  15. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  16. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    PubMed

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter

  17. Genetic diversity of root system architecture in response to drought stress in grain legumes.

    PubMed

    Ye, Heng; Roorkiwal, Manish; Valliyodan, Babu; Zhou, Lijuan; Chen, Pengyin; Varshney, Rajeev K; Nguyen, Henry T

    2018-06-06

    Climate change has increased the occurrence of extreme weather patterns globally, causing significant reductions in crop production, and hence threatening food security. In order to meet the food demand of the growing world population, a faster rate of genetic gains leading to productivity enhancement for major crops is required. Grain legumes are an essential commodity in optimal human diets and animal feed because of their unique nutritional composition. Currently, limited water is a major constraint in grain legume production. Root system architecture (RSA) is an important developmental and agronomic trait, which plays vital roles in plant adaptation and productivity under water-limited environments. A deep and proliferative root system helps extract sufficient water and nutrients under these stress conditions. The integrated genetics and genomics approach to dissect molecular processes from genome to phenome is key to achieve increased water capture and use efficiency through developing better root systems. Success in crop improvement under drought depends on discovery and utilization of genetic variations existing in the germplasm. In this review, we summarize current progress in the genetic diversity in major legume crops, quantitative trait loci (QTLs) associated with RSA, and the importance and applications of recent discoveries associated with the beneficial root traits towards better RSA for enhanced drought tolerance and yield.

  18. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice.

    PubMed

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Wei, Haibin; Feng, Fangjun; Wang, Pei; Xia, Hui; Li, Tiemei; Luo, Lijun

    2015-08-01

    Deep rooting is a very important trait for plants' drought avoidance, and it is usually represented by the ratio of deep rooting (RDR). Three sets of rice populations were used to determine the genetic base for RDR. A linkage mapping population with 180 recombinant inbred lines and an association mapping population containing 237 rice varieties were used to identify genes linked to RDR. Six quantitative trait loci (QTLs) of RDR were identified as being located on chromosomes 1, 2, 4, 7, and 10. Using 1 019 883 single-nucleotide polymorphisms (SNPs), a genome-wide association study of the RDR was performed. Forty-eight significant SNPs of the RDR were identified and formed a clear peak on the short arm of chromosome 1 in a Manhattan plot. Compared with the shallow-rooting group and the whole collection, the deep-rooting group had selective sweep regions on chromosomes 1 and 2, especially in the major QTL region on chromosome 2. Seven of the nine candidate SNPs identified by association mapping were verified in two RDR extreme groups. The findings from this study will be beneficial to rice drought-resistance research and breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Evidence for Early Morphological Decomposition in Visual Word Recognition

    ERIC Educational Resources Information Center

    Solomyak, Olla; Marantz, Alec

    2010-01-01

    We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…

  20. Middle School Learners' Use of Latin Roots to Infer the Meaning of Unfamiliar Words

    ERIC Educational Resources Information Center

    Crosson, Amy C.; McKeown, Margaret G.

    2016-01-01

    This study investigated how middle school students leverage information about bound Latin roots (e.g., voc in "advocate" and "vociferous") to infer meanings of unfamiliar words, and how instruction may facilitate morphological analysis using roots. A dynamic assessment of morphological analysis was administered to 29 sixth…

  1. Radiating despite a Lack of Character: Ecological Divergence among Closely Related, Morphologically Similar Honeyeaters (Aves: Meliphagidae) Co-occurring in Arid Australian Environments.

    PubMed

    Miller, Eliot T; Wagner, Sarah K; Harmon, Luke J; Ricklefs, Robert E

    2017-02-01

    Quantifying the relationship between form and function can inform use of morphology as a surrogate for ecology. How the strength of this relationship varies continentally can inform understanding of evolutionary radiations; for example, does the relationship break down when certain lineages invade and diversify in novel habitats? The 75 species of Australian honeyeaters (Meliphagidae) are morphologically and ecologically diverse, with species feeding on nectar, insects, fruit, and other resources. We investigated Meliphagidae ecomorphology and community structure by (1) quantifying the concordance between morphology and ecology (foraging behavior), (2) estimating rates of trait evolution in relation to the packing of ecological space, and (3) comparing phylogenetic and trait community structure across the broad environmental gradients of the continent. We found that morphology explained 37% of the variance in ecology (and 62% vice versa), and we uncovered well-known bivariate relationships among the multivariate ecomorphological data. Ecological trait diversity declined less rapidly than phylogenetic diversity along a gradient of decreasing precipitation. We employ a new method (trait fields) and extend another (phylogenetic fields) to show that while species in phylogenetically clustered, arid-environment assemblages are similar morphologically, they are as varied in foraging behavior as those from more diverse assemblages. Thus, although closely related and similar morphologically, these arid-adapted species have diverged in ecological space to a similar degree as their mesic counterparts.

  2. Endodontic treatment of a maxillary central incisor with two roots.

    PubMed

    Maghsoudlou, Amir; Jafarzadeh, Hamid; Forghani, Maryam

    2013-03-01

    This clinical report presents a rare case of maxillary central incisor with two separate roots. Unusual morphology of the roots and root canals may exist in any tooth. Recognition of the dental anatomy and its variations is necessary for successful endodontic therapy. It is well known that maxillary incisors are usually single-rooted teeth. The root canals were instrumented with conventional hand files and Gates Glidden and obturated by using the lateral technique. Recall radiograph after 1 year shows the healing process of the preoperative apical periodontitis. Clinicians should be aware of unexpected root canal morphology when performing root canal therapy. The present case demonstrated the importance of accurate preoperative radiograph and adequate access preparation.

  3. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-04-16

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks.

  4. Relation between flower head traits and florivory in Asteraceae: a phylogenetically controlled approach.

    PubMed

    Oguro, Michio; Sakai, Satoki

    2015-03-01

    • While much research has examined the relation between leaf traits and herbivory, very little is known about the interaction between floral traits, particularly biochemical traits, and florivory. We investigated patterns between floral traits and florivory across multiple species using phylogenetic comparative approaches to enhance our understanding of the evolution of plant-florivore interactions.• The relation between the intensity of florivory and five biochemical traits (concentrations of carbon, nitrogen, phosphorus, water, and total phenolics) and two morphological traits (diameter and number of flower heads) were investigated in wild individuals of 18 native species of Asteraceae. The phylogenetic signals in the morphological traits and intensity of florivory were also tested.• We found that species with higher nitrogen, water, and total phenolics and lower phosphorus concentrations in the flower heads and species with a large number and diameter of flower heads tended to be attacked by florivores. In addition, we found significant phylogenetic signals in florivory and morphological traits.• Our results clearly show that biochemical traits also play important roles in plant-florivore interactions, as previously shown in plant-leaf herbivore interactions. The positive relationship between florivory and total phenolics implies that phenolic compounds in flower heads may not act as a defense in the species. In addition, the observed pattern of signals in florivory might not be solely explained by the signals of the measured traits and other plant traits may also play significant roles in plant-florivore interaction in these species. © 2015 Botanical Society of America, Inc.

  5. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.

    PubMed

    Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi

    2012-01-01

    Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).

  6. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

    PubMed

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-02-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.

    PubMed

    Xu, Xuewen; Ji, Jing; Xu, Qiang; Qi, Xiaohua; Weng, Yiqun; Chen, Xuehao

    2018-03-01

    In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1 Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Nursery Cultural Practices and Morphological Attributes of Longleaf Pine Bare-Root Stock as Indicators of Early Field Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glyndon E. Hatchell, Research Forester, Retired Institute for Mycorrhizal Research and Development Athens, Georgia and H. David Muse, Professor Department of Mathematics University of North Alabama Florence, Alabama

    1990-02-01

    A large study of morphological attributes of longleaf pine nursery stock at the Savannah River site of the various attributes measured, only number of lateral roots and seedling diameters were related to performance. Lateral root pruning in the nursery also improved performance. Both survival and growth during the first two years were strongly correlated with larger stem diameter and larger root system development.

  9. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  10. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  11. Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective

    NASA Astrophysics Data System (ADS)

    Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.

    2015-12-01

    Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.

  12. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.

    PubMed

    Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing

    2013-07-01

    Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m(-2)  a(-1) ). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g(-1) root biomass h(-1) ), II (μg C cm(-1)  root length h(-1) ) and III (μg C cm(-2)  root area h(-1) ) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R(2)  = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root-microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate-carbon cycle models to determine reliable estimates of long-term C storage in forests. © 2013 Blackwell Publishing Ltd.

  13. Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits.

    PubMed

    Chitwood, Daniel H; Topp, Christopher N

    2015-04-01

    The plant phenotype is infinite. Plants vary morphologically and molecularly over developmental time, in response to the environment, and genetically. Exhaustive phenotyping remains not only out of reach, but is also the limiting factor to interpreting the wealth of genetic information currently available. Although phenotyping methods are always improving, an impasse remains: even if we could measure the entirety of phenotype, how would we interpret it? We propose the concept of cryptotype to describe latent, multivariate phenotypes that maximize the separation of a priori classes. Whether the infinite points comprising a leaf outline or shape descriptors defining root architecture, statistical methods to discern the quantitative essence of an organism will be required as we approach measuring the totality of phenotype. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A G protein alpha null mutation confers prolificacy potential in maize

    DOE PAGES

    Urano, Daisuke; Jackson, David; Jones, Alan M.

    2015-05-06

    Plasticity in plant development is controlled by environmental signals through largely unknown signalling networks. Signalling coupled by the heterotrimeric G protein complex underlies various developmental pathways in plants. The morphology of two plastic developmental pathways, root system architecture and female inflorescence formation, was quantitatively assessed in a mutant compact plant 2 (ct2) lacking the alpha subunit of the heterotrimeric G protein complex in maize. The ct2 mutant partially compensated for a reduced shoot height by increased total leaf number, and had far more ears, even in the presence of pollination signals. Lastly, the maize heterotrimeric G protein complex is importantmore » in some plastic developmental traits in maize. In particular, the maize Gα subunit is required to dampen the overproduction of female inflorescences.« less

  15. Effect of nitrogen sources on some morphological characteristics of in vitro stevia rebaudiana Bertoni.

    PubMed

    Akbari, F; Arminian, A; Kahrizi, D; Fazeli, A

    2017-02-28

    Stevia rebaudiana Bertoni belongs to Asteraceae family that leaves 200-300 times sweeter than sugar. Low seed fertility is one of the most important problems in Stevia production. So, Plant tissue culture is an efficient method for mass propagation of Stevia. In this research, we studied the effect of various concentrations of nitrogen on some morphological traits of stevia under in vitro conditions. We used axillary nodes as explants and they were cultured on Murashige and Skoog (MS) medium containing inorganic nitrogen sources i.e. NH4NO3(0, 825 and 1650 mg/l), KNO3(0, 950 and 1900 mg/l) were observed. The cultures were kept for 4 weeks at a temperature of 25±2°C with a photoperiod of 16/8 hour low light/dark each day. Maximum shoot length (89.33 mm), dry weight of plants (0.10 mg) and leaf fresh weight (0.42 mg) was observed on MS medium with 1650 mg/l NH4NO3 and 950 mg/l KNO3. Minimum shoot length (6.13 mm), root length (6.60 mm), leaf number (4.26), leaf dry weight (0.01 mg), leaf fresh weight (0.05 mg), total dry and fresh weight (0.02 and 0.15 mg) and growth rate was observed on a MS medium without nitrogen sources. Moreover, presence of nitrogen sources increases both shooting and rooting in Stevia rebaudiana Bertoni.

  16. Rooting traits of peanut genotypes with different yield responses to terminal drought

    USDA-ARS?s Scientific Manuscript database

    Drought at pod filling can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. However, the relationship of root characters with yield under terminal drought is not well understood. The objective of this study was to investigate the responses of peanut genotyp...

  17. Field and laboratory root growth and development of Lesquerella germplasm

    USDA-ARS?s Scientific Manuscript database

    Lesquerella roots have not been fully characterized as compared to other crop species. There is initial information gathered on root trait variation in young seedling grown in laboratory settings but studies to determine if the results can be extrapolated in field grown plants are lacking. We report...

  18. In-depth morphological study of mesiobuccal root canal systems in maxillary first molars: review

    PubMed Central

    Chang, Seok-Woo; Lee, Jong-Ki; Lee, Yoon

    2013-01-01

    A common failure in endodontic treatment of the permanent maxillary first molars is likely to be caused by an inability to locate, clean, and obturate the second mesiobuccal (MB) canals. Because of the importance of knowledge on these additional canals, there have been numerous studies which investigated the maxillary first molar MB root canal morphology using in vivo and laboratory methods. In this article, the protocols, advantages and disadvantages of various methodologies for in-depth study of maxillary first molar MB root canal morphology were discussed. Furthermore, newly identified configuration types for the establishment of new classification system were suggested based on two image reformatting techniques of micro-computed tomography, which can be useful as a further 'Gold Standard' method for in-depth morphological study of complex root canal systems. PMID:23493453

  19. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele

    2018-01-03

    The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.

  20. Phylogenetics Exercise Using Inherited Human Traits

    ERIC Educational Resources Information Center

    Tuimala, Jarno

    2006-01-01

    A bioinformatics laboratory exercise based on inherited human morphological traits is presented. It teaches how morphological characters can be used to study the evolutionary history of humans using parsimony. The exercise can easily be used in a pen-and-paper laboratory, but if computers are available, a more versatile analysis can be carried…

  1. Morphological description and comparison of the dental remains from Atapuerca-Sima de los Huesos site (Spain).

    PubMed

    Martinón-Torres, María; Bermúdez de Castro, José María; Gómez-Robles, Aida; Prado-Simón, Leyre; Arsuaga, Juan Luis

    2012-01-01

    The systematic excavation of the Sima de los Huesos (SH) site in Sierra de Atapuerca (Burgos, Spain) has yielded the largest hominin collection worldwide for the Middle Pleistocene. The dental sample now consists of more than 500 teeth that provide exceptional opportunities to define the dental morphological pattern of a Middle Pleistocene population as well as develop hypotheses about the origins of the Neanderthals. The dental collection has now increased to over 533 specimens (525 permanent and 8 deciduous teeth), necessitating new morphological assessments. Thus, we present a detailed morphological description of the SH permanent dentition recovered up to 2007, accomplishing comparisons with European Middle Pleistocene hominins, Neanderthals, and early and contemporary Homo sapiens. We find that SH dentitions present all the morphological traits that, either in their degree of expression, frequency, or particular combination, are usually considered as typical of Homo neanderthalensis. This study ratifies the deep roots of the Neanderthal lineage in the Middle Pleistocene of Europe. In addition, SH teeth are morphologically "more Neanderthal" than other penecontemporaneous Middle Pleistocene samples such as Mauer or Arago, and even more derived than some classic Neanderthal samples. Thus, our study would not sustain the linearity of the accretion process hypothesized for the origins of the Neanderthals, and we suggest that other evolutionary models and scenarios should be explored for the Middle and Upper Pleistocene of Europe. We propose that more than one hominin lineage may have coexisted during the Middle Pleistocene in Europe. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Contributions of roots and rootstocks to sustainable, intensified crop production.

    PubMed

    Gregory, Peter J; Atkinson, Christopher J; Bengough, A Glyn; Else, Mark A; Fernández-Fernández, Felicidad; Harrison, Richard J; Schmidt, Sonja

    2013-03-01

    Sustainable intensification is seen as the main route for meeting the world's increasing demands for food and fibre. As demands mount for greater efficiency in the use of resources to achieve this goal, so the focus on roots and rootstocks and their role in acquiring water and nutrients, and overcoming pests and pathogens, is increasing. The purpose of this review is to explore some of the ways in which understanding root systems and their interactions with soils could contribute to the development of more sustainable systems of intensive production. Physical interactions with soil particles limit root growth if soils are dense, but root-soil contact is essential for optimal growth and uptake of water and nutrients. X-ray microtomography demonstrated that maize roots elongated more rapidly with increasing root-soil contact, as long as mechanical impedance was not limiting root elongation, while lupin was less sensitive to changes in root-soil contact. In addition to selecting for root architecture and rhizosphere properties, the growth of many plants in cultivated systems is profoundly affected by selection of an appropriate rootstock. Several mechanisms for scion control by rootstocks have been suggested, but the causal signals are still uncertain and may differ between crop species. Linkage map locations for quantitative trait loci for disease resistance and other traits of interest in rootstock breeding are becoming available. Designing root systems and rootstocks for specific environments is becoming a feasible target.

  3. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    PubMed Central

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80%) and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy. PMID:28536581

  4. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  5. Rhogostomidae (Cercozoa) from soils, roots and plant leaves (Arabidopsis thaliana): Description of Rhogostoma epiphylla sp. nov. and R. cylindrica sp. nov.

    PubMed

    Dumack, Kenneth; Flues, Sebastian; Hermanns, Karoline; Bonkowski, Michael

    2017-08-01

    Cercozoa are a highly diverse protist phylum in soils and in the phyllosphere of plants. Many families are still poorly described and the vast majority of species are still unknown. Although testate amoebae are among the better-studied protists, only little quantitative information exists on the morphology, phylogeny and ecology of cercozoan Rhogostomidae. We cultured four different strains of Rhogostoma spp. isolated from Arabidopsis leaves, agricultural soil and rhizosphere soil of Ocimum basilicum and Nicotiana sp. We describe Rhogostoma epiphylla sp. nov. and R. cylindrica sp. nov. and present their morphology, studied their food spectra in food range experiments and obtained two SSU rDNA gene sequences resulting in an updated thecofilosean phylogeny. Short generation times, desiccation resistance and the ability to prey on a wide range of algae and yeasts from the phyllosphere were seen as crucial traits for the phyllosphere colonization by Rhogostoma. In contrast, the soil-dwelling R. cylindrica did not feed on eukaryotes in our experiment. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Genetic parameters and prediction of genotypic values for root quality traits in cassava using REML/BLUP.

    PubMed

    Oliveira, E J; Santana, F A; Oliveira, L A; Santos, V S

    2014-08-28

    The aim of this study was to estimate the genetic parameters and predict the genotypic values of root quality traits in cassava (Manihot esculenta Crantz) using restricted maximum likelihood (REML) and best linear unbiased prediction (BLUP). A total of 471 cassava accessions were evaluated over two years of cultivation. The evaluated traits included amylose content (AML), root dry matter (DMC), cyanogenic compounds (CyC), and starch yield (StYi). Estimates of the individual broad-sense heritability of AML were low (hg(2) = 0.07 ± 0.02), medium for StYi and DMC, and high for CyC. The heritability of AML was substantially improved based on mean of accessions (hm(2) = 0.28), indicating that some strategies such as increasing the number of repetitions can be used to increase the selective efficiency. In general, the observed genotypic values were very close to the predicted average of the improved population, most likely due to the high accuracy (>0.90), especially for DMC, CyC, and StYi. Gains via selection of the 30 best genotypes for each trait were 4.8 and 3.2% for an increase and decrease for AML, respectively, an increase of 10.75 and 74.62% for DMC for StYi, respectively, and a decrease of 89.60% for CyC in relation to the overall mean of the genotypic values. Genotypic correlations between the quality traits of the cassava roots collected were generally favorable, although they were low in magnitude. The REML/BLUP method was adequate for estimating genetic parameters and predicting the genotypic values, making it useful for cassava breeding.

  7. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.

    PubMed

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart

    2014-10-22

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots.

    PubMed

    Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan

    2010-10-01

    The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.

  9. Electrical Capacitance as a Predictor of Root Dry Weight in Shrub Willow ( Salix; Salicaceae) Parents and Progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Craig H.; Smart, Lawrence B.

    Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less

  10. The unseen iceberg: plant roots in arctic tundra.

    PubMed

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.

  11. Electrical Capacitance as a Predictor of Root Dry Weight in Shrub Willow ( Salix; Salicaceae) Parents and Progeny

    DOE PAGES

    Carlson, Craig H.; Smart, Lawrence B.

    2016-08-19

    Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less

  12. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data.

    PubMed

    Vasan, Ramachandran S; Glazer, Nicole L; Felix, Janine F; Lieb, Wolfgang; Wild, Philipp S; Felix, Stephan B; Watzinger, Norbert; Larson, Martin G; Smith, Nicholas L; Dehghan, Abbas; Grosshennig, Anika; Schillert, Arne; Teumer, Alexander; Schmidt, Reinhold; Kathiresan, Sekar; Lumley, Thomas; Aulchenko, Yurii S; König, Inke R; Zeller, Tanja; Homuth, Georg; Struchalin, Maksim; Aragam, Jayashri; Bis, Joshua C; Rivadeneira, Fernando; Erdmann, Jeanette; Schnabel, Renate B; Dörr, Marcus; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J; Greiser, Karin Halina; Levy, Daniel; Haritunians, Talin; Deckers, Jaap W; Stritzke, Jan; Lackner, Karl J; Völker, Uwe; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; O'Donnell, Christopher J; Heckbert, Susan R; Stricker, Bruno H; Ziegler, Andreas; Reffelmann, Thorsten; Redfield, Margaret M; Werdan, Karl; Mitchell, Gary F; Rice, Kenneth; Arnett, Donna K; Hofman, Albert; Gottdiener, John S; Uitterlinden, Andre G; Meitinger, Thomas; Blettner, Maria; Friedrich, Nele; Wang, Thomas J; Psaty, Bruce M; van Duijn, Cornelia M; Wichmann, H-Erich; Munzel, Thomas F; Kroemer, Heyo K; Benjamin, Emelia J; Rotter, Jerome I; Witteman, Jacqueline C; Schunkert, Heribert; Schmidt, Helena; Völzke, Henry; Blankenberg, Stefan

    2009-07-08

    Echocardiographic measures of left ventricular (LV) structure and function are heritable phenotypes of cardiovascular disease. To identify common genetic variants associated with cardiac structure and function by conducting a meta-analysis of genome-wide association data in 5 population-based cohort studies (stage 1) with replication (stage 2) in 2 other community-based samples. Within each of 5 community-based cohorts comprising the EchoGen consortium (stage 1; n = 12 612 individuals of European ancestry; 55% women, aged 26-95 years; examinations between 1978-2008), we estimated the association between approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1 were tested for association in 2 other cohorts (n = 4094 people of European ancestry). Using a prespecified P value threshold of 5 x 10(-7) to indicate genome-wide significance, we performed an inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each cohort. Echocardiographic traits: LV mass, internal dimensions, wall thickness, systolic dysfunction, aortic root, and left atrial size. In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8 with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic dimensions, explaining <1% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with aortic root size, explaining 1%-3% of trait variance). We identified 5 genetic loci harboring common variants that were associated with variation in LV diastolic dimensions and aortic root size, but such findings explained a very small proportion of variance. Further studies are required to replicate these findings, identify the causal variants at or near these loci, characterize their functional significance, and determine whether they are related to overt cardiovascular disease.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series ofmore » 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (M area), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ 15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R 2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R 2 > 0.65 and carbon and cellulose with R 2 > 0.45. Although R 2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ 15N was the lowest (R 2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.« less

  14. Evidence from neglect dyslexia for morphological decomposition at the early stages of orthographic-visual analysis

    PubMed Central

    Reznick, Julia; Friedmann, Naama

    2015-01-01

    This study examined whether and how the morphological structure of written words affects reading in word-based neglect dyslexia (neglexia), and what can be learned about morphological decomposition in reading from the effect of morphology on neglexia. The oral reading of 7 Hebrew-speaking participants with acquired neglexia at the word level—6 with left neglexia and 1 with right neglexia—was evaluated. The main finding was that the morphological role of the letters on the neglected side of the word affected neglect errors: When an affix appeared on the neglected side, it was neglected significantly more often than when the neglected side was part of the root; root letters on the neglected side were never omitted, whereas affixes were. Perceptual effects of length and final letter form were found for words with an affix on the neglected side, but not for words in which a root letter appeared in the neglected side. Semantic and lexical factors did not affect the participants' reading and error pattern, and neglect errors did not preserve the morpho-lexical characteristics of the target words. These findings indicate that an early morphological decomposition of words to their root and affixes occurs before access to the lexicon and to semantics, at the orthographic-visual analysis stage, and that the effects did not result from lexical feedback. The same effects of morphological structure on reading were manifested by the participants with left- and right-sided neglexia. Since neglexia is a deficit at the orthographic-visual analysis level, the effect of morphology on reading patterns in neglexia further supports that morphological decomposition occurs in the orthographic-visual analysis stage, prelexically, and that the search for the three letters of the root in Hebrew is a trigger for attention shift in neglexia. PMID:26528159

  15. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    PubMed

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the aboveground plant assemblages even after controlling for differences in soil characteristics, but these relationships were stronger for fungi than for bacteria. In contrast to expectations, the species composition of roots in our soil core samples was a poor predictor of microbial community composition perhaps due to the patchy, ephemeral, and highly overlapping nature of fine root distributions. Our ability to predict soil microbial composition was not improved by incorporating information on plant functional traits suggesting that the most commonly measured plant traits are not particularly useful for predicting the plot-level variability in belowground microbial communities. © 2015 John Wiley & Sons Ltd/CNRS.

  17. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis

    PubMed Central

    Ramakrishnan, M.; Ceasar, S. Antony; Vinod, K. K.; Duraipandiyan, V.; Ajeesh Krishna, T. P.; Upadhyaya, Hari D.; Al-Dhabi, N. A.

    2017-01-01

    A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance. PMID:28820887

  18. Identification of putative QTLs for seedling stage phosphorus starvation response in finger millet (Eleusine coracana L. Gaertn.) by association mapping and cross species synteny analysis.

    PubMed

    Ramakrishnan, M; Ceasar, S Antony; Vinod, K K; Duraipandiyan, V; Ajeesh Krishna, T P; Upadhyaya, Hari D; Al-Dhabi, N A; Ignacimuthu, S

    2017-01-01

    A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance.

  19. Is there a missing link? Effects of root herbivory on plant-pollinator interactions and reproductive output in a monocarpic species.

    PubMed

    Ghyselen, C; Bonte, D; Brys, R

    2016-01-01

    Herbivores can have a major influence on plant fitness. The direct impact of herbivory on plant reproductive output has long been studied, and recently also indirect effects of herbivory on plant traits and pollinator attraction have received increasing attention. However, the link between these direct and indirect effects has seldom been studied. In this study, we investigated effects of root herbivory on plant and floral traits, pollination success and reproductive outcome in the monocarpic perennial Cynoglossum officinale. We exposed 119 C. officinale plants to a range of root herbivore damage by its specialist herbivore Mogulones cruciger. We assessed the effect of herbivory on several plant traits, pollinator foraging behaviour and reproductive output, and to elucidate the link between these last two we also quantified pollen deposition and pollen tube growth and applied a pollination experiment to test whether seed set was pollen-limited. Larval root herbivory induced significant changes in plant traits and had a negative impact on pollinator visitation. Infested plants were reduced in size, had fewer flowers and received fewer pollinator visits at plant and flower level than non-infested plants. Also, seed set was negatively affected by root herbivory, but this could not be attributed to pollen limitation since neither stigmatic pollen loads and pollen tube growth nor the results of the hand-pollination experiment differed between infested and non-infested plants. Our observations demonstrate that although herbivory may induce significant changes in flowering behaviour and resulting plant-pollinator interactions, it does not necessarily translate into higher rates of pollen limitation. The observed reductions in reproductive output following infection can mainly be attributed to higher resource limitation compared to non-infested plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Quantitative Genetic Analysis Reveals Potential to Genetically Improve Fruit Yield and Drought Resistance Simultaneously in Coriander

    PubMed Central

    Khodadadi, Mostafa; Dehghani, Hamid; Jalali Javaran, Mokhtar

    2017-01-01

    Enhancing water use efficiency of coriander (Coriandrum sativum L.) is a major focus for coriander breeding to cope with drought stress. The purpose of this study was; (a) to identify the predominant mechanism(s) of drought resistance in coriander and (b) to evaluate the genetic control mechanism(s) of traits associated with drought resistance and higher fruit yield. To reach this purpose, 15 half-diallel hybrids of coriander and their six parents were evaluated under well-watered and water deficit stressed (WDS) in both glasshouse lysimetric and field conditions. The parents were selected for their different response to water deficit stress following preliminary experiments. Results revealed that the genetic control mechanism of fruit yield is complex, variable and highly affected by environment. The mode of inheritance and nature of gene action for percent assimilate partitioned to fruits were similar to those for flowering time in both well-watered and WDS conditions. A significant negative genetic linkage was found between fruit yield and percent assimilate partitioned to root, percent assimilate partitioned to shoot, root number, root diameter, root dry mass, root volume, and early flowering. Thus, to improve fruit yield under water deficit stress, selection of low values of these traits could be used. In contrast, a significant positive genetic linkage between fruit yield and percent assimilate partitioned to fruits, leaf relative water content and chlorophyll content indicate selection for high values of these traits. These secondary or surrogate traits could be selected during early segregating generations. The early ripening parent (P1; TN-59-230) contained effective genes involved in preferred percent assimilate partitioning to fruit and drought stress resistance. In conclusion, genetic improvement of fruit yield and drought resistance could be simultaneously gained in coriander when breeding for drought resistance. PMID:28473836

  1. Future changes in South American biomass distributions, biome distributions and plant trait spectra is dependent on applied atmospheric forcings.

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Scheiter, Simon; Higgins, Steven

    2017-04-01

    It remains poorly understood why the position of the forest-savanna biome boundary, in a domain defined by precipitation and temperature, differs in South America, Africa and Australia. Process based Dynamic Global Vegetation Models (DGVMs) are a valuable tool to investigate the determinants of vegetation distributions, however, many DGVMs fail to predict the spatial distribution or indeed presence of the South American savanna biome. Evidence suggests fire plays a significant role in mediating forest-savanna biome boundaries, however, fire alone appear to be insufficient to predict these boundaries in South America. We hypothesize that interactions between precipitation, constraints on tree rooting depth and fire, affect the probability of savanna occurrence and the position of the savanna-forest boundary. We tested our hypotheses at tropical forest and savanna sites in Brazil and Venezuela using a novel DGVM, aDGVM2, which allows plant trait spectra, constrained by trade-offs between traits, to evolve in response to abiotic and biotic conditions. Plant hydraulics is represented by the cohesion-tension theory, this allowed us to explore how soil and plant hydraulics control biome distributions and plant traits. The resulting community trait distributions are emergent properties of model dynamics. We showed that across much of South America the biome state is not determined by climate alone. Interactions between tree rooting depth, fire and precipitation affected the probability of observing a given biome state and the emergent traits of plant communities. Simulations where plant rooting depth varied in space provided the best match to satellite derived biomass estimates and generated biome distributions that reproduced contemporary biome maps well. Future projections showed that biomass distributions, biome distributions and plant trait spectra will change, however, the magnitude of these changes are highly dependent on the applied atmospheric forcings.

  2. Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean (Phaseolus vulgaris)

    USDA-ARS?s Scientific Manuscript database

    Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...

  3. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Treesearch

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  4. When to Take up Roots: The Effects of Morphology Instruction for Middle School and High School English Learners

    ERIC Educational Resources Information Center

    Crosson, Amy C.; Moore, Debra

    2017-01-01

    A majority of the challenging words that adolescent readers encounter in school texts are morphologically complex and from the Latinate layer of English. For these words, bound roots carry important meaning, such as the relation between innovative and its bound root, nov, meaning "new." This study investigated the effects of instruction…

  5. The Separability of Morphological Processes from Semantic Meaning and Syntactic Class in Production of Single Words: Evidence from the Hebrew Root Morpheme.

    PubMed

    Deutsch, Avital

    2016-02-01

    In the present study we investigated to what extent the morphological facilitation effect induced by the derivational root morpheme in Hebrew is independent of semantic meaning and grammatical information of the part of speech involved. Using the picture-word interference paradigm with auditorily presented distractors, Experiment 1 compared the facilitation effect induced by semantically transparent versus semantically opaque morphologically related distractor words (i.e., a shared root) on the production latency of bare nouns. The results revealed almost the same amount of facilitation for both relatedness conditions. These findings accord with the results of the few studies that have addressed this issue in production in Indo-European languages, as well as previous studies in written word perception in Hebrew. Experiment 2 compared the root's facilitation effect, induced by morphologically related nominal versus verbal distractors, on the production latency of bare nouns. The results revealed a facilitation effect of similar size induced by the shared root, regardless of the distractor's part of speech. It is suggested that the principle that governs lexical organization at the level of morphology, at least for Hebrew roots, is form-driven and independent of semantic meaning. This principle of organization crosses the linguistic domains of production and written word perception, as well as grammatical organization according to part of speech.

  6. Reproductive Toxicity and Life History Study of Silver Nanoparticle Effect, Uptake and Transport in Arabidopsis thaliana

    PubMed Central

    Geisler-Lee, Jane; Brooks, Marjorie; Gerfen, Jacob R.; Wang, Qiang; Fotis, Christin; Sparer, Anthony; Ma, Xingmao; Berg, R. Howard; Geisler, Matt

    2014-01-01

    Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs) on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes) and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 μg/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 μg/L AgNPs. AgNPs followed three routes: (1) At seven days after planting (DAP) at S1.0 (stages defined by Boyes et al. 2001 [41]), AgNPs attached to the surface of primary roots and then entered their root tips; (2) At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3) At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ. PMID:28344224

  7. Root Canal Morphology and Configuration of 118 Mandibular First Molars by Means of Micro-Computed Tomography: An Ex Vivo Study.

    PubMed

    Wolf, Thomas Gerhard; Paqué, Frank; Zeller, Maximilian; Willershausen, Brita; Briseño-Marroquín, Benjamín

    2016-04-01

    The aim of this study was to investigate the root canal system morphology of the mandibular first molar by means of micro-computed tomography. The root canal configuration, foramina, and accessory canals frequency of 118 mandibular first molars were investigated by means of micro-computed tomography and 3-dimensional software imaging. A 4-digit system describes the root canal configuration from the coronal to apical thirds and the main foramina number. The most frequent root canal configurations in mesial root were 2-2-2/2 (31.4%), 2-2-1/1 (15.3%), and 2-2-2/3 (11.9%); another 24 different root canal configurations were observed in this root. A 1-1-1/1 (58.5%), 1-1-1/2 (10.2%), and 16 other root canal configurations were observed in the distal root. The mesiobuccal root canal showed 1-4 foramina in 24.6%, and the mesiolingual showed 1-3 foramina in 28.0%. One connecting canal between the mesial root canals was observed in 30.5% and 2 in 3.4%. The distolingual root canal showed 1-4 foramina in 23.7%, whereas a foramen in the distobuccal root canal was rarely detected (3.4%). The mesiobuccal, mesiolingual, and distolingual root canals showed at least 1 accessory canal (14.3, 10.2, and 4.2%, respectively), but the distobuccal had none. The root canal configuration of mandibular first molars varies strongly. According to our expectations, both the mesial and distal roots showed a high number of morphologic diversifications. The root canal system of the mesial root showed more root canal configuration variations, connecting and accessory canals than the distal root. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Merging the "Morphology-Performance-Fitness" Paradigm and Life-History Theory in the Eagle Lake Garter Snake Research Project.

    PubMed

    Addis, Elizabeth A; Gangloff, Eric J; Palacios, Maria G; Carr, Katherine E; Bronikowski, Anne M

    2017-08-01

    The morphology-performance-fitness paradigm for testing selection on morphological traits has seen decades of successful application. At the same time, life-history approaches using matrix methods and perturbation studies have also allowed the direct estimate of selection acting on vital rates and the traits that comprise them. Both methodologies have been successfully applied to the garter snakes of the long-term Eagle Lake research project to reveal selection on morphology, such as color pattern, number of vertebrae, and gape size; and life-history traits such as birth size, growth rates, and juvenile survival. Here we conduct a reciprocal transplant study in a common laboratory environment to study selection on morphology and life-history. To place our results in the ecomorphology paradigm, we measure performance outcomes (feeding rates, growth, insulin-like growth factor 1 titers) of morphological variation (body size, condition) and their fitness consequences for juvenile survival-a trait that has large fitness sensitivities in these garter snake populations, and therefore is thought to be subject to strong selection. To better merge these two complementary theories, we end by discussing our findings in a nexus of morphology-performance-fitness-life history to highlight what these approaches, when combined, can reveal about selection in the wild. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-01-01

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks. PMID:24531726

  10. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    PubMed

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  11. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment

    USDA-ARS?s Scientific Manuscript database

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...

  12. Buccal venom gland associates with increased of diversification rate in the fang blenny fish Meiacanthus (Blenniidae; Teleostei).

    PubMed

    Liu, Shang-Yin Vanson; Frédérich, Bruno; Lavoué, Sébastien; Chang, Jonathan; Erdmann, Mark V; Mahardika, Gusti Ngurah; Barber, Paul H

    2018-08-01

    At the macroevolutionary level, many mechanisms have been proposed to explain explosive species diversification. Among them morphological and/or physiological novelty is considered to have a great impact on the tempo and the mode of diversification. Meiacanthus is a genus of Blenniidae possessing a unique buccal venom gland at the base of an elongated canine tooth. This unusual trait has been hypothesized to aid escape from predation and thus potentially play an important role in their pattern of diversification. Here, we produce the first time-calibrated phylogeny of Blenniidae and we test the impact of two morphological novelties on their diversification, i.e. the presence of swim bladder and buccal venom gland, using various comparative methods. We found an increase in the tempo of lineage diversification at the root of the Meiacanthus clade, associated with the evolution of the buccal venom gland, but not the swim bladder. Neither morphological novelty was associated with the pattern of size disparification in blennies. Our results support the hypothesis that the buccal venom gland has contributed to the explosive diversification of Meiacanthus, but further analyses are needed to fully understand the factors sustaining this burst of speciation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Facial movements strategically camouflage involuntary social signals of face morphology.

    PubMed

    Gill, Daniel; Garrod, Oliver G B; Jack, Rachael E; Schyns, Philippe G

    2014-05-01

    Animals use social camouflage as a tool of deceit to increase the likelihood of survival and reproduction. We tested whether humans can also strategically deploy transient facial movements to camouflage the default social traits conveyed by the phenotypic morphology of their faces. We used the responses of 12 observers to create models of the dynamic facial signals of dominance, trustworthiness, and attractiveness. We applied these dynamic models to facial morphologies differing on perceived dominance, trustworthiness, and attractiveness to create a set of dynamic faces; new observers rated each dynamic face according to the three social traits. We found that specific facial movements camouflage the social appearance of a face by modulating the features of phenotypic morphology. A comparison of these facial expressions with those similarly derived for facial emotions showed that social-trait expressions, rather than being simple one-to-one overgeneralizations of emotional expressions, are a distinct set of signals composed of movements from different emotions. Our generative face models represent novel psychophysical laws for social sciences; these laws predict the perception of social traits on the basis of dynamic face identities.

  14. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly.

    PubMed

    Rolhauser, Andrés G; Pucheta, Eduardo

    2017-03-01

    How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly. © 2017 by the Ecological Society of America.

  15. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  16. Sexing California Clapper Rails using morphological measurements

    USGS Publications Warehouse

    Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Rohmer, Tobias M.

    2009-01-01

    California Clapper Rails (Rallus longirostris obsoletus) have monomorphic plumage, a trait that makes identification of sex difficult without extensive behavioral observation or genetic testing. Using 31 Clapper Rails (22 females, 9 males), caught in south San Francisco Bay, CA, and using easily measurable morphological characteristics, we developed a discriminant function to distinguish sex. We then validated this function on 33 additional rails. Seven morphological measurements were considered, resulting in three which were selected in the discriminate function: culmen length, tarsometatarsus length, and flat wing length. We had no classification errors for the development or testing datasets either with resubstitution or cross-validation procedures. Male California Clapper Rails were 6-22% larger than females for individual morphological traits, and the largest difference was in body mass.  Variables in our discriminant function closely match variables developed for sexing Clapper Rails of Gulf Coast populations. However, a universal discriminant function to sex all Clapper Rail subspecies is not likely because of large and inconsistent differences in morphological traits among subspecies. 

  17. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    PubMed

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Global study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Suzuki, Godai; Wang, Yang; Kubo, Karen; Hirata, Eri; Ohnuki, Shinsuke; Ohya, Yoshikazu

    2018-02-20

    The size of the phenotypic effect of a gene has been thoroughly investigated in terms of fitness and specific morphological traits in the budding yeast Saccharomyces cerevisiae, but little is known about gross morphological abnormalities. We identified 1126 holistic morphological effectors that cause severe gross morphological abnormality when deleted, and 2241 specific morphological effectors with weak holistic effects but distinctive effects on yeast morphology. Holistic effectors fell into many gene function categories and acted as network hubs, affecting a large number of morphological traits, interacting with a large number of genes, and facilitating high protein expression. Holistic morphological abnormality was useful for estimating the importance of a gene to morphology. The contribution of gene importance to fitness and morphology could be used to efficiently classify genes into functional groups. Holistic morphological abnormality can be used as a reproducible and reliable gene feature for high-dimensional morphological phenotyping. It can be used in many functional genomic applications.

  19. Quantifying the contribution of root systems to community and individual drought resilience in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Saleska, S. R.; Bisht, G.; Prohaska, N.; Taylor, T.; Oliveira Junior, R. C.; Restrepo-Coupe, N.

    2017-12-01

    The increased intensity and severity of droughts within the Amazon Basin region has emphasized the question of vulnerability and resilience of tropical forests to water limitation. During the recent 2015-2016 drought caused by the anomalous El Nino episode, we monitored a large, diverse sample of trees within the Tapajos National Forest, Brazil, in the footprint of the K67 eddy covariance tower. The observed trees exhibited differential responses in terms of stem water potential and sap flow among species: their regulation of ecophysiological strategies varied from very conservative (`isohydric') behavior, to much less restrained, atmosphere-controlled (`anisohydric') type of response. While much attention has been paid to forest canopies, it remains unclear how the regulation of individual tree root system and root spatial interactions contribute to the emergent individual behavior and the ecosystem-scale characterization of drought resilience. Given the inherent difficulty in monitoring below-ground phenomena, physically-based models are valuable for examining different strategies and properties to reduce the uncertainty of characterization. We use a modified version of the highly parallel DOE PFLOTRAN model to simulate the three-dimensional variably saturated flows and root water uptake for over one thousand individuals within a two-hectare area. Root morphology and intrinsic hydraulic properties are assigned based on statistical distributions developed for tropical trees, which account for the broad spectrum of hydraulic strategies in biodiverse environments. The results demonstrate the dynamic nature of active zone of root water uptake based on local soil water potential gradients. The degree of the corresponding shifts in uptake and root collar potential depend not only on assigned hydraulic properties but also on spatial orientation and size relative to community members. This response highlights the importance of not only tree individual hydraulic traits, but also dynamic spatial interactions in assessing forest drought resilience.

  20. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  1. Should congruence between intra- and interspecific ecomorphological relationships be expected? A case study with the great tit, Parus major

    PubMed Central

    Moreno, E.; Barbosa, A.; Carrascal, L. M.

    1997-01-01

    We studied the relationship between leg morphology and posture while feeding in a population of great tits (Parus major) under controlled conditions to investigate to what extent morphology and ecology are linked at the individual level. From predictions generated at the interspecific level within the genus Parus (Moreno and Carrascal 1993), we tested whether intra- and interspecific ecomorphological relationships are consistent. Within our population, neither leg bone lengths nor leg muscle morphology were related to the feeding posture of individuals. However, differences in body weight were correlated with inter-individual differences in time spent hanging. These results demonstrate that the association between intra- and interspecific ecomorphological relationships is not uniform. We argue that, at the intraspecific level, body weight overrides the significance of other traits that have a functional meaning at the interspecific level (i.e. leg segment lengths, muscular morphology), due to isometric variation of morphological traits (muscular and skeletal) with body mass. Thus, the discrepancy between the ecomorphological associations at intra- and interspecific levels is the result of a problem of scale (morphological changes in evolutionary time and isometric variation of morphological traits with body mass in ecological time).

  2. Rapid analyses of dry matter content and carotenoids in fresh cassava roots using a portable visible and near infrared spectrometer (Vis/NIRS).

    PubMed

    Ikeogu, Ugochukwu N; Davrieux, Fabrice; Dufour, Dominique; Ceballos, Hernan; Egesi, Chiedozie N; Jannink, Jean-Luc

    2017-01-01

    Portable Vis/NIRS are flexible tools for fast and unbiased analyses of constituents with minimal sample preparation. This study developed calibration models for dry matter content (DMC) and carotenoids in fresh cassava roots using a portable Vis/NIRS system. We examined the effects of eight data pre-treatment combinations on calibration models and assessed calibrations on processed and intact root samples. We compared Vis/NIRS derived-DMC to other phenotyping methods. The results of the study showed that the combination of standard normal variate and de-trend (SNVD) with first derivative calculated on two data points and no smoothing (SNVD+1111) was adequate for a robust model. Calibration performance was higher with processed than the intact root samples for all the traits although intact root models for some traits especially total carotenoid content (TCC) (R2c = 96%, R2cv = 90%, RPD = 3.6 and SECV = 0.63) were sufficient for screening purposes. Using three key quality traits as templates, we developed models with processed fresh root samples. Robust calibrations were established for DMC (R2c = 99%, R2cv = 95%, RPD = 4.5 and SECV = 0.9), TCC (R2c = 99%, R2cv = 91%, RPD = 3.5 and SECV = 2.1) and all Trans β-carotene (ATBC) (R2c = 98%, R2cv = 91%, RPD = 3.5 and SECV = 1.6). Coefficient of determination on independent validation set (R2p) for these traits were also satisfactory for ATBC (91%), TCC (88%) and DMC (80%). Compared to other methods, Vis/NIRS-derived DMC from both intact and processed roots had very high correlation (>0.95) with the ideal oven-drying than from specific gravity method (0.49). There was equally a high correlation (0.94) between the intact and processed Vis/NIRS DMC. Therefore, the portable Vis/NIRS could be employed for the rapid analyses of DMC and quantification of carotenoids in cassava for nutritional and breeding purposes.

  3. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-02-01

    In spite of the relative importance of groundwater in coastal dune systems, the number of studies concerning the responsiveness of vegetation to ground water (GW) variability, in particularly in Mediterranean regions, is scarce. In this study, we established 5 study sites within a meso-mediterranean sand dune Pinus pinaster forest on the Atlantic coast of Portugal, taking advantage of natural topographic variability and artificial GW exploitation, which resulted in substantial variability in depth to GW between microsites. Here we identify the degree of usage and dependence on GW of different plant functional groups (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous microsites. Our results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). The species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to microsite differences in GW use in deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring rather than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understorey drought adapted shrub, across seasons and microsites seemed to be independent of water availability. Thus, the susceptibility to changing GW availability in sand dune plant species is variable, being particularly relevant for deep rooted species and phreatophytes, which have typically been less exposed to GW fluctuations.

  4. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    PubMed

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  5. A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment.

    PubMed

    Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2014-01-01

    Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.

  6. Does polyandry really pay off? The effects of multiple mating and number of fathers on morphological traits and survival in clutches of nesting green turtles at Tortuguero.

    PubMed

    Alfaro-Núñez, Alonzo; Jensen, Michael P; Abreu-Grobois, F Alberto

    2015-01-01

    Despite the long debate of whether or not multiple mating benefits the offspring, studies still show contradictory results. Multiple mating takes time and energy. Thus, if females fertilize their eggs with a single mating, why to mate more than once? We investigated and inferred paternal identity and number of sires in 12 clutches (240 hatchlings) of green turtles (Chelonia mydas) nests at Tortuguero, Costa Rica. Paternal alleles were inferred through comparison of maternal and hatchling genotypes, and indicated multiple paternity in at least 11 of the clutches (92%). The inferred average number of fathers was three (ranging from 1 to 5). Moreover, regression analyses were used to investigate for correlation of inferred clutch paternity with morphological traits of hatchlings fitness (emergence success, length, weight and crawling speed), the size of the mother, and an environmental variable (incubation temperature). We suggest and propose two different comparative approaches for evaluating morphological traits and clutch paternity, in order to infer greater offspring survival. First, clutches coded by the exact number of fathers and second by the exact paternal contribution (fathers who gives greater proportion of the offspring per nest). We found significant differences (P < 0.05) in clutches coded by the exact number of fathers for all morphological traits. A general tendency of higher values in offspring sired by two to three fathers was observed for the length and weight traits. However, emergence success and crawling speed showed different trends which unable us to reach any further conclusion. The second approach analysing the paternal contribution showed no significant difference (P > 0.05) for any of the traits. We conclude that multiple paternity does not provide any extra benefit in the morphological fitness traits or the survival of the offspring, when analysed following the proposed comparative statistical methods.

  7. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).

    PubMed

    Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-08-01

    Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)

    PubMed Central

    Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang; Cox, Cymon J.; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-01-01

    Background and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium. Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium. Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. PMID:27268484

  9. Micro-CT evaluation of apical delta morphologies in human teeth.

    PubMed

    Gao, Xianhua; Tay, Franklin R; Gutmann, James L; Fan, Wei; Xu, Ting; Fan, Bing

    2016-11-07

    The apical delta is an intricate system within the root canal and incompletely debridement may affect the long-term prognosis of root canal therapy. The aim of the present study is to investigate the morphologic features of apical deltas in human teeth with micro-computed tomography (micro-CT) using a centreline-fitting algorithm. One hundred and thirty-six apical deltas were detected in 1400 teeth. Molars had more apical deltas (15.8%) than anterior teeth (6.3%). In maxillary molars, the mesiobuccal root had a significantly higher prevalence of apical delta than the palatal root or the distobuccal root. The median vertical distance of the apical delta was 1.87 mm with 13% more than 3 mm. The median diameter and length of the apical delta branches were 132.3 and 934.5 μm. Apical delta branches were not straight with cross-sectional shapes being non-circular. These morphological features of apical delta may complicate debridement of the infected root canal system.

  10. Endodontic management of radix paramolaris with six canals: a clinical case report.

    PubMed

    Acharya, N; Singh, A; Samant, P S; Gautam, V

    2013-01-01

    Endodontic therapy of mandibular molars is a challenging task due to its varied root canal morphology. A mandibular first molar with additional buccal root (Radix paramolaris) and additional distolingual root (Radix Entomolaris) is an example of its varied anatomy. A successful management of atypical root canal configurations is an important aspect in determining the success rate of root canal therapy. The detail knowledge of the root morphology and canal anatomy allows the clinician for accurate location of the extra roots and canals and accordingly the refinement of the access cavity for the stress free entry of complex anatomy. Hence, for a successful root canal therapy, clinician must be aware of the external and internal anatomic variations .The aim of this clinical case report is to present and describe the unusual presence of two separate mesial roots and six root canals in mandibular first molar, detected during routine endodontic therapy.

  11. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    PubMed

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  12. Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology

    PubMed Central

    Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun

    2007-01-01

    Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725

  13. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. Journal of Hydrology, 233(1), 72-85. Javaux, M., Schröder, T., Vanderborght, J., & Vereecken, H. (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7(3), 1079-1088.

  14. Trait plasticity, not values, best corresponds with woodland plant success in novel and manipulated habitats

    Treesearch

    Robert J. Warren; Jeffrey K. Lake

    2012-01-01

    Aims: The clustering of plants with similar leaf traits along environmental gradients may arise from adaptation as well as acclimation to heterogeneous habitat conditions. Determining the forces that shape plant leaf traits requires both linking variation in trait morphology with abiotic gradients and linking that trait variation with plant performance under varying...

  15. Morphology predicts species' functional roles and their degree of specialization in plant-frugivore interactions.

    PubMed

    Dehling, D Matthias; Jordano, Pedro; Schaefer, H Martin; Böhning-Gaese, Katrin; Schleuning, Matthias

    2016-01-27

    Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology. © 2016 The Author(s).

  16. Estimation of genetic parameters for reproductive traits in alpacas.

    PubMed

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2015-12-01

    One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Endodontic management of middle mesial canal of the mandibular molar

    PubMed Central

    Sundaresh, K J; Srinivasan, Raghu; Mallikarjuna, Rachappa; Rajalbandi, Sandeep

    2013-01-01

    Thorough knowledge of root canal morphology and unusual anatomy of the tooth is critical for successful endodontic treatment. Although the most common configuration is two roots and three root canals, mandibular molars might have many different combinations. In the literature, it is less described about three mesial canals and two distal canals in mandibular second molars, indicating a rare anatomical configuration. A case of unusual root canal morphology is presented to demonstrate anatomical variations in mandibular molars. Endodontic therapy was performed in a mandibular second molar with five separate canals, three mesial and two distal. This report points out the importance of looking for additional canals and unusual canal morphology, because knowledge of their existence might occasionally enable clinicians to treat a case successfully that otherwise might have ended in failure. In conclusion, every attempt should be made to find and treat all root canals of a tooth. PMID:23349182

  18. Morphology of mandibular first molars analyzed by cone-beam computed tomography in a Korean population: variations in the number of roots and canals.

    PubMed

    Kim, Sin-Young; Kim, Bom Sahn; Woo, Jein; Kim, Yemi

    2013-12-01

    The aim of this study was to determine the root and canal morphology of the mandibular first molars in a Korean population of Mongolian origin by retrospective analysis of a large number of cone-beam computed tomography (CBCT) images. A total of 976 subjects with bilateral mandibular first molars were examined by using in vivo CBCT methods. The number and configuration of roots, the number of root canals, and the canal configuration based on Vertucci's classification were determined. Overall, 25.82% of examined molars had 3 roots, 73.51% had 2 roots, and 0.67% had 1 root. The incidence of fourth canal was 50.36%. A right-sided predominance was noted for extra distal roots (P < .001), whereas a left-sided predominance was observed for extra distal canals (P < .001). No significant sex-related differences were shown for their prevalence. The bilateral prevalence rate was 69.13% for extra distal roots and 78.08% for extra distolingual (DL) canals. In the mesial roots, type IV canal was the most frequent (76.86% for 2-rooted molars and 72.96% for 3-rooted molars). In the distal roots, type l was the most common (66.62% for 2-rooted molars and 99.40%-100% for 3-rooted molars). The incidence of 2 canals in distobuccal roots, first reported in this study, was 0.15%. Among mandibular first molars, there is a high prevalence of a separate DL root and/or a separate DL canal, and such molars commonly have 4 canals in the Korean population. CBCT is a useful tool for determining root and canal morphology. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.

    PubMed

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-03-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.

  20. A Review on Root Anatomy and Canal Configuration of the Maxillary Second Molars

    PubMed Central

    Ghasemi, Negin; Rahimi, Saeed; Shahi, Shahriar; Samiei, Mohammad; Frough Reyhani, Mohammad; Ranjkesh, Bahram

    2017-01-01

    Introduction: The complexity of the root canal system presents a challenge for the practitioner. This systematic review evaluated the papers published in the field of root canal anatomy and configuration of the root canal system in permanent maxillary second molars. Methods and Materials: All articles related to the root morphology and root canal anatomy of the permanent maxillary second molars were collected by suitable keywords from PubMed database. The exhaustive search included all publications from 1981 to December 2015. The articles relevant to the study were evaluated and data was extracted. The author/year of publication, country, number of the evaluated teeth, type of study (method of the evaluation), number of roots and the canals, type of canals and the morphology of the apical foramen was noted. Results: The highest studied populations were in Brazil and United States. A total of 116 related papers were found, which had investigated 11945 teeth in total. Across all the studied populations, the three-rooted anatomy was most common, while the four-rooted anatomy had the lowest prevalence. The presence of the second mesiobuccal canal ranged from 11.53 % to 93.7%, where type II (2-1) configuration was the predominant type in Brazil and USA and types II and III (1-2-1) in Chinese populations. In 8.8-44% of cases, fusion was observed. The main reported cases were related to palatal root. The major method of anatomical investigation in case reports was periapical radiography, and the chief method in morphological studies was CBCT. Conclusion: The clinicians should be aware of normal morphology and anatomic variations to reduce the treatment failure. PMID:28179915

  1. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L.) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG-8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these cond...

  2. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these condi...

  3. Parallel evolution of storage roots in morning glories (Convolvulaceae).

    PubMed

    Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H

    2018-05-29

    Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.

  4. A new anatomically based nomenclature for the roots and root canals-part 1: maxillary molars.

    PubMed

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  5. A Functional Trait Approach for Evaluation of Agroforestry Species Adaptation Potentiel to Changing Climate

    NASA Astrophysics Data System (ADS)

    Munson, A. D.; Marone, D.; Olivier, A.

    2017-12-01

    Traditional agroforestry systems have been used for generations in the Sahel region of Africa to assure local food security. However, an understanding of the functional ecology of these systems is lacking, which would contribute to assessing both the provision of current ecological services, and the potential for adaptation to global change. We have studied five native tree and shrub species across a transect of different soil types in the semi-arid zone of the Niayes region of Senegal, to document changes in above and belowground traits in response to soil and land use change. Root traits in particular influence access to limiting resources such as water and nutrients. We studied fine root depth distribution and specific root length (SRL) with soil depth of Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Faidherbia albida, Neocarya macrophylla, on three different soil textures for three systems (fallow, parkland and rangeland), in order to understand potential exploitation of soil resources and potential contribution of roots to soil carbon stocks at different depths. The maximum root biomass of four of the species (Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Neocarya macrophylla) occurred in the 40-60 cm layer, where the two evergreen species (A. raddiana, N. macrophylla) developed the most biomass. Root biomass decreased for all species except F. albida, after 60 cm depth. The Mimosaceae species (A. raddiana, F. albida) developed the most root biomass within the 100 cm sampling depth. The maximum fine root biomass was found in fallow lands and clay soils. For all species, the highest SRL was observed during the hot dry season, in sandy or sandy loam soil. The SRL was lowest in the rainy season on clay soil. Evergreens had higher SRL than deciduous species, regardless of soil texture and growing season conditions. Parkland and rangelands exhibited higher SRL than fallow land, most likely due to higher soil fertility. Differences between evergreen and deciduous SRL relied on adaptive strategies that seem to be conditioned by season, soil and land use. We also examined intraspecific variability of above and belowground traits to assess plasticity in response to environment. Evergreen species showed more variability in response to soil and to seasonal changes in temperature and moisture.

  6. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp pathway flux appears to be directed to the synthesis of indole glucosinolates (IG), as suggested by the over-expression of SUR2. Individuals that are efficient in AR formation may utilize alternative (non-Trp) pathways to synthesize IAA, based on the observation that they down-regulate the expression of TSA1, one of the critical steps in the synthesis of tryptophan.« less

  7. Make the rhizosphere great again: microbes build walls in soil that roots pay for

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Naveed, Muhammad; Raffan, Annette; Bengough, Glyn; Feeney, Debbie; Brown, Lawrie; Georgy, Timothy; Cooper, Laura; Daly, Keith; Koebernick, Nicolai; Sinclair, Ian; Roose, Tiina

    2017-04-01

    Plant roots physically manipulate surrounding soil to ease penetration, provide anchorage, improve water and nutrient capture and enhance gaseous exchange, with knock-on impacts to habitats for microorganisms, soil stabilisation and sequestering of carbon. Root traits that alter soil physical properties include exudates, root hairs, the extent of soil drying and root architecture. We are exploring the extent that different root traits physically manipulate soils, drawing on near isogenic crop lines that differ in root hairs, architecture and exudation, and new physical approaches that quantify rhizosphere impacts. These approaches include hydromechanical testing that bridge soil physics, soil biology and materials science, small-scale measurements and non-invasive imaging to measure the rhizosphere directly. We use these data in image based models that describe retention and transport of water and nutrients in the rhizosphere. Micromechanics tests have found that barley root exudates initially disperse soil, followed by gelling after secondary decomposition of these exudates by microbes. Maize root exudates, on the other hand, caused a large amount of gelling of the soil, whereas this impact decreased with microbial decomposition. From our data on exudate viscosity, contact angle and surface tension, we have modelled the direct impact on water retention and transport in the rhizosphere, using 3D CT imaging with Synchrotron XRay CT with sufficient resolution to detect root hairs. From these images, pore structure changes were found to be affected by the presence of root hairs in barley. This could have implications to resource capture by plants, showing a secondary impact of root hairs beyond expanding the volume of soil that roots access.

  8. Genetic parameters estimation for preweaning traits and their relationship with reproductive, productive and morphological traits in alpaca.

    PubMed

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2017-05-01

    The aim of this study was to estimate the genetic parameters for preweaning traits and their relationship with reproductive, productive and morphological traits in alpacas. The data were collected from 2001 to 2015 in the Pacomarca experimental farm. The data set contained data from 4330 females and 3788 males corresponding to 6396 and 1722 animals for Huacaya and Suri variants, respectively. The number of records for Huacaya and Suri variants were 5494 and 1461 for birth weight (BW), 5429 and 1431 for birth withers height (BH), 3320 and 896 for both weaning weight (WW) and average daily gain (DG) from birth to weaning, 3317 and 896 for weaning withers height (WH), and 5514 and 1474 for survival to weaning. The reproductive traits analyzed were age at first calving and calving interval. The fiber traits were fiber diameter (FD), standard deviation of FD (SD), comfort factor and coefficient of variation of FD and the morphological traits studied were density, crimp in Huacaya and lock structure in Suri, head, coverage and balance. Regarding preweaning traits, model of analysis included additive, maternal and residual random effects for all traits, with sex, coat color, number of calving, month-year and contemporary group as systematic effects, and age at weaning as linear covariate for WW and WH. The most relevant direct heritabilities for Huacaya and Suri were 0.50 and 0.34 for WW, 0.36 and 0.66 for WH, 0.45 and 0.20 for DG, respectively. Maternal heritabilities were 0.25 and 0.38 for BW, 0.18 and 0.32 for BH, 0.29 and 0.39 for WW, 0.19 and 0.26 for WH, 0.27 and 0.36 for DG, respectively. Direct genetic correlations within preweaning traits were high and favorable and lower between direct and maternal genetic effects. The genetic correlations of preweaning traits with fiber traits were moderate and unfavorable. With morphological traits they were high and positive for Suri but not for Huacaya and favorable for direct genetic effect but unfavorable for maternal genetic effect with reproductive traits. If the selection objective was meat production, the selection would have to be based on the direct genetic effect for WW but not on the maternal genetic effect that has been shown to have less relevance. Other weaning traits such as WH or DG would be indirectly selected.

  9. Topographic relationship between root apex of mesially and horizontally impacted mandibular third molar and lingual plate: cross-sectional analysis using CBCT

    PubMed Central

    Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Zhou, Guangchao; Sun, Chao; Yang, Lianfeng; Bai, Jianling; Gao, Jun; Wu, Yunong; Cheng, Jie

    2016-01-01

    The present study was aimed to determine the topographic relationship between root apex of the mesially and horizontally impacted mandibular third molar and lingual plate of mandible. The original cone beam computed tomography (CBCT) data of 364 teeth from 223 patients were retrospectively collected and analyzed. The topographic relationship between root apex and lingual plate on cross-sectional CBCT images was classified as non-contact (99), contact (145) and perforation (120). The cross-sectional morphology of lingual plate at the level of root apex was defined as parallel (28), undercut (38), slanted (29) and round (4). The distribution of topographic relationship between root apex and lingual plate significantly associated with gender, impaction depth, root number and lingual plate morphology. Moreover, the average bone thickness of lingual cortex and distance between root apex and the outer surface of lingual plate were 1.02 and 1.39 mm, respectively. Furthermore, multivariate regression analyses identified impaction depth and lingual plate morphology as the risk factors for the contact and perforation subtypes between root apex and lingual plate. Collectively, our findings reveal the topographic proximity of root apex of impacted mandibular third molar to the lingual plate, which might be associated with intraoperative and postoperative complications during tooth extraction. PMID:27991572

  10. A mandibular third molar with three mesial roots: a case report.

    PubMed

    Plotino, Gianluca

    2008-02-01

    Although its most common configuration is 2 roots and 3 root canals, mandibular molars might have many different combinations. A case of unusual root canal morphology is presented to demonstrate anatomic variations in mandibular molars. Endodontic therapy was performed in a mandibular third molar with 3 separate mesial roots. The appearance of the pulp chamber floor revealed 4 separate canal orifices. Radiographically the 4 root canals ended in their own distinct foramen. Many reports deal with 3 orifices or 3 independent canals in the mesial root, but none described 3 mesial canals in 3 separate mesial roots, indicating a rare anatomic configuration. This report points out the importance of looking for additional canals and unusual canal morphology, because knowledge of their existence might occasionally enable clinicians to treat a case successfully that otherwise might have ended in failure.

  11. Multilevel assessment of fish species traits to evaluate habitat degradation in streams of the upper midwest

    USGS Publications Warehouse

    Goldstein, R.M.; Meador, M.R.

    2005-01-01

    We used species traits to examine the variation in fish assemblages for 21 streams in the Northern Lakes and Forests Ecoregion along a gradient of habitat disturbance. Fish species were classified based on five species trait-classes (trophic ecology, substrate preference, geomorphic preference, locomotion morphology, and reproductive strategy) and 29 categories within those classes. We used a habitat quality index to define a reference stream and then calculated Euclidean distances between the reference and each of the other sites for the five traits. Three levels of species trait analyses were conducted: (1) a composite measure (the sum of Euclidean distances across all five species traits), (2) Euclidean distances for the five individual species trait-classes, and (3) frequencies of occurrence of individual trait categories. The composite Euclidean distance was significantly correlated to the habitat index (r = -0.81; P = 0.001), as were the Euclidean distances for four of the five individual species traits (substrate preference: r = -0.70, P = 0.001; geomorphic preference: r = -0.69, P = 0.001; trophic ecology: r = -0.73, P = 0.001; and reproductive strategy: r = -0.64, P = 0.002). Although Euclidean distances for locomotion morphology were not significantly correlated to habitat index scores (r = -0.21; P = 0.368), analysis of variance and principal components analysis indicated that Euclidean distances for locomotion morphology contributed to significant variation in the fish assemblages among sites. Examination of trait categories indicated that low habitat index scores (degraded streams) were associated with changes in frequency of occurrence within the categories of all five of the species traits. Though the objectives and spatial scale of a study will dictate the level of species trait information required, our results suggest that species traits can provide critical information at multiple levels of data analysis. ?? Copyright by the American Fisheries Society 2005.

  12. SIGNALING EFFICACY DRIVES THE EVOLUTION OF LARGER SEXUAL ORNAMENTS BY SEXUAL SELECTION

    PubMed Central

    Tazzyman, Samuel J; Iwasa, Yoh; Pomiankowski, Andrew

    2014-01-01

    Why are there so few small secondary sexual characters? Theoretical models predict that sexual selection should lead to reduction as often as exaggeration, and yet we mainly associate secondary sexual ornaments with exaggerated features such as the peacock's tail. We review the literature on mate choice experiments for evidence of reduced sexual traits. This shows that reduced ornamentation is effectively impossible in certain types of ornamental traits (behavioral, pheromonal, or color-based traits, and morphological ornaments for which the natural selection optimum is no trait), but that there are many examples of morphological traits that would permit reduction. Yet small sexual traits are very rarely seen. We analyze a simple mathematical model of Fisher's runaway process (the null model for sexual selection). Our analysis shows that the imbalance cannot be wholly explained by larger ornaments being less costly than smaller ornaments, nor by preferences for larger ornaments being less costly than preferences for smaller ornaments. Instead, we suggest that asymmetry in signaling efficacy limits runaway to trait exaggeration. PMID:24099137

  13. Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm.

    PubMed

    Marie-Orleach, Lucas; Vogt-Burri, Nadja; Mouginot, Pierick; Schlatter, Aline; Vizoso, Dita B; Bailey, Nathan W; Schärer, Lukas

    2017-05-01

    The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Random regression analysis for body weights and main morphological traits in genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Xu, Pao; Yang, Runqing

    2018-02-01

    To genetically analyse growth traits in genetically improved farmed tilapia (GIFT), the body weight (BWE) and main morphological traits, including body length (BL), body depth (BD), body width (BWI), head length (HL) and length of the caudal peduncle (CPL), were measured six times in growth duration on 1451 fish from 45 mixed families of full and half sibs. A random regression model (RRM) was used to model genetic changes of the growth traits with days of age and estimate the heritability for any growth point and genetic correlations between pairwise growth points. Using the covariance function based on optimal RRMs, the heritabilities were estimated to be from 0.102 to 0.662 for BWE, 0.157 to 0.591 for BL, 0.047 to 0.621 for BD, 0.018 to 0.577 for BWI, 0.075 to 0.597 for HL and 0.032 to 0.610 for CPL between 60 and 140 days of age. All genetic correlations exceeded 0.5 between pairwise growth points. Moreover, the traits at initial days of age showed less correlation with those at later days of age. With phenotypes observed repeatedly, the model choice showed that the optimal RRMs could more precisely predict breeding values at a specific growth time than repeatability models or multiple trait animal models, which enhanced the efficiency of selection for the BWE and main morphological traits.

  15. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage.

    PubMed

    Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C

    2018-05-08

    The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.

  16. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    NASA Astrophysics Data System (ADS)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  17. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats

    NASA Astrophysics Data System (ADS)

    Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni

    2018-02-01

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  18. Run for your life, but bite for your rights? How interactions between natural and sexual selection shape functional morphology across habitats.

    PubMed

    Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni

    2018-01-02

    A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.

  19. Sex-specific responses and tolerances of Populus cathayana to salinity.

    PubMed

    Chen, Fugui; Chen, Lianghua; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2010-10-01

    Responses of males and females to salinity were studied in order to reveal sex-specific adaptation and evolution in Populus cathayana Rehd cuttings. This dioecious tree species plays an important role in maintaining ecological stability and providing commercial raw material in southwest China. Female and male cuttings of P. cathayana were treated for about 1 month with 0, 75 and 150 mM NaCl. Plant growth traits, gas exchange parameters, chlorophyll pigments, intrinsic water use efficiency (WUEi), membrane system injuries, ion transport and ultrastructural morphology were assessed and compared between sexes. Salt stress caused less negative effects on the dry matter accumulation, growth rate of height, growth rate of stem base diameter, total number of leaves and photosynthetic abilities in males than in females. Relative electrolyte leakage increased more in females than in males under salinity stress. Soil salinity reduced the amounts of leaf chlorophyll a, chlorophyll b and total chlorophyll, and the chlorophyll a/b ratio more in females than in males. WUEi decreased in both sexes under salinity. Regarding the ultrastructural morphology, thylakoid swelling in chloroplasts and degrading structures in mitochondria were more frequent in females than in males. Moreover, females exhibited significantly higher Na(+) and Cl(-) concentrations in leaves and stems, but lower concentrations in roots than did males under salinity. In all, female cuttings of P. cathayana are more sensitive to salinity stress than males, which could be partially due to males having a better ability to restrain Na(+) transport from roots to shoots than do females. Copyright © Physiologia Plantarum 2010.

  20. Constituent and induced tannin accumulations in roots of loblolly pines

    Treesearch

    Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L [L.]) has become the most important source of wood fiber in the Southern United States. This tree is an excellent competitor and recovers well from a variety of adverse conditions. The author presents a histological study of tannin in pine roots to measure tannin abundance as a primary trait to evaluate root health at the...

Top