Saleem, Muhammad; Lamkemeyer, Tobias; Schützenmeister, André; Madlung, Johannes; Sakai, Hajime; Piepho, Hans-Peter; Nordheim, Alfred; Hochholdinger, Frank
2010-01-01
In transverse orientation, maize (Zea mays) roots are composed of a central stele that is embedded in multiple layers of cortical parenchyma. The stele functions in the transport of water, nutrients, and photosynthates, while the cortical parenchyma fulfills metabolic functions that are not very well characterized. To better understand the molecular functions of these root tissues, protein- and phytohormone-profiling experiments were conducted. Two-dimensional gel electrophoresis combined with electrospray ionization tandem mass spectrometry identified 59 proteins that were preferentially accumulated in the cortical parenchyma and 11 stele-specific proteins. Hormone profiling revealed preferential accumulation of indole acetic acid and its conjugate indole acetic acid-aspartate in the stele and predominant localization of the cytokinin cis-zeatin, its precursor cis-zeatin riboside, and its conjugate cis-zeatin O-glucoside in the cortical parenchyma. A root-specific β-glucosidase that functions in the hydrolysis of cis-zeatin O-glucoside was preferentially accumulated in the cortical parenchyma. Similarly, four enzymes involved in ammonium assimilation that are regulated by cytokinin were preferentially accumulated in the cortical parenchyma. The antagonistic distribution of auxin and cytokinin in the stele and cortical parenchyma, together with the cortical parenchyma-specific accumulation of cytokinin-regulated proteins, suggest a molecular framework that specifies the function of these root tissues that also play a role in the formation of lateral roots from pericycle and endodermis cells. PMID:19933382
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst
2009-11-01
In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.
Factors Controlling the Formation of Oxidized Root Channels: A Review and Annotated Bibliography
1993-08-01
professor at the Wetland Bio - geochemistry Institute and the Department of Oceanography and Coastal Science at LoLisiana State University. The work was...accumulated in the cells of the epidermis, exodermis, endodermis, and marginal layers of the stele . Zinc and phosphorus appeared to be associated possibly...intercellular spaces. Iron was also found on the tissue diaphragms that traverse the cortex of the root, connecting its outer cortex with the stele . Electron
Location of Heterodera glycines-induced Syncytia in Soybean as Affected by Soil Water Regimes
Johnson, A. B.; Kim, K. S.; Riggs, R. D.; Scott, H. D.
1993-01-01
Locations of syncytia induced by the soybean cyst nematode (SCN), Heterodera glycines race 3, were compared in roots of 'Essex', a susceptible soybean (Glycine max (L.) Merr.) cultivar, at three soil water regimes. The plants were grown in wet (-5 to -20 kPa), moderately wet (-30 to -50 kPa), and moderately dry (-60 to -80kPa) autoclaved Captina silt loam soil (Typic Fragiudult). In the moderately dry soil, syncytia were found only in the stele, but in moderately wet and wet soils, syncytia occurred primarily in the cortex and occasionally in the stele. The location of syncytia in the cortical tissue of roots growing in wet and moderately wet soils may account for the tolerance of susceptible soybean cultivars grown under well-irrigated conditions where there is less interference with water transport through roots. Cell-wall perforations and dense cytoplasm were characteristic of syncytial cells observed in root tissues of all treatments. PMID:19279789
Lavrekha, Viktoriya V; Pasternak, Taras; Ivanov, Victor B; Palme, Klaus; Mironova, Victoria V
2017-12-01
To date CYCB1;1 marker and cortex cell lengths have been conventionally used to determine the proliferation activity of the Arabidopsis root meristem. By creating a 3D map of mitosis distribution we showed that these markers overlooked that stele and endodermis save their potency to divide longer than the cortex and epidermis. Cessation of cell divisions is not a random process, so that mitotic activity within the endodermis and stele shows a diarch pattern. Mitotic activity of all root tissues peaked at the same distance from the quiescent center (QC); however, different tissues stopped dividing at different distances, with cells of the protophloem exiting the cell cycle first and the procambial cells being the last. The robust profile of mitotic activity in the root tip defines the longitudinal zonation in the meristem with the proliferation domain, where all cells are able to divide; and the transition domain, where the cell files cease to divide. 3D analysis of cytokinin deficient and cytokinin signaling mutants showed that their proliferation domain is similar to that of the wild type, but the transition domain is much longer. Our data suggest a strong inhibitory effect of cytokinin on anticlinal cell divisions in the stele. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan
2013-06-01
Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the changes of tissue N concentration and anatomical structure along root branch orders in both tree species, which provide deeper understanding in the mechanism of how root traits affect root respiration in woody plants.
Hydraulic resistance of a plant root to water-uptake: A slender-body theory.
Chen, Kang Ping
2016-05-07
A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Studies on the longitudinal and lateral transport of IAA in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Warmbrodt, R. P.; Bandurski, R. S.
1992-01-01
The auxin, indole-3-acetic acid, and the symplastic probe, carboxyfluorescein diacetate, were applied to the cut mesocotyl base or coleoptile apex of etiolated Zea mays seedlings and their transport measured and tissue distribution determined. The longitudinal transport of indole-3-acetate was strongly basipolar, while that of carboxyfluorescein was essentially apolar. The longitudinal transport of IAA, like carboxyfluorescein, was mainly in the stele. IAA exhibited a much higher lateral mobility from stele to cortex than did carboxyfluorescein. Based on the calculation of moles probe/kg fw, IAA is 4 times more concentrated in the stele than in the cortex while CF is 24 times higher in concentration in the stele than in the cortex. The structure of the node and the mesocotyl regions just below the node, regions of maximum growth, were examined and plasmodesmatal structure and frequency in these regions determined. The plasmodesmatal frequency, about 3 per micrometer2, between all cell types of the mesocotyl was found to be about 5-8 fold higher than that found for the root. Hypotheses of lateral auxin transport are discussed.
Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan
2015-08-01
Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.
Marker validation for Rpf1 red stele resistance in strawberry
USDA-ARS?s Scientific Manuscript database
Red stele is a devastating root rot disease in strawberries. Several sources for genetic resistance are exploited in breeding, and several race-specific R-genes were identified. Recently, a tightly linked SSR marker was found for the Rpf1 gene at Wageningen-UR, The Netherlands. One hundred and forty...
Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko
2011-11-01
SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.
Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko
2011-01-01
SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis. PMID:21951467
Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.
2016-01-01
Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412
NASA Astrophysics Data System (ADS)
Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.
2016-06-01
Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.
Nakagawa, Yuko; Hanaoka, Hideki; Kobayashi, Masaharu; Miyoshi, Kazumaru; Miwa, Kyoko; Fujiwara, Toru
2007-01-01
We describe a boron (B) transporter, Os BOR1, in rice (Oryza sativa). Os BOR1 is a plasma membrane–localized efflux transporter of B and is required for normal growth of rice plants under conditions of limited B supply (referred to as -B). Disruption of Os BOR1 reduced B uptake and xylem loading of B. The accumulation of Os BOR1 transcripts was higher in roots than that in shoots and was not affected by B deprivation; however, Os BOR1 was detected in the roots of wild-type plants under -B conditions, but not under normal conditions, suggesting regulation of protein accumulation in response to B nutrition. Interestingly, tissue specificity of Os BOR1 expression is affected by B treatment. Transgenic rice plants containing an Os BOR1 promoter–β-glucuronidase (GUS) fusion construct grown with a normal B supply showed the strongest GUS activity in the steles, whereas after 3 d of -B treatment, GUS activity was elevated in the exodermis. After 6 d of -B treatment, GUS activity was again strong in the stele. Our results demonstrate that Os BOR1 is required both for efficient B uptake and for xylem loading of B. Possible roles of the temporal changes in tissue-specific patterns of Os BOR1 expression in response to B condition are discussed. PMID:17675406
Thompson, D. S.; Osborne, D. J.
1994-01-01
A combination of microdissection and viscometric endo-[beta]-1,4-glucanhydrolase assays was used to investigate if the early appearance of the abscission-related isoelectric point-9.5 endo-[beta]-1,4-glucanhydrolase in the stele of the pulvinus and abscission zone of the foliar abscission zone of Phaseolus vulgaris L. prior to cell separation (reported by E. del Campillo, P.D. Reid, R. Sexton, L.N.Lewis [1990] Plant Cell 2: 245-254) indicates that the vascular tissue of this region has a specific role in abscission. We find that no endo-[beta]-1,4-glucanhydrolase activity or cell separation is detectable in the abscission zone cortex if the abscission zone cortex is separated from the stele tissue. If the stele is separated from the abscission zone cortex after a lag period but again before any endo-[beta]-1,4-glucanhydrolase activity is present in the abscission zone cortex, then the enzyme is produced in the cortex and abscission ensues. We conclude that the cortex of the abscission zone is able to abscind independently of the vascular tissue only after the vascular tissue has begun to respond to abscission-promoting signals. We suggest that ethylene promotes formation of an abscission-permitting signal in the stele of the abscission zone and pulvinus, and that this signal is an essential elicitor for the synthesis of cell separation enzymes in the target cells of the abscission zone cortex. PMID:12232206
Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.
Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G
2018-01-01
Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.
Kopittke, Peter M.; Menzies, Neal W.; de Jonge, Martin D.; McKenna, Brigid A.; Donner, Erica; Webb, Richard I.; Paterson, David J.; Howard, Daryl L.; Ryan, Chris G.; Glover, Chris J.; Scheckel, Kirk G.; Lombi, Enzo
2011-01-01
The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based x-ray fluorescence microscopy and x-ray absorption spectroscopy, the distribution and speciation of copper (Cu), nickel (Ni), and zinc (Zn) was examined in situ using hydrated roots of cowpea (Vigna unguiculata) exposed to 1.5 μm Cu, 5 μm Ni, or 40 μm Zn for 1 to 24 h. After 24 h of exposure, most Cu was bound to polygalacturonic acid of the rhizodermis and outer cortex, suggesting that binding of Cu to walls of cells in the rhizodermis possibly contributes to the toxic effects of Cu. When exposed to Zn, cortical concentrations remained comparatively low with much of the Zn accumulating in the meristematic region and moving into the stele; approximately 60% to 85% of the total Zn stored as Zn phytate within 3 h of exposure. While Ni concentrations were high in both the cortex and meristem, concentrations in the stele were comparatively low. To our knowledge, this is the first report of the in situ distribution and speciation of Cu, Ni, and Zn in hydrated (and fresh) plant tissues, providing valuable information on the potential mechanisms by which they are toxic. PMID:21525332
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.; Hardison, L.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
Tissue to tissue symplastic communication in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Bandurski, R. S.
1990-01-01
Carboxyfluorescein, a symplastic probe, was applied to the cut mesocotyl base or coleoptile apex of etiolated Zea mays cv. Silver Queen seedlings and its transport measured and tissue distribution determined. Long-distance longitudinal symplastic transport of the carboxyfluorescein was mainly in the vascular stele. It moved laterally from the mesocotyl stele to the mesocotyl cortex but the presence of a weak barrier limited the movement. A partial symplastic barrier was also present near the coleoptile-mesocotyl node.
Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY
Ohashi-Ito, Kyoko; Bergmann, Dominique C.
2011-01-01
Complex organisms consist of a multitude of cell types arranged in precise spatial relation to each other. Arabidopsis roots generally exhibit radial tissue organization; however, within a tissue layer, cells are not identical. Specific vascular cell types are arranged in diametrically opposed longitudinal files that maximize the distance between them and create a bilaterally symmetric (diarch) root. Mutations in the LONESOME HIGHWAY (LHW) gene eliminate bilateral symmetry and reduce the number of cells in the center of the root, resulting in roots with only single and xylem and phloem poles. LHW does not appear to be required for the creation of any specific cell type, but coordinately controls the number of all vascular cell types by regulating the size of the pool of cells from which they arise. We cloned LHW and found that it encodes a protein with weak sequence similarity to basic helix-loop-helix (bHLH) domain proteins. LHW is a transcriptional activator in vitro. In plants, LHW is nuclear localized and is expressed in the root meristems where we hypothesize it acts independently of other known root patterning genes to promote the production of stele cells, but may also indirectly feed into established regulatory networks for the maintenance of the root meristem. PMID:17626058
Ishimaru, Yasuhiro; Kakei, Yusuke; Shimo, Hugo; Bashir, Khurram; Sato, Yutaka; Sato, Yuki; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K.
2011-01-01
Iron deficiency is one of the major agricultural problems, as 30% of the arable land of the world is too alkaline for optimal crop production, rendering plants short of available iron despite its abundance. To take up apoplasmic precipitated iron, plants secrete phenolics such as protocatechuic acid (PCA) and caffeic acid. The molecular pathways and genes of iron uptake strategies are already characterized, whereas the molecular mechanisms of phenolics synthesis and secretion have not been clarified, and no phenolics efflux transporters have been identified in plants yet. Here we describe the identification of a phenolics efflux transporter in rice. We identified a cadmium-accumulating rice mutant in which the amount of PCA and caffeic acid in the xylem sap was dramatically reduced and hence named it phenolics efflux zero 1 (pez1). PEZ1 localized to the plasma membrane and transported PCA when expressed in Xenopus laevis oocytes. PEZ1 localized mainly in the stele of roots. In the roots of pez1, precipitated apoplasmic iron increased. The growth of PEZ1 overexpression lines was severely restricted, and these lines accumulated more iron as a result of the high solubilization of precipitated apoplasmic iron in the stele. We show that PEZ1 is responsible for an increase of PCA concentration in the xylem sap and is essential for the utilization of apoplasmic precipitated iron in the stele. PMID:21602276
The involvement of J-protein AtDjC17 in root development in Arabidopsis
Petti, Carloalberto; Nair, Meera; DeBolt, Seth
2014-01-01
In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971
Anatomical aspects of angiosperm root evolution
Seago, James L.; Fernando, Danilo D.
2013-01-01
Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly, Austrobaileyales are more similar to eudicots, and the Nymphaeales are strongly structurally associated with the monocots, especially the Acorales. PMID:23299993
Knipfer, Thorsten; Das, Debasish; Steudle, Ernst
2007-07-01
The effects of unstirred layers (USLs) at the endodermis of roots of young maize plants (Zea mays L.) were quantified, when measuring the water permeability of roots using a root pressure probe (RPP) in the pressure relaxation (PR) and pressure clamp (PC) modes. Different from PRs, PCs were performed by applying a constant pressure for certain periods of time. Experimental data were compared with results from simulations based on a convection versus diffusion (C/D) model, with the endodermis being the main barrier for solutes and water. Solute profiles in the stele were calculated as they occurred during rapid water flows across the root. The model quantitatively predicted the experimental finding of two distinct phases during PRs, in terms of a build-up of concentration profiles in the stele between endodermis and xylem vessels. It also predicted that, following a PC, half-times (T1/2) of PRs increased as the time used for clamping (and the build-up of USLs) increased. Following PCs of durations of 15, 30 and 60 s, T1/2 increased by factors of between 2.5 and 7.0, and water permeability of roots (root hydraulic conductivity, Lpr) was reduced by the same factors. When root pressure was immediately taken back to the original equilibrium root pressure following a PC, there was a transient uptake of water into the root stele (transient increase of root pressure), and the size of transients rose with time of clamping, as predicted by the model. The results indicated that the 'real' hydraulic conductivity of roots should be measured during initial water flows, such as during the rapid phase of PRs, when the effect of USLs was minimized. It was discussed that 'pressure-propagation effects' could not explain the finding of two phases during PRs. The results of USL effects threw some doubt on the use of PC and high-pressure flowmeter (HPFM) techniques with roots, where rigorous estimates of USLs were still missing despite the fact that large quantities of water were forced across the root.
Zhang, Yunhong; Liu, Hang; Yin, Heng; Wang, Wenxia; Zhao, Xiaoming; Du, Yuguang
2013-10-01
Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and anti-herbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. ...
NASA Astrophysics Data System (ADS)
Matía, Isabel; González-Camacho, Fernando; Marco, Roberto; Kiss, John Z.; Gasset, Gilbert; Medina, Francisco-Javier
Seeds of Arabidopsis thaliana were sent to the International Space Station in the "Cervantes Mission" (Spanish Soyuz Mission). Seed germination was initiated in flight by supplying culture medium. Seedlings were grown for 4 days at 22 °C, and growth was stopped by the addition of paraformaldehyde fixative. Once back on the ground, samples were immediately processed for microscopy. A ground control experiment was simultaneously replicated. Glutaraldehyde-fixed root cells from seedlings grown in the Biorack on board of the Space Shuttle (STS-84 Mission) in similar conditions were also ultrastructurally examined. The length of seedlings grown at 1 g was conspicuously shorter than parallel samples grown under microgravity. We examined the morphology of the root meristematic cells, with a focus on their nucleoli in the cortex and stele. In general, root cortical cells proliferate at a higher rate and their nucleoli are more active than those of stele cells. While the stele showed longer cells with larger nucleoli in the flight samples, cortical cells from space-grown seedlings were shorter, more numerous and more densely packed than ground controls. However, nucleoli were smaller and less active in fast proliferating flight cells than in the ground controls. This reduced level of ribosome synthesis in the flight samples is probably the result of an accelerated cell cycle. An altered rate of cell proliferation may be detrimental for the plant and could be the reason for the reported smaller size of older space-grown seedlings. Finally, two-dimensional protein electrophoresis showed noticeable differences between space samples and ground controls.
Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria
2016-08-12
To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.
Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P
2017-08-01
The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.
Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena
2011-01-01
Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs. PMID:21304819
Callose biosynthesis regulates symplastic trafficking during root development.
Vatén, Anne; Dettmer, Jan; Wu, Shuang; Stierhof, York-Dieter; Miyashima, Shunsuke; Yadav, Shri Ram; Roberts, Christina J; Campilho, Ana; Bulone, Vincent; Lichtenberger, Raffael; Lehesranta, Satu; Mähönen, Ari Pekka; Kim, Jae-Yean; Jokitalo, Eija; Sauer, Norbert; Scheres, Ben; Nakajima, Keiji; Carlsbecker, Annelie; Gallagher, Kimberly L; Helariutta, Ykä
2011-12-13
Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of callose (β-1,3-glucan) at the PD, a decrease in PD aperture, defects in root development, and reduced intercellular trafficking. Enhancement of CALS3 expression during phloem development suppressed loss-of-function mutations in the phloem abundant callose synthase, CALS7 indicating that CALS3 is a bona fide callose synthase. CALS3 alleles allowed us to spatially and temporally control the PD aperture between plant tissues. Using this tool, we are able to show that movement of the transcription factor SHORT-ROOT and microRNA165 between the stele and the endodermis is PD dependent. Taken together, we conclude that regulated callose biosynthesis at PD is essential for cell signaling. Copyright © 2011 Elsevier Inc. All rights reserved.
High efficiency transport of quantum dots into plant roots with the aid of silwet L-77.
Hu, Yong; Li, Jun; Ma, Lu; Peng, Qionglin; Feng, Wei; Zhang, Lu; He, Shibin; Yang, Fei; Huang, Jing; Li, Lijia
2010-08-01
Quantum dots (QDs) are a novel type of small, photostable and bright fluorophores that have been successfully applied to mammalian and human live cell imaging. In this study, highly dispersive water-soluble mercaptoacetic acid (MAA)-coated CdSe/ZnS QDs were synthesized, which were suitable for investigation as fluorescent probe labels. The treatment of maize seedling roots with QDs showed that the surfactant silwet L-77 aided the efficient transport of QDs into maize roots. Under a concentration ranging from 0.128 to 1.28 microM, QDs caused very low cytotoxicity on maize seed germination and root growth. The addition of mercuric chloride to the Hoagland solution resulted in a decrease of QD content in root tissues, and this decrease was reversed upon the addition of beta-mercaptoethanol, which suggests that mercury-sensitive processes play a significant role in regulating QD flow in the maize root system. We speculate that the apoplastic pathway can contribute substantially to the total quantity of QDs reaching the stele. Therefore, based on this transport approach, MAA-coated QDs can be utilized for live imaging in plant systems to verify known physiological processes. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Hao, Yueling; Cui, Hongchang
2012-01-01
SHORT-ROOT (SHR) is a key regulator of radial patterning and stem-cell renewal in the Arabidopsis root. Although SHR is expressed in the stele, its function in the vascular tissue was not recognized until recently. In shr, the protoxylem is missing due to the loss of expression of microRNA165A (miR165A) and microRNA166B (miR165B). shr is also defective in lateral root formation, but the mechanism remains unclear. To dissect the SHR developmental pathway, we recently have identified its direct targets at the genome scale by chromatin immunoprecipitation followed by microarray analysis (ChIP-chip). In further studies, we have shown that SHR regulates cytokinin homeostasis through cytokinin oxidase 3 and that this role of SHR is critical to vascular patterning in the root. In this communication we report that SHR also regulates miR165A and miR166B indirectly through its effect on cytokinin homeostasis. Although cytokinin is inhibitory to root growth, the root-apical-meristem defect in shr was not alleviated by reduction of endogenous cytokinin. These results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis. PMID:22476466
Yang, Tianyuan; Zhang, Song; Hu, Yibing; Wu, Fachi; Hu, Qingdi; Chen, Guang; Cai, Jing; Wu, Ting; Moran, Nava; Yu, Ling; Xu, Guohua
2014-01-01
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants. PMID:25157029
Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.
2006-01-01
Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904
Insights into the Mechanisms Underlying Boron Homeostasis in Plants
Yoshinari, Akira; Takano, Junpei
2017-01-01
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148
Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1
Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude
1999-01-01
A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715
Møller, Inge S; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M; Roy, Stuart J; Coates, Juliet C; Haseloff, Jim; Tester, Mark
2009-07-01
Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.
Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan
2013-01-01
On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266
Sohrabi, Reza; Huh, Jung-Hyun; Badieyan, Somayesadat; Rakotondraibe, Liva Harinantenaina; Kliebenstein, Daniel J.; Sobrado, Pablo; Tholl, Dorothea
2015-01-01
Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants. PMID:25724638
Pate, J S; Lindblad, P; Atkins, C A
1988-12-01
Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of (15)N enrichment of the different tissue zones and the xylem sap of (15)N2-pulse-fed coralloid roots of M. riedlei showed earlier (15)N incorporation into Gln than into Cit, and a subsequent net decline in the (15)N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the (15)N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed (14)CO2 in darkness showed (14)C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated (14)CO2 into Cit. The (14)C of Cit was restricted to the carbamyl-C. Comparable (15)N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major (14)C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.
Wegner, Lars H; Stefano, Giovanni; Shabala, Lana; Rossi, Marika; Mancuso, Stefano; Shabala, Sergey
2011-05-01
Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs. © 2011 Blackwell Publishing Ltd.
Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark
2009-01-01
Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143
PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana
Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuše; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young
2015-01-01
Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain. PMID:25730098
de la Rosa, Guadalupe; Castillo-Michel, Hiram; Cruz-Jiménez, Gustavo; Bernal-Alvarado, Jesús; Córdova-Fraga, Teodoro; López-Moreno, Laura; Cotte, Marine
2014-01-01
In order to gain knowledge on the potential use of Helianthus annuus L. for the remediation of Cr(VI) polluted waters, hydroponics experiments were set up to determine Cr uptake and tolerance in different Cr(VI)-sulfate conditions, and Cr biotransformations. Results indicated that Cr(VI) promoted seed germination, and plant tolerance was higher at younger plant stages. Cr uptake was dependent on sulfate concentrations. The highest Cr levels in roots and shoots (13,700 and 2,500 mg kg(-1) dry weight (DW), respectively) were obtained in 1 mM sulfate. The lowest Cr uptake in roots (10,600 mg kg(-1) DW) was observed in seedlings treated with no sulfate. In shoots, Cr concentration was of 1,500 mg kg(-1)DW for the 1 mM sulfate treatment, indicating a different level of interaction between chromate and sulfate in both tissues. For the first time, using micro X-ray florescence (muXRF), we demonstrated Cr reaches the root stele and is located in the walls of xylem vessels. Bulk and micro X-ray Absorption Near-Edge Structure (muXANES) results showed that Cr in the roots is mostly in the form of Cr(III) phosphate (80%), with the remainder complexed to organic acids. Our results suggest this plant species may serve for Cr(VI) rhizofiltration purposes.
Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long
2013-01-01
The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814
Kadam, Niteen N.; Yin, Xinyou; Bindraban, Prem S.; Struik, Paul C.; Jagadish, Krishna S.V.
2015-01-01
Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice ‘IR64’ and ‘Apo’ adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice ‘Nagina 22’ had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. PMID:25614066
Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V
2015-04-01
Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. © 2015 American Society of Plant Biologists. All Rights Reserved.
Mudgil, Yashwanti; Uhrig, Joachm F.; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M.
2009-01-01
Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gβγ dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single β (AGB1) or the two γ (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops. PMID:19948787
Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M
2009-11-01
Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.
An attempt to localize and identify the gravity sensing mechanism of plants
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Reinecke, D.
1985-01-01
The oxidation and transport of indole-3-acetic acid (IAA) in Zea mays is examined towards an understanding of the gravity-influenced promotion of growth in plants. An enzyme that oxidizes IAA to a nongrowth-promoting species has been partially purified, and determined to be stimulated by a lipoidal factor. Data suggest that the upward transport of IAA in the stele and outward movement from the stele into the mesophyll cortex is metabolically mediated, and possibly affected by the gravitational stimulus. It is postulated that hormone assymmetries can arise by 'potential-gating' of the transport channels between the various plant tissues.
Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665
Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.
Drought resistance of Ailanthus altissima: root hydraulics and water relations.
Trifilò, P; Raimondo, F; Nardini, A; Lo Gullo, M A; Salleo, S
2004-01-01
Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.
Kang, Yeon Hee; Song, Sang-Kee; Schiefelbein, John; Lee, Myeong Min
2013-01-01
Cell fate determination and differentiation are central processes in the development of multicellular organisms, and the Arabidopsis (Arabidopsis thaliana) root epidermis provides a model system to study the molecular basis of these processes. A lateral inhibition mechanism mediated by an R3 single-repeat MYB protein, CAPRICE (CPC), has been proposed to explain the specification of the two types of root epidermal cells (hair cells and nonhair cells). However, it is not clear how CPC acts preferentially in the H-position cells, rather than the N-position cells, where its gene is expressed. To explore this issue, we examined the effect of misexpressed CPC on cell fate specification and CPC localization in the root epidermis. We show that CPC is able to move readily within the root epidermis when its expression level is high and that CPC can induce the hair cell fate in a cell-autonomous manner. We provide evidence that CPC is capable of moving from the stele tissue in the center of the root to the outermost epidermal layer, where it can induce the hair cell fate. In addition, we show that CPC protein accumulates primarily in the nuclei of H-position cells in the early meristematic region, and this localization requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3) basic helix-loop-helix transcription factor. These results suggest that cell-cell movement of CPC occurs readily within the meristematic region of the root and that EGL3 preferentially traps the CPC protein in the H-position cells of the epidermis. PMID:23832626
Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.
2013-01-01
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768
James, Euan K; Gyaneshwar, Prasad; Mathan, Natarajan; Barraquio, Wilfredo L; Reddy, Pallavolu M; Iannetta, Pietro P M; Olivares, Fabio L; Ladha, Jagdish K
2002-09-01
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.
Apoplastic domains and sub-domains in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Bandurski, R. S.
1990-01-01
Light Green, an apoplastic probe, was applied to the cut mesocotyl base or to the cut coleoptile apex of etiolated seedlings of Zea mays L. cv. Silver Queen. Probe transport was measured and its tissue distribution determined. In the mesocotyl, there is an apoplastic barrier between cortex and stele. This barrier creates two apoplastic domains which are non-communicating. A kinetic barrier exists between the apoplast of the mesocotyl stele and that of the coleoptile. This kinetic barrier is not absolute and there is limited communication between the apoplasts of the two regions. This kinetic barrier effectively creates two sub-domains. In the coleoptile, there is communication between the apoplast of the vascular strands and that of the surrounding cortical tissue. No apoplastic communication was observed between the coleoptile cortex and the mesocotyl cortex. Thus, the apoplastic space of the coleoptile cortex is a sub-domain of the integrated coleoptile domain and is separate from that of the apoplastic domain of the mesocotyl cortex.
Li, Baohai; Kamiya, Takehiro; Kalmbach, Lothar; Yamagami, Mutsumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Sawa, Shinichiro; Danku, John M C; Salt, David E; Geldner, Niko; Fujiwara, Toru
2017-03-06
The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1-3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cell walls between endodermal cells and fill the gap between them [4-6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8]. However, the current knowledge on the formation of these two distinct endodermal barriers and their regulatory role in nutrient transport is still limited. Here, we identify an uncharacterized gene, LOTR1, essential for Casparian strip formation in Arabidopsis thaliana. The lotr1 mutants display altered localization of CASP1, an essential protein for Casparian strip formation [9], disrupted Casparian strips, ectopic suberization of endodermal cells, and low accumulation of shoot calcium (Ca). Degradation by expression of a suberin-degrading enzyme in the mutants revealed that the ectopic suberization at the endodermal cells limits Ca transport through the transmembrane pathway, thereby causing reduced Ca delivery to the shoot. Moreover, analysis of the mutants showed that suberin lamellae function as an apoplastic diffusion barrier to the stele at sites of lateral root emergence where Casparian strips are disrupted. Our findings suggest that the transmembrane pathway through unsuberized endodermal cells, rather than the sites of lateral root emergence, mediates the transport of apoplastic substances such as Ca into the xylem. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''.
Menezes, Nanuza L de
2006-06-01
Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.
A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots.
Nakayama, Takuya; Shinohara, Hidefumi; Tanaka, Mina; Baba, Koki; Ogawa-Ohnishi, Mari; Matsubayashi, Yoshikatsu
2017-01-20
Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions. Copyright © 2017, American Association for the Advancement of Science.
Establishment of Genetically Encoded Biosensors for Cytosolic Boric Acid in Plant Cells.
Fukuda, Makiha; Wakuta, Shinji; Kamiyo, Jio; Fujiwara, Toru; Takano, Junpei
2018-06-08
Boron (B) is an essential micronutrient for plants. To maintain B concentration in tissues at appropriate levels, plants use boric acid channels belonging to the NIP subfamily of aquaporins and BOR borate exporters. To regulate B transport, these transporters exhibit different cell-type specific expression, polar localization, and B-dependent post-transcriptional regulation. Here, we describe the development of genetically encoded biosensors for cytosolic boric acid to visualize the spatial distribution and temporal dynamics of B in plant tissues. The biosensors were designed based on the function of the NIP5;1 5'-untranslated region (UTR), which promotes mRNA degradation in response to an elevated cytosolic boric acid concentration. The signal intensities of the biosensor coupled with Venus fluorescent protein and a nuclear localization signal (uNIP5;1-Venus) showed a negative correlation with intracellular B concentrations in cultured tobacco BY-2 cells. When expressed in Arabidopsis thaliana, uNIP5;1-Venus enabled quantification of the B distribution in roots at single-cell resolution. In mature roots, cytosolic B levels in stele were maintained under low-B supply, while those in epidermal, cortical, and endodermal cells were influenced by external B concentrations. Another biosensor coupled with a luciferase protein fused to a destabilization PEST sequence (uNIP5;1-Luc) was used to visualize changes in cytosolic boric acid concentrations. Thus, uNIP5;1-Venus/Luc enables visualization of B transport in various plant cells/tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhang, Yonghong; Zheng, Lanlan; Hong, Jing Han; Gong, Ximing; Zhou, Chun; Pérez-Pérez, José Manuel; Xu, Jian
2016-05-01
TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1β), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Stelpflug, Scott C.; Sekhon, Rajandeep S.; Vaillancourt, Brieanne; ...
2015-12-30
Comprehensive and systematic transcriptome profiling provides valuable insight into biological and developmental processes that occur throughout the life cycle of a plant. We have enhanced our previously published microarray-based gene atlas of maize ( Zea mays L.) inbred B73 to now include 79 distinct replicated samples that have been interrogated using RNA sequencing (RNA-seq). The current version of the atlas includes 50 original array-based gene atlas samples, a time-course of 12 stalk and leaf samples postflowering, and an additional set of 17 samples from the maize seedling and adult root system. The entire dataset contains 4.6 billion mapped reads, withmore » an average of 20.5 million mapped reads per biological replicate, allowing for detection of genes with lower transcript abundance. As the new root samples represent key additions to the previously examined tissues, we highlight insights into the root transcriptome, which is represented by 28,894 (73.2%) annotated genes in maize. Additionally, we observed remarkable expression differences across both the longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the primary root supported by fourfold differential expression of 9353 and 4728 genes, respectively. Among the latter were 1110 genes that encode transcription factors, some of which are orthologs of previously characterized transcription factors known to regulate root development in Arabidopsis thaliana (L.) Heynh., while most are novel, and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. As a result, this comprehensive transcriptome dataset is a powerful tool toward understanding maize development, physiology, and phenotypic diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelpflug, Scott C.; Sekhon, Rajandeep S.; Vaillancourt, Brieanne
Comprehensive and systematic transcriptome profiling provides valuable insight into biological and developmental processes that occur throughout the life cycle of a plant. We have enhanced our previously published microarray-based gene atlas of maize ( Zea mays L.) inbred B73 to now include 79 distinct replicated samples that have been interrogated using RNA sequencing (RNA-seq). The current version of the atlas includes 50 original array-based gene atlas samples, a time-course of 12 stalk and leaf samples postflowering, and an additional set of 17 samples from the maize seedling and adult root system. The entire dataset contains 4.6 billion mapped reads, withmore » an average of 20.5 million mapped reads per biological replicate, allowing for detection of genes with lower transcript abundance. As the new root samples represent key additions to the previously examined tissues, we highlight insights into the root transcriptome, which is represented by 28,894 (73.2%) annotated genes in maize. Additionally, we observed remarkable expression differences across both the longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the primary root supported by fourfold differential expression of 9353 and 4728 genes, respectively. Among the latter were 1110 genes that encode transcription factors, some of which are orthologs of previously characterized transcription factors known to regulate root development in Arabidopsis thaliana (L.) Heynh., while most are novel, and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. As a result, this comprehensive transcriptome dataset is a powerful tool toward understanding maize development, physiology, and phenotypic diversity.« less
Leroux, O.; Bagniewska-Zadworna, A.; Rambe, S. K.; Knox, J. P.; Marcus, S. E.; Bellefroid, E.; Stubbe, D.; Chabbert, B.; Habrant, A.; Claeys, M.; Viane, R. L. L.
2011-01-01
Background and Aims Extraxylary helical cell wall thickenings in vascular plants are not well documented, except for those in orchid velamen tissues which have been studied extensively. Reports on their occurrence in ferns exist, but detailed information is missing. The aim of this study is to focus on the broad patterns of structure and composition and to study the taxonomic occurrence of helical cell wall thickenings in the fern family Aspleniaceae. Methods Structural and compositional aspects of roots have been examined by means of light, electron, epifluorescence and laser scanning confocal microscopy. To assess the taxonomical distribution of helical cell wall thickenings a molecular phylogenetic analysis based on rbcL sequences of 64 taxa was performed. Key Results The helical cell wall thickenings of all examined species showed considerable uniformity of design. The pattern consists of helical, regularly bifurcating and anastomosing strands. Compositionally, the cell wall thickenings were found to be rich in homogalacturonan, cellulose, mannan and xyloglucan. Thioacidolysis confirmed our negative phloroglucinol staining tests, demonstrating the absence of lignins in the root cortex. All taxa with helical cell wall thickenings formed a monophyletic group supported by a 100 % bootstrap value and composed of mainly epiphytic species. Conclusions This is the first report of non-lignified pectin-rich secondary cell walls in ferns. Based on our molecular analysis, we reject the hypothesis of parallel evolution of helical cell wall thickenings in Aspleniaceae. Helical cell wall thickenings can mechanically stabilize the cortex tissue, allowing maximal uptake of water and nutrients during rainfall events. In addition, it can also act as a boundary layer increasing the diffusive pathway towards the atmosphere, preventing desiccation of the stele of epiphytic growing species. PMID:21118842
The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli.
Mochizuki, Susumu; Harada, Akiko; Inada, Sayaka; Sugimoto-Shirasu, Keiko; Stacey, Nicola; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka; Sakai, Tatsuya
2005-02-01
To understand how the direction of root growth changes in response to obstacles, light, and gravity, we characterized an Arabidopsis thaliana mutant, wavy growth 2 (wav2), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The roots of the wav2 mutant bent with larger curvature than those of the wild-type seedlings in wavy growth and in gravitropic and phototropic responses. The cell file rotations of the root epidermis of wav2-1 in the wavy growth pattern were enhanced in both right-handed and left-handed rotations. WAV2 encodes a protein belonging to the BUD EMERGENCE 46 family with a transmembrane domain at the N terminus and an alpha/beta-hydrolase domain at the C terminus. Expression analyses showed that mRNA of WAV2 was expressed strongly in adult plant roots and seedlings, especially in the root tip, the cell elongation zone, and the stele. Our results suggest that WAV2 is not involved in sensing environmental stimuli but that it negatively regulates stimulus-induced root bending through inhibition of root tip rotation.
Hadad, H R; Mufarrege, M M; Pinciroli, M; Di Luca, G A; Maine, M A
2010-04-01
Typha domingensis had become the dominant species after 2 years of operation of a wetland constructed for metallurgical effluent treatment. Therefore, the main purpose of this study was to investigate its ability to tolerate the effluent and to maintain the contaminant removal efficiency of the constructed wetland. Plant, sediment, and water at the inlet and outlet of the constructed wetland and in two natural wetlands were sampled. Metal concentration (Cr, Ni, and Zn) and total phosphorus were significantly higher in tissues of plants growing at the inlet in comparison with those from the outlet and natural wetlands. Even though the chlorophyll concentration was sensitive to effluent toxicity, biomass and plant height at the inlet and outlet were significantly higher than those in the natural wetlands. The highest root and stele cross-sectional areas, number of vessels, and biomass registered in inlet plants promoted the uptake, transport, and accumulation of contaminants in tissues. The modifications recorded accounted for the adaptability of T. domingensis to the conditions prevailing in the constructed wetland, which allowed this plant to become the dominant species and enabled the wetland to maintain a high contaminant retention capacity.
Yuan, Haiyan; Zhang, Yongxia; Huang, Suzhen; Yang, Yongheng; Gu, Chunsun
2015-02-01
Effects of exogenous reduced glutathione (GSH) and cysteine (Cys) on growth, lead (Pb) accumulation, and nonprotein thiol (NPT) contents of Iris lactea var. chinensis under 100 and 500 mg L(-1) Pb stress were studied. Our results showed that 500 mg L(-1) Pb stress caused a dramatical decline in fresh weights, while the reduction of aboveground biomass was alleviated by exogenous GSH and Cys even though keeping higher Pb contents in roots and shoots. Exogenous GSH and Cys could enhance Pb accumulation in the shoots and roots compared with single Pb treatment. The promoting effect of GSH to Pb accumulation was larger than the effect of Cys, and the Pb contents in the shoots and roots treated with 500 mg L(-1) Pb + GSH reached 1,712 and 14,603 mg kg(-1), about 4.19 and 2.78 times of single 500 mg L(-1) Pb treatment, respectively. Microscopic imaging of Pb in roots and leaves showed that higher intensive fluorescence was observed in cell wall of root epidermis, stele, vascular tissues of the roots, and sclerenchyma cells of leaves treated with 500 mg L(-1) Pb + GSH and treated with 500 mg L(-1) Pb + Cys. Exogenous GSH had an apparent promoting effect on root and shoot GSH synthesis, while exogenous Cys reduced the synthesis of cellular GSH in shoot and increased Cys contents. Pb only induced the synthesis of phytochelatin (PC)2 in roots, and the PC2 content declined in GSH- and Cys-treated plant roots. These results suggested that GSH synthesis was a more effective approach to improve Pb accumulation and translocation of I. lactea var. chinensis. Further analysis of protein expression in plants by exogenous GSH and buthionine sulfoximine (BSO) application showed that the proteins regulated by GSH and BSO may constitute various enzymes involved in GSH biosynthesis and play certain roles in Pb accumulation and tolerance of I. lactea var. chinensis.
Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.
2015-01-01
The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914
Phosphate absorption by air-stressed root systems.
Dove, L D
1969-03-01
Root systems from plants grown in nutrient solution were exposed to air and either transferred to fresh nutrient solution containing (32)P-labeled phosphate or placed in a psychrometer to determine their water potential. The amount of (32)P absorbed by maize and soybean roots in the hour following their exposure to air was proportional to their water potential at the time they were transferred. Some cells, probably located in the stele, were more resistant to moisture stress than others. Absorption of (32)P by all cells was severely inhibited by water potentials below-12 to-15 bars. Nearly normal amounts of the radioisotope and total phosphate were absorbed within 72 hr following root exposure of 4 of 5 species of detopped plants; some phosphorus was lost to the nutrient solution. Uptake of (32)P by passive processes was increased slightly by exposure of roots of intact maize plants to air, but the increase did not compensate for the substantial reduction in actively-absorbed (32)P.
Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui
2012-01-17
Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-01-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518
Pin1At regulates PIN1 polar localization and root gravitropism.
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-21
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.
Pin1At regulates PIN1 polar localization and root gravitropism
Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng
2016-01-01
Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759
Halogenated auxins affect microtubules and root elongation in Lactuca sativa
NASA Technical Reports Server (NTRS)
Zhang, N.; Hasenstein, K. H.
2000-01-01
We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.
The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize
NASA Technical Reports Server (NTRS)
Blancaflor, E. B.; Hasenstein, K. H.
1997-01-01
To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Facchini, Peter J.; Penzes-Yost, Catherine; Samanani, Nailish; Kowalchuk, Brett
1998-01-01
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species. PMID:9733527
A stele-enriched gene regulatory network in the Arabidopsis root
Brady, Siobhan M; Zhang, Lifang; Megraw, Molly; Martinez, Natalia J; Jiang, Eric; Yi, Charles S; Liu, Weilin; Zeng, Anna; Taylor-Teeples, Mallorie; Kim, Dahae; Ahnert, Sebastian; Ohler, Uwe; Ware, Doreen; Walhout, Albertha J M; Benfey, Philip N
2011-01-01
Tightly controlled gene expression is a hallmark of multicellular development and is accomplished by transcription factors (TFs) and microRNAs (miRNAs). Although many studies have focused on identifying downstream targets of these molecules, less is known about the factors that regulate their differential expression. We used data from high spatial resolution gene expression experiments and yeast one-hybrid (Y1H) and two-hybrid (Y2H) assays to delineate a subset of interactions occurring within a gene regulatory network (GRN) that determines tissue-specific TF and miRNA expression in plants. We find that upstream TFs are expressed in more diverse cell types than their targets and that promoters that are bound by a relatively large number of TFs correspond to key developmental regulators. The regulatory consequence of many TFs for their target was experimentally determined using genetic analysis. Remarkably, molecular phenotypes were identified for 65% of the TFs, but morphological phenotypes were associated with only 16%. This indicates that the GRN is robust, and that gene expression changes may be canalized or buffered. PMID:21245844
Analysis of AtGUS1 and AtGUS2 in Arabidopsis root apex by a highly sensitive TSA-MISH method.
Bruno, Leonardo; Ronchini, Matteo; Gagliardi, Olimpia; Corinti, Tamara; Chiappetta, Adriana; Gerola, Paolo; Bitonti, Maria B
2015-01-01
A new highly sensitive whole-mount in situ hybridization method, based on tyramide signal amplification (TSA-MISH) was developed and a combined GFP detection and TSA-MISH procedure was applied for the first time in plants, to precisely define the spatial pattern of AtGUS1 and AtGUS2 expression in the root apex. β-glucuronidases (GUSs) belonging to the glycosyl hydrolases (GHs) 79 family, are widely distributed in plants, but their functional role has not yet been fully investigated. In the model system Arabidopsis Thaliana, three different AtGUS genes have been identified which encode proteins with putative different fates. Endogenous GUS expression has been detected in different organs and tissues, but the cyto-histological domains of gene expression remain unclear. The results here reported show co-expression of AtGUS1 and AtGUS2 in different functional zones of the root apex (the cap central zone, the root cap meristem, the staminal cell niche and the cortical cell layers of the proximal meristem), while AtGUS2 is exclusively expressed in the cap peripheral layer and in the epidermis in the elongation zone. Interestingly, both genes are not expressed in the stelar portion of the proximal meristem. A spatial (cortex vs. stele) and temporal (proximal meristem vs. transition zone) regulation of AtGUS1 and AtGUS2 expression is therefore active in the root apex. This expression pattern, although globally consistent with the involvement of GUS activity in both cell proliferation and elongation, clearly indicates that AtGUS1 and AtGUS2 could control distinct downstream process depending on the developmental context and the interaction with other players of root growth control. In the future, the newly developed approaches may well be very useful to dissect such interactions.
Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.; ...
2016-02-10
In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valverde-Barrantes, Oscar J.; Horning, Amber L.; Smemo, Kurt A.
In this study, there is little quantitative information about the relationship between root traits and the extent of arbuscular mycorrhizal fungi (AMF) colonization. We expected that ancestral species with thick roots will maximize AMF habitat by maintaining similar root traits across root orders (i.e., high root trait integration), whereas more derived species are expected to display a sharp transition from acquisition to structural roots. Moreover, we hypothesized that interspecific morphological differences rather than soil conditions will be the main driver of AMF colonization We analyzed 14 root morphological and chemical traits and AMF colonization rates for the first three rootmore » orders of 34 temperate tree species grown in two common gardens. We also collected associated soil to measure the effect of soil conditions on AMF colonization Results Thick-root magnoliids showed less variation in root traits along root orders than more-derived angiosperm groups. Variation in stele:root diameter ratio was the best indicator of AMF colonization within and across root orders. Root functional traits rather than soil conditions largely explained the variation in AMF colonization among species. In conclusion, not only the traits of first order but the entire structuring of the root system varied among plant lineages, suggesting alternative evolutionary strategies of resource acquisition. Understanding evolutionary pathways in below ground organs could open new avenues to understand tree species influence on soil carbon and nutrient cycling.« less
Peer, Wendy Ann; Hosein, Fazeeda N.; Bandyopadhyay, Anindita; Makam, Srinivas N.; Otegui, Marisa S.; Lee, Gil-Je; Blakeslee, Joshua J.; Cheng, Yan; Titapiwatanakun, Boosaree; Yakubov, Bahktiyor; Bangari, Bharat; Murphy, Angus S.
2009-01-01
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A–sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA. PMID:19531600
Response to gravity by Zea mays seedlings. I. Time course of the response
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.
1984-01-01
Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.
Cellular responses to endogenous electrochemical gradients in morphological development
NASA Technical Reports Server (NTRS)
Desrosiers, M. F.
1996-01-01
Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.
Ku, Amy Tsu; Huang, Yi-Shiuan; Wang, Yu-Shu; Ma, Daifu; Yeh, Kai-Wun
2008-01-01
Background and Aims The tuberization mechanism of sweet potato (Ipomoea batatas) has long been studied using various approaches. Morphological data have revealed that the tuberizing events result from the activation of the cambium, followed by cell proliferation. However, uncertainties still remain regarding the regulators participating in this signal-transduction pathway. An attempt was made to characterize the role of one MADS-box transcription factor, which was preferentially expressed in sweet potato roots at the early tuberization stage. Methods A differential expression level of IbMADS1 (Ipomoea batatas MADS-box 1) was detected temporally and spatially in sweet potato tissues. IbMADS1 responses to tuberization-related hormones were assessed. In order to identify the evolutionary significance, the expression pattern of IbMADS1 was surveyed in two tuber-deficient Ipomoea relatives, I. leucantha and I. trifida, and compared with sweet potato. In functional analyses, potato (Solanum tuberosum) was employed as a heterologous model. The resulting tuber morphogenesis was examined anatomically in order to address the physiological function of IbMADS1, which should act similarly in sweet potato. Key Results IbMADS1 was preferentially expressed as tuberous root development proceeded. Its expression was inducible by tuberization-related hormones, such as jasmonic acid and cytokinins. In situ hybridization data showed that IbMADS1 transcripts were specifically distributed around immature meristematic cells within the stele and lateral root primordia. Inter-species examination indicated that IbMADS1 expression was relatively active in sweet potato roots, but undetectable in tuber-deficient Ipomoea species. IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots. The partial swellings along fibrous roots were mainly due to anomalous proliferation and differentiation in the xylem. Conclusions Based on this study, it is proposed that IbMADS1 is an important integrator at the initiation of tuberization. As a result, the initiation and development of tuberous roots seems to be well regulated by a network involving a MADS-box gene in which such hormones as jasmonic acid and cytokinins may act as trigger factors. PMID:18463111
Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru
2014-06-01
Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis
2013-03-01
Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.
1996-01-01
Al localization was compared in three developmental regions of primary root of an Al-sensitive soybean (Glycine max) genotype using secondary ion mass spectrometry. In cryosections obtained after a 4-h exposure to 38 [mu]M [Al3+], Al had penetrated across the root and into the stele in all three regions. Although the greatest localized Al concentration was consistently at the root periphery, the majority of the Al in each region had accumulated in cortical cells. It was apparent that the secondary ion mass spectrometry 27Al+ mass signal was spread throughout the intracellular area and was not particularly intense in the cell wall. Inclusion of some cell wall in determinations of the Al levels across the root radius necessitated that these serve as minimal estimates for intracellular Al. Total accumulation of intracellular Al for each region was 60, 73, and 210 nmol g-1 fresh weight after 4 h, increasing with root development. Early metabolic responses to external Al, including those that have been reported deep inside the root and in mature regions, might result directly from intracellular Al. These responses might include ion transport events at the endodermis of mature roots or events associated with lateral root emergence, as well as events within the root tip. PMID:12226447
Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.
2000-01-01
This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.
Eucalypt NADP-Dependent Isocitrate Dehydrogenase1
Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis
1998-01-01
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536
Liu, Xiaozhu; Zhang, Yan; Yang, Chao; Tian, Zhihong; Li, Jianxiong
2016-01-01
Plants transport photoassimilates from source organs to sink tissues through the phloem translocation pathway. In the transport phloem, sugars that escape from the sieve tubes are released into the apoplasmic space between the sieve element/companion cell complex (SE/CC) and phloem parenchyma cells (PPCs) during the process of long-distance transport. The competition for sugar acquisition between SE/CC and adjoining PPCs is mediated by plasma membrane translocators. YFP-tagged AtSWEET4 protein is localized in the plasma membrane, and PromoterAtSWEET4-GUS analysis showed that AtSWEET4 is expressed in the stele of roots and veins of leaves and flowers. Overexpression of AtSWEET4 in Arabidopsis increases plant size and accumulates more glucose and fructose. By contrast, knock-down of AtSWEET4 by RNA-interference leads to small plant size, reduction in glucose and fructose contents, chlorosis in the leaf vein network, and reduction in chlorophyll content in leaves. Yeast assays demonstrated that AtSWEET4 is able to complement both fructose and glucose transport deficiency. Transgenic plants of AtSWEET4 overexpression exhibit higher freezing tolerance and support more growth of bacterium Pseudomonas syringae pv. phaseolicola NPS3121. We conclude that AtSWEET4 plays an important role in mediating sugar transport in axial tissues during plant growth and development. PMID:27102826
The mechanism by which an asymmetric distribution of plant growth hormone is attained
NASA Astrophysics Data System (ADS)
Bandurski, Robert S.; Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Epel, Bernard; Kowalczyk, Stanley
Zea mays (sweet corn) seedlings attain an asymmetric distribution of the growth hormone indole-3-acetic acid (IAA) within 3 minutes following a gravity stimulus. Both free and esterified IAA (that is total IAA) accumulate to a greater extent in the lower half of the mesocotyl cortex of a horizontally placed seedling than in the upper half. Thus, changes in the ratio of free IAA to ester IAA cannot account for the asymmetric distribution. Our studies demonstrate there is no de novo synthesis of IAA in young seedlings. We conclude that asymmetric IAA distribution is attained by a gravity-induced, potential-regulated gating of the movement of IAA from kernel to shoot and from stele to cortex. As a working theory, which we call the Potential Gating Theory, we propose that perturbation of the plant's bioelectric field, induced by gravity, causes opening and closing of transport channels in the plasmodesmata connecting the vascular stele to the surrounding cortical tissues. This results in asymmetric growth hormone distribution which results in the asymmetric growth characteristic of the gravitropic response.
Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong
2016-01-01
The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301
Shimamura, Satoshi; Yamamoto, Ryo; Nakamura, Takuji; Shimada, Shinji; Komatsu, Setsuko
2010-08-01
Aerenchyma provides a low-resistance O(2) transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O(2) dynamics in stem aerenchyma and evaluate O(2) supply via stem lenticels to the roots of soybean during soil flooding. Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O(2) microelectrodes, and O(2) transport to roots was evaluated using stable-isotope (18)O(2) as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO(2) via the stem lenticels. The radial distribution of the O(2) partial pressure (pO(2)) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200-300 microm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO(2) in stem aerenchyma from 17.5 to 7.6 kPa at 13 mm below the water level, and from 14.7 to 6.1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO(2) to increase again to 14-17 kPa at both positions within 10 min. After introducing (18)O(2) gas via the stem lenticels, significant (18)O(2) enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O(2) sustained root respiration. In contrast, slight (18)O(2) enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO(2) from submerged tissues to the atmosphere. Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O(2), and these connect to aerenchyma and enable O(2) transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a 'snorkel' that enables O(2) movement from air to the submerged roots.
Gunse, B.; Poschenrieder, C.; Barcelo, J.
1997-01-01
Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques. PMID:12223628
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung
2018-01-01
The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Chen, Feng; Ro, Dae-Kyun; Petri, Jana; Gershenzon, Jonathan; Bohlmann, Jörg; Pichersky, Eran; Tholl, Dorothea
2004-01-01
Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively low Km value for geranyl diphosphate of 0.2 μm. At3g25820/At3g25830 promoter activity, measured with a β-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47–58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-β-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are ongoing processes within the Arabidopsis TPS family. PMID:15299125
Root development and structure in seedlings of Ginkgo biloba.
Bonacorsi, Nikole K; Seago, James L
2016-02-01
The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.
1989-05-31
8,,000_ 01857S3’ 387 ,010 038,200’ 3,0 6,610 2,660,639 BIOS CORN... STELE SCSCRA--------------------------------------------------------------------------------------61,98 5 1,856 160,367 TENNE3SEE RIVER, 7199., ALA...STEEL PRLARY FORMS-----------------------------------------------------------------------------3 8,33,096---------- 3337 I1O0 AND STELE PIPEI ANDATND E
Li, Bo; Byrt, Caitlin; Qiu, Jiaen; Baumann, Ute; Hrmova, Maria; Evrard, Aurelie; Johnson, Alexander A T; Birnbaum, Kenneth D; Mayo, Gwenda M; Jha, Deepa; Henderson, Sam W; Tester, Mark; Gilliham, Mathew; Roy, Stuart J
2016-02-01
Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl(-)) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl(-) xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl(-) efflux out of cells and was much less permeable to NO3(-). Shoot Cl(-) accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl(-) in plants, playing a role in the loading and the regulation of Cl(-) loading into the xylem of Arabidopsis roots during salinity stress. © 2016 American Society of Plant Biologists. All Rights Reserved.
Schat, Henk; Aarts, Mark G. M.
2016-01-01
Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473
Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank
2015-01-01
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256
AtPIN2 defines a locus of Arabidopsis for root gravitropism control.
Müller, A; Guan, C; Gälweiler, L; Tänzler, P; Huijser, P; Marchant, A; Parry, G; Bennett, M; Wisman, E; Palme, K
1998-01-01
The molecular mechanisms underlying gravity perception and signal transduction which control asymmetric plant growth responses are as yet unknown, but are likely to depend on the directional flux of the plant hormone auxin. We have isolated an Arabidopsis mutant of the AtPIN2 gene using transposon mutagenesis. Roots of the Atpin2::En701 null-mutant were agravitropic and showed altered auxin sensitivity, a phenotype characteristic of the agravitropic wav6-52 mutant. The AtPIN2 gene was mapped to chromosome 5 (115.3 cM) corresponding to the WAV6 locus and subsequent genetic analysis indicated that wav6-52 and Atpin2::En701 were allelic. The AtPIN2 gene consists of nine exons defining an open reading frame of 1944 bp which encodes a 69 kDa protein with 10 putative transmembrane domains interrupted by a central hydrophilic loop. The topology of AtPIN2p was found to be similar to members of the major facilitator superfamily of transport proteins. We have shown that the AtPIN2 gene was expressed in root tips. The AtPIN2 protein was localized in membranes of root cortical and epidermal cells in the meristematic and elongation zones revealing a polar localization. These results suggest that AtPIN2 plays an important role in control of gravitropism regulating the redistribution of auxin from the stele towards the elongation zone of roots. PMID:9843496
Root xylem plasticity to improve water use and yield in water-stressed soybean
Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover
2017-01-01
Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176
Storms in Ancient Egypt: the Examples of Historical Natural Disasters Impacts on the Society
NASA Astrophysics Data System (ADS)
Petrova, Anastasia
2013-04-01
Though rain storms are infrequent in Egypt, which is normally a rainless country, some Ancient Egyptian texts give accounts of violent storms and rains. Actually, even small amounts of rain in that area could cause huge impact, as none of the water was absorbed by soil, and, running off, it could create dangerous torrents. The Tempest stele, circa 1550 BC, recounts a highly destructive storm happened during the reign of Ahmose I, the king of Egypt's 18 dynasty. The catastrophy is described in details, including the specific noise, overall darkness, torrent so that no torch could be lit. Many houses were washed into the river, temples, tombs and pyramids damaged and collapsed. The stele commemorates the restoration works made by the king who was able to cope with this great disaster and "re-establish the Two Lands". Some egyptologists believe that this event is related to the Minoan eruption of Thera, but this is unlikely given the description in the stele.
Mustroph, Angelika; Bailey-Serres, Julia
2010-03-01
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.
Tang, Zhong; Fan, Xiaorong; Li, Qing; Feng, Huimin; Miller, Anthony J.; Shen, Qirong; Xu, Guohua
2012-01-01
Root nitrate uptake is well known to adjust to the plant’s nitrogen demand for growth. Long-distance transport and/or root storage pools are thought to provide negative feedback signals regulating root uptake. We have characterized a vascular specific nitrate transporter belonging to the high-affinity Nitrate Transporter2 (NRT2) family, OsNRT2.3a, in rice (Oryza sativa ssp. japonica ‘Nipponbare’). Localization analyses using protoplast expression, in planta promoter-β-glucuronidase assay, and in situ hybridization showed that OsNRT2.3a was located in the plasma membrane and mainly expressed in xylem parenchyma cells of the stele of nitrate-supplied roots. Knockdown expression of OsNRT2.3a by RNA interference (RNAi) had impaired xylem loading of nitrate and decreased plant growth at low (0.5 mm) nitrate supply. In comparison with the wild type, the RNAi lines contained both nitrate and total nitrogen significantly higher in the roots and lower in the shoots. The short-term [15N]NO3− influx (5 min) in entire roots and NO3− fluxes in root surfaces showed that the knockdown of OsNRT2.3a in comparison with the wild type did not affect nitrate uptake by roots. The RNAi plants showed no significant changes in the expression of some root nitrate transporters (OsNRT2.3b, OsNRT2.4, and OsNAR2.1), but transcripts for nia1 (nitrate reductase) had increased and OsNRT2.1 and OsNRT2.2 had decreased when the plants were supplied with nitrate. Taken together, the data demonstrate that OsNRT2.3a plays a key role in long-distance nitrate transport from root to shoot at low nitrate supply level in rice. PMID:23093362
Hernandez, Mercedes; Fernandez-Garcia, Nieves; Diaz-Vivancos, Pedro; Olmos, Enrique
2010-01-01
Salinity affects normal growth and development of plants depending on their capacity to overcome the induced stress. The present study was focused on the response and regulation of the antioxidant defence system in Brassica oleracea roots under short and long salt treatments. The function and the implications of hydrogen peroxide as a stressor or as a signalling molecule were also studied. Two different zones were analysed—the elongation and differentiation zone and the fully differentiated root zone—in order to broaden the knowledge of the different effects of salt stress in root. In general, an accumulation of hydrogen peroxide was observed in both zones at the highest (80 mM NaCl) concentration. A higher accumulation of hydrogen peroxide was observed in the stele of salt-treated roots. At the subcellular level, mitochondria accumulated hydrogen peroxide in salt-treated roots. The results confirm a drastic decrease in the antioxidant enzymes catalase, ascorbate peroxidase, and peroxidases under short salt treatments. However, catalase and peroxidase activities were recovered under long salt stress treatments. The two antioxidant molecules analysed, ascorbate and glutathione, showed a different trend during salt treatments. Ascorbate was progressively accumulated and its redox state maintained, but glutathione was highly accumulated at 24 h of salt treatment, but then its concentration and redox state progressively decreased. Concomitantly, the antioxidant enzymes involved in ascorbate and glutathione regeneration were modified under salt stress treatments. In conclusion, the increase in ascorbate levels and the maintenance of the redox state seem to be critical for root growth and development under salt stress. PMID:19906795
Gustin, Marie-Paule; Molnar, Attila; Oparka, Karl J.
2016-01-01
In addition to moving sugars and nutrients, the phloem transports many macromolecules. While grafting and aphid stylectomy experiments have identified many macromolecules that move in the phloem, the functional significance of phloem transport of these remains unclear. To gain insight into protein trafficking, we micrografted Arabidopsis thaliana scions expressing GFP-tagged chloroplast transit peptides under the 35S promoter onto nontransgenic rootstocks. We found that plastids in the root tip became fluorescent 10 d after grafting. We obtained identical results with the companion cell-specific promoter SUC2 and with signals that target proteins to peroxisomes, actin, and the nucleus. We were unable to detect the respective mRNAs in the rootstock, indicating extensive movement of proteins in the phloem. Outward movement from the root protophloem was restricted to the pericycle-endodermis boundary, identifying plasmodesmata at this interface as control points in the exchange of macromolecules between stele and cortex. Intriguingly, signals directing proteins to the endoplasmic reticulum and Golgi apparatus from membrane-bound ribosomes were not translocated to the root. It appears that many organelle-targeting sequences are insufficient to prevent the loss of their proteins into the translocation stream. Thus, nonspecific loss of proteins from companion cells to sieve elements may explain the plethora of macromolecules identified in phloem sap. PMID:27600534
Hubel, F.; Beck, E.
1996-01-01
Three phytase (EC 3.1.3.26) isoforms from the roots of 8-d-old maize (Zea mays L. var Consul) seedlings were separated from phosphatases and purified to near homogeneity. The molecular mass of the native protein was 71 kD, and the isoelectric points of the three isoforms were pH 5.0, 4.9, and 4.8. Each of the three isoforms consisted of two subunits with a molecular mass of 38 kD. The temperature and pH optima (40[deg]C, pH 5.0) of these three isoforms, as well as the apparent Michaelis constants for sodium inositol hexakisphosphate (phytate) (43, 25, and 24 [mu]M) as determined by the release of inorganic phosphate, were only slightly different. Phytate concentrations higher than 300 [mu]M were inhibitory to all three isoforms. In contrast, the dephosphorylation of 4-nitrophenyl phosphate was not inhibited by any substrate concentration, but the Michaelis constants for this substrate were considerably higher (137-157 [mu]M). Hydrolysis of phytate by the phytase isoforms is a nonrandom reaction. D/L-Inositol-1,2,3,4,5- pentakisphosphate was identified as the first and D/L-inositol-1,2,5,6-tetrakisphosphate as the second intermediate in phytate hydrolysis. Phytase activity was localized in root slices. Although phosphatase activity was present in the stele and the cortex of the primary root, phytase activity was confined to the endodermis. Phytate was identified as the putative native substrate in maize roots (45 [mu]g P g-1 dry matter). It was readily labeled upon supplying [32P]phosphate to the roots. PMID:12226456
Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang
2004-01-01
There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372
Garcia-Valles, Maite; Aulinas, Meritxell; López-Melción, Joan B; Moya-Garra, Andreu
2010-08-01
Weathering patinas in rocks are the result of interaction processes between rock surfaces and atmosphere, biosphere and soil. Therefore, their textural and mineral composition is strongly related to environmental and bioactivity conditions. Whereas the development of weathering patinas in atmospheric conditions is well documented (e.g. typical Mediterranean patina), only very few studies focus on their formation in a burial environment. Our study of patinas developed on the tumular structure of Reguers de Seró deals with the knowledge of burial patinas from a textural and mineralogical point of view. The aims of this study include: (1) the characterisation of the rock used in this megalithic monument as well as inferences regarding the origin of the raw material; (2) the evaluation of the patinas developed on the surface of the carved steles; and (3) the discussion of the environmental conditions (atmospheric or burial) that favoured the development of the patinas. Whole rock and related patinas (powdered samples and small single pieces) were carefully sampled in five of the seven Neolithic steles discovered during a municipal excavation. Some whole rock samples from the surrounding outcrops were also collected in order to correlate them with the stone forming the megalith. Samples were analysed macroscopically, using a glass binocular, and microscopically, by means of a polarising light microscope and a scanning electron microscope (SEM-EDAX). The mineralogical composition was determined by X-ray diffraction, and a colorimetric analysis was also carried out in all the sampled patinas. The obtained results evidence a strong textural and mineralogical correlation between the whole rock of the megalith and the collected samples of the nearby outcrops; both are classified as calcarenite. A uniformly distributed beige-orange patina (35-100 microm thick) covering the surface of the steles modifies their aspect. A layer of calcite (micrite) with granular texture was detected in all the sampled patinas, being the main mineral compositions (approximately 60-90%). In contrast, a discontinuous external layer (25-50 microm thick) of botryoidally gypsum occurs on only a few patinas. SEM-EDAX analyses evidenced that Ca is related to several processes, including inorganic processes, as well as to minor bioactivity. The textural and mineralogical characteristics of the Reguers patinas differ from typical Mediterranean patina sequences, suggesting different environmental conditions for their formation. Several arguments supporting the formation of the Reguers patinas in a burial environment include: (1) patinas cover the entire surface of the steles, iconograhic motifs and fractures. The uniform colour, texture and composition of the patinas throughout the steles suggests their development after the construction of the megalithic tomb during a period in which the archaeological site was buried and sealed by the products of the Senill ravine; (2) the absence of heavy metals mainly contained in flying ashes and other depositions from atmospheric dust and pollutants in the micritic patina; (3) non-appearance of minerals directly formed by biological activity (i.e. oxalates and phosphates); (4) the absence of a well-defined textural sequence (typically of the Mediterranean area) already defined for patinas developed in an atmospheric environment; and (5) the discontinuous occurrence of an external gypsum layer (only present in a few samples) without the presence of the typical spherules related to atmospheric particulate matter. The petrographic characteristics of the Neolithic steles of Reguers de Seró show that the raw material came from a nearby outcrop. The formation of beige-orange patinas is related to a burial environment attending their textural and mineralogical features. The protective role played by these patinas indicates that no previous treatment of such steles would be necessary on an eventual exhibition in atmospheric conditions. Further in-depth studies, similar to those that already exist for patinas developed in atmospheric conditions, are recommended in order to better define the petrographic characteristics and mechanisms on the formation of patinas in burial environments.
A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.
Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian
2016-07-01
Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. © 2016 American Society of Plant Biologists. All Rights Reserved.
Spatiotemporal deep imaging of syncytium induced by the soybean cyst nematode Heterodera glycines.
Ohtsu, Mina; Sato, Yoshikatsu; Kurihara, Daisuke; Suzaki, Takuya; Kawaguchi, Masayoshi; Maruyama, Daisuke; Higashiyama, Tetsuya
2017-11-01
Parasite infections cause dramatic anatomical and ultrastructural changes in host plants. Cyst nematodes are parasites that invade host roots and induce a specific feeding structure called a syncytium. A syncytium is a large multinucleate cell formed by cell wall dissolution-mediated cell fusion. The soybean cyst nematode (SCN), Heterodera glycines, is a major soybean pathogen. To investigate SCN infection and the syncytium structure, we established an in planta deep imaging system using a clearing solution ClearSee and two-photon excitation microscopy (2PEM). Using this system, we found that several cells were incorporated into the syncytium; the nuclei increased in size and the cell wall openings began to be visible at 2 days after inoculation (DAI). Moreover, at 14 DAI, in the syncytium developed in the cortex, there were thickened concave cell wall pillars that resembled "Parthenon pillars." In contrast, there were many thick board-like cell walls and rarely Parthenon pillars in the syncytium developed in the stele. We revealed that the syncytia were classified into two types based on the pattern of the cell wall structures, which appeared to be determined by the position of the syncytium inside roots. Our results provide new insights into the developmental process of syncytium induced by cyst nematode and a better understanding of the three-dimensional structure of the syncytium in host roots.
Kim, Yoon-Ha; Hwang, Sun-Joo; Waqas, Muhammad; Khan, Abdul L.; Lee, Joon-Hee; Lee, Jeong-Dong; Nguyen, Henry T.; Lee, In-Jung
2015-01-01
Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL. PMID:26442028
Ponert, Jan; Trávníček, Pavel; Vuong, Truong Ba; Rybková, Romana; Suda, Jan
2016-01-01
A new species, Cleisostoma yersinii J. Ponert & Vuong, is described and illustrated based on the material collected in the Hon Ba Nature Reserve in southern Vietnam. In addition to conventional (macro)morphological examination we comparatively investigated root and leaf anatomy (using light and fluorescent microscopy), assessed nectar characteristics (using HPLC analysis), determined nuclear genome size (using DNA flow cytometry) and reconstructed phylogenetic relationships (using nrITS sequences). Cleisostoma yersinii differs from its putative closest relative C. birmanicum in wider and shorter leaves, larger flowers, distinct lip with S-shaped tip of the mid-lobe, and a shallow spur with two large nectar sacks separated by prominent calli and septum. Nectar is sucrose-dominant and very rich in sugars. Stomata are developed on both sides of the leaf and have prominent hyperstomatal chambers and substomatal cavities. Roots with well-developed exodermis and tracheoidal idioblasts are covered by a two-layer Vanda-type velamen. Chloroplasts occur not only in the cortex but are also abundant in the stele. Mean 1C-value was estimated to 2.57 pg DNA. An updated identification key is provided for SE Asian sections and all Vietnamese species of Cleisostoma. PMID:27008538
Govindarajan, Munusamy; Balandreau, Jacques; Kwon, Soon-Wo; Weon, Hang-Yeon; Lakshminarasimhan, Cunthipuram
2008-01-01
During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some "endophytes" were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using (15)N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.
Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato
Bae, Jung Myung
2013-01-01
The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants. PMID:22945944
Wang, Shiow Y; Millner, Patricia
2009-10-28
The effect of cultivation practices for controlling strawberry black root rot (BRR) on fruit quality, antioxidant capacity, and flavonoid content in two strawberry cultivars Allstar and Chandler (Fragaria x ananassa Duch.) was evaluated. Strawberry fruits used in this study were from plants grown in soils which had a prior history of BRR and red stele, and had not been fumigated during the seven years prior to the study. Results from this study showed that fruit from plants grown in compost socks had significantly higher oxygen radical absorbance capacity (ORAC), flavonoids, anthocyanins, soluble solids content (SSC), titratable acid (TA), fructose, glucose, sucrose, malic acid, and citric acid than fruit produced in the black plastic mulch or matted row systems. Cultivar Chandler surpassed cv. Allstar in sugar content, acid content, and flavonoid content regardless of preplanting vinegar drenching and various culture treatments. However, preplanting vinegar treatment increased cyanidin-based and pelargonidin-based anthocyanins but decreased sugar content in fruits of both cultivars.
de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth
2014-01-01
Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.
Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua
2015-04-01
In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
Ranathunge, Kosala; Steudle, Ernst; Lafitte, Renee
2003-06-01
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.
The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.
Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew
2014-11-01
Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Henderson, Sam W.; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H.; Walker, Amanda R.; Tyerman, Stephen D.; Walker, Rob R.; Gilliham, Matthew
2015-01-01
Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102
Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong
2016-09-01
Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall components.
Biocompatibility of root-end filling materials: recent update
Gupta, Saurabh Kumar; Newaskar, Vilas
2013-01-01
The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077
Curlango-Rivera, Gilberto
2011-01-01
Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030
Cytological and ultrastructural studies on root tissues
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Gaynor, J. J.; Galston, A. W.
1984-01-01
The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.
Utilizing collagen membranes for guided tissue regeneration-based root coverage.
Wang, Hom-Lay; Modarressi, Marmar; Fu, Jia-Hui
2012-06-01
Gingival recession is a common clinical problem that can result in hypersensitivity, pain, root caries and esthetic concerns. Conventional soft tissue procedures for root coverage require an additional surgical site, thereby causing additional trauma and donor site morbidity. In addition, the grafted tissues heal by repair, with formation of long junctional epithelium with some connective tissue attachment. Guided tissue regeneration-based root coverage was thus developed in an attempt to overcome these limitations while providing comparable clinical results. This paper addresses the biologic foundation of guided tissue regeneration-based root coverage, and describes the indications and contraindications for this technique, as well as the factors that influence outcomes. The step-by-step clinical techniques utilizing collagen membranes are also described. In comparison with conventional soft tissue procedures, the benefits of guided tissue regeneration-based root coverage procedures include new attachment formation, elimination of donor site morbidity, less chair-time, and unlimited availability and uniform thickness of the product. Collagen membranes, in particular, benefit from product biocompatibility with the host, while promoting chemotaxis, hemostasis, and exchange of gas and nutrients. Such characteristics lead to better wound healing by promoting primary wound coverage, angiogenesis, space creation and maintenance, and clot stability. In conclusion, collagen membranes are a reliable alternative for use in root coverage procedures. © 2012 John Wiley & Sons A/S.
Laser Eye Protection Groupware Application Information System
1998-11-01
Q^ Concenlralion ^ Data & Program Res ■>i Excfted Stele Cross-Section ’^> EKtrnction Coefficient ^s Ground Stale Cross-Section ?> Reference...2nd Level (2nd column) 4 Chemical Compound Bio material name 3nd Level (3rd column) 4th Level (4th column) Figure 14A. Reference Date View
Valenzuela-Estrada, Luis R.; Richards, James H.; Diaz, Andres; Eissensat, David M.
2009-01-01
Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. ‘Bluecrop’ (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about –1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species. PMID:19188275
Valenzuela-Estrada, Luis R; Richards, James H; Diaz, Andres; Eissensat, David M
2009-01-01
Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. 'Bluecrop' (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about -1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species.
Moore, Randy; Pasieniuk, John
1984-01-01
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818
Yoshinari, Akira; Fujimoto, Masaru; Ueda, Takashi; Inada, Noriko; Naito, Satoshi; Takano, Junpei
2016-09-01
Boron (B) is essential for plants but toxic in excess. The borate efflux transporter BOR1 is expressed in various root cells and localized to the inner/stele-side domain of the plasma membrane (PM) under low-B conditions. BOR1 is rapidly degraded through endocytosis upon sufficient B supply. The polar localization and degradation of BOR1 are considered important for efficient B translocation and avoidance of B toxicity, respectively. In this study, we first analyzed the subcellular localization of BOR1 in roots, cotyledons and hypocotyls, and revealed a polar localization in various cell types. We also found that the inner polarity of BOR1 is established after completion of cytokinesis in the root meristem. Moreover, variable-angle epifluorescence microscopy visualized BOR1-green fluorescent protein (GFP) as particles in the PM with significant lateral movements but in restricted areas. Importantly, a portion of BOR1-GFP particles co-localized with DYNAMIN-RELATED PROTEIN 1A (DRP1A), which is involved in scission of the clathrin-coated vesicles, and they disappeared together from the PM. To examine the contribution of DRP1A-mediated endocytosis to BOR1 localization and degradation, we developed an inducible expression system of the DRP1A K47A variant. The DRP1A variant prolonged the residence time of clathrin on the PM and inhibited endocytosis of membrane lipids. The dominant-negative DRP1A blocked endocytosis of BOR1 and disturbed its polar localization and B-induced degradation. Our results provided insight into the endocytic mechanisms that modulate the subcellular localization and abundance of a mineral transporter for nutrient homeostasis in plant cells. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste
2004-12-01
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.
NASA Technical Reports Server (NTRS)
Moore, R.
1985-01-01
Roots of Allium cepa L. cv. Yellow are differentially responsive to gravity. Long (e.g. 40 mm) roots are strongly graviresponsive, while short (c.g. 4 mm) roots are minimally responsive to gravity. Although columella cells of graviresponsive roots are larger than those of nongraviresponsive roots, they partition their volumes to cellular organelles similarly. The movement of amyloplasts and nuclei in columella cells of horizontally-oriented roots correlates positively with the onset of gravicurvature. Furthermore, there is no significant difference in the rates of organellar redistribution when graviresponsive and nongraviresponsive roots are oriented horizontally. The more pronounced graviresponsiveness of longer roots correlates positively with (1) their caps being 9-6 times more voluminous, (2) their columella tissues being 42 times more voluminous, (3) their caps having 15 times more columella cells, and (4) their columella tissues having relative volumes 4.4 times larger than those of shorter, nongraviresponsive roots. Graviresponsive roots that are oriented horizontally are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side, while similarly oriented nongraviresponsive roots exhibit only a minimal polar transport of 45Ca2+. These results indicate that the differential graviresponsiveness of roots of A. cepa is probably not due to either (1) ultrastructural differences in their columella cells, (2) differences in the rates of organellar redistribution when roots are oriented horizontally. Rather, these results indicate the graviresponsiveness may require an extensive columella tissue, which, in turn, may be necessary for polar movement of 45Ca2+ across the root tip.
Death of Root Tissues in Standing [Live] and Felled Loblolly Pines
Charles H. Walkinshaw
1999-01-01
Recycling tree root components is important in sustaining the productivity of southern pine forests. Death of outer cortical tissues and mortality of short roots is ubiquitous in conifers. Affected tissues lose their starch grains and accumulate secondary products, such as tannins. In this study, 10-year-old loblolly pine trees were cut at the soil surface and...
Attempts to Localize and Identify the Gravity-sensing Device of Plant Seedlings
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Momonoki, Y.; Desrosiers, M.; Fearn-Desrosiers, D.
1985-01-01
The growth hormone asymmetry develops within three minutes following the initiation of the gravitational asymmetry and radio-labeled compounds being transported from the seed to the shoot also show asymmetric distribution. It is found that the target of the gravity stimulus resides primarily in the permability of the vascular tissue that regulates the supply of hormone to the surrounding tissues. It is hypothesized that the gravitational stimulus induces an asymmetric change in the rate of secretion of the growth hormone, IAA, from the vascular tissue into the surrounding cortical cells. More hormone would be secreted from the vascular stele proximal to the lower side of a horizontally placed plant shoot than from the upper side. This results in more growth hormone in the lower cortical (plus epidermal) cells, and ultimately more growth, such that the plant grows asymmetrically and, ultimately attain its normal vertical orientation. A theory was developed of how plants respond to the gravitational stimulus. The theory is based upon the analytical results concerning the effects of gravity on the distribution of the plant growth hormone, IAA, in both its free and conjugated forms, and upon the effect of the growth stimulis on the distribution of externally applied radio-labeled compounds. Its advantage is that it is testable and that it is built upon solid knowledge of the effects of the gravitational stimulus upon the endogenous growth hormone, IAA, and upon the distribution of externally applied radio-labeled compounds.
Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues.
Massoumi, Mehdi; Krens, Frans A; Visser, Richard G F; De Klerk, Geert-Jan M
2017-01-01
Poor adventitious root (AR) formation is a major obstacle in micropropagation and conventional vegetative propagation of many crops. It is affected by many endogenous and exogenous factors. With respect to endogenous factors, the phase change from juvenile to adult has a major influence on AR formation and rooting is usually much reduced or even fully inhibited in adult tissues. It has been reported that the phase change is characterized by an increase in DNA-methylation and a decrease in the expression of microRNA156 (miR156). In this paper, we examined the effect of azacytidine (AzaC) and miR156 on AR formation in adult and juvenile Arabidopsis tissues. To identify the ontogenetic state researchers have used flowering or leaf morphology. We have used the rootability which allows - in contrast with both other characteristics- to examine the ontogenetic state at the cellular level. Overexpression of miR156 promoted only the rooting of adult tissues indicating that the phase change-associated loss in tissues' competence to develop ARs is also under the control of miR156. Azacytidine inhibits DNA methylation during DNA replication. Azacytidine treatment also promoted AR formation in nonjuvenile tissues but had no or little effect in juvenile tissues. Its addition during seedling growth (by which all tissues become hypomethylated) or during the rooting treatment (by which only those cells become hypomethylated that are generated after taking the explant) are both effective in the promotion of rooting. An AzaC treatment may be useful in tissue culture for crops that are recalcitrant to root. Copyright © 2016 Elsevier GmbH. All rights reserved.
Clematis, Francesca; Viglione, Serena; Beruto, Margherita; Lanzotti, Virginia; Dolci, Paola; Poncet, Christine; Curir, Paolo
2014-09-01
Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4',5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4',5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g(-1) dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final "root manifestation" phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial. Copyright © 2014 Elsevier GmbH. All rights reserved.
Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots
NASA Technical Reports Server (NTRS)
Lin, B. L.; Raghavan, V.
1991-01-01
In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.
Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S
2014-02-01
Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.
308-nm excimer laser in endodontics
NASA Astrophysics Data System (ADS)
Liesenhoff, Tim
1992-06-01
Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.
Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana
Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal
2015-01-01
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296
Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H
2008-02-01
Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.
Gonçalves, Patricia F; Gurgel, Bruno C V; Pimentel, Suzana P; Sallum, Enilson A; Sallum, Antonio W; Casati, Márcio Z; Nociti, Francisco H
2006-06-01
Because the possibility of root cementum preservation as an alternative approach for the treatment of periodontal disease has been demonstrated, this study aimed to histometrically evaluate the effect of root cementum on periodontal regeneration. Bilateral Class III furcation defects were created in dogs, and each dog was randomly assigned to receive one of the following treatments: control (group A): scaling and root planing with the removal of root cementum; or test (group B): removal of soft microbial deposits by polishing the root surface with rubber cups and polishing paste, aiming at maximum cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Four months after treatment, a superior length of new cementum (3.59 +/- 1.67 mm versus 6.20 +/- 2.26 mm; P = 0.008) and new bone (1.86 +/- 1.76 mm versus 4.62 +/- 3.01 mm; P = 0.002) and less soft tissue along the root surface (2.77 +/- 0.79 mm versus 1.10 +/- 1.48 mm; P = 0.020) was observed for group B. Additionally, group B presented a larger area of new bone (P = 0.004) and a smaller area of soft tissue (P = 0.008). Within the limits of this study, root cementum may modulate the healing pattern obtained by guided tissue regeneration in Class III furcation defects.
Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.
Prieto, Pilar; Mercado-Blanco, Jesús
2008-05-01
Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.
Epstein, E; Cohn, E
1971-10-01
The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.
Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier
2012-01-01
Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729
Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier
2012-04-01
Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation.
Hatakeyama, Katsunori; Suwabe, Keita; Tomita, Rubens Norio; Kato, Takeyuki; Nunome, Tsukasa; Fukuoka, Hiroyuki; Matsumoto, Satoru
2013-01-01
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1aG004, cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1aG004 alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1aA9709 encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection. Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024). PMID:23382954
Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas
2017-05-01
Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Li, Ruilong; Tan, Huadong; Zhu, Yaxian; Zhang, Yong
2017-07-01
The polycyclic aromatic hydrocarbons (PAHs) located on the epidermal tissues showed distinctive toxic effects to root, while the retention and distribution of PAHs on mangrove seedlings poorly understood. Our results confirmed that the partition coefficients (K f ) of the PAHs retained on the epidermal tissue of mangrove roots, such as Kandelia obovata, Avicennia marina and Aegiceras corniculatum, were much higher than the Poaceae plants roots, for example wheat and maize (Wild et al., 2005). Moreover, to the parent and alkyl PAHs, a well negative correlation was observed between the surface polarity of these three species of mangrove root and the K f values (p < 0.05). To the N/O/S containing PAHs, these relationships were not obviously due to existing of the π-π, n-π interactions and hydrogen bonding between the N/O/S-containing PAHs and epidermal tissues. The PAHs retained on these three species of mangrove root epidermal tissues formed larger clusters than that of on Poaceae plants, such as wheat and maize (Wild et al., 2005) due to the limitation of the suberization of the root exodermis and endodermis. After exposure of 30 d, rhizo- and endophytic bacteria degraded parts of the N/O/S-containing PAHs to medium-lifetime fluorescence substances. To our knowledge, this is the first time to assess the retention of PAHs on the epidermal tissue of mangrove root, which will improve our understanding of the root uptake PAHs process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved rooting of western white pine shoots from tissue cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerson, H.V.; Mott, R.L.
1982-01-01
Adventitious shoots of Pinus monticola obtained from embryonic tissue were exposed to 4 combinations of growth regulators (6-benzylaminopurine/NAA/IAA/IBA), either continuously for 6 weeks or by pulse treatment for 7 days, followed by 5 weeks culture without growth regulators. After 6 weeks of continuous exposure, rooting of shoots varied between 0 and 20%. Pulse treatment resulted in 40-64% rooting. In paired comparisons pulse treatments always provided better rooting percentages than did constant exposure treatments. Pulse treatments also produced longer (less than 2 mm) roots and more multiple roots.
Regulation of Neurotransmitter Responses in the Central Nervous System
1990-02-05
A~~ C-DSP 6C. ADORtESS tCIY State ad lip CodeA 7b. ADDRESS IYit. Stele end ZIP COO) ~ AJ C 6200 Freeport Centre Boiling Air Force Base P .A1...considered binding (Table 2). significantly different for a p value of :!0.05. Protein concentrations were determined using reagent kits from Bio -Rad (Richmond
Yoshioka, Y; Kurei, S; Machida, Y
2001-06-01
We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.
Cho, Seok Keun; Chung, Hoo Sun; Ryu, Moon Young; Park, Mi Jin; Lee, Myeong Min; Bahk, Young-Yil; Kim, Jungmook; Pai, Hyun Sook; Kim, Woo Taek
2006-01-01
The U-box motif is a conserved domain found in the diverse isoforms of E3 ubiquitin ligase in eukaryotes. From water-stressed hot pepper (Capsicum annuum L. cv Pukang) plants, we isolated C. annuum putative U-box protein 1 (CaPUB1), which encodes a protein containing a single U-box motif in its N-terminal region. In vitro ubiquitination and site-directed mutagenesis assays revealed that CaPUB1 possessed E3 ubiquitin ligase activity and that the U-box motif was indeed essential for its enzyme activity. RNA gel-blot analysis showed that CaPUB1 mRNA was induced rapidly by a broad spectrum of abiotic stresses, including drought, high salinity, cold temperature, and mechanical wounding, but not in response to ethylene, abscisic acid, or a bacterial pathogen, suggesting its role in the early events in the abiotic-related defense response. Because transgenic work was extremely difficult in hot pepper, in this study we overexpressed CaPUB1 in Arabidopsis (Arabidopsis thaliana) to provide cellular information on the function of this gene in the development and plant responses to abiotic stresses. Transgenic Arabidopsis plants that constitutively expressed the CaPUB1 gene under the control of the cauliflower mosaic virus 35S promoter had markedly longer hypocotyls and roots and grew more rapidly than the wild type, leading to an early bolting phenotype. Microscopic analysis showed that 35S∷CaPUB1 roots had increased numbers of small-sized cells, resulting in disordered, highly populated cell layers in the cortex, endodermis, and stele. In addition, CaPUB1-overexpressing plants displayed increased sensitivity to water stress and mild salinity. These results indicate that CaPUB1 is functional in Arabidopsis cells, thereby effectively altering cell and tissue growth and also the response to abiotic stresses. Comparative proteomic analysis showed that the level of RPN6 protein, a non-ATPase subunit of the 26S proteasome complex, was significantly reduced in 35S∷CaPUB1 seedlings as compared to the wild type. Pull-down and ubiquitination assays demonstrated that RPN6 interacted physically with CaPUB1 and was ubiquitinated in a CaPUB1-dependent manner in vitro. Although the physiological function of CaPUB1 is not yet clear, there are several possibilities for its involvement in a subset of physiological responses to counteract dehydration and high-salinity stresses in transgenic Arabidopsis seedlings. PMID:17041029
Shen, J Y; Ma, Q; Yang, Z B; Gong, J J; Wu, Y S
2017-09-20
Objective: To observe the effects of arnebia root oil on wound healing of rats with full-thickness skin defect, and to explore the related mechanism. Methods: Eighty SD rats were divided into arnebia root oil group and control group according to the random number table, with 40 rats in each group, then full-thickness skin wounds with area of 3 cm×3 cm were inflicted on the back of each rat. Wounds of rats in arnebia root oil group and control group were treated with sterile medical gauze and bandage package infiltrated with arnebia root oil gauze or Vaseline gauze, respectively, with dressing change of once every two days. On post injury day (PID) 3, 7, 14, and 21, 10 rats in each group were sacrificed respectively for general observation and calculation of wound healing rate. The tissue samples of unhealed wound were collected for observation of histomorphological change with HE staining, observation of expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) with immunohistochemical staining, and determination of mRNA expressions of VEGF and bFGF with real time fluorescent quantitive reverse transcription polymerase chain reaction. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) On PID 3, there were a few secretions in wounds of rats in the two groups. On PID 7, there were fewer secretions and more granulation tissue in wounds of rats in arnebia root oil group, while there were more secretions and less granulation tissue in wounds of rats in control group. On PID 14, most of the wounds of rats in arnebia root oil group were healed and there was much red granulation tissue in unhealed wounds, while part of wounds of rats in control group was healed and there were a few secretions and less granulation tissue in unhealed wounds. On PID 21, wounds of rats in arnebia root oil group were basically healed, while there were still some unhealed wounds of rats in control group. (2) On PID 3 and 7, the wound healing rates of rats in arnebia root oil group were (39±5)% and (46±4)% respectively, which were close to (34±3)% and (44±4)% of rats in control group (with t values respectively 0.807 and 0.481, P values above 0.05). On PID 14 and 21, the wound healing rates of rats in arnebia root oil group were (76±4)% and (90±3)% respectively, which were significantly higher than (60±6)% and (73±5)% of rats in control group (with t values respectively 2.308 and 3.072, P <0.05 or P <0.01). (3) On PID 3, 7, and 14, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually increased, and more ranulation tissue, fibroblasts, and nascent capillaries were seen in unhealed wound tissue of rats in arnebia root oil group. On PID 21, granulation tissue, fibroblasts, and nascent capillaries in unhealed wound tissue of rats in the two groups both gradually decreased. (4) On PID 3, 7, and 14, the numbers of VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in the two groups both gradually increased; there were more VEGF positive cells and bFGF positive cells in unhealed wound tissue of rats in arnebia root oil group than those in control group. On PID 21, positive expressions of VEGF and bFGF both decreased in unhealed wound tissue of rats in the two groups. (5) On PID 3, 7, and 14, mRNA expressions of VEGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.967 to 4.173, P values below 0.01). On PID 21, mRNA expression of VEGF in unhealed wound tissue of rats in arnebia root oil group was lower than that of control group ( t =-4.786, P <0.001). From PID 3 to 21, mRNA expressions of bFGF in unhealed wound tissue of rats in arnebia root oil group were higher than those of control group (with t values from 2.326 to 4.702, P <0.05 or P <0.01). Conclusions: Arnebia root oil can promote wound healing of rats with full-thickness skin defect, which may relate to increasing expressions of VEGF and bFGF.
Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos
2009-01-01
Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluis, C.
1980-09-01
The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media andmore » rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.« less
Dodge, Austin; Garcia, Jeffrey; Luepke, Paul; Lai, Yu-Lin; Kassab, Moawia; Lin, Guo-Hao
2018-04-01
The aim of this systematic review was to compare the root-coverage outcomes of using a partially exposed connective tissue graft (CTG) technique with a fully covered CTG technique for root coverage. An electronic search up to February 28 th , 2017, was performed to identify human clinical studies with data comparing outcomes of root coverage using CTG, with and without a partially exposed graft. Five clinical studies were selected for inclusion in this review. For each study, the gain of keratinized gingiva, reduction of recession depth, number of surgical sites achieving complete root coverage, percentage of root coverage, gain of tissue thickness, and changes of probing depth and clinical attachment level were recorded. Meta-analysis for the comparison of complete root coverage between the two techniques presented no statistically significant differences. A statistically significant gain of keratinized tissue in favor of the sites with an exposed CTG and a tendency of greater reduction in recession depth were seen at the sites with a fully covered CTG. Based on the results, the use of a partially exposed CTG in root-coverage procedures could achieve greater gain in keratinized gingiva, while a fully covered CTG might be indicated for procedures aiming to reduce recession depth. © 2018 Eur J Oral Sci.
Tissue response to silicone rubber when used as a root canal filling.
Kasman, F G; Goldman, M
1977-04-01
To test the tissue compatibility of silicone rubber when it is used as a root canal filler, excess material was intentionally forced into the apical tissues in primates. The tissue response was one of general acceptance, with the usual response being fibrotic encapsulation. A low degree of inflammation was noted. Further studies are in progress.
ASTROCULTURE (TM) root metabolism and cytochemical analysis
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.
2000-01-01
Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.
Prieto, Pilar; Navarro‐Raya, Carmen; Valverde‐Corredor, Antonio; Amyotte, Stefan G.; Dobinson, Katherine F.; Mercado‐Blanco, Jesús
2009-01-01
Summary The colonization process of Olea europaea by the defoliating pathotype of Verticillium dahliae, and the in planta interaction with the endophytic, biocontrol strain Pseudomonas fluorescens PICF7 were determined. Differential fluorescent protein tagging was used for the simultaneous visualization of P. fluorescens PICF7 and V. dahliae in olive tissues. Olive plants were bacterized with PICF7 and then transferred to V. dahliae‐infested soil. Monitoring olive colonization events by V. dahliae and its interaction with PICF7 was conducted using a non‐gnotobiotic system, confocal laser scanner microscopy and tissue vibratoming sections. A yellow fluorescently tagged V. dahliae derivative (VDAT‐36I) was obtained by Agrobacterium tumefaciens‐mediated transformation. Isolate VDAT‐36I quickly colonized olive root surface, successfully invaded root cortex and vascular tissues via macro‐ and micro‐breakages, and progressed to the aerial parts of the plant through xylem vessel cells. Strain PICF7 used root hairs as preferred penetration site, and once established on/in root tissues, hindered pathogen colonization. For the first time using this approach, the entire colonization process of a woody plant by V. dahliae is reported. Early and localized root surface and root endophytic colonization by P. fluorescens PICF7 is needed to impair full progress of verticillium wilt epidemics in olive. PMID:21255281
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.
Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu
2015-08-31
Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.
Management of gingival recession by the use of an acellular dermal graft material: a 12-case series.
Santos, A; Goumenos, G; Pascual, A
2005-11-01
Different soft tissue defects can be treated by a variety of surgical procedures. Most of these techniques require the palatal area as a donor site. Recently, an acellular dermal graft has become available that can substitute for palatal donor tissue. This study describes the surgical technique for gingival augmentation and root coverage and the results of 12 clinical cases. A comparison between the three most popular mucogingival procedures for root coverage is also presented. The results of the 12 patients and the 26 denuded surfaces have shown that we can obtain a mean root coverage of 74% with the acellular dermal graft. Thirteen out of the 26 denuded surfaces had complete root coverage. The average increase in keratinized tissue was 1.19 mm. It seems that the long-term results of the cases are stable. The proposed technique of root coverage with an acellular dermal graft can be a good alternative to soft tissue grafts for root coverage, and it should be part of our periodontal plastic surgery armamentarium.
Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra; Kapila, Yvonne Lorraine
2009-01-01
Objectives To investigate the expression of matrix metalloproteinases (MMPs) in apical periodontitis and during the periapical healing phase following root canal treatment. Methods Apical periodontitis was induced in dog teeth and root canal treatment was performed in a single visit or using an additional calcium hydroxide root canal dressing. One hundred and eighty days following treatment the presence of inflammation was examined and tissues were stained to detect bacteria. Bacterial status was correlated to the degree of tissue organization, and to further investigate molecules involved in this process, tissues were stained for MMP-1, MMP-2, MMP-8, and MMP-9. Data were analyzed using one-way ANOVA followed by Tukey test or Kruskal-Wallis followed by Dunn. Results Teeth with apical periodontitis that had root canal therapy performed in a single visit presented an intense inflammatory cell infiltrate. Periapical tissue was extremely disorganized, and this was correlated with the presence of bacteria. Higher MMP expression was evident, similar to teeth with untreated apical periodontitis. In contrast, teeth with apical periodontitis submitted to root canal treatment using calcium hydroxide presented a lower inflammatory cell infiltrate. This group had a moderately organized connective tissue, a lower prevalence of bacteria, and a lower number of MMP-positive cells, similar to healthy teeth submitted to treatment. Conclusion Teeth treated with calcium hydroxide root canal dressing exhibited a lower percentage of bacterial contamination, a lower MMP expression, and a more organized ECM, unlike those treated in a single visit. This suggests that calcium hydroxide may be beneficial in tissue repair processes. PMID:20113780
Nitrate uptake and nitrite release by tomato roots in response to anoxia.
Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry
2004-07-01
Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.
NASA Technical Reports Server (NTRS)
Westberg, J.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1994-01-01
In Phaseolus vulgaris, primary roots show gravitational sensitivity soon after emerging from the seed. In contrast, lateral roots are agravitropic during early development, and become gravitropic after several cm growth. Primary and lateral root tissues were examined by polyacrylamide gel electrophoresis, coupled with western blotting techniques, to compare proteins which may contribute to the acquisition of gravitational sensitivity. Root tips and zones of cell elongation were compared for each root type, using immunological probes for calmodulin, alpha-actin, alpha-tubulin, and proteins of the plastid envelope. Lateral roots contained qualitatively less calmodulin, and showed a slightly different pattern of actin-related epitope proteins, than did primary root tissues, suggesting that polypeptide differences may contribute to the gravitational sensitivity which these root types express.
Park, Yong-Soon; Ryu, Choong-Min
2014-01-03
Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.
2014-01-01
Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits. PMID:24363335
Konnerup, Dennis; Toro, Guillermo; Pedersen, Ole; Colmer, Timothy David
2018-03-14
Soil waterlogging adversely impacts most plants. Melilotus siculus is a waterlogging-tolerant annual forage legume, but data were lacking for the effects of root-zone hypoxia on nodulated plants reliant on N2 fixation. The aim was to compare the waterlogging tolerance and physiology of M. siculus reliant on N2 fixation or with access to NO3-. A factorial experiment imposed treatments of water level (drained or waterlogged), rhizobia (nil or inoculated) and mineral N supply (nil or 11 mm NO3-) for 21 d on plants in pots of vermiculite in a glasshouse. Nodulation, shoot and root growth and tissue N were determined. Porosity (gas volume per unit tissue volume) and respiration rates of root tissues and nodules, and O2 microelectrode profiling across nodules, were measured in a second experiment. Plants inoculated with the appropriate rhizobia, Ensifer (syn. Sinorhizobium) medicae, formed nodules. Nodulated plants grew as well as plants fed NO3-, both in drained and waterlogged conditions. The growth and total N content of nodulated plants (without any NO3- supplied) indicated N2 fixation. Respiration rates (mass basis) were highest in nodules and root tips and lowest in basal root tissues. Secondary aerenchyma (phellem) formed along basal root parts and a thin layer of this porous tissue also covered nodules, which together enhanced gas-phase diffusion of O2 to the nodules; O2 was below detection within the infected zone of the nodule interior. Melilotus siculus reliant on N2 fixation grew well both in drained and waterlogged conditions, and had similar tissue N concentrations. In waterlogged conditions the relatively high respiration rates of nodules must rely on O2 movement via the aerenchymatous phellem in hypocotyl, roots and the outer tissue layers of nodules.
Kohout, George D; He, Jianing; Primus, Carolyn M; Opperman, Lynne A; Woodmansey, Karl F
2015-02-01
Quick-Set (Avalon Biomed Inc, Bradenton, FL) is a calcium aluminosilicate cement that is a potential alternative to mineral trioxide aggregate (MTA) with greater acid resistance and faster setting. The purpose of this study was to compare the regeneration of apical tissues after root-end surgery when the apical tissues were exposed to Quick-Set or White ProRoot MTA (Dentsply Tulsa Dental Specialties, Tulsa, OK) by root-end resection. The root canals of 42 mandibular premolars in 7 beagle dogs were accessed, cleaned and shaped, and obturated with Quick-Set or white MTA. Osteotomies and root-end resections were performed immediately. The dogs were sacrificed at 90 days, and the teeth and surrounding tissues were removed and prepared for histologic analysis. The sections of the apical areas were scored for inflammation, new cementum formation, periodontal ligament formation, and bone quality. At 90 days, both materials supported some degree of cementum formation on the surface of the material, periodontal ligament regeneration, and excellent bone quality. The only significant difference was greater inflammation found in the Quick-Set group. Quick-Set and White ProRoot MTA had a similar effect on bone quality, cementum formation, and periodontal ligament formation after root-end surgery in dogs. Quick-Set was associated with greater inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Synchrotron study of metal localization in Typha latifolia L. root sections
Qian, Yu; Jones, Keith W.; Feng, Huan; ...
2015-09-15
Understanding mechanisms that control plant root metal assimilation in soil is critical to the sustainable management of metal-contaminated land. With the assistance of the synchrotron X-ray fluorescence technique, this study investigated possible mechanisms that control the localization of Fe, Cu, Mn, Pb and Zn in the root tissues of Typha latifolia L. collected from a contaminated wetland. Metal localizations especially in the case of Fe and Pb in the dermal tissue and the vascular bundles were different. Cluster analysis was performed to divide the dermal tissue into iron-plaque-enriched dermal tissue and regular dermal tissue based on the spatial distribution ofmore » Pb and Fe. Factor analysis showed that Cu and Zn were closely correlated to each other in the dermal tissues. The association of Cu, Zn and Mn with Fe was strong in both regular dermal tissue and iron-plaque-enriched dermal tissue, while significant (p < 0.05) correlation of Fe with Pb was only observed in tissues enriched with iron plaque. In the vascular bundles, Zn, Mn and Cu showed strong association, suggesting that the localization of these three elements was controlled by a similar mechanism. Iron plaque in the peripheral dermal tissues acted as a barrier for Pb and a buffer for Zn, Cu and Mn. Furthermore, the Casparian strip regulated the transportation of metals from dermal tissues to the vascular bundles. The results suggested that the mechanisms controlling metal localization in root tissues varied with both tissue types and metals.« less
Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?
NASA Technical Reports Server (NTRS)
Edwards, K. L.
1985-01-01
The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.
Parallel evolution of storage roots in morning glories (Convolvulaceae).
Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H
2018-05-29
Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.
Periodontal regeneration in gingival recession defects.
Trombelli, L
1999-02-01
Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.
Christensen-Dalsgaard, Karen K; Ennos, Anthony R; Fournier, Meriem
2007-01-01
Roots have been described as having larger vessels and so greater hydraulic efficiency than the stem. Differences in the strength and stiffness of the tissue within the root system itself are thought to be an adaptation to the loading conditions experienced by the roots and to be related to differences in density. It is not known how potential mechanical adaptations may affect the hydraulic properties of the roots. The change in strength, stiffness, conductivity, density, sapwood area, and second moment of area distally along the lateral roots of two tropical tree species in which the strain is known to decrease rapidly was studied and the values were compared with those of the trunk. It was found that as the strain fell distally along the roots, so did the strength and stiffness of the tissue, whereas the conductivity increased exponentially. These changes appeared to be related to differences in density. In contrast to the distal-most roots, the tissue of the proximal roots had a lower conductivity and higher strength than that of the trunk. This suggests that mechanical requirements on the structure rather than the water potential gradient from roots to branches are responsible for the general pattern that roots have larger vessels than the stem. In spite of their increased transectional area, the buttressed proximal roots were subjected to higher levels of stress and had a lower total conductivity than the rest of the root system.
Role of phi cells and the endodermis under salt stress in Brassica oleracea.
Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E
2009-01-01
Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.
Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
Ranieri, Ezio; Fratino, Umberto; Petrella, Andrea; Torretta, Vincenzo; Rada, Elena Cristina
2016-08-01
The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for Cr(VI) reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report
Okajima, Luciana S.; Nunes, Marcelo P.; Montalli, Victor A. M.
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color. PMID:27891263
Coverage Root after Removing Peripheral Ossifying Fibroma: 5-Year Follow-Up Case Report.
Henriques, Paulo S G; Okajima, Luciana S; Nunes, Marcelo P; Montalli, Victor A M
2016-01-01
When lesions in soft tissue reach the gingival margin, they can produce aesthetic defects during its permanence and after its removal. Periodontal plastic surgery allows the correction of the gingival contour using different techniques. This paper is a case report of a peripheral ossifying fibroma removal in the interproximal area of teeth 21 and 22 in addition to root coverage of the affected area through two surgical phases: keratinized gingival tissue augmentation surgery with free gingival graft concurrent with removal of the lesion and, in a second stage, root coverage by performing coronally advanced flap technique with a follow-up of five years. The initial results achieved, which were root coverage of 100% after 6 months, promoted an adequate gingival contour and prevented the development of a mucogingival defect or a root exposure with its functional and aesthetic consequences. After five years, the results showed long term success of the techniques, where the margin remained stable with complete root coverage and tissues were stable and harmonic in color.
Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M.
2016-01-01
Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the tissue N–respiration relationship. PMID:27095257
Becker, Talon M.; Juvik, John A.
2017-01-01
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market. PMID:28945821
Lee, Young-Sang; Ku, Kang-Mo; Becker, Talon M; Juvik, John A
2017-01-01
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.
Reconstruction of pink esthetics: The periodontal way
Balasubramanian, K.; Arshad, L. Mohamed; Priya, B. Dhathri
2015-01-01
Cosmetic procedures involving gingival reconstruction have become an integral part of current periodontal practice. The ability to cover unsightly exposed, sensitive roots and recontour soft tissue recessions have added an esthetic angle to the traditional concept of biological and functional periodontal health. The recession of the gingiva, either localized or generalized, may be associated with one or more surfaces, resulting in attachment loss and root exposure, which can lead to clinical problems such as diminished cosmetic appeal and aesthetic concern. Marginal gingival recession, therefore, can cause major functional and aesthetic problems and should not be viewed as merely a soft tissue defect, but rather as the destruction of both the soft and hard tissue. Treatment proposals for this type of defect have evolved based on the knowledge for healing the gingiva and the attachment system. This case report describes a clinical case of severe Miller Class II gingival recession treated by two stages of surgery that combined a free gingival graft and connective tissue grafting. First, a free gingival graft (FGG) was performed to obtain an adequate keratinized tissue level. Three months later, a connective tissue graft (CTG)was performed to obtain root coverage. The results indicated that the FGG allows for a gain in the keratinized tissue level and the CTG allows for root coverage with decreased recession level after 6 months. Therefore, for this type of specific gingival recession, the combined use of FGG and CTG still serves as a Gold Standard in predictable root coverage. PMID:25684918
Synchrotron study of metal localization in Typha latifolia L. root sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yu; Feng, Huan; Gallagher, Frank J.
2015-10-13
Understanding mechanisms that control plant root metal assimilation in soil is critical to the sustainable management of metal-contaminated land. With the assistance of the synchrotron X-ray fluorescence technique, this study investigated possible mechanisms that control the localization of Fe, Cu, Mn, Pb and Zn in the root tissues ofTypha latifolia L. collected from a contaminated wetland. Metal localizations especially in the case of Fe and Pb in the dermal tissue and the vascular bundles were different. Cluster analysis was performed to divide the dermal tissue into iron-plaque-enriched dermal tissue and regular dermal tissue based on the spatial distribution of Pb andmore » Fe. Factor analysis showed that Cu and Zn were closely correlated to each other in the dermal tissues. The association of Cu, Zn and Mn with Fe was strong in both regular dermal tissue and iron-plaque-enriched dermal tissue, while significant (p< 0.05) correlation of Fe with Pb was only observed in tissues enriched with iron plaque. In the vascular bundles, Zn, Mn and Cu showed strong association, suggesting that the localization of these three elements was controlled by a similar mechanism. Iron plaque in the peripheral dermal tissues acted as a barrier for Pb and a buffer for Zn, Cu and Mn. The Casparian strip regulated the transportation of metals from dermal tissues to the vascular bundles. The results suggested that the mechanisms controlling metal localization in root tissues varied with both tissue types and metals.« less
Regenerative periodontal therapy in mucogingival surgery for root coverage.
Abitbol, T; Santi, E; Urbani, G
1997-02-01
This article illustrates the potential benefits of regenerative periodontal therapy in mucogingival surgery and esthetic dental treatment. Cases are described in which the treatment of soft-tissue recessions and root exposures are treated with surgical procedures where both clinical soft-tissue augmentation and the regeneration of periodontal attachment are obtained. Cases are also presented to illustrate the clinical application of guided tissue regeneration. Resorbable and nonresorbable barriers are placed over the root surface and bone and covered by the overlying flap, which allows the selective repopulation of the lesion by progenitor cells and the inhibition of a long junctional epithelium. Emphasis is placed on regenerative procedures in soft-tissue augmentation, particularly with respect to rationales, techniques, and indications.
Is polyploidy necessary for tissue differentiation in higher plants. [Triticum, helianthus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Hof, J.V.
1975-01-01
Measurements of relative DNA per nucleus of cells from various tissues show that cell differentiation can occur in the absence of polyploidy in higher plants. In Pisum polyploidy was present in roots, sepals, pods, pistils, and stamens but not in petals or leaves. In Triticum cells of leaves exhibited some polyploidy, but no polyploid cells were present in mature roots. No polyploid cells were found in any tissue of Helianthus examined (roots, cotyledons, stems, sepals, petals, pistils, and stamens). Therefore, as a general rule, polyploidy should not be considered essential in tissue or organ differentiation of higher plants. In Helianthusmore » polyploidy is unnecessary for the completion of the life cycle. (auth)« less
Cellular and molecular mechanisms of tooth root development
Li, Jingyuan; Parada, Carolina
2017-01-01
ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844
Ahmad, Amjad A; Fares, Ali; Paramasivam, Sivapatham; Elrashidi, Moustafa A; Savabi, Reza M
2009-09-01
Two field experiments were conducted at the Waimanalo research station on the island of O'ahu, Hawaii to study the effect of chicken (CM) and dairy (DM) manures on biomass and nutrient concentration in sweet corn roots and shoots. Sweet corn (super sweet 10, Zea Mays L. subsp. mays) was grown for two consecutive growing seasons under four rates of application (0, 168, 337, and 672 kg ha(-1) total N equivalent) and one time (OTA) or two time (TTA) applications of organic manure types and rates. There were significant effects of types, rates, and number of manure applications on dry biomass and macro- and micro-nutrient concentration in roots and shoots tissues. Results of root tissue indicated a significant accumulation of N and C under CM and DM treatments compared with the control treatment. Manure application rates significantly increased the accumulation of N and C in root tissue. Dry weight of roots and shoots and both macro- and micro-nutrient contents in the plant tissues significantly increased under TTA treatment compared with OTA treatment. There was a significant correlation (r(2) = 0.46 to 0.81) between root biomass, macro-, and micro-nutrient contents during both growing seasons. The results of the study indicates that amending soils with CM at the highest application rate provided the best crop performance in terms of root and shoot biomass, crop N, C, and other macro- and micro-nutrients.
Li, Ruilong; Zhu, Yaxian; Zhang, Yong
2015-06-01
A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramakrishnan, Divakar; Curtis, Wayne R
2004-10-20
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.
Changes in very fine root respiration and morphology with time since last fire in a boreal forest
NASA Astrophysics Data System (ADS)
Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank
2016-04-01
We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.
Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua
2016-04-15
While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Rastogi, Pavitra Kumar; Lal, Nand; Garg, Nimit; Anand, Vishal; Singhal, Rameshwari
2012-01-01
Localised gingival recessions continue to represent an important aesthetic condition requiring treatment in periodontics. Various techniques have been tried to treat exposed root surfaces to improve aesthetics with high percentage of success and minimal discomfort. Root biomodification is done to improve the predictability of these procedures. This clinical report describes periodontal plastic procedure involving subepithelial connective tissue graft with lateral repositioned flap technique and root biomodification with CO2 laser for the management of gingival recession. PMID:22778454
Cold temperature tolerance of apple rootstock trunk and root tissues
USDA-ARS?s Scientific Manuscript database
G.11, G.30, G.41, P.2 and B.9 apple (Malus xdomestica) rootstocks have root tissue hardiness similar to M.26, but G.935 has greater hardiness than M.26 when based on shoot regrowth in ungrafted trees. The LT50 of M.26 and P.2 roots ranged from -12 to -14 degrees C. The LT50 of B.9 was -13 degrees ...
Wang, Qi Lin; Yang, Pan Pan; Ge, Li Hong; Liu, He
2016-03-01
To evaluate the use of platelet-rich fibrin (PRF) in the regenerative therapy of immature canine permanent teeth. Eight immature premolars of beagle dogs were pulp extracted and cleaned with irrigation, then divided into two groups of empty root canals and those filled with a PRF clot. All of the eight premolars were sealed with mineral trioxide aggregate and glass ionomer cement. Two premolars were left naturally grown as a positive control. The root development was assessed radiographically and histologically after 12 weeks. The radiological findings showed greater increases in the thickness of lateral dentinal wall in the PRF group than in the vacant group. Histologically, dental-associated mineral tissue, connective tissue, and bone-like mineral tissue grew into the root canals independent of PRF clot use. The PRF was able to increase the thickness of dental-associated mineral tissue. However, the vital tissue differed from the pulp dentin complex. Our study demonstrated the feasibility of using PRF-mediated regenerative therapy in pulpless immature teeth for improving tissue repair.
Nosrat, Ali; Kolahdouzan, Alireza; Hosseini, Farzaneh; Mehrizi, Ehsan A; Verma, Prashant; Torabinejad, Mahmoud
2015-10-01
A growing body of evidence exists showing the possibility of growing vital tissues in the root canal spaces of teeth with necrotic pulps and open apices. However, there is very limited histologic information regarding characteristics of tissues formed in the root canal space of human teeth after regenerative endodontics. The aim of this study was to examine clinically and histologically the outcomes of human immature teeth treated with regenerative endodontics. Two healthy birooted human maxillary first premolar teeth scheduled for extraction were included. Preoperative radiographs confirmed that these teeth had immature apices. Vitality tests showed the presence of vital pulps in these teeth. After receiving consent forms, the teeth were isolated with a rubber dam, and the pulps were completely removed. After the formation of blood clots in the canals, the teeth were covered with mineral trioxide aggregate. Four months later, the teeth were clinically and radiographically evaluated, extracted, and examined histologically. Both patients remained asymptomatic after treatment. Radiographic examination of the teeth showed signs of root development after treatment. Histologic examination of tissues growing into the root canal space of these teeth shows the presence of connective tissue, bone and cementum formation, and thickening of roots. Based on our findings, it appears that when canals of teeth with open apices are treated with regenerative endodontics, tissues of the periodontium grow into the root canals of these teeth. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Interruption of Neural Function.
1987-05-01
applcbse) University of Colorado I Be. ADDRESS (City. Stele and ZIP Code) 10. SOURCE OF FUNDING NOS. Campus Box B-19 PROGRAM PROJECT TASK WORK UNIT Boulder...rectification, frequency-sensitive phenomena, safety, and some effects on bio - logical systems," invited review, Charles Polk, Ed., CRC Handbook of Biological...experimental test", Mathematical Bio - Sciences, Vol. 29, pp. 235-253, 1978. [131 Kuf1er. S. WV., J. G. Nicholls, and A. R. Martin, "From Nettron to Brain
Department of Defense In-House RDT and E Activities
1978-10-30
SERVICF DFV CML CML- BIO OFFENSE SMOKE/OBSCURANT TEST PROGRAMS CONDUCTS R & 0 & LAB INVESTIGATIONS NECESSARY TO SUPPORT MISSIONCONOUCTS JT OP CML & CNL... BIO nEFENSE TESTS/STUEPFS FOR CTNCS, SERVICESCONDUCTS PROG TO SUP ARMY POLL ABATEMENT HAZARD EVAL E DFMIL OPNSCONDUCTS ECOLOGICAL EPIDEMIOLOGICAL C...CDRoCOL. H. F. PENNY TECHODIR.DR. DALE H. STELING PROGRAM DATA BY FISCAL YEAR (MILLION S) PROGRAM 1978 1979 (ACT UAL) (ACT + EST)TOTAL RDT&E 23&722
Periodontal and peri-implant bone regeneration: clinical and histologic observations.
Artzi, Z; Zohar, R; Tal, H
1997-02-01
The principle of guided tissue regeneration by barrier membranes to restore lost periodontal tissue around natural teeth has also been used around osseointegrated implants in an attempt to restore alveolar ridge defects. While most periodontal procedures in the literature describe root coverage by mucogingival surgery, which achieves healing through soft tissue attachment, regeneration of denuded root surfaces is performed by guided tissue regeneration using expanded polytetrafluoroethylene barrier membranes and demineralized freeze-dried bone allografts as inductive/conductive materials. In this study the technique is applied in two partially exposed cylindrical hydroxyapatite-coated implants in extraction sites in one patient. Surgical reentry in both sites is presented, with histologic examination revealing new bone formation on the exposed root surface and the hydroxyapatite-coated implants.
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela
2015-01-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality. PMID:26467108
NASA Astrophysics Data System (ADS)
Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.
2016-03-01
Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.
Role of seagrass photosynthesis in root aerobic processes.
Smith, R D; Dennison, W C; Alberte, R S
1984-04-01
The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.
Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.
Hatfield, Ronald D; Chaptman, Ann K
2009-05-27
This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.
McCully, Margaret E; Miller, Celia; Sprague, Susan J; Huang, Cheng X; Kirkegaard, John A
2008-01-01
To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.
Perrine-Walker, Francine; Rochette, Juliette; Martinière, Alexandre; Bach, Lien; Gojon, Alain
2016-01-01
Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3−) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3− through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3−. To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3− stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3− mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue. PMID:27543115
Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T
1999-03-01
Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.
Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A
2007-03-01
Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization.
Li, Hui; Sun, Jingjing; Li, Jie; Yang, Hefeng; Luo, Xiangyou; Chen, Jinlong; Xie, Li; Huo, Fangjun; Zhu, Tian; Guo, Weihua; Tian, Weidong
2017-03-01
Tissue or organ regeneration using xenogeneic matrices is a promising approach to address the shortage of donor matrices for allotransplantation. Success of such approach has been demonstrated to correlate with macrophage-mediated fibrotic homeostasis and tissue remodeling. The previous studies have demonstrated that treated dentin matrix (TDM) could be a suitable bioactive substrate for allogeneic tooth root regeneration. This study constructed xenogeneic bioengineered tooth root (bio-root) via a combination of porcine TDM (pTDM) with allogeneic dental follicle cells (DFCs). Macrophage phenotypes are used to evaluate the remodeling process of xenogeneic bio-roots in vitro and in vivo. pTDM can facilitate odontoblast differentiation of human derived DFCs. Xenogeneic bio-roots in rat subcutaneous tissue prompt constructive response via M1 macrophage infiltration during early postimplantation stages and increase restorative M2 phenotype at later stages. After implantation of bio-roots into jaws of rhesus monkeys for six months, periodontal ligament-like fibers accompanied by macrophage polarization are observed, which are positive for COL-1, Periostin, βIII-tubulin and display such structures as fibroblasts and blood vessels. The reconstructed bio-root possesses biomechanical properties for the dissipation of masticatory forces. These results support that xenogeneic bio-root could maintain fibrotic homeostasis during remodeling process and highlight the potential application of xenogeneic matrices in regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ceccon, Christian; Tagliavini, Massimo; Schmitt, Armin Otto; Eissenstat, David M
2016-05-01
Root respiration is a major contributor to terrestrial carbon flux. Many studies have shown root respiration to increase with an increase in root tissue nitrogen (N) concentration across species and study sites. Studies have also shown that both root respiration and root N concentration typically decrease with root age. The effects of added N may directly increase respiration of existing roots or may affect respiration by shifting the age structure of a root population by stimulating growth. To the best of our knowledge, no study has ever examined the effect of added N as a function of root age on root respiration. In this study, root respiration of 13-year-old Populus tremuloides Michx. trees grown in the field and 1-year-old P. tremuloides seedlings grown in containers was analyzed for the relative influence of root age and root N concentration independent of root age on root respiration. Field roots were first tracked using root windows and then sampled at known age. Nitrogen was either applied or not to small patches beneath the windows. In a pot experiment, each plant was grown with its root system split between two separate pots and N was applied at three different levels, either at the same or at different rates between pots. Root N concentration ranged between 1.4 and 1.7% in the field experiment and 1.8 and 2.6% in the seedling experiment. We found that addition of N increased root N concentration of only older roots in the field but of roots of all ages in the potted seedlings. In both experiments, the age-dependent decline in root respiration was largely consistent, and could be explained by a negative power function. Respiration decreased ∼50% by 3 weeks of age. Although root age was the dominant factor affecting respiration in both experiments, in the field experiment, root N also contributed to root respiration independent of root age. These results add further insight into respiratory responses of roots to N addition and mechanisms underlying the tissue N-respiration relationship. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
RootScan: Software for high-throughput analysis of root anatomical traits
USDA-ARS?s Scientific Manuscript database
RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...
Marler, Thomas E.; Lindström, Anders J.
2014-01-01
The sugars fructose, glucose, maltose, and sucrose were quantified in seven tissues of Zamia muricata Willd. to determine their distribution throughout various organs of a model cycad species, and in lateral structural roots of 18 cycad species to determine the variation in sugar concentration and composition among species representing every cycad genus. Taproot and lateral structural roots contained more sugars than leaf, stem, female strobilus, or coralloid roots. For example, taproot sugar concentration was 6.4-fold greater than stem sugar concentration. The dominant root sugars were glucose and fructose, and the only detected stem sugar was sucrose. Sucrose also dominated the sugar profile for leaflet and coralloid root tissue, and fructose was the dominant sugar in female strobilus tissue. Maltose was a minor constituent of taproot, leaflet, and female strobilus tissue, but absent in other tissues. The concentration of total free sugars and each of the four sugars did not differ among genera or families. Stoichiometric relationships among the sugars, such as the quotient hexoses/disaccharides, differed among organs and families. Although anecdotal reports on cycad starch have been abundant due to its historical use as human food and the voluminous medical research invested into cycad neurotoxins, this is the first report on the sugar component of the non-structural carbohydrate profile of cycads. Fructose, glucose, and sucrose are abundant in cycad tissues, with their relative abundance highly contrasting among organs. Their importance as forms of carbon storage, messengers of information, or regulators of cycad metabolism have not been determined to date. PMID:25339967
Li, Wenfeng; Lan, Ping
2015-01-01
Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, interaction with microbe, and in plant anchorage. As a specialized cell type, root hairs, especially in Arabidopsis, provide a pragmatic research system for various aspects of studies. Here, we re-analyzed the RNA-seq transcriptome profile of Arabidopsis root hair cells by Tophat software and used Cufflinks program to mine the differentially expressed genes. Results showed that ERD14, RIN4, AT5G64401 were among the most abundant genes in the root hair cells; while ATGSTU2, AT5G54940, AT4G30530 were highly expressed in non-root hair tissues. In total, 5409 genes, with a fold change greater than two-fold (FDR adjusted P < 0.05), showed differential expression between root hair cells and non-root hair tissues. Of which, 61 were expressed only in root hair cells. One hundred and thirty-six out of 5409 genes have been reported to be “core” root epidermal genes, which could be grouped into nine clusters according to expression patterns. Gene ontology (GO) analysis of the 5409 genes showed that processes of “response to salt stress,” “ribosome biogenesis,” “protein phosphorylation,” and “response to water deprivation” were enriched. Whereas only process of “intracellular signal transduction” was enriched in the subset of 61 genes expressed only in the root hair cells. One hundred and twenty-one unannotated transcripts were identified and 14 of which were shown to be differentially expressed between root hair cells and non-root hair tissues, with transcripts XLOC_000763, XLOC_031361, and XLOC_005665 being highly expressed in the root hair cells. The comprehensive transcriptomic analysis provides new information on root hair gene activity and sets the stage for follow-up experiments to certify the biological functions of the newly identified genes and novel transcripts in root hair cell morphogenesis. PMID:26106402
Nomura, Taiji; Ueno, Ayaka; Ogita, Shinjiro; Kato, Yasuo
2017-06-01
6-Tuliposide B (PosB) is a glucose ester accumulated in tulip (Tulipa gesneriana) as a major secondary metabolite. PosB serves as the precursor of the antimicrobial lactone tulipalin B (PaB), which is formed by PosB-converting enzyme (TCEB). The gene TgTCEB1, encoding a TCEB, is transcribed in tulip pollen but scarcely transcribed in other tissues (e.g. roots) even though those tissues show high TCEB activity. This led to the prediction of the presence of a TCEB isozyme with distinct tissue specificity. Herein, we describe the identification of the TgTCEB-R gene from roots via native enzyme purification; this gene is a paralog of TgTCEB1. Recombinant enzyme characterization verified that TgTCEB-R encodes a TCEB. Moreover, TgTCEB-R was localized in tulip plastids, as found for pollen TgTCEB1. TgTCEB-R is transcribed almost exclusively in roots, indicating a tissue preference for the transcription of TCEB isozyme genes.
Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes
Kim H. Ludovici; Lance W. Kress
2006-01-01
Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (
Bloom, Arnold J; Randall, Lesley; Taylor, Alison R; Silk, Wendy K
2012-03-01
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.
Kim, Dohyun; Yue, Wonyoung; Yoon, Tai-Cheol; Park, Sung-Ho; Kim, Euiseong
2016-02-01
The purpose of this retrospective study was to evaluate the healing type and assess the outcome of horizontal intra-alveolar root fractures after endodontic treatment with mineral trioxide aggregate (MTA) as filling material. The clinical database of the Department of Conservative Dentistry at Yonsei University Dental Hospital, Seoul, Korea, was searched for patients with histories of intra-alveolar root fractures and endodontic treatments with MTA between October 2005 and September 2014. Radiographic healing at the fracture line was evaluated independently by 2 examiners and was classified into 4 types according to Andreasen and Hjørting-Hansen. Of the 22 root-fractured teeth that received endodontic treatment with MTA, 19 cases participated in the follow-up after a period of at least 3 months. Seventeen of the 19 teeth (89.5%) exhibited healing of the root fractures. For each healing type, 7 teeth (36.8%) showed healing with calcified tissue, 8 teeth (42.1%) showed interposition of connective tissue, 2 teeth (10.5%) showed interposition of connective tissue and bone, and 2 teeth (10.5%) showed interposition of granulation tissue without healing. Within the limitations of this study, intra-alveolar root fractures showed satisfactory healing outcomes after endodontic treatment with MTA. MTA could be considered to be suitable filling material for the endodontic treatment of horizontal intra-alveolar root fractures. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Bloom, Arnold J.; Randall, Lesley; Taylor, Alison R.; Silk, Wendy K.
2012-01-01
This study measured total osmolarity and concentrations of NH4+, NO3–, K+, soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH4+ and NO3– in xylem sap for plants receiving NH4+ or NO3– as a sole N-source, NH4+ plus NO3–, or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH4+ indicated that growing cells imported NH4+ from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH4+ absorbed. Net root NO3– influx under Ca(NO3)2 nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO3– influx under NH4NO3 was less than the local deposition rate in the growth zone, indicating that additional NO3– was imported or metabolically produced. The profile of NO3– deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO3)2 or NH4NO3. These results suggest that NO3– may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues. PMID:22213811
Polyphenols in the woody roots of Norway spruce and European beech reduce TTC.
Richter, Anika K; Frossard, Emmanuel; Brunner, Ivano
2007-01-01
A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.
Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana).
Li, Xian; Kushad, Mosbah M
2004-11-17
Fully developed horseradish (Armoracia rusticana Gaertn., Mey., & Scherb.) roots from 27 accessions and leaves from a subset of 9 accessions were evaluated for glucosinolates and myrosinase enzyme activity. Eight different glucosinolates were detected (based on HPLC retention times as desulfoglucosinolates) in both root and leaf tissues. The sum of these glucosinolates, referred to as total, ranged from 2 to 296 micromol g(-1) of dry weight (DW) in both tissues. Four glucosinolates (sinigrin, glucobrassicin, neoglucobrassicin, and gluconasturtiin) were detected in major quantities. In fully developed roots, sinigrin concentration represented approximately 83%, gluconasturtiin approximately 11%, and glucobrassicin approximately 1% of the total glucosinolates. Approximately the same proportions of individual glucosinolates appeared in fully developed leaves, except that glucobrassicin was substituted by neoglucobrassicin and gluconasturtiin concentration was significantly lower (<1%). At least four other glucosinolates were detected in very small quantities (<1%) in both roots and leaves. Myrosinase (beta-thioglucoside glucohydrolase, EC 3.2.3.1) is the enzyme responsible for the hydrolysis of the parent glucosinolates into biologically active products. Very little is known about myrosinase activity and the correlation of its activity to total and individual glucosinolates in plant tissues. Significant differences in myrosinase activity were detected between the roots and leaves, ranging from 1.2 to 57.1 units g(-1) of DW. Data showed no correlation between myrosinase activity and total and/or individual glucosinolates in the roots. However, in the leaves, significant correlations were found between myrosinase activity and total glucosinolates (0.78 at P = 0.01) and between myrosinase activity and sinigrin (0.80 at P = 0.01). Glucosinolates content and myrosinase activity were also correlated in young and fully developed roots and leaves and during tissue crushing. Glucobrassicin concentration in the roots and neoglucobrassicin concentration in the leaves were significantly higher in young than in fully developed tissue. Crushing of the tissue resulted in rapid hydrolysis of sinigrin and glucobrassicin, as expected, from the presence of myrosinase. Likewise, myrosinase activity declined rapidly after crushing, perhaps due to inactivation by the reaction products and/or the depletion of its substrates.
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.
Liu, Jinggao; Benedict, Chauncey R.; Stipanovic, Robert D.; Bell, Alois A.
1999-01-01
Cotton contains a unique group of terpenoids including desoxyhemigossypol, hemigossypol, gossypol, hemigossypolone, and the heliocides that are part of the plant's defense system against pathogenic fungi and insects. Desoxyhemigossypol is a key intermediate in the biosynthesis of these compounds. We have isolated, purified, and characterized from cotton stele tissue infected with Verticillium dahliae a methyltransferase (S-adenosyl-l-Met: desoxyhemigossypol-6-O-methyltransferase) that specifically methylates the 6-position of desoxyhemigossypol to form desoxyhemigossypol-6-methyl ether with a Km value of 4.5 μm for desoxyhemigossypol and a Kcat/Km of 5.08 × 104 s−1 (mol/L)−1. The molecular mass of the native enzyme is 81.4 kD and is dissociated into two subunits of 41.2 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. The enzymatic reaction does not require Mg+2 and is inhibited 98% with 10 mm p-chloromercuribenzoate. Desoxyhemigossypol-6-methyl ether leads to the biosynthesis of methylated hemigossypol, gossypol, hemigossypolone, and the heliocides, which lowers their effectiveness as phytoalexins and insecticides. PMID:10557251
Liu, Jia; Liu, Yang; Wang, Yu; Abozeid, Ann; Zu, Yuan-Gang; Tang, Zhong-Hua
2017-02-20
The traditional medicine Ginseng mainly including Panax ginseng and Panax quinquefolius is the most widely consumed herbal product in the world. Despite the extensive investigation of biosynthetic pathway of the active compounds ginsenosides, our current understanding of the metabolic interlink between ginsenosides synthesis and primary metabolism at the whole-plant level. In this study, the tissue-specific profiling of primary and the secondary metabolites in two different species of ginseng were investigated by gas chromatography- and liquid chromatography coupled to mass spectrometry. A complex continuous coordination of primary- and secondary-metabolic network was modulated by tissues and species factors during growth. The results showed that altogether 149 primary compounds and 10 ginsenosides were identified from main roots, lateral roots, stems, petioles and leaves in P. ginseng and P. quinquefolius. The partial least squares-discriminate analysis (PLS-DA) revealed obvious compounds distinction among tissue-specific districts relative to species. To survey the dedication of carbon and nitrogen metabolism in different tissues to the accumulation of ginsenosides, we inspected the tissue-specific metabolic changes. Our study testified that the ginsenosides content was dependent on main roots and lateral roots energy metabolism, whereas independent of leaves and petiole photosynthesis during ginsenosides accumulation. When tow species were compared, the results indicated that high rates of C assimilation to C accumulation are closely associated with ginsenosides accumulation in P. ginseng main roots and P. quinquefolius lateral roots, respectively. Taken together, our results suggest that tissue-specific metabolites profiling dynamically changed in process of ginsenosides biosynthesis, which may offer a new train of thoughts to the mechanisms of the ginsenosides biosynthesis at the metabolite level. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Regenerative endodontics: a state of the art.
Bansal, Rashmi; Bansal, Rajesh
2011-01-01
Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue grafting, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. Non-vital infected teeth have long been treated with root canal therapy (for mature root apex) and apexification (for immature root apex), or doomed to extraction. Although successful, current treatments fail to re-establish healthy pulp tissue in these teeth. But, what if the non-vital tooth could be made vital once again? That is the hope offered by regenerative endodontics, an emerging field focused on replacing traumatized and diseased pulp with functional pulp tissue. Restoration of vitality of non-vital tooth is based on tissue engineering and revascularization procedures. The purpose of this article is to review these biological procedures and the hurdles that must be overcome to develop regenerative endodontic procedures.
van der Meij, Anne; Willemse, Joost; Schneijderberg, Martinus A; Geurts, René; Raaijmakers, Jos M; van Wezel, Gilles P
2018-05-01
Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic actinobacteria isolated from root tissue of Arabidopsis thaliana (Arabidopsis) plants grown in soil from a natural ecosystem. Many of these actinobacteria belong to the family of Streptomycetaceae with Streptomyces olivochromogenes and Streptomyces clavifer as well represented species. When seeds of Arabidopsis were inoculated with spores of Streptomyces strain coa1, which shows high similarity to S. olivochromogenes, roots were colonised intercellularly and, unexpectedly, also intracellularly. Subsequent exposure of endophytic isolates to plant hormones typically found in root and shoot tissues of Arabidopsis led to altered antibiotic production against Escherichia coli and Bacillus subtilis. Taken together, our work reveals remarkable colonization patterns of endophytic streptomycetes with specific traits that may allow a competitive advantage inside root tissue.
The effect of EDTA in attachment gain and root coverage.
Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R
2006-06-01
Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).
Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.
2016-01-01
Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes. PMID:26943243
Using low energy x-ray radiography to evaluate root initiation and growth of Populus
Ronald S., Jr. Zalesny; A. L. Friend; B. Kodrzycki; D.W. McDonald; R. Michaels; A.H. Wiese; J.W. Powers
2007-01-01
Populus roots have been studied less than aboveground tissues. However, there is an overwhelming need to evaluate root initiation and growth in order to understand the genetics and physiology of rooting, along with genotype x environment interactions.
Proteomic Profiles Reveal the Function of Different Vegetative Tissues of Moringa oleifera.
Wang, Lei; Zou, Qiong; Wang, Jinxing; Zhang, Junjie; Liu, Zeping; Chen, Xiaoyang
2016-12-01
Moringa oleifera is a rich source of bioactive compounds and is widely used in traditional medicine and food for its nutritional value; however, the protein and peptide components of different tissues are rarely discussed. Here, we describe the first investigation of M. oleifera proteomes using mass spectrometry and bioinformatics methods. We aimed to elucidate the protein profiles of M. oleifera leaves, stem, bark, and root. Totally 202 proteins were identified from four vegetative organs. We identified 101 proteins from leaves, 51 from stem, 94 from bark and 67 from root, finding that only five proteins existed in both four vegetative parts. The calculated pI of most of the proteins is distributed in 5-10 and the molecular weight distributed below 100 kDa. Functional classification analysis revealed that proteins which are involved in catalytic activities are the most abundant both in leaves, stem, bark and root. Identification of several heat shock proteins in four vegetative tissues might be adaptive for resistance to high temperature environmental stresses of tropical or subtropical areas. Some enzymes involved in antioxidant processes were also identified in M. oleifera leaves, stem, bark and root. Among the four tissues studies here, leaves protein content and molecular diversity were the highest. The identification of the flocculating protein MO2.1 and MO2.2 in the bark and root provides clue to clarify the antimicrobial molecular mechanisms of root and bark. This study provides information on the protein compositions of M. oleifera vegetative tissues that will be beneficial for potential drug and food supplement development and plant physiology research.
Sun, Meng-Xiang
2014-01-01
In plants, active transport of auxin plays an essential role in root development. Localization of the PIN1 auxin transporters to the basal membrane of cells directs auxin flow and depends on the trafficking mediator GNOM. GNOM-dependent auxin transport is vital for root development and thus offers a useful tool for the investigation of a possible tissue-specific response to dynamic auxin transport. To avoid pleiotropic effects, DEX-inducible expression of GNOM antisense RNA was used to disrupt GNOM expression transiently or persistently during embryonic root development. It was found that the elongation zone and the pericycle layer are the most sensitive to GNOM-dependent auxin transport variations, which is shown by the phenotypes in cell elongation and the initiation of lateral root primordia, respectively. This suggests that auxin dynamics is critical to cell differentiation and cell fate transition, but not to cell division. The results also reveal that GNOM-dependent auxin transport could affect local auxin biosynthesis. This suggests that local auxin biosynthesis may also contribute to the establishment of GNOM-dependent auxin gradients in specific tissues, and that auxin transport and local auxin biosynthesis may function together in the regulatory network for initiation and development of lateral root primordia. Thus, the data reveal a tissue-specific response to auxin transport and modulation of local auxin biosynthesis by auxin transport. PMID:24453227
USDA-ARS?s Scientific Manuscript database
The infective juvenile (J2) stage of endoparasitic plant nematodes uses plant chemical signals, released from roots, to localize and infect hosts. We examined the behaviors of soybean cyst nematode (Heterodera glycines) and root-knot nematode (Meloidogyne incognita) J2s in the presence of root signa...
R.L. Mott
1977-01-01
An outline of the general problems involved with the propagation of elite conifer clones by rooted cuttings is drawn from published reports. New approaches for resolving these problems can come from studies of clone production through tissue culture methods. Probable extension of tissue culture techniques will permit the establishment of clones from adult, proven trees...
Quantifying plant phenotypes with isotopic labeling and metabolic flux analysis
USDA-ARS?s Scientific Manuscript database
Analyses of metabolic flux using stable isotopes in plants have traditionally been restricted to tissues with presumed homogeneous cell populations such as developing seeds, cell suspensions, or cultured roots and root tips. It is now possible to describe these and other more complex tissues such a...
Alafif, Hisham
2014-01-01
Background: The purpose of this study was to determine the status of periapical tissues of endodontically treated teeth according to coronal restorations and root canal fillings separately and in concomitant in adult Syrian subpopulation. Methods: 784 endodontically treated teeth from two hundred randomly selected Syrian adult patients were radiographically evaluated. According to predetermined criteria, the quality of coronal restorations and root canal filling of each tooth was scored as adequate or inadequate. The status of periapical tissues was also classified as healthy or diseased. Results were analyzed using Chi-squared test. Results: Adequate coronal restorations were determined in 58.54% of cases which was accompanied with less periapical pathosis than that in teeth with inadequate restorations (P < 0.01). 14% of teeth were restored by posts which showed no significant impact on the periapical tissues health. 18.5% of endodontic treatments were evaluated as adequate with less number of periapical radiolucencies than that of inadequate root canal fillings (P < 0.01). Absence of periapical pathosis was 96.6% in cases with both adequate coronal restorations and root canals fillings. The rate was 88.5% in cases with only adequate root canals fillings, and about 70% in cases with only adequate coronal restorations. When the treatment was inadequate in both coronal and root canals fillings, success rate was only observed in 48.8%. Conclusion: The most important factor with regard to the periradicular tissue health is the quality of root canal filling without neglecting the influence of coronal restoration (regardless of its type). There is a high prevalence rate of periapical pathosis in Syrian subpopulation due to poor dental practice. PMID:25565729
Changes of Cyanide Content and Linamarase Activity in Wounded Cassava Roots 1
Kojima, Mineo; Iwatsuki, Norio; Data, Emma S.; Villegas, Cynthia Dolores V.; Uritani, Ikuzo
1983-01-01
When cassava (Manihot esculenta Crantz) root was cut into blocks and incubated under laboratory conditions, the blocks showed more widespread and more even symptoms of physiological deterioration than those under natural conditions. Thus, the tissue block system has potential for biochemical studies of natural deterioration of cassava root. The changes in cyanide content and linamarase (linamarin β-d-glucoside glucohydrolase; EC 3.2.1.21) activity in various tissues during physiological deterioration were investigated. Total cyanide content increased in all parts of block tissue after 3-day incubation. The degree of increase in cyanide was most pronounced in white parenchymal tissue, 2 to 3 millimeters thick, next to the cortex (A-part tissue), where no physiological symptoms appeared. On the other hand, linamarase activity was decreased in all parts of block tissue after a 3-day incubation. A time course analysis of A-part tissue indicated a clear reciprocal relationship between changes in total cyanide and linamarase activity; total cyanide increased, while linamarase activity decreased. Free cyanide constituted a very small portion of the total cyanide and did not change markedly. Images Fig. 2 PMID:16662957
7 CFR 201.56-11 - Knotweed family, Polygonaceae.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons, starchy endosperm. (3) Shoot system: The... development within the test period. (4) Root system: A primary root, with secondary roots developing within... conducting tissue. (ii) Malformed, such as markedly shortened, curled, or thickened. (iii) Watery. (4) Root...
7 CFR 201.56-11 - Knotweed family, Polygonaceae.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons, starchy endosperm. (3) Shoot system: The... development within the test period. (4) Root system: A primary root, with secondary roots developing within... conducting tissue. (ii) Malformed, such as markedly shortened, curled, or thickened. (iii) Watery. (4) Root...
Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants.
Roncato-Maccari, Lauren D B; Ramos, Humberto J O; Pedrosa, Fabio O; Alquini, Yedo; Chubatsu, Leda S; Yates, Marshall G; Rigo, Liu U; Steffens, Maria Berenice R; Souza, Emanuel M
2003-07-01
Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.
NASA Astrophysics Data System (ADS)
Kotas, Petr; Kastovska, Eva
2017-04-01
The rhizosphere represents one of the most important hotspots of microbial activity in soil. As such, it controls soil element cycling and significantly contributes to important ecosystem processes like C and N sequestration. The close plant-microbe-soil interactions in the rhizosphere are mediated by the input of labile exudates into the surroundings of plant roots. Thus microbial performance is constrained by the intensity and composition of root exudation. However, it is poorly understood how closely root exudation corresponds with the plant metabolome and how it is related to plant traits and changing environmental conditions. To fill this gap, we determined the composition of the root metabolic pool and root exudates in two plant species differing in their exploitation type (conservative Carex acuta versus competitive Glyceria maxima) grown for two months in controlled conditions and treated weekly by two levels of foliar N fertilization. Based on previous studies, we knew that Glyceria has, compared to Carex, a lower tissue C:N ratio, higher photosynthetic rate, higher allocation belowground and also larger investment to exudation. Prior to extraction, the roots were cleaned by water and immediately frozen in liquid N2. The root exudates were collected from carefully cleaned roots of living plants encased in glass vials with water and subsequently lyophilised. Both sample types were silylated and analysed for their metabolic profiles using GC-MS/MS. Our results revealed that the metabolite content in root tissue (DW basis) of Glyceria was on average lower compared to Carex, but increased with fertilization, while the root tissue of Carex was characterized by significantly higher metabolite content in the low intensity fertilization treatment compared to both the control and high N fertilization intensity. In contrast, the amount of exuded compounds was much higher in Glyceria compared to Carex in the control plants, but decreased for Glyceria and increased for Carex in fertilized plants, resulting in comparable exudate flow from the most fertilized plants of both species. The exudation intensity decreased from 24% of the tissue metabolic content during 1h in non-fertilized Glyceria individuals to 7% in most fertilized plants, while Carex released between 3% and 5% of the root metabolite content. The Glyceria exudates contained significantly higher amounts of sugars and organic acids compared to their root metabolic pool, and significantly higher proportion of sugars compared to exudates from Carex. Considering the metabolic profiles, the composition of exudates from Glyceria was significantly dinstinct between the fertilized and unfertilized individuals, while the fertilized Carex plants closely corresponded to the controls. Our results have shown that Glyceria, representing competitive plant species, invest high proportion of assimilates into exudation under N limiting conditions, but strongly reduces these expenses when N is available. It also actively controls the composition of root exudates released into the soil environment, while exudation from Carex roots result rather from a passive diffusion of low molecular compounds from the root tissue.
Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN
Schneider, Hannah M.
2017-01-01
Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.
2009-01-01
Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored Cmore » used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.« less
Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.).
Li, Yuanya; Liu, Shaojun; Yu, Zhiming; Liu, Yu; Wu, Ping
2013-06-01
Novel root-specific promoters are important for developing methods to drive root-specific gene expression for nutrient and water absorption. RT-PCR (reverse transcription polymerase chain reaction) analysis identified high expression levels of Os03g01700 and Os02g37190 in root tissues across developmental stages in comparison with the constitutive genes OsAct1 (rice Actin1 gene), OsUbi1 (rice polyubiquitin rubi1 gene), and OsCc1 (rice cytochrome c gene). The copy numbers of Os03g01700 and Os02g37190 were evaluated by qRT-PCR. The results showed that Os03g01700 and Os02g37190 transcripts were highly accumulated in the examined root tissues but were not detected in young embryos or leaves at the indicated days after germination or in the panicle, in contrast to the ubiquitous expression of OsAct1, OsUbi1, and OsCc1. Additionally, the promoter regions of these two genes were linked to the GUSplus reporter gene and transformed into rice. GUS staining of the transgenic plants showed that the Os03g01700 and Os02g37190 promoters were active in primary and secondary roots throughout the developmental stages, except in root hairs. The GUSPlus transcript levels were also highly root-specific in the transgenic rice. Overall, the two promoters are highly active in the root tissues of rice and can be useful for the root-specific enhancement of target gene(s). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gao, Minling; Dong, Youming; Zhang, Ze; Song, Wenhua; Qi, Yun
2017-04-01
Phthalate acid esters (PAEs) are vital environmental hormone-like chemicals that are noxious to plants, animals, and human beings. In this study, the influences of di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) on the seed germination, root morphology, and various physiological changes of wheat seedlings were investigated by analyzing superoxide anion (O 2 - ) accumulation, antioxidant enzyme activity, and lipid peroxidation. DBP and DEHP were found to obviously inhibit germination only at high concentrations, but significantly affected root morphology even at lower concentrations. Their toxic effects were the most severe on root elongation, followed by shoot elongation, and were the least severe on germination rate, indicating that root elongation was the best index for evaluating DBP and DEHP eco-toxicity. DBP and DEHP also enhanced O 2 - and malondialdehyde levels and membrane permeability, as well as produced changes in the antioxidant status and PAE content in the stem and leaf (combined tissues, hereafter shoot) and root tissues. The activities of superoxide dismutase, catalase, and peroxidase increased at low and medium DBP and DEHP concentrations, but declined at high PAE concentrations. These results indicated that PAEs could exert oxidative damage in the early development stage of wheat, particularly at higher concentrations. DBP and DEHP accumulation was higher in the roots than in the shoot tissues, and their levels in these tissues increased with increasing PAE concentrations, supporting their more-serious toxic effects on roots than those on shoots. Further, the physicochemical properties of DBP rendered it more harmful than DEHP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G
2014-09-01
Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots <1 mm in diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Roots of Plantation Cottonwood: Their Characteristics and Properties
John K. Francis
1985-01-01
The root biomass and its distribution and the growth rate of roots of pulpwood-size cottonwood (Popolus deltoides) in plantations were estimated by excavation and sampling. About 27 percent of the total biomass was in root tissue. Equations for predicting stump-taproot dry weight from d.b.h. and top dry weight were derived. Lateral roots in two...
Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.
2007-01-01
Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. Conclusions The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization. PMID:17267513
Iridovirus infection of cell cultures from the Diaprepes root weevil, Diaprepes abbreviatus
Hunter, W. B.; Lapointe, S. L.
2003-01-01
We here report the development and viral infection of a Diaprepes root weevil cell culture. Embryonic tissues of the root weevil were used to establish cell cultures for use in screening viral pathogens as potential biological control agents. Tissues were seeded into a prepared solution of insect medium and kept at a temperature of 24°C. The cell culture had primarily fibroblast-like morphology with some epithelial monolayers. Root weevil cells were successfully infected in vitro with a known insect virus, Invertebrate Iridescent Virus 6. Potential uses of insect cell cultures and insect viruses are discussed. Abbreviation: IIV-6 Invertebrate Iridescent Virus 6 PMID:15841252
Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra.
Träger, Sabrina; Milbau, Ann; Wilson, Scott D
2017-12-01
Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the N cycle in forest and tundra to gain insight into belowground consequences of the widely observed increase in woody vegetation that accompanies climate change in the Arctic. We combined measurements of root production from minirhizotron images with tissue analysis of roots from differing root diameter and color classes to obtain potential N input following decomposition. In addition, we tested for changes in N concentration of roots during early stages of decomposition, and investigated whether vegetation type (forest or tundra) affected changes in tissue N concentration during decomposition. For completeness, we also present respective measurements of leaves. The potential N input from roots was twofold greater in forest than in tundra, mainly due to greater root production in forest. Potential N input varied with root diameter and color, but this variation tended to be similar in forest and tundra. As for roots, the potential N input from leaves was significantly greater in forest than in tundra. Vegetation type had no effect on changes in root or leaf N concentration after 1 year of decomposition. Our results suggest that shifts in vegetation that accompany climate change in the Arctic will likely increase plant-associated potential N input both belowground and aboveground. In contrast, shifts in vegetation might not alter changes in tissue N concentration during early stages of decomposition. Overall, differences between forest and tundra in potential contribution of decomposing roots to the N cycle reinforce differences between habitats that occur for leaves.
Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny
2015-03-01
Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue's auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Zinc and copper tolerance of Agrostis stolonifera L. in tissue culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, L.; Antonovics, J.
1978-03-01
Callus tissue was induced from shoot meristematic tissue and root tips of a clone of the grass Agrostis stolonifera tolerant to both zinc and copper, and from a control clone tolerant to neither metal. Growth of the callus tissue on media containing zinc and copper showed that tolerance to both metals was maintained in tissue culture. The pattern of metal uptake in tissue culture resembled uptake by whole plants in that tolerant tissue took up more metal than nontolerant tissue. Plants regenerated from callus had the same copper and zinc tolerance as the original parental clones regardless of time ofmore » growth in tissue culture and shoot or root origin of the tissue. The results support previous evidence that metal tolerance is genetically determined and acts at the cellular level.« less
Paul, Renny
2016-01-01
Introduction. Gingival recession is an apical shift of the gingival margin with exposure of the root surface. This migration of the marginal tissue leads to esthetic concerns, dentin hypersensitivity, root caries, and cervical wear. It is, paradoxically, a common finding in patients with a high standard of oral hygiene, as well as in periodontally untreated populations with poor oral hygiene. Changing the topography of the marginal soft tissue in order to facilitate plaque control is a common indication for root coverage procedures and forms a major aspect of periodontal plastic surgeries. The regeneration of a new connective tissue attachment to denuded root surface is by allowing the selective coronal regrowth of periodontal ligament cells while excluding the gingival tissues from the root during wound healing by means of a barrier membrane. Case Presentation. This case reports a two-stage surgical technique for treatment of Miller's class III defect using free gingival autograft and type I absorbable collagen membrane (BioMend®, Zimmer Dental, USA)§. Conclusions. The 6-month follow-up of the case showed a significant increase in attached gingiva suggesting it as a predictable alternative in the treatment of Millers class III defects. PMID:27525131
Amaechi, Bennett T; Podoleanu, Adrian Gh; Komarov, Gleb; Higham, Susan M; Jackson, David A
2004-01-01
The use of transverse microradiography (TMR) to quantify the amount of mineral lost during demineralization of tooth tissue has long been established. In the present study, the use of an en-face Optical Coherence Tomography (OCT) technology to detect and quantitatively monitor the mineral changes in root caries was investigated and correlated with TMR. We used an OCT system, developed initially for retina imaging, and which can collect A-scans, B-scans (longitudinal images) and C-scans (en-face images) to quantitatively assess the development of root caries. The power to the sample was 250 microW, wavelength lambda = 850 nm and the optical source linewidth was 16 microm. Both the transversal and longitudinal images showed the caries lesion as volumes of reduced reflectivity. Quantitative analysis using the A-scan (reflectivity versus depth curve) showed that the tissue reflectivity decreased with increasing demineralization time. A linear correlation (r = 0.957) was observed between the mineral loss measured by TMR and the percentage reflectivity loss in demineralized tissue measured by OCT. We concluded that OCT could be used to detect incipient root caries, and that the reflectivity loss in root tissue during demineralization, measured by OCT, could be related to the amount of mineral lost during the demineralization.
Development of cassava periclinal chimera may boost production.
Bomfim, N; Nassar, N M A
2014-02-10
Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.
Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús
2014-01-01
Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the "non-hostile" colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.
Gómez-Lama Cabanás, Carmen; Schilirò, Elisabetta; Valverde-Corredor, Antonio; Mercado-Blanco, Jesús
2014-01-01
Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA) against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH) cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets), many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR) experiments aiming to: (1) validate the induction of these genes, and (2) shed light on their expression pattern along time (from 1 to 15 days). Induction of olive genes potentially coding for lipoxygenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase, and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e., JERF, bHLH, WRKY), as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mounts a wide array of systemic defense responses in distant tissues (stems, leaves). This sheds light on how olive plants respond to the “non-hostile” colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7. PMID:25250017
Carvalho, Edgard B; Curtis, Wayne R
2002-01-01
The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.
Paqué, Frank; Rechenberg, Dan-Krister; Zehnder, Matthias
2012-05-01
Hard-tissue debris is accumulated during rotary instrumentation. This study investigated to what extent a calcium-complexing agent that has good short-term compatibility with sodium hypochlorite (NaOCl) could reduce debris accumulation when applied in an all-in-one irrigant during root canal instrumentation. Sixty extracted mandibular molars with isthmuses in the mesial root canal system were selected based on prescans using a micro-computed tomography system. Thirty teeth each were randomly assigned to be instrumented with a rotary system and irrigated with either 2.5% NaOCl or 2.5% NaOCl containing 9% (wt/vol) etidronic acid (HEBP). Using a side-vented irrigating tip, 2 mL of irrigant was applied by 1 blinded investigator to the mesial canals after each instrument. Five milliliters of irrigant was applied per canal as the final rinse. Mesial root canal systems were scanned at high resolution before and after treatment, and accumulated hard-tissue debris was calculated as vol% of the original canal anatomy. Values between groups were compared using the Student's t test (α < .05). Irrigation with 2.5% NaOCl resulted in 5.5 ± 3.6 vol% accumulated hard-tissue debris compared with 3.8 ± 1.8 vol% when HEBP was contained in the irrigant (P < .05). A hypochlorite-compatible chelator can reduce but not completely prevent hard-tissue debris accumulation during rotary root canal instrumentation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Agneta, Rosa; Lelario, Filomena; De Maria, Susanna; Möllers, Christian; Bufo, Sabino Aurelio; Rivelli, Anna Rita
2014-10-01
Profile and distribution of glucosinolates (GLS) were detected in plant tissues of horseradish at different developmental stages: beginning of vegetative re-growth, flowering and silique formation. The GLS profile varied widely in the different tissues: we identified 17 GLS in roots and sprouts, one of which was not previously characterized in horseradish, i.e. the 2(S)-hydroxy-2-phenylethyl-GLS (glucobarbarin) and/or 2(R)-hydroxy-2-phenylethyl-GLS (epiglucobarbarin), 11 already found in the roots, including the putative 2-methylsulfonyl-oxo-ethyl-GLS, and 5 previously recognized only in the sprouts. Fifteen of those GLS were also identified in young and cauline leaves, 12 in the mature leaves and 13 in the inflorescences. No difference in GLS profile was observed in plant among the phenological stages. Differences in concentrations of GLS, quantified as desulfated, were found in plant. At the beginning of vegetative re-growth, sprouts while showing the same profile of the roots were much richer in GLS having the highest total GLS concentrations (117.5 and 7.7μmolg(-1) dry weight in sprouts and roots, respectively). During flowering and silique forming stages, the roots still maintained lower amount of total GLS (7.4μmolg(-1) of dry weight, on average) with respect to the epigeous tissues, in which mature and young leaves showed the highest total concentrations (70.5 and 73.8μmolg(-1) of dry weight on average, respectively). Regardless of the phenological stages, the aliphatic GLS were always predominant in all tissues (95%) followed by indolic (2.6%) and benzenic (2.4%) GLS. Sinigrin contributed more than 90% of the total GLS concentration. Aliphatic GLS concentrations were much higher in the epigeous tissues, particularly in the mature and young leaves, while benzenic and indolic GLS concentrations were higher in the roots. Through the phenological stages, GLS concentration increased in young and mature leaves and decreased in cauline leaves and inflorescences, while it remained constant over time in roots. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption
Wimer, H.F.; Yamada, S.S.; Yang, T.; Holmbeck, K.; Foster, B.L.
2016-01-01
Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a transmembrane zinc-endopeptidase that breaks down extracellular matrix components, including several collagens, during tissue development and physiological remodeling. MT1-MMP-deficient mice (MT1-MMP−/−) feature severe defects in connective tissues, such as impaired growth, osteopenia, fibrosis, and conspicuous loss of molar tooth eruption and root formation. In order to define the functions of MT1-MMP during root formation and tooth eruption, we analyzed the development of teeth and surrounding tissues in the absence of MT1-MMP. In situ hybridization showed that MT1-MMP was widely expressed in cells associated with teeth and surrounding connective tissues during development. Multiple defects in dentoalveolar tissues were associated with loss of MT1-MMP. Root formation was inhibited by defective structure and function of Hertwig's epithelial root sheath (HERS). However, no defect was found in creation of the eruption pathway, suggesting that tooth eruption was hampered by lack of alveolar bone modeling/remodeling coincident with reduced periodontal ligament (PDL) formation and integration with the alveolar bone. Additionally, we identified a significant defect in dentin formation and mineralization associated with the loss of MT1-MMP. To segregate these multiple defects and trace their cellular origin, conditional ablation of MT1-MMP was performed in epithelia and mesenchyme. Mice featuring selective loss of MT1-MMP activity in the epithelium were indistinguishable from wild type mice, and importantly, featured a normal HERS structure and molar eruption. In contrast, selective knock-out of MT1-MMP in Osterix-expressing mesenchymal cells, including osteoblasts and odontoblasts, recapitulated major defects from the global knock-out including altered HERS structure, short roots, defective dentin formation and mineralization, and reduced alveolar bone formation, although molars were able to erupt. These data indicate that MT1-MMP activity in the dental mesenchyme, and not in epithelial-derived HERS, is essential for proper tooth root formation and eruption. In summary, our studies point to an indispensable role for MT1-MMP-mediated matrix remodeling in tooth eruption through effects on bone formation, soft tissue remodeling and organization of the follicle/PDL region. PMID:26780723
1992-06-30
first employed on large scale public works projects-building dikes, irrigation systems, the pyramids, and ziggurats of ancient Sumer-it was but a...original Sumerian word for the southern part of Iraq, the site of Sumer with its capital at the city of Ur . If the river is followed northward from...The first historical evidence of soldiers wearing helmets is also provided on the stele. From the bodies of soldiers found in the Death Pits of Ur
Methods for Solving the Viscoelasticity Equations for Cylinder and Sphere Problems
1976-03-22
iEA~Q:t~). Z: 1:40i p .2.. * 4// 4 4) DISPLALEMENT- INLIEPENCEANr POTENTIAL AýELArO: 4) iPAL~T NDEIJUNCF’!r. IoorENTAL .qELATiOW5 bIO GkERAL...A t) STELE .8) Q~SP...]’e- $3~bp "j6 I1+MDV2(E.. -E.L~ REAL2. Ot Jr *l f.Ji) 4_NV Z 4 i.’ v THE rzOXM EPRlON CAN BE GIVE N PVAU IN DNA ANY LANf
Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.
He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen
2013-10-01
Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.
On the causes of persistent apical periodontitis: a review.
Nair, P N R
2006-04-01
Apical periodontitis is a chronic inflammatory disorder of periradicular tissues caused by aetiological agents of endodontic origin. Persistent apical periodontitis occurs when root canal treatment of apical periodontitis has not adequately eliminated intraradicular infection. Problems that lead to persistent apical periodontitis include: inadequate aseptic control, poor access cavity design, missed canals, inadequate instrumentation, debridement and leaking temporary or permanent restorations. Even when the most stringent procedures are followed, apical periodontitis may still persist as asymptomatic radiolucencies, because of the complexity of the root canal system formed by the main and accessory canals, their ramifications and anastomoses where residual infection can persist. Further, there are extraradicular factors -- located within the inflamed periapical tissue -- that can interfere with post-treatment healing of apical periodontitis. The causes of apical periodontitis persisting after root canal treatment have not been well characterized. During the 1990s, a series of investigations have shown that there are six biological factors that lead to asymptomatic radiolucencies persisting after root canal treatment. These are: (i) intraradicular infection persisting in the complex apical root canal system; (ii) extraradicular infection, generally in the form of periapical actinomycosis; (iii) extruded root canal filling or other exogenous materials that cause a foreign body reaction; (iv) accumulation of endogenous cholesterol crystals that irritate periapical tissues; (v) true cystic lesions, and (vi) scar tissue healing of the lesion. This article provides a comprehensive overview of the causative factors of non-resolving periapical lesions that are seen as asymptomatic radiolucencies post-treatment.
A comparative study of root coverage using two different acellular dermal matrix products.
Barker, Thomas S; Cueva, Marco A; Rivera-Hidalgo, Francisco; Beach, M Miles; Rossmann, Jeffrey A; Kerns, David G; Crump, T Bradley; Shulman, Jay D
2010-11-01
Gingival recession remains an important problem in dental esthetics. A new dermal matrix material has been introduced, but its effectiveness has not been studied and compared to current dermal matrix material. The aim of this study is to compare the healing associated with a coronally advanced flap for root coverage in areas of localized tissue recession when using Alloderm (ADM) and Puros Dermis (PDM). A split-mouth design was used for this study, with 52 contralateral sites in 14 patients with Miller Class I or III facial tissue recession. Twenty-six sites were treated with coronally advanced flap using PDM, and 26 sites were treated with coronally advanced flap using ADM, all followed for 6 months. Clinical measurements of vertical recession, keratinized tissue, probing depths, and attachment levels were made initially, at 3 months, and at 6 months. Both groups had significant improvement in the amount of recession coverage with means of 2.83 mm for the PDM and 3.13 mm for the ADM. The percentage of root coverage was 81.4% for the PDM and 83.4% for the ADM; differences between the materials were not statistically significant. Based on the results of this study, there was no statistical or clinical difference in the amount of root coverage, probing depth, or keratinized tissue in coronally advanced flaps for root coverage with either of the two acellular dermal matrix materials. Both materials were successful in achieving root coverage.
Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen
2010-02-01
Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.
Rebele, Stephan F; Zuhr, Otto; Schneider, David; Jung, Ronny E; Hürzeler, Markus B
2014-06-01
The aim of this randomized clinical trial (RCT) was to compare the clinical performance of the tunnel technique with subepithelial connective tissue graft (TUN) versus a coronally advanced flap with enamel matrix derivative (CAF) in the treatment of gingival recession defects. The use of innovative 3D digital measuring methods allowed to study healing dynamics at connective tissue (CT)-grafted sites and to evaluate the influence of the thickness of the root covering soft tissues on the outcome of surgical root coverage. Twenty-four patients contributed a total of 47 Miller class I or II recessions for scientific evaluation. Precise study models collected at baseline and follow-up examinations were optically scanned and virtually superimposed for digital evaluation of clinical outcome measures including mean marginal soft tissue thickness (THK). Healing dynamics were measured in a defined region of interest at CT-grafted sites where volume differences between time points were calculated. At 12 months, recession reduction as well as mean root coverage were significantly better at CT-grafted sites treated in the TUN group (1.94 mm and 98.4% respectively) compared to the non-augmented sites of the CAF group (1.17 mm and 71.8% respectively) and statistical analysis revealed a positive correlation of THK (1.63 mm TUN versus 0.91 mm CAF, p < 0.0001) to both these variables. Soft tissue healing following surgical root coverage with CT-grafting was mainly accomplished after 6 months, with around two-thirds of the augmented volume being maintained after 12 months. The TUN resulted in thicker gingiva and better clinical outcomes compared to CAF. Increased gingival thickness was associated with better surgical outcomes in terms of recession reduction and root coverage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ruangsawasdi, Nisarat; Zehnder, Matthias; Weber, Franz E
2014-02-01
In pulpless immature human premolars implanted in rodents, this study investigated whether fibrin gel offered advantages over leaving the root canal empty regarding soft tissue ingrowth and cell differentiation. Root canals of extracted human immature premolars (n = 12) were accessed and then irrigated with 5% sodium hypochlorite followed by 17% ethylenediaminetetraacetic acid. Root canals were then either left empty or filled with a fibrin gel (n = 6 each) before being placed subcutaneously on top of the calvarial bone of rats (1 tooth per rat) for 12 weeks. After sacrifice, teeth were histologically assessed. Tissue ingrowth was quantified and compared between groups using the Mann-Whitney U test (P < .05). Cells adhering to the pulp canal wall were immunohistochemically screened for the presence of bone sialoprotein (BSP) and dentin sialoprotein (DSP). More tissue grew into the pulp space when teeth were filled with fibrin gel (P < .05). The presence of fibrin gel affected not only the extent of tissue ingrowth but also tissue morphology and differentiation of cells contacting the dentinal wall. In the fibrin gel group, newly formed tissue was similar to normal pulp, constituted of inner pulp, cell-rich zone, cell-free zone, and an apparent odontoblast layer, which stained positive for BSP and DSP. Newly formed blood vessels were also more abundant compared with the initially empty root canals. Under the conditions of this study, fibrin gel improved cell infiltration and cell-dentin interaction. Both are necessary for pulp tissue regeneration. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
CINTRA, Luciano Tavares Angelo; BERNABÉ, Pedro Felício Estrada; de MORAES, Ivaldo Gomes; GOMES-FILHO, João Eduardo; OKAMOTO, Tetuo; CONSOLARO, Alberto; PINHEIRO, Tiago Novaes
2010-01-01
Objective The aim of this study was to compare two methodologies used in the evaluation of tissue response to root-end filling materials in rats. Material and Methods Forty rats were divided into 4 groups: in Groups I and II (control groups), empty polyethylene tubes were implanted in the extraction site and in the subcutaneous tissue, respectively; in Groups III and IV, polyethylene tubes filled with ProRoot MTA were implanted in the extraction site and in the subcutaneous tissue, respectively. The animals were killed 7 and 30 days after tube implantation, and the hemi-maxillas and the capsular subcutaneous tissue, both with the tubes, were removed. Specimens were processed and evaluated histomorphologicaly under light microscopy. The scores obtained were analyzed statistically by the Kruskal-Wallis test (p<0.05). Results There were no statistically significant differences between the implantation methods (p=0.78033, p=0.72039). It was observed that the 30-day groups presented a more mature healing process due to smaller number of inflammatory cells. Conclusion The present study showed no differences in tissue responses as far as the implantation site and the studied period were concerned. Alveolar socket implantation methodology represents an interesting method in the study of the biological properties of root-end filling endodontic materials due to the opportunity to evaluate bone tissue response. PMID:20379685
Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.
1998-01-01
A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543
[Distribution laws of 5 compounds in rhizome and root of Polygonum cuspidate].
Liu, Yao-wut; Wang, Jun; Chu, Shan-shan; Cheng, Ming-en; Fang, Cheng-wu
2015-12-01
To understand the distribution and accumulation rules of polydatin, resveratrol, anthraglycoside B, emodin and physicion in different tissue structure of rhizome and root of Polygonum cospidatum, the content of 5 active compounds were analyzed simultaneously by HPLC, based on plant anatomy and histochemistry. The rhizome and root consist of different tissues, with an increased diameter, the proportions of the secondary xylem and phloem have increased. Resveratrol and polydatin mainly distributed in the pith, the secondary phloem and periderm of rhizome, and the secondary phloem and periderm of the root, while emodin and anthraglycoside B concentrated in the secondary structure and pith of rhizome mostly. In different thickness of the measured samples, the total contents of 5 compounds were correspondingly higher in thinner rhizome and root than those in the coarse ones.
Marking cell lineages in living tissues.
Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim
2005-05-01
We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.
Paparu, Pamela; Dubois, Thomas; Gold, Clifford S; Niere, Björn; Adipala, Ekwamu; Coyne, Daniel
2008-04-01
Two major biotic constraints to highland cooking banana (Musa spp., genome group AAA-EA) production in Uganda are the banana weevil Cosmopolites sordidus and the burrowing nematode Radopholus similis. Endophytic Fusarium oxysporum strains inoculated into tissue culture banana plantlets have shown control of the banana weevil and the nematode. We conducted screenhouse and field experiments to investigate persistence in the roots and rhizome of two endophytic Fusarium oxysporum strains, V2w2 and III4w1, inoculated into tissue-culture banana plantlets of highland cooking banana cultivars Kibuzi and Nabusa. Re-isolation of F. oxysporum showed that endophyte colonization decreased faster from the rhizomes than from the roots of inoculated plants, both in the screenhouse and in the field. Whereas rhizome colonization by F. oxysporum decreased in the screenhouse (4-16 weeks after inoculation), root colonization did not. However, in the field (17-33 weeks after inoculation), a decrease was observed in both rhizome and root colonization. The results show a better persistence in the roots than rhizomes of endophytic F. oxysporum strains V2w2 and III4w1.
Tunneling procedure for root coverage using acellular dermal matrix: a case series.
Modaressi, Marmar; Wang, Hom-Lay
2009-08-01
This study was designed to demonstrate the use of the relatively novel tunneling technique for root coverage with acellular dermal matrix (ADM) to treat Miller Class I and II gingival recession defects. Five subjects with two to five adjacent buccal gingival recession defects were treated with ADM using the tunneling technique for root coverage. A calibrated, blinded examiner measured clinical parameters, including probing depth, clinical attachment level, width of keratinized tissue, recession depth, recession width at 1 mm apical to the cementoenamel junction, gingival tissue thickness at 1 mm and 3 mm apical to the gingival margin, Plaque Index, Gingival Index, and Wound Healing Index, at different time intervals. Patient discomfort was recorded 14 days postoperatively, and an overall quality assessment was recorded 180 days postoperatively. Results showed an average of 61% defect coverage (equal to 93.5% root coverage), and a 0.15-mm gain in tissue thickness was achieved 1 year postoperatively. This suggested that root coverage with ADM using the tunneling technique can be a viable alternative to traditional techniques, especially for multiple recession defects in maxillary premolar and anterior teeth.
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Evidence-based alternatives for autogenous grafts around teeth: outcomes, attachment, and stability.
McGuire, Michael K
2014-06-01
Although the use of autogenous harvested tissues has proven to be the gold standard for soft tissue augmentation procedures involving root coverage or generation of keratinized tissue, harvest site morbidity and limited supply have prompted clinicians to seek graft alternatives. Using a hierarchy of evidence, the author reviews both clinical and patient-reported results for harvest graft substitutes and, considering his own research experience, reviews autogenous graft substitute outcomes, attachment, and stability over time. Overall, when the goal is keratinized-tissue generation, living cellular constructs and xenogeneic collagen matrices have provided acceptable clinical results, but with better esthetics and patient preference than autogenous free gingival grafts. For root coverage therapy, enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices have provided acceptable results with equivalent esthetics to autogenous connective tissue grafts, while also being preferred by patients. Longterm results for enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices indicate root coverage can be maintained over time. In the author's hands, xenogeneic collagen matrices have been the only harvest graft alternatives that can be used either covered or uncovered by soft tissue.
NASA Astrophysics Data System (ADS)
Kesler, Gavriel; Koren, Rumelia; Gal, Rivka
1998-04-01
Until now, no suitable delivery fiber existed for CO2 laser endodontic radiation in the apical region where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal, thus favorably increasing the thermal effects. The 15 F CO2 microprobe is a flexible, hollow, metal fiber, 300 micrometer in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength -- 10.6 micrometer; pulse duration -- 50m/sec; energy per pulse 0.25 joule; energy density -- 353.7J/cm2 per pulse; power on tissue -- 5 W. The study was conducted on 30 vital maxillary or mandibulary; central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees Celsius. Ten teeth represented the control group in which only root canal preparation was performed in the conventional method. Histological examination of the laser treated teeth showed coagulation necrosis and vacuolization of remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal, in all cases treated with 15 F CO2 laser. Gramm stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, and no thermal damage to the surrounding tissue.
Barbosa, Jose M; Singh, Narendra K; Cherry, Joe H; Locy, Robert D
2010-06-01
Exogenously applied GABA modulates root growth by inhibition of root elongation when seedlings were grown in vitro on full-strength Murashige and Skoog (MS) salts, but root elongation was stimulated when seedlings were grown on 1/8 strength MS salts. When the concentration of single ions in MS salts was individually varied, the control of growth between inhibition and stimulation was found to be related to the level of nitrate (NO(3)(-)) in the growth medium. At NO(3)(-) concentrations below 40 mM (full-strength MS salts level), root growth was stimulated by the addition of GABA to the growth medium; whereas at concentrations above 40 mM NO(3)(-), the addition of GABA to the growth medium inhibited root elongation. GABA promoted NO(3)(-) uptake at low NO(3)(-), while GABA inhibited NO(3)(-) uptake at high NO(3)(-). Activities of several enzymes involved in nitrogen and carbon metabolism including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and phosphoenol pyruvate carboxylase (PEPCase) were regulated by GABA in the growth medium. Supplementing 1/8 strength MS medium with 50 mM GABA enhanced the activities of all of the above enzymes except ICDH activities in root tissues. However, at full-strength MS, GABA showed no inhibitory effect on the activities of these enzymes, except on GS in both root and shoot tissues, and PEPCase activity in shoot tissues. Exogenous GABA increased the amount of NR protein rather than its activation status in the tissues. This study shows that GABA affects the growth of Arabidopsis, possibly by acting as a signaling molecule, modulating the activity of enzymes involved in primary nitrogen metabolism and nitrate uptake.
A new diagnostic real-time PCR method for huanglongbing detection in citrus root tissue
USDA-ARS?s Scientific Manuscript database
Citrus fibrous root tissue was evaluated as an alternative source material for Huanglongbing (HLB) diagnosis by real-time PCR using primer-probe set TXCChlb, developed in the present study based on 16S rDNA of “Candidatus Liberibacter asiaticus” (CLas). Real-time PCR data obtained with DNA samples p...
USDA-ARS?s Scientific Manuscript database
Russian dandelion (Taraxacum kok-saghyz) (TKS) produces high quality natural rubber (NR), cis-1,4 polyisoprene, by biosynthesis, and has been used historically as a source of NR during times of short supply or high prices for Hevea NR. The rubber is primarily located in root tissues along with appre...
Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.
Lee, Jae-Sung; Wissuwa, Matthias; Zamora, Oscar B; Ismail, Abdelbagi M
2017-11-01
Zn deficiency is one of the major soil constraints currently limiting rice production. Although recent studies demonstrated that higher antioxidant activity in leaf tissue effectively protects against Zn deficiency stress, little is known about whether similar tolerance mechanisms operate in root tissue. In this study we explored root-specific responses of different rice genotypes to Zn deficiency. Root solute leakage and biomass reduction, antioxidant activity, and metabolic changes were measured using plants grown in Zn-deficient soil and hydroponics. Solute leakage from roots was higher in sensitive genotypes and linked to membrane damage caused by Zn deficiency-induced oxidative stress. However, total root antioxidant activity was four-fold lower than in leaves and did not differ between sensitive and tolerant genotypes. Root metabolite analysis using gas chromatography-mass spectrometry and high performance liquid chromatography indicated that Zn deficiency triggered the accumulation of glycerol-3-phosphate and acetate in sensitive genotypes, while less or no accumulation was seen in tolerant genotypes. We suggest that these metabolites may serve as biochemical indicators of root damage under Zn deficiency.
Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B
2017-09-01
Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Yukita, Akira; Yoshiba, Kunihiko; Yoshiba, Nagako; Takahashi, Masafumi; Nakamura, Hiroaki
2012-01-01
Dental pulp is involved in the formation of bone-like tissue in response to external stimuli. However, the origin of osteoblast-like cells constructing this tissue and the mechanism of their induction remain unknown. We therefore evaluated pulp mineralization induced by transplantation of a green fluorescent protein (GFP)–labeled tooth into a GFP-negative hypodermis of host rats. Five days after the transplantation, the upper pulp cavity became necrotic; however, cell-rich hard tissue was observed adjacent to dentin at the root apex. At 10 days, woven bone-like tissue was formed apart from the dentin in the upper pulp. After 20 days, these hard tissues expanded and became histologically similar to bone. GFP immunoreactivity was detected in the hard tissue-forming cells within the root apex as well as in the upper pulp. Furthermore, immunohistochemical observation of α–smooth muscle actin, a marker for undifferentiated cells, showed a positive reaction in cells surrounding this bone-like tissue within the upper pulp but not in those within the root apex. Immunoreactivities of Smad4, Runx2, and Osterix were detected in the hard tissue-forming cells within both areas. These results collectively suggest that the dental pulp contains various types of osteoblast progenitors and that these cells might thus induce bone-like tissue in severely injured pulp. PMID:22899860
A conservative management of iatrogenically damaged distal root of the mandibular second molar.
Bansal, Rashmi; Roy, Sonali; Chandra, Praveen; Gurtu, Anuraag; Pandey, Rahul
2017-01-01
Trauma to the adjacent hard and soft tissue is the most common iatrogenic injury during extraction of the mandibular third molar. As every functional component of the dental arch is of prime importance in contemporary dental practice, the major concern must be in conserving the tooth and its structure as much as possible. The present case discusses the application of this conservative approach for management of iatrogenically damaged distal root of the mandibular second molar during extraction of impacted third molar, in which excessive guttering of alveolar bone and fractured apical third of distal root of 37 was observed radiographically. A conservative and noninvasive approach was successfully achieved to restore the damaged root by the bioactive material. Sealing of the remaining root with mineral trioxide aggregate allowed regeneration of soft and hard tissue around it.
Tatakis, Dimitris N; Chambrone, Leandro; Allen, Edward P; Langer, Burton; McGuire, Michael K; Richardson, Christopher R; Zabalegui, Ion; Zadeh, Homayoun H
2015-02-01
Management of gingival recession defects, a common periodontal condition, using root coverage procedures is an important aspect of periodontal regenerative therapy. The goal of the periodontal soft tissue root coverage procedures group was to develop a consensus report based on the accompanying systematic review of root coverage procedures, including priorities for future research and identification of the best evidence available to manage different clinical scenarios. The group reviewed and discussed the accompanying systematic review, which covered treatment of single-tooth recession defects, multiple-tooth recession defects, and additional focused questions on relevant clinical topics. The consensus group members submitted additional material for consideration by the group in advance and at the time of the meeting. The group also identified priorities for future research. All reviewed root coverage procedures provide significant reduction in recession depth, especially for Miller Class I and II recession defects. Subepithelial connective tissue graft (SCTG) procedures provide the best root coverage outcomes. Acellular dermal matrix graft (ADMG) or enamel matrix derivative (EMD) in conjunction with a coronally advanced flap (CAF) can serve as alternatives to autogenous donor tissue. Additional research is needed to do the following: 1) assess the treatment outcomes for multiple-tooth recession defects, oral sites other than maxillary canine and premolar teeth, and Miller Class III and IV defects; 2) assess the role of patient- and site-specific factors on procedure outcomes; and 3) obtain evidence on patient-reported outcomes. Predictable root coverage is possible for single-tooth and multiple-tooth recession defects, with SCTG procedures providing the best root coverage outcomes. Alternatives to SCTG are supported by evidence of varying strength. Additional research is needed on treatment outcomes for specific oral sites. Clinical Recommendation: For Miller Class I and II single-tooth recession defects, SCTG procedures provide the best outcomes, whereas ADMG or EMD in conjunction with CAF may be used as an alternative.
De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei
2014-02-01
The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.
Wälivaara, Dan-Åke; Abrahamsson, Peter; Isaksson, Sten; Salata, Luiz Antonio; Sennerby, Lars; Dahlin, Christer
2012-09-01
To investigate the periapical tissue response of 4 different retrograde root-filling materials, ie, intermediate restorative material, thermoplasticized gutta-percha, reinforced zinc oxide cement (Super-EBA), and mineral trioxide aggregate (MTA), in conjunction with an ultrasonic root-end preparation technique in an animal model. Vital roots of the third and fourth right mandibular premolars in 6 healthy mongrel dogs were apicectomized and sealed with 1 of the materials using a standardized surgical procedure. After 120 days, the animals were sacrificed and the specimens were analyzed radiologically, histologically, and scanning electron microscopically. The Fisher exact test was performed on the 2 outcome values. Twenty-three sections were analyzed histologically. Evaluation showed better re-establishment of the periapical tissues and generally lower inflammatory infiltration in the sections from teeth treated with the intermediate restorative material and the MTA. New root cement on the resected dentin surfaces was seen on all sections regardless of the used material. New hard tissue formation, directly on the surface of the material, was seen only in the MTA sections. There was no statistical difference in outcome among the tested materials. The results from this dog model favor the intermediate restorative material and MTA as retrograde fillings when evaluating the bone defect regeneration. MTA has the most favorable periapical tissue response when comparing the biocompatibility of the materials tested. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Gholami, Gholam Ali; Saberi, Arezoo; Kadkhodazadeh, Mahdi; Amid, Reza; Karami, Daryoosh
2013-01-01
Background: Different techniques have been proposed for the treatment of gingival recession. The majority of current procedures use autogenous soft-tissue grafts, which are associated with morbidity at the donor sites. Acellular dermal matrix (ADM) Alloderm is an alternative donor material presented to reduce related morbidity and provide more volume of the donor tissue. This study aimed to evaluate the effectiveness of an ADM allograft for root coverage and to compare it with a connective tissue graft (CTG), when used with a double papillary flap. Materials and Methods: Sixteen patients with bilateral class I or II gingival recessions were selected. A total of 32 recessions were treated and randomly assigned into the test and contralateral recessions into the control group. In the control group, the exposed root surfaces were treated by the placement of a CTG in combination with a double papillary flap; and in the test group, an ADM allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, width of keratinized tissue (KT), recession height and width were measured before, and after 2 weeks and 6 months of surgery. Results: There were no statistically significant differences between the test and control groups in terms of recession reduction, clinical attachment gain, and reduction in probing depth. The control group had a statistically significant increased area of KT after 6 months compared to the test group. Conclusion: ADM allograft can be considered as a substitute for palatal donor tissue in root coverage procedure. PMID:24130587
Chochois, Vincent; Vogel, John P; Rebetzke, Gregory J; Watt, Michelle
2015-07-01
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected. © 2015 American Society of Plant Biologists. All Rights Reserved.
Kopittke, Peter M; Gianoncelli, Alessandra; Kourousias, George; Green, Kathryn; McKenna, Brigid A
2017-01-01
Silicon is reported to reduce the toxic effects of Al on root elongation but the in planta mechanism by which this occurs remains unclear. Using seedlings of soybean ( Glycine max ) and sorghum ( Sorghum bicolor ), we examined the effect of up to 2 mM Si on root elongation rate (RER) in Al-toxic nutrient solutions. Synchrotron-based low energy X-ray fluorescence (LEXRF) was then used for the in situ examination of the distribution of Al and Si within cross-sections cut from the apical tissues of sorghum roots. The addition of Si potentially increased RER in Al-toxic solutions, with RER being up to ca. 0.3 mm h -1 (14%) higher for soybean and ca. 0.2 mm h -1 (17%) higher for sorghum relative to solutions without added Si. This improvement in RER could not be attributed to a change in Al-chemistry of the bulk nutrient solution, nor was it due to a change in the concentration of Al within the apical (0-10 mm) root tissues. Using LEXRF to examine sorghum, it was demonstrated that in roots exposed to both Al and Si, much of the Al was co-located with Si in the mucigel and outer apoplast. These observations suggest that Si reduces the toxicity of Al in planta through formation of Al-Si complexes in mucigel and outer cellular tissues, thereby decreasing the binding of Al to the cell wall where it is known to inhibit wall loosening as required for cell elongation.
Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo Goldstein
2012-01-01
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...
Expression of modified tocopherol content and profile in sunflower tissues.
Del Moral, Lidia; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo
2012-01-30
Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes. Copyright © 2011 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Sandstrom, R. P.; Cleland, R. E.
1989-01-01
The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.
Pain and flare-up after endodontic treatment procedures.
Sipavičiūtė, Eglė; Manelienė, Rasmutė
2014-01-01
Flare-ups can occur after root canal treatment and consist of acute exacerbations of an asymptomatic pulpal and/or periradicular pathologic condition. The causative factors of interappointment pain encompass mechanical, chemical, and/or microbial injury to the pulp or periradicular tissues. Microorganisms can participate in causation of interappointment pain in the following situations: apical extrusion of debris; incomplete instrumentation leading to changes in the endodontic microbiota or in environmental conditions; and secondary intraradicular infections. Interappointment pain is almost exclusively due to the development of acute inflammation at the periradicular tissues in response to an increase in the intensity of injury coming from the root canal system. The mechanical irritation of apical periodontal tissue is caused by overinstrumentation of the root canal and filling material extrusion through the apical foramen. Incorrectly measured working length of the root canal has inherent connection with these causative factors of endodontic flare - up. This review article discusses these many facets of the flare-up: definition, incidence causes and predisposing factors.
Live biospeckle laser imaging of root tissues.
Braga, Roberto A; Dupuy, L; Pasqual, M; Cardoso, R R
2009-06-01
Live imaging is now a central component for the study of plant developmental processes. Currently, most techniques are extremely constraining: they rely on the marking of specific cellular structures which generally apply to model species because they require genetic transformations. The biospeckle laser (BSL) system was evaluated as an instrument to measure biological activity in plant tissues. The system allows collecting biospeckle patterns from roots which are grown in gels. Laser illumination has been optimized to obtain the images without undesirable specular reflections from the glass tube. Data on two different plant species were obtained and the ability of three different methods to analyze the biospeckle patterns are presented. The results showed that the biospeckle could provide quantitative indicators of the molecular activity from roots which are grown in gel substrate in tissue culture. We also presented a particular experimental configuration and the optimal approach to analyze the images. This may serve as a basis to further works on live BSL in order to study root development.
Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres
2012-01-01
The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements. PMID:22325439
Murata, Masashi; Okuda, Kazuhiro; Momose, Manabu; Kubo, Kentarou; Kuroyanagi, Yoshimitsu; Wolff, Larry F
2008-10-01
Cultured gingival dermal substitute (CGDS), composed of gingival fibroblasts and matrix and fabricated using tissue-engineering techniques, has been used for root coverage procedures. Fourteen sites from four patients with > or = 2 mm of Miller Class I or II facial gingival tissue recession were treated. The autologous CGDS sheet, prepared prior to surgical treatment, was grafted over the teeth with gingival recession and then covered with a coronally positioned flap. Vertical and horizontal recession was measured at baseline (prior to the surgical procedure) and 13 to 40 weeks (average: 30.7 +/- 9.6 weeks) after surgery. The average vertical and horizontal root coverage after surgery was 79.1% +/- 25.7% and 75.2% +/- 31.4%, respectively. Moreover, there was a significant increase of keratinized and attached gingival tissue at the final clinical evaluation compared with preoperative measurements (P < .05). These results demonstrate CGDS as a promising grafting material for use with root coverage procedures in periodontal therapy.
Esthetic soft tissue management for teeth and implants.
Fu, Jia-Hui; Su, Chuan-Yi; Wang, Hom-Lay
2012-09-01
Can newly introduced graft materials be successfully used in soft tissue augmentation around teeth and dental implants? An electronic search on the PubMed database for English articles published before March 31, 2012, was performed using the following key words: "root coverage," "soft tissue graft," "periodontal plastic surgery," "subepithelial connective graft (SCTG)," "acellular dermal matrix (ADM)," "guided tissue regeneration based root coverage (GTRC)," "recession defects," "mucogingival defects," "collagen matrix," "living cellular construct (LCC)," "mucograft," and "biologic agents." Literature featuring new soft tissue graft materials, such as ADM, collagen matrix, GTRC, and biologic agents, were included. Data showed (1) allogeneic grafts were comparable to SCTG in terms of mean complete root coverage (CRC), mean root coverage (RC), and mean amount of keratinized tissue (KT) gain; (2) xenogeneic collagen matrix was as comparable to SCTG in terms of mean amount of KT gain around teeth and dental implants but inferior in achieving RC; (3) GTRC was inferior to SCTG in terms of mean CRC and mean RC; (4) LCC was inferior to free gingival graft in terms of mean amount of KT gain but was superior in esthetics and patient satisfaction; and (5) adjunctive use of biologic agents did not exert a significant effect on mean CRC, mean RC, and mean amount of KT gain. Although these new materials do not surpass the gold standard (SCTG), they do provide improved patient satisfaction and esthetics, are available in abundance, and lead to reduced postoperative discomfort and surgical time. Copyright © 2012 Elsevier Inc. All rights reserved.
Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao
2010-01-01
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072
Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs.
Hossain, Md Shakhawat; Kawakatsu, Taiji; Kim, Kyung Do; Zhang, Ning; Nguyen, Cuong T; Khan, Saad M; Batek, Josef M; Joshi, Trupti; Schmutz, Jeremy; Grimwood, Jane; Schmitz, Robert J; Xu, Dong; Jackson, Scott A; Ecker, Joseph R; Stacey, Gary
2017-04-01
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Li, Hai-Yan; Yang, Guo-Dong; Shu, Huai-Rui; Yang, Yu-Tao; Ye, Bao-Xing; Nishida, Ikuo; Zheng, Cheng-Chao
2006-01-01
Inoculation of the grapevine (Vitis amurensis Rupr.) with the arbuscular mycorrhizal (AM) fungus Glomus versiforme significantly increased resistance against the root-knot nematode (RKN) Meloidogyne incognita. Studies using relative quantitative reverse transcription-PCR (RQRT-PCR) analysis of grapevine root inoculation with the AM fungus revealed an up-regulation of VCH3 transcripts. This increase was greater than that observed following infection with RKN. However, inoculation of the mycorrhizal grapevine roots with RKN was able to enhance VCH3 transcript expression further. Moreover, the increase in VCH3 transcripts appeared to result in a higher level of resistance against subsequent RKN infection. Constitutive expression of VCH3 cDNA in transgenic tobacco under the control of the cauliflower mosaic virus 35S promoter also conferred resistance against RKN, but had no significant effect on the growth of the AM fungus. We analyzed beta-glucuronidase (GUS) activity directed by a 1,216 bp VCH3 promoter in transgenic tobacco following inoculation with both the AM fungus and RKN. GUS activity was negligible in the root tissues before inoculation, and was more effectively induced after inoculation with the AM fungus than with RKN. Moreover, GUS staining in the mycorrhizal transgenic tobacco roots was enhanced by subsequent RKN infection, and was found ubiquitously throughout the whole root tissue. Together, these results suggest that AM fungus induced a defense response against RKN in the mycorrhizal grapevine roots, which appeared to involve transcriptional control of VCH3 expression throughout the whole root tissue.
Kesler, G; Koren, R; Kesler, A; Hay, N; Gal, R
1998-10-01
Until now, no suitable delivery fiber has existed for CO2 laser endodontic radiation in the apical region, where it is most difficult to eliminate the pulp tissue using conventional methods. To overcome this problem, we have designed a microprobe that reaches closer to the apex, distributing the energy density to a smaller area of the root canal and thus favorably increasing the thermal effects. A CO2 laser microprobe coupled onto a special hand piece was attached to the delivery fiber of a Sharplan 15-F CO2 laser. The study was conducted on 30 vital maxillary or mandibulary, central, lateral, or premolar teeth destined for extraction due to periodontal problems. Twenty were experimentally treated with pulsed CO2 laser delivered by this newly developed fiber after conventional root canal preparation. Temperature measured at three points on the root surface during laser treatment did not exceed 38 degrees C. Ten teeth represented the control group, in which only root canal preparation was performed in the conventional method. Histological examination of the laser-treated teeth showed coagulation necrosis and vacuolization of the remaining pulp tissue in the root canal periphery. Primary and secondary dentin appeared normal in all cases treated with 15-F CO2 laser. Gram stain and bacteriologic examination revealed complete sterilization. These results demonstrate the unique capabilities of this special microprobe in sterilization of the root canal, with no thermal damage to the surrounding tissue. The combination of classical root canal preparation with CO2 laser irradiation using this special microprobe before closing the canal can drastically change the quality of root canal fillings.
Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.
He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y
2015-01-01
Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.
Wu, Honghong; Shabala, Lana; Azzarello, Elisa; Huang, Yuqing; Pandolfi, Camilla; Su, Nana; Wu, Qi; Cai, Shengguan; Bazihizina, Nadia; Wang, Lu; Zhou, Meixue; Mancuso, Stefano; Chen, Zhonghua; Shabala, Sergey
2018-06-11
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Rouws, L F M; Meneses, C H S G; Guedes, H V; Vidal, M S; Baldani, J I; Schwab, S
2010-09-01
To evaluate the colonization process of sugarcane plantlets and hydroponically grown rice seedlings by Gluconacetobacter diazotrophicus strain PAL5 marked with the gusA and gfp reporter genes. Sugarcane plantlets inoculated in vitro with PAL5 carrying the gfp::gusA plasmid pHRGFPGUS did not present green fluorescence, but beta-glucuronidase (GUS)-stained bacteria could be observed inside sugarcane roots. To complement this existing inoculation methodology for micropropagated sugarcane with a more rapid colonization assay, we employed hydroponically grown gnotobiotic rice seedlings to study PAL5-plant interaction. PAL5 could be isolated from the root surface (10(8) CFU g(-1)) and from surface-disinfected root and stem tissues (10(4) CFU g(-1)) of inoculated plants, suggesting that PAL5 colonized the internal plant tissues. Light microscopy confirmed the presence of bacteria inside the root tissue. After inoculation of rice plantlets with PAL5 marked with the gfp plasmid pHRGFPTC, bright green fluorescent bacteria could be seen colonizing the rice root surface, mainly at the sites of lateral root emergence, at root caps and on root hairs. The plasmids pHRGFPGUS and pHRGFPTC are valid tools to mark PAL5 and monitor the colonization of micropropagated sugarcane and hydroponic rice seedlings. These tools are of use to: (i) study PAL5 mutants affected in bacteria-plant interactions, (ii) monitor plant colonization in real time and (iii) distinguish PAL5 from other bacteria during the study of mixed inoculants.
Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir.
Guo, Bin; Xu, Ling-Ling; Guan, Zhen-Jun; Wei, Ya-Hui
2012-06-01
In present study, the effect of lanthanum (La) on the rooting of regenerated shoots of Saussurea involucrata Kar. et Kir was analyzed. Rooting occurred from regenerated shoots inoculated on a medium supplemented with La, the plant rooting hormone indole-3-acetic acid (IAA), or both La and IAA together. The highest rooting efficiency (96%), root number/shoot (8.5), and root length (63 mm) were recorded in shoots cultured on medium containing 2.5 μM IAA combined with 100 μM La(3+). In order to elucidate the mechanism of rooting enhancement by La, we examined dynamic changes in antioxidant enzyme activities in plant tissue over time in culture. We found that the activities of peroxidase (POX) and superoxide dismutase (SOD) were significantly higher in plant tissue cultured in IAA plus La than in La or IAA alone. At the same time, the highest H(2)O(2) content was detected in plant tissue in the presence of 2.5 μM IAA plus 100 μM La(3+). In light of these data and previous results, we speculate that La enhanced IAA-induced rooting by acting as a mild abiotic stress to stimulate POX and SOD activities in plant cells. Then, IAA reacted with oxygen and POX to form the ternary complex enzyme-IAA-O(2) that dissociated into IAA radicals and O(2)(-). Subsequently, IAA-induced O(2)(-) readily converted to hydroxyl radical (HO·) via SOD-catalyzed dismutation. Finally, cell wall loosening and cell elongation occurred as a consequence of HO-dependent scission of wall components, leading to root growth. The treatment of IAA combined with La resulted in the highest plantlet survival (80%) compared to single treatments with IAA or La alone. These data suggest that rare earth elements enhance root morphogenesis and the growth of S. involucrata.
2010-01-01
Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells. PMID:20860818
Repressor-mediated tissue-specific gene expression in plants
Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA
2009-02-17
Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.
Jeena, Gajendra Singh; Fatima, Shahnoor; Tripathi, Pragya; Upadhyay, Swati; Shukla, Rakesh Kumar
2017-06-28
Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related to triterpenoid sapogenin which is one of the most important pharmacologically active secondary metabolite present in Bacopa monnieri. The identified transcripts in this study will establish a foundation for future studies related to carrying out the metabolic engineering for increasing the bacosides biosynthesis and its regulation for human health benefits.
Rhizofiltration - the use of plants to remove heavy metals from aqueous streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, I.; Dushenkov, V.; Kumar, P.B.A.N.
1995-12-31
Heavy metal pollution of water is a major environmental problem facing the modern world. Rhizofiltration - the use of plant roots to remove heavy metals from water is an emerging environmental clean-up technology. Roots of many hydroponically grown terrestrial plants e.g. Indian mustard, sunflower (Hefianthus annuus L.) and various grasses effectively removed toxic metals such as CU{sup -2}, Cd{sup +2}Cr{sup +6}, Ni{sup +2}Pb{sup +2} and Zn{sup +2} from aqueous solutions. Roots of B. juncea concentrated these metals 131 to 563-fold (on a DW basis) above initial solution concentrations. Pb removal was based on tissue absorption and on root-mediated Pb precipitationmore » in the form of insoluble inorganic compounds, mainly Pb phosphate. At high Pb concentrations precipitation played a progressively more important role in Pb removal than tissue absorption, which saturated at approximately 100 {mu}g Pb/g DW root. Dried roots were much less effective than live roots in accumulating Pb and in removing Pb from the solution.« less
NASA Astrophysics Data System (ADS)
Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre
2006-03-01
High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.
Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z
2015-06-01
Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.
Weiller, Florent; Moore, John P; Young, Philip; Driouich, Azeddine; Vivier, Melané A
2017-03-01
Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Weiller, Florent; Young, Philip; Driouich, Azeddine; Vivier, Melané A.
2017-01-01
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana, have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1–4) have previously been characterized from Heliophila coronopifolia, a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1–4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. PMID:27481828
Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research
Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John
2010-01-01
Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273
The site of water stress governs the pattern of ABA synthesis and transport in peanut
Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling
2016-01-01
Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957
Vafiadis, Dean; Goldstein, Gary; Garber, David; Lambrakos, Anthony; Kowalski, Bj
2017-02-01
Preserving soft and hard tissues after extraction and implant placement is crucial for anterior esthetics. This technique will show how the information gathered from a cone-beam computed tomography (CBCT) scan of the maxillary left central incisor and an intra-oral digital impression can be merged to fabricate a CAD/CAM crown-root matrix to be used as an immediate provisional restoration that mimics the natural anatomy. Due to trauma, a left central incisor appeared to be fractured and was scheduled for extraction and implant placement. The crown-root configuration captured by the CBCT scan was merged with the digital files from an intra-oral digital impression. A CAD/CAM crown-root matrix was fabricated. Because the matrix shell was fabricated with the exact anatomy of the natural tooth, it replicated the position and three dimensional anatomy of the soft and hard tissue. It was connected to the implant with a customized provisional abutment. A digital impression of a coded healing abutment was made to fabricate the final implant abutment and final restoration. Throughout the treatment time and 36 months after completion, the thickness of tissue, emergence profile, and adjacent papilla was analyzed by clinical evaluation and photography and seemed to be maintained. The use of a pre-operative intra-oral digital scan of the clinical crown-root architecture and the CBCT scan of the bone/root anatomy, can be used together to fabricate a CAD/CAM crown-root form provisional matrix. This digital design helps in the preservation of the 3D tissue topography, as well as the final restoration. The preservation of soft and hard tissue after extraction and implant placement has always been paramount for ideal anterior implant esthetics. Using the information from digital files from CBCT scans and intra-oral scans may help the clinician identify critical anatomical features that can be replicated in the provisional and final CAD/CAM restoration. (J Esthet Restor Dent 29:13-21, 2017). © 2016 Wiley Periodicals, Inc.
Rahman, Md. M.; Rahman, Md. A.; Miah, Md. G.; Saha, Satya R.; Karim, M. A.; Mostofa, Mohammad G.
2017-01-01
Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na+ retention in roots, anatomical adjustments, Na+ exclusion and tissue tolerance mechanisms. PMID:28421081
Antioxidative efficiency of Triticum aestivum L. exposed to chromium stress.
Dey, Surjendu Kumar; Jena, Priyanka Priyadarshani; Kundu, Satyajit
2009-07-01
Wheat (Triticum aestivum L. cv Sonalika) seedlings were grown in presence of K2Cr2O7 (10, 50 and 100 ppm) for 7 days and growth, total chlorophyll, activities of antioxidative enzymes like superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (POX; EC 1.11.1.7) and lipid peroxidation were determined in root and shoot tissues. Growth of the seedlings was significantly (p < or = 0.05) depressed and at 100 ppm, root length was reduced by 63% and shoot length by 44% in comparison to the respective controls. Total chlorophyll loss in shoots was about 46% at 10 ppm of K2Cr2O7 which further increased to 80% at 100 ppm. Both in root and shoot tissues, activities of SOD and CAT declined with increase of metal in growth medium and it was significant (p < or = 0.05) even at lowest concentration of the metal tested. But POX activity showed a different trend. In root tissues it was decreased whereas in shoots, there was many fold increase in the activity (about 370% over control at 100 ppm). Malondialdehyde (MDA) content increased both in root and shoot tissues, but it reached significant (p < 0.05) level at 50 ppm in roots and at 100 ppm in shoot tissues. Even though antioxidative enzyme activities were not assayed in germinating embryos, inhibition in germination percentage (by 40% at 100 ppm) and increase in lipid peroxidation level (by 71% over control at 100 ppm) were observed in 2-day-old embryos, germinated in presence of K2Cr2O7 (10, 50 and 100 ppm). The results indicated the imposition of oxidative stress situations both during germination and early stages of seedling growth by Cr6 stress, which might be one of the probable reasons behind Cr toxicity in plants.
Chelcy R. Ford; Nina Wurzburger; Ronald L. Henderick; Robert O. Teskey
2007-01-01
Plants can aquaire carbon from sources other than atmospheric carbon dioxide (CO2), including soil-dissolved inorganic carbon (DIC). Although the next flux of CO2 is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues....
NASA Astrophysics Data System (ADS)
Schoenly, Joshua E.; Seka, Wolf; Romanos, Georgios; Rechmann, Peter
A desired outcome of scaling and root planing is the complete removal of calculus and infected root tissue and preservation of healthy cementum for rapid healing of periodontal tissues. Conventional periodontal treatments for calculus removal, such as hand instrument scaling and ultrasonic scaling, often deeply scrape the surface of the underlying hard tissue and may leave behind a smear layer. Pulsed lasers emitting at violet wavelengths (specifically, 380 to 400 nm) are a potential alternative treatment since they can selectively ablate dental calculus without ablating pristine hard tissue (i.e., enamel, cementum, and dentin). In this study, light and scanning electron microscopy are used to compare and contrast the efficacy of in vitro calculus removal for several conventional periodontal treatments (hand instruments, ultrasonic scaler, and Er:YAG laser) to calculus removal with a frequency-doubled Ti:sapphire (λ = 400 nm). After calculus removal, enamel and cementum surfaces are investigated for calculus debris and damage to the underlying hard tissue surface. Compared to the smear layer, grooves, and unintentional hard tissue removal typically found using these conventional treatments, calculus removal using the 400-nm laser is complete and selective without any removal of pristine dental hard tissue. Based on these results, selective ablation from the 400-nm laser appears to produce a root surface that would be more suitable for successful healing of periodontal tissues.
Trombelli, L; Scabbia, A; Tatakis, D N; Calura, G
1998-11-01
The purpose of the present clinical study was to evaluate the effect of guided tissue regeneration (GTR) in comparison to subpedicle connective tissue graft (SCTG) in the treatment of gingival recession defects. A total of 12 patients, each contributing a pair of Miller's Class I or II buccal gingival recessions, was treated. According to a randomization list, one defect in each patient received a polyglycolide/lactide bioabsorbable membrane, while the paired defect received a SCTG. Treatment effect was evaluated 6 months postsurgery. Clinical recordings included full-mouth and defect-specific oral hygiene standards and gingival health, recession depth (RD), recession width (RW), probing depth (PD), clinical attachment level (CAL), and keratinized tissue width (KT). Mean RD significantly decreased from 3.1 mm presurgery to 1.5 mm at 6 months postsurgery for the GTR group (48% root coverage), and from 3.0 mm to 0.5 mm for the SCTG group (81% root coverage). RD reduction and root coverage were significantly greater in SCTG group compared to GTR group. Mean CAL gain amounted to 1.7 mm for the GTR group, and 2.3 mm in the SCTG group. No significant differences in PD changes were observed within and between groups. KT increased significantly from presurgery for both treatment groups, however gingival augmentation was significantly greater in the SCTG group compared to GTR group. Results indicate that: 1) treatment of human gingival recession defects by means of both GTR and SCTG procedures results in clinically and statistically significant improvement of the soft tissue conditions of the defect; and 2) treatment outcome was significantly better following SCTG compared to GTR in terms of recession depth reduction, root coverage, and keratinized tissue increase.
Histologic evaluation of autogenous connective tissue and acellular dermal matrix grafts in humans.
Cummings, Lewis C; Kaldahl, Wayne B; Allen, Edward P
2005-02-01
The clinical success of root coverage with autogenous connective tissue (CT) or acellular dermal matrix (ADM) has been well documented. However, limited histological results of CT grafts have been reported, and a case report of a human block section has been published documenting an ADM graft. The purpose of this study is to document the histological results of CT grafts, ADM grafts, and coronally advanced flaps to cover denuded roots in humans. This study included four patients previously treatment planned for extractions of three or more anterior teeth. Three teeth in each patient were selected and randomly designated to receive either a CT or ADM graft beneath a coronally advanced flap (tests) or coronally advanced flap alone (control). Six months postoperatively block section extractions were performed and the teeth processed for histologic evaluation with hematoxylin-eosin and Verhoeff's stains. Histologically, both the CT and ADM were well incorporated within the recipient tissues. New fibroblasts, vascular elements, and collagen were present throughout the ADM, while retention of the transplanted elastic fibers was apparent. No effect on the keratinization or connective tissue organization of the overlying alveolar mucosa was evident with either graft. For both materials, areas of cemental deposition were present within the root notches, the alveolar bone was essentially unaffected, and the attachments to the root surfaces were similar. Although CT and ADM have a slightly different histological appearance, both can successfully be used to cover denuded roots with similar attachments and no adverse healing.
Lao, Martin; Marino, Victor; Bartold, P Mark
2006-10-01
Periodontal disease is marked by inflammation and damage to tooth-supporting tissues. In particular, damage occurs to factors present in cementum that are thought to have the ability to influence the regeneration of surrounding tissues. Bone sialoprotein and osteopontin are major non-collagenous proteins in mineralized connective tissues associated with precementoblast chemo-attraction, adhesion to the root surface, and cell differentiation. The purpose of this investigation was to determine whether the expression and distribution of bone sialoprotein and osteopontin on root surfaces affected by periodontitis are altered compared to healthy, non-diseased root surfaces. Thirty healthy and 30 periodontitis-affected teeth were collected. Following fixation and demineralization, specimens were embedded in paraffin, sectioned, and exposed to antibodies against bone sialoprotein and osteopontin. Stained sections were assessed using light microscopy. Bone sialoprotein was not detected in the exposed cementum (absence of overlying periodontal ligament) of diseased teeth. In most areas where the periodontal ligament was intact, bone sialoprotein was detected for healthy and diseased teeth. For teeth reactive for bone sialoprotein, the matrix of the cementum just below the periodontal ligament was moderately stained. A similar immunoreactivity pattern for osteopontin was observed. The absence of bone sialoprotein and osteopontin staining along exposed cementum surfaces may be due to structural and compositional changes in matrix components associated with periodontal disease. This may influence the ability for regeneration and new connective tissue attachment onto previously diseased root surfaces.
Saoud, Tarek Mohamed A.; Ricucci, Domenico; Lin, Louis M.; Gaengler, Peter
2016-01-01
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of ‘regenerative endodontics’ emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists’ Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis. PMID:29563445
Saoud, Tarek Mohamed A; Ricucci, Domenico; Lin, Louis M; Gaengler, Peter
2016-02-27
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of 'regenerative endodontics' emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists' Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis.
Kısa, Dursun; Öztürk, Lokman; Doker, Serhat; Gökçe, İsa
2017-04-01
Heavy metals are considered to be the most important pollutants in the contamination of soils; they adversely affect plant growth and development and cause some physiological and molecular changes. The contamination of agricultural soils by heavy metals has changed the mineral element content of vegetables. Plant metallothioneins (MTs) are thought to have the functional role in heavy metal homeostasis, and they are used as the biomarkers for evaluating environmental pollution. We aimed to evaluate the expression of MT isoforms (MT1, 2, 3 and 4) and some mineral element composition of tomato roots, leaves and fruits exposed to copper and lead. Heavy metal applications increased MT1 and MT2 gene expressions compared to the control in the tissues of tomato. The highest level of MT1 and MT2 transcripts was found in roots and leaves, respectively. The expression of MT3 is induced in roots, leaves and fruits except for Pb treatment in roots. MT4 expression increased in fruits; however, other tissues did not show a clear change. Our results indicated that Cu content was higher than Pb in all tissues of tomato. The lower doses of Cu (10 ppm) increased the content of Mg, Fe, Ca and Mn in roots. Pb generally increased the level of minerals in leaves and fruits, but it decreased Mg, Mn and Fe contents in roots. Both heavy metals not only moved to aerial parts but also caused alterations to mineral element levels. These results show that MT transcripts are regulated by Cu and Pb, and expression pattern changes to MT isoforms and tissue types. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).
Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal
2018-04-01
Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.
Black Stain Root Disease of Conifers (FIDL)
Paul F. Hessburg; Donald J. Goheen; Robert V. Bega
1995-01-01
The black stain fungus?Leptographium wageneri (Kendrick) Wingfield*?infects and kills several species of western conifers. The fungus colonizes water-conducting tissues of the host's roots, root collars, and lower stems, ultimately blocking the movement of water to foliage. Severely infected trees exhibit wilting symptoms characteristic of vascular wilt diseases...
Two stage surgical procedure for root coverage
George, Anjana Mary; Rajesh, K. S.; Hegde, Shashikanth; Kumar, Arun
2012-01-01
Gingival recession may present problems that include root sensitivity, esthetic concern, and predilection to root caries, cervical abrasion and compromising of a restorative effort. When marginal tissue health cannot be maintained and recession is deep, the need for treatment arises. This literature has documented that recession can be successfully treated by means of a two stage surgical approach, the first stage consisting of creation of attached gingiva by means of free gingival graft, and in the second stage, a lateral sliding flap of grafted tissue to cover the recession. This indirect technique ensures development of an adequate width of attached gingiva. The outcome of this technique suggests that two stage surgical procedures are highly predictable for root coverage in case of isolated deep recession and lack of attached gingiva. PMID:23162343
Effects of foliar applied nickel on tomato plants. [Lycopersicon esculentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cash, R.C.; Leone, I.A.
Shoot-applied nickel (Ni) treatments produced symptomatology, foliar Ni accumulation, and cytological changes in tomato (Lycopersicon esculentum Mill.) similar to those caused by treatments with root-applied nickel (Ni). Leaf damage resulting from 100 ..mu..g/ml foliar Ni-treatments consisted of interveinal chlorosis and spotting necrosis which appeared histologically as tissue collapse, cell clumping, and chloroplast disintegration. Shoot-treated plants accumulated more Ni in leaves than in roots; whereas the reverse was true in root-treated plants. Interference with root-to-shoot manganese translocation was attributed to attenuated vascular tissue and phloem blockage. Evidence of reduced nutrient transport and inhibited meristem activity due to Ni toxicity presents amore » potential for crop damage from excessive Ni in the atmosphere as well as in the soil environment.« less
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos
2018-01-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. PMID:29233938
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos; Moreno-Risueno, Miguel Angel; Pérez-Pérez, José Manuel
2018-02-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis ( Arabidopsis thaliana ). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. © 2018 American Society of Plant Biologists. All Rights Reserved.
Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...
Apical closure of mature molar roots with the use of calcium hydroxide.
Rotstein, I; Friedman, S; Katz, J
1990-11-01
Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.
Kwan, Yee-Min; Meon, Sariah; Ho, Chai-Ling; Wong, Mui-Yun
2015-02-01
Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection. Copyright © 2014 Elsevier GmbH. All rights reserved.
Factors affecting the periapical healing process of endodontically treated teeth.
Holland, Roberto; Gomes, João Eduardo; Cintra, Luciano Tavares Angelo; Queiroz, Índia Olinta de Azevedo; Estrela, Carlos
2017-01-01
Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing), the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient) that affect the outcome of root canal treatment prediction.
Factors affecting the periapical healing process of endodontically treated teeth
Holland, Roberto; Gomes, João Eduardo; Cintra, Luciano Tavares Angelo; Queiroz, Índia Olinta de Azevedo; Estrela, Carlos
2017-01-01
Abstract Tissue repair is an essential process that reestablishes tissue integrity and regular function. Nevertheless, different therapeutic factors and clinical conditions may interfere in this process of periapical healing. This review aims to discuss the important therapeutic factors associated with the clinical protocol used during root canal treatment and to highlight the systemic conditions associated with the periapical healing process of endodontically treated teeth. The antibacterial strategies indicated in the conventional treatment of an inflamed and infected pulp and the modulation of the host's immune response may assist in tissue repair, if wound healing has been hindered by infection. Systemic conditions, such as diabetes mellitus and hypertension, can also inhibit wound healing. The success of root canal treatment is affected by the correct choice of clinical protocol. These factors are dependent on the sanitization process (instrumentation, irrigant solution, irrigating strategies, and intracanal dressing), the apical limit of the root canal preparation and obturation, and the quality of the sealer. The challenges affecting the healing process of endodontically treated teeth include control of the inflammation of pulp or infectious processes and simultaneous neutralization of unpredictable provocations to the periapical tissue. Along with these factors, one must understand the local and general clinical conditions (systemic health of the patient) that affect the outcome of root canal treatment prediction. PMID:29069143
Regenerative Endodontics: A Road Less Travelled
Bansal, Ramta; Mittal, Sunandan; Kumar, Tarun; Kaur, Dilpreet
2014-01-01
Although traditional approaches like root canal therapy and apexification procedures have been successful in treating diseased or infected root canals, but these modalities fail to re-establish healthy pulp tissue in treated teeth. Regeneration-based approaches aims to offer high levels of success by replacing diseased or necrotic pulp tissues with healthy pulp tissue to revitalize teeth. The applications of regenerative approaches in dental clinics have potential to dramatically improve patients’ quality of life. This review article offers a detailed overview of present regenerative endodontic approaches aiming to revitalize teeth and also outlines the problems to be dealt before this emerging field contributes to clinical treatment protocols. It conjointly covers the basic trilogy elements of tissue engineering. PMID:25478476
Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary
2013-01-01
In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-01-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-07-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.
Changes in ABA and gene expression in cold-acclimated sugar maple.
Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R
1997-01-01
To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.
Efficacy of enamel matrix protein applied to spontaneous periodontal disease in two dogs.
Watanabe, Kazuhiro; Kikuchi, Masahiro; Okumura, Masahiro; Kadosawa, Tsuyoshi; Fujinaga, Toru
2003-09-01
Enamel matrix protein (EMP) was applied for regeneration of periodontal tissue in 2 dogs with spontaneous periodontal disease. Case 1 had bony resorption around the root and root apex of the maxillary fourth premolars. Case 2 had vertical resorption of bone between the mandibular first and second molars. A flap was formed in the buccal gingiva, and EMP was applied onto the surface of the exposed root. One or 4 months postoperatively, increased bone level and clinical attachment were recognized. EMP was therefore suggested to be effective to induce regeneration of periodontal tissues in the cases with periodontal disease.
Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J
2017-10-01
The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology. Copyright © 2017 Elsevier B.V. All rights reserved.
Unique and Conserved Features of the Barley Root Meristem
Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger
2017-01-01
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269
Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lytle, C.M.; Qian, J.H.; Hansen, D.
1998-10-15
Reduction of heavy metals in situ by plants may be a useful detoxification mechanism for phytoremediation. Using X-ray spectroscopy, the authors show that Eichhornia crassipes (water hyacinth), supplied with Cr(VI) in nutrient culture, accumulated nontoxic Cr(III) in root and shoot tissues. The reduction of Cr(VI) to Cr(III) appeared to occur in the fine lateral roots. The Cr(III) was subsequently translocated to leaf tissues. Extended X-ray absorption fine structure of Cr in leaf and petiole differed when compared to Cr in roots. In roots, Cr(III) was hydrated by water, but in petiole and more so in leaf, a portion of themore » Cr(III) may be bound to oxalate ligands. This suggests that E. crassipes detoxified Cr(VI) upon root uptake and transported a portion of the detoxified Cr to leaf tissues. Cr-rich crystalline structures were observed on the leaf surface. The chemical species of Cr in other plants, collected from wetlands that contained Cr(VI)-contaminated wastewater, was also found to be Cr(III). The authors propose that this plant-based reduction of Cr(VI) by E. crassipes has the potential to be used for the in situ detoxification of Cr(VI)-contaminated wastestreams.« less
Uptake and distribution of chlordecone in radish: different contamination routes in edible roots.
Létondor, Clarisse; Pascal-Lorber, Sophie; Laurent, François
2015-01-01
Chlordecone (CLD) was an organochlorine insecticide mainly used to struggle against banana weevils in the French West Indies. Forbidden since 1993, it has been a long-term contaminant of soils and aquatic environments. Crops growing in contaminated soils lead to human exposure by food consumption. We used radiolabeled [(14)C]-CLD to investigate the contamination ways into radish, a model of edible roots. Radish plants were able to accumulate CLD in both roots (RCF35d 647) and tubers (edible parts, CF35d 6.3). CLD was also translocated to leaves (CF35d 1.7). The contamination of tuber was mainly due to peridermic adsorption or CLD systemic translocation to the pith. TSCF was 3.44×10(-)(3). CLD diffused across periderm to internal tissues. We calculated a mean flux of diffusion J through periderm about 5.71×10(-)(14)gcm(-)(2)s(-)(1). We highlighted different contamination routes of the tuber, (i) adsorption on periderm followed by diffusion of CLD towards underlying tissues, cortex, xylem, and pith (ii) adsorption by roots and translocation by the transpiration stream followed by diffusion from xylem vessels towards inner tissues, pith, and peripheral tissues, cortex and periderm. Concerning chemical risk assessment for other tubers, contamination would depend on various parameters, the thickness of periderm and CLD periderm permeance, the origin of secondary tissues - from cortex and/or pith - , the importance of xylem flow in tuber, and the lipid amount within tuber. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1
Higinbotham, N.; Etherton, Bud; Foster, R. J.
1967-01-01
The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of regulation of ion uptake in the intact plant although other correlative mechanisms may be involved. PMID:16656483
USDA-ARS?s Scientific Manuscript database
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...
Drought and host selection influence bacterial community dynamics in the grass root microbiome
Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin
2017-01-01
Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root. PMID:28753209
Growth of plant root cultures in liquid- and gas-dispersed reactor environments.
McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R
1993-01-01
The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.
Drought and host selection influence bacterial community dynamics in the grass root microbiome.
Naylor, Dan; DeGraaf, Stephanie; Purdom, Elizabeth; Coleman-Derr, Devin
2017-12-01
Root endophytes have been shown to have important roles in determining host fitness under periods of drought stress, and yet the effect of drought on the broader root endosphere bacterial community remains largely uncharacterized. In this study, we present phylogenetic profiles of bacterial communities associated with drought-treated root and rhizosphere tissues of 18 species of plants with varying degrees of drought tolerance belonging to the Poaceae family, including important crop plants. Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing conserved shifts in bacterial community composition. We identify a significant enrichment in a wide variety of Actinobacteria during drought within the roots of all hosts, and demonstrate that this enrichment is higher within the root than it is in the surrounding environments. Furthermore, we show that this observed enrichment is the result of an absolute increase in Actinobacterial abundance and that previously hypothesized mechanisms for observed enrichments in Actinobacteria in drought-treated soils are unlikely to fully account for the phenomena observed here within the plant root.
Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Wong, LaiLai; Yong, Peng; Chen, Hubiao; Zhao, Zhongzhen
2014-11-01
Aconite poisoning continues to be a major type of poisoning caused by herbal drugs in many countries. Nevertheless, despite its toxic characteristics, aconite is used because of its valuable therapeutic benefits. The aim of the present study was to determine the distribution of toxic alkaloids in tissues of aconite roots through chemical profiling. Three species were studied, all being used in traditional Chinese Medicine (TCM) and traditional Indian medicine (Ayurveda), namely: Aconitum carmichaelii, Aconitum kusnezoffii and Aconitum heterophyllum. Laser micro-dissection was used for isolation of target microscopic tissues, such as the metaderm, cortex, xylem, pith, and phloem, with ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) employed for detection of metabolites. Using a multi-targeted approach through auto and targeted LC-MS/MS, 48 known compounds were identified and the presence of aconitine, mesaconitine and hypaconitine that are the biomarkers of this plant was confirmed in the tissues. These results suggest that the three selected toxic alkaloids were exclusively found in A. carmichaelii and A. kusnezoffii. The most toxic components were found in large A. carmichaelii roots with more lateral root projections, and specifically in the metaderm, cork and vascular bundle tissues. The results from metabolite profiling were correlated with morphological features to predict the tissue specific distribution of toxic components and toxicity differences among the selected species. By careful exclusion of tissues having toxic diester diterpenoid alkaloids, the beneficial effects of aconite can still be retained and the frequency of toxicity occurrences can be greatly reduced. Knowledge of tissue-specific metabolite distribution can guide users and herbal drug manufacturers in prudent selection of relatively safer and therapeutically more effective parts of the root. The information provided from this study can contribute towards improved and effective management of therapeutically important, nonetheless, toxic drug such as Aconite. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Repair of a root perforation by using MTA: a case report].
Riccitiello, Francesco; Di Caprio, Maria Patrizia; D'Amora, Marilina; Pizza, Nunzia Luisa; Vallone, Gianfranco; D'Ambrosio, Colomba; Amato, Massimo
2013-01-01
Root perforations are accidental events that may occur during the treatment, causing tissue inflammation and alveolar bone loss of integrity of the periodontium. In such cases, the radiological evidence is fundamental in the formulation of the diagnosis, in the choice of therapy (surgical or non-surgical) and finally for the assessment of prognosis of the dental element. In non-surgical treatment of endodontic lesions, the material used for the repair of the defect root should have biocompatibility, antibacterial activity, ability to induce healing of periodontal tissues and radiopacity. The Mineral Trioxide Aggregate (MTA) is a silicate-based cement introduced in dental clinical practice with good radiopacity, biocompatibility and bone induction. This article describes the use of MTA in endodontic repair of a perforation of the middle third root and the success of non-surgical treatment was dimonstrated radiographicaly.
Holland, Roberto; Sant'Anna Júnior, Arnaldo; Souza, Valdir de; Dezan Junior, Eloi; Otoboni Filho, José Arlindo; Bernabé, Pedro Felício Estrada; Nery, Mauro Juvenal; Murata, Sueli Satomi
2005-01-01
The purpose of this study was to investigate the periapical healing process of dogs' teeth with or without apical patency and after root canal filling with two types of sealers. Forty roots of premolars and incisors were utilized. The root canals were over-instrumented and dressed with a corticosteroid-antibiotic solution for 7 days to obtain ingrowth of periapical connective tissue into the canals. After this period, the tissue was removed in half of the specimens (groups with patency) and preserved in the other half (groups without patency). Canals were filled by lateral condensation technique with gutta-percha points and either a calcium hydroxide-based sealer (Sealer Plus) or a Grossman's cement (Fill Canal). The animals were killed by anesthetic overdose 60 days after the endodontic treatment and anatomic pieces were obtained and prepared for histologic examination. Data were evaluated in a blind analysis on the basis of several histomorphologic parameters. The groups without patency had better results (p=0.01) than those in which the ingrown connective tissue was removed. Comparing the sealers, Sealer Plus had significantly better results (p=0.01) than Fill Canal. In conclusion, both the apical patency (presence or absence) and the type of root canal filling material influenced the periapical healing process in dogs' teeth with vital pulp after root canal treatment. The use of a calcium hydroxide-based sealer in teeth without apical patency yielded the best results among the experimental conditions proposed.
Active summer carbon storage for winter persistence in trees at the cold alpine treeline.
Li, Mai-He; Jiang, Yong; Wang, Ao; Li, Xiaobin; Zhu, Wanze; Yan, Cai-Feng; Du, Zhong; Shi, Zheng; Lei, Jingpin; Schönbeck, Leonie; He, Peng; Yu, Fei-Hai; Wang, Xue
2018-03-12
The low-temperature limited alpine treeline is one of the most obvious boundaries in mountain landscapes. The question of whether resource limitation is the physiological mechanism for the formation of the alpine treeline is still waiting for conclusive evidence and answers. We therefore examined non-structural carbohydrates (NSC) and nitrogen (N) in treeline trees (TATs) and low-elevation trees (LETs) in both summer and winter in 11 alpine treeline cases ranging from subtropical monsoon to temperate continental climates across Eurasia. We found that tissue N concentration did not decrease with increasing elevation at the individual treeline level, but the mean root N concentration was lower in TATs than in LETs across treelines in summer. The TATs did not have lower tissue NSC concentrations than LETs in summer. However, the present study with multiple tree species across a large geographical scale, for the first time, revealed a common phenomenon that TATs had significantly lower NSC concentration in roots but not in the aboveground tissues than LETs in winter. Compared with LETs, TATs exhibited both a passive NSC storage in aboveground tissues in excess of carbon demand and an active starch storage in roots at the expense of growth reduction during the growing season. This starch accumulation disappeared in winter. Our results highlight some important aspects of the N and carbon physiology in relation to season in trees at their upper limits. Whether or to what extent the disadvantages of winter root NSC and summer root N level of TATs affect the growth of treeline trees and the alpine treeline formation needs to be further studied.
Nopo-Olazabal, Cesar; Hubstenberger, John; Nopo-Olazabal, Luis; Medina-Bolivar, Fabricio
2013-12-04
Stilbenoids are polyphenolic phytoalexins with health-related properties in humans. Muscadine grape ( Vitis rotundifolia ) hairy root cultures were established via Agrobacterium rhizogenes -mediated transformation, and the effects of growth regulators (3-indolebutyric acid and 6-benzylaminopurine) and methyl jasmonate (MeJA) on stilbenoid production were studied. Twenty-one-day-old hairy root cultures were treated with 100 μM MeJA for 24 h, and then the stilbenoids were extracted from the medium and tissue with ethyl acetate and analyzed by HPLC. Resveratrol, piceid, and ε-viniferin were observed preferentially in tissue, whereas piceatannol was observed only in medium. Growth regulators did not affect the yield of stilbenoids, whereas higher levels were found upon treatment with MeJA. Stilbenoids identified in the hairy root cultures were analyzed for their radical scavenging capacity showing piceatannol and ε-viniferin as the strongest antioxidants. Muscadine grape hairy root cultures were demonstrated to be amenable systems to study stilbenoid biosynthesis and a sustainable source of these bioactive compounds.
A specialist root herbivore exploits defensive metabolites to locate nutritious tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erb M.; Babst B.; Robert, C.A.M.
2011-10-01
The most valuable organs of plants are often particularly rich in essential elements, but also very well defended. This creates a dilemma for herbivores that need to maximise energy intake while minimising intoxication. We investigated how the specialist root herbivore Diabrotica virgifera solves this conundrum when feeding on wild and cultivated maize plants. We found that crown roots of maize seedlings were vital for plant development and, in accordance, were rich in nutritious primary metabolites and contained higher amounts of the insecticidal 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the phenolic compound chlorogenic acid. The generalist herbivores Diabrotica balteata and Spodoptera littoralis were deterredmore » from feeding on crown roots, whereas the specialist D. virgifera preferred and grew best on these tissues. Using a 1,4-benzoxazin-3-one-deficient maize mutant, we found that D. virgifera is resistant to DIMBOA and other 1,4-benzoxazin-3-ones and that it even hijacks these compounds to optimally forage for nutritious roots.« less
Ranjbari, Ardeshir; Gholami, Gholam Ali; Amid, Reza; Kadkhodazadeh, Mahdi; Youssefi, Navid; Mehdizadeh, Amir Reza; Aghaloo, Maryam
2016-01-01
Statement of the Problem Gingival recession has been considered as the most challenging issue in the field of periodontal plastic surgery. Purpose The purpose of this study was to evaluate the clinical efficacy of root coverage procedures by using partial thickness double pedicle graft and compare it with full thickness double pedicle graft. Materials and Method Eight patients, aged 15 to 58 years including 6 females and 2 males with 20 paired (mirror image) defects with class I and II gingival recession were randomly assigned into two groups. Clinical parameters such as recession depth, recession width, clinical attachment level, probing depth, and width of keratinized tissue were measured at the baseline and 6 months post-surgery. A mucosal double papillary flap was elevated and the respective root was thoroughly planed. The connective tissue graft was harvested from the palate, and then adapted over the root. The pedicle flap was secured over the connective tissue graft and sutured. The surgical technique was similar in the control group except for the prepared double pedicle graft which was full thickness. Results The mean root coverage was 88.14% (2.83 mm) in the test group and 85.7% (2.75 mm) in the control group. No statistical differences were found in the mean reduction of vertical recession, width of recession, or probing depth between the test and control groups. In both procedures, the width of keratinized tissue increased after three months and the difference between the two groups was not statistically significant in this respect. Conclusion Connective tissue with partial and full thickness double pedicle grafts can be successfully used for treatment of marginal gingival recession. PMID:27602394
Andra, Syam S; Datta, Rupali; Sarkar, Dibyendu; Saminathan, Sumathi K M; Mullens, Conor P; Bach, Stephan B H
2009-07-01
Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg(-1) dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PCn, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg (-1) EDTA, vetiver accumulated 4460 and 480 mg Pb kg(-1) dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC1) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC(1)-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass.
Jin, Jian; Watt, Michelle; Mathesius, Ulrike
2012-01-01
We tested whether a gene regulating nodule number in Medicago truncatula, Super Numeric Nodules (SUNN ), is involved in root architecture responses to carbon (C) and nitrogen (N) and whether this is mediated by changes in shoot-to-root auxin transport. Nodules and lateral roots are root organs that are under the control of nutrient supply, but how their architecture is regulated in response to nutrients is unclear. We treated wild-type and sunn-1 seedlings with four combinations of low or increased N (as nitrate) and C (as CO2) and determined responses in C/N partitioning, plant growth, root and nodule density, and changes in auxin transport. In both genotypes, nodule density was negatively correlated with tissue N concentration, while only the wild type showed significant correlations between N concentration and lateral root density. Shoot-to-root auxin transport was negatively correlated with shoot N concentration in the wild type but not in the sunn-1 mutant. In addition, the ability of rhizobia to alter auxin transport depended on N and C treatment as well as the SUNN gene. Nodule and lateral root densities were negatively correlated with auxin transport in the wild type but not in the sunn-1 mutant. Our results suggest that SUNN is required for the modulation of shoot-to-root auxin transport in response to altered N tissue concentrations in the absence of rhizobia and that this controls lateral root density in response to N. The control of nodule density in response to N is more likely to occur locally in the root. PMID:22399647
Wang, Qing; Kniel, Kalmia E
2016-01-15
Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both edible tissues and roots. Here we see that viruses can be recirculated in water, even after an initial contamination event is removed, taken up through the roots of microgreens, and transferred to edible tissues. The ease of product contamination shown here reinforces the need for proper sanitation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Wang, Qing
2015-01-01
Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both edible tissues and roots. Here we see that viruses can be recirculated in water, even after an initial contamination event is removed, taken up through the roots of microgreens, and transferred to edible tissues. The ease of product contamination shown here reinforces the need for proper sanitation. PMID:26567309
Panis, Vassilios; Tosios, Konstantinos I; Gagari, Eleni; Griffin, Terrence J; Damoulis, Petros D
2010-10-01
Hyperoxaluria is a metabolic disease with excessive urinary oxalate excretion that can be primary or secondary. Hyperoxaluria can result in chronic renal disease and renal failure. Calcium oxalate crystals can be deposited in oral tissues, and the disease can be associated with severe periodontitis and tooth loss. The periodontal condition of a 38-year-old patient with a diagnosis of hyperoxaluria and end-stage renal disease is presented. The patient's periodontal status was monitored over a period of several weeks, and extracted teeth were submitted for histopathologic evaluation. The patient was diagnosed with generalized severe periodontitis and external root resorption. Initial periodontal treatment consisting of oral-hygiene instructions and scaling and root planing was performed. However, despite an initial decrease of soft tissue inflammation, the patient's periodontal condition deteriorated, and eventually, all teeth had to be extracted. The deposition of calcium oxalate crystals in the periodontal tissues was confirmed histologically. Long-standing hyperoxaluria can be associated with severe periodontitis and external root resorption resulting in tooth loss. The pathogenetic mechanisms of hard tissue destruction are still unclear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.
1996-05-15
Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less
The root economics spectrum: divergence of absorptive root strategies with root diameter
NASA Astrophysics Data System (ADS)
Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.
2015-08-01
Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.
USDA-ARS?s Scientific Manuscript database
The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of plant biomass. Thus searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ce...
Dwarakanath, Chini Doraswamy; Divya, Bheemavarapu; Sruthima, Gottumukkala Naga Venkata Satya; Penmetsa, Gautami Subadra
2016-01-01
Background: Gingival recession is a common condition and is more prevalent in smokers. It is widely believed that root coverage procedures in smokers result in less desirable outcome compared to nonsmokers', and there are few controlled studies in literature to support this finding. Therefore, the purpose of this study was to evaluate and compare the outcome of root coverage with sub-epithelial connective tissue graft (SCTG) in nonsmokers and smokers. Materials and Methods: A sample of twenty subjects, 10 nonsmokers and 10 smokers were selected each with at least 1 Miller's Class I or II recession on a single rooted tooth. Clinical measurements of probing depth, clinical attachment level (CAL), gingival recession total surface area (GRTSA), depth of recession (RD), width of recession (RW), and width of keratinized tissue were determined at baseline, 3, and 6 months after surgery. Results: The treatment of gingival recession with SCTG and coronally advanced flap showed a decrease in the GRTSA, RD, RW, and an increase in CAL and width of keratinized gingiva in both the groups. However, the intergroup comparison of the clinical parameters showed no statistical significance. About 6 out of 10 nonsmokers (60%) and 3 smokers (30%) showed complete root coverage. The mean percentage of root coverage of 71.2% in nonsmokers and 38% in smokers was observed. Conclusion: The results of the present study suggest that smoking may negatively influence gingival recession reduction and CAL gain. In addition, smokers may exhibit fewer chances of complete root coverage. Overall, nonsmokers showed better improvements in all the parameters compared to smokers at the end of 6 months. PMID:28298827
Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha
2013-06-01
Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.
Connective tissue graft vs. emdogain: A new approach to compare the outcomes.
Sayar, Ferena; Akhundi, Nasrin; Gholami, Sanaz
2013-01-01
The aim of this clinical trial study was to clinically evaluate the use of enamel matrix protein derivative combined with the coronally positioned flap to treat gingival recession compared to the subepithelial connective tissue graft by a new method to obtain denuded root surface area. Thirteen patients, each with two or more similar bilateral Miller class I or II gingival recession (40 recessions) were randomly assigned to the test (enamel matrix protein derivative + coronally positioned flap) or control group (subepithelial connective tissue graft). Recession depth, width, probing depth, keratinized gingival, and plaque index were recorded at baseline and at one, three, and six months after treatment. A stent was used to measure the denuded root surface area at each examination session. Results were analyzed using Kolmogorov-Smirnov, Wilcoxon, Friedman, paired-sample t test. The average percentages of root coverage for control and test groups were 63.3% and 55%, respectively. Both groups showed significant keratinized gingival increase (P < 0.05). Recession depth decreased significantly in both groups. Root surface area was improved significantly from baseline with no significant difference between the two study groups (P > 0.05). The results of Friedman test were significant for clinical indices (P < 0.05), except for probing depth in control group (P = 0.166). Enamel matrix protein derivative showed the same results as subepithelial connective tissue graft with relatively easy procedure to perform and low patient morbidity.
The decade of overdentures: 1970-1980.
Fenton, A H
1998-01-01
Jaw bones resorb when teeth are lost. People cannot function as well with complete dentures compared with their natural teeth. As more people are living longer and these cumulative effects become increasingly documented, dentists in the 1970s attached more importance to keeping teeth. The concept of overdentures developed as a simple and economic alternative to prolong the retention and function of the last few teeth in a compromised dentition. The previous option was extensive fixed prosthodontics. An overdenture is a complete or removable partial denture that has one or more tooth roots to provide support. Rather than extracting all compromised teeth, the crowns, and pulpal tissue of selected teeth (usually two anterior teeth) are removed. The remaining root projecting through the mucosa is restored and/or contoured. With the crown removed, there is space to cover the area with a denture. The root has less mobility, and its retention retards bone resorption. Overdentures with roots are more stable, and patients can chew better than with dentures supported on residual alveolar bone and mucosal tissue alone. Keeping even a few teeth has a strong psychological value for some patients. Patients who have lost teeth, adjacent tissue, and bone need replacement of more oral structures than tooth crowns alone can provide. A complete denture with flange contours can restore tissue and appearance. The conventional tooth-supported overdenture concept continues to be an accepted treatment modality and has now been adapted to implants.
Mechanics of cryopreserved aortic and pulmonary homografts.
Vesely, I; Casarotto, D C; Gerosa, G
2000-01-01
The surgical placement of pulmonary valve grafts into the aortic position (the Ross procedure) has been performed for three decades. Cryopreserved pulmonary valves have had mixed clinical results, however. The objectives of this study were to compare the mechanics of cryopreserved human aortic and pulmonary valve cusps and roots to determine if the pulmonary root can withstand the greater pressures of the aortic position. Six aortic and six pulmonary valve roots were obtained from the Oxford Valve Bank. They were harvested during cardiac transplantation from hearts explanted for dilated cardiomyopathy (mean patient age 68 years). The whole roots were initially stored frozen at -186 degrees C, then shipped packed on dry ice. After complete thawing, the roots were pressurized whole; test strips were then cut from the valve cusps, roots and sinuses and tested for stress/strain, stress relaxation, and ultimate failure strength. The pulmonary roots were more distensible (30% versus 20% strain to lock-up) and less compliant when loaded to aortic pressures. The pulmonary valve cusp and root tissue also showed greater extensibility and greater stiffness (lower compliance) when subjected to the same loads. We conclude that mechanical differences between aortic and pulmonary valve tissues are minimal. The pulmonary root should withstand the forces imposed on it when placed in the aortic position. However, if implanted whole, the pulmonary root will distend about 30% more than the aortic root when subjected to aortic pressures. These geometric changes may affect valve function in the long term and should be appreciated when implanting a pulmonary valve graft.
Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid
Bezemer, T. Martijn; Cortesero, Anne Marie; Van der Putten, Wim H.; Vet, Louise E. M.; Harvey, Jeffrey A.
2007-01-01
The majority of studies exploring interactions between above- and below-ground biota have been focused on the effects of root-associated organisms on foliar herbivorous insects. This study examined the effects of foliar herbivory by Pieris brassicae L. (Lepidoptera: Pieridae) on the performance of the root herbivore Delia radicum L. (Diptera: Anthomyiidae) and its parasitoid Trybliographa rapae (Westwood) (Hymenoptera: Figitidae), mediated through a shared host plant Brassica nigra L. (Brassicaceae). In the presence of foliar herbivory, the survival of D. radicum and T. rapae decreased significantly by more than 50%. In addition, newly emerged adults of both root herbivores and parasitoids were significantly smaller on plants that had been exposed to foliar herbivory than on control plants. To determine what factor(s) may have accounted for the observed results, we examined the effects of foliar herbivory on root quantity and quality. No significant differences in root biomass were found between plants with and without shoot herbivore damage. Moreover, concentrations of nitrogen in root tissues were also unaffected by shoot damage by P. brassicae larvae. However, higher levels of indole glucosinolates were measured in roots of plants exposed to foliar herbivory, suggesting that the development of the root herbivore and its parasitoid may be, at least partly, negatively affected by increased levels of these allelochemicals in root tissues. Our results show that foliar herbivores can affect the development not only of root-feeding insects but also their natural enemies. We argue that such indirect interactions between above- and below-ground biota may play an important role in the structuring and functioning of communities. PMID:17334787
Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine
Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Shi, Songtao; Wang, Songlin
2006-01-01
Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance. PMID:17183711
Chambrone, Leandro; Sukekava, Flávia; Araújo, Maurício G; Pustiglioni, Francisco E; Chambrone, Luiz Armando; Lima, Luiz A
2010-04-01
The purpose of this review is to evaluate the effectiveness of different root-coverage procedures in the treatment of recession-type defects. The Cochrane Oral Health Group Trials Register, Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE were searched for entries up to October 2008. There were no restrictions regarding publication status or the language of publication. Only clinical randomized controlled trials (RCTs) with a duration > or = 6 months that evaluated recession areas (Miller Class I or II > or = 3 mm) that were treated by means of periodontal plastic surgery procedures were included. Twenty-four RCTs provided data. Only one trial was considered to be at low risk of bias. The remaining trials were considered to be at high risk of bias. The results indicated a significantly greater reduction in gingival recession and gain in keratinized tissue for subepithelial connective tissue grafts (SCTGs) compared to guided tissue regeneration (GTR) with bioabsorbable membranes (GTR bms). A significantly greater gain in keratinized tissue was found for enamel matrix protein compared to a coronally advanced flap (0.40 mm) and for SCTGs compared to GTR bms plus bone substitutes. Limited data exist on the changes of esthetic conditions as related to the opinions and preferences of patients for specific procedures. SCTGs, coronally advanced flaps alone or associated with other biomaterial, and GTR may be used as root-coverage procedures for the treatment of localized recession-type defects. In cases where root coverage and gain in keratinized tissue are expected, the use of SCTGs seems to be more adequate.
Han, Keumah; Kim, Jongbin
2018-02-01
Local anesthesia is administered to control pain, but it may induce fear and anxiety. Root planing is a non-surgical periodontal therapy; however, when it is performed in an extensive manner, some tissue removal is inevitable. Notably, this removal may be so painful that local anesthesia is required to be administered to the area scheduled for the treatment. Although patients tend to accept root planing easily, they frequently express a fear of local anesthesia. Intraosseous anesthesia (IA) is an intraosseous injection technique, whereby local anesthetic is injected into the cancellous bone supporting the teeth. A computer-controlled IA system (CIAS) exhibits multiple benefits, such as less painful anesthesia, reduced soft tissue numbness, and the provision of palatal or lingual, as well as buccal, anesthesia via single needle penetration. In this report, we present two cases of root planing that were performed under local anesthesia, using a CIAS.
2018-01-01
Local anesthesia is administered to control pain, but it may induce fear and anxiety. Root planing is a non-surgical periodontal therapy; however, when it is performed in an extensive manner, some tissue removal is inevitable. Notably, this removal may be so painful that local anesthesia is required to be administered to the area scheduled for the treatment. Although patients tend to accept root planing easily, they frequently express a fear of local anesthesia. Intraosseous anesthesia (IA) is an intraosseous injection technique, whereby local anesthetic is injected into the cancellous bone supporting the teeth. A computer-controlled IA system (CIAS) exhibits multiple benefits, such as less painful anesthesia, reduced soft tissue numbness, and the provision of palatal or lingual, as well as buccal, anesthesia via single needle penetration. In this report, we present two cases of root planing that were performed under local anesthesia, using a CIAS. PMID:29556561
Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.
Rosa, Stefanie; Shaw, Peter
2015-10-20
Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.
Gallagher, Sarah Ivy; Matthews, Debora Candace
2017-01-01
Background: The aim of this systematic review was to evaluate whether patients with gingival recession would benefit from an acellular dermal matrix graft (ADMG) in ways that are comparable to the gold standard of the subepithelial connective tissue graft (SCTG). Materials and Methods: A systematic review and meta-analysis comparing ADMG to SCTG for the treatment of Miller Class I and II recession defects was conducted according to PRISMA guidelines. PubMed, Excerpta Medica Database, and Cochrane Central Register of Controlled Trials databases were searched up to March 2016 for controlled trials with minimum 6 months duration. The primary outcome was root coverage; secondary outcomes included attachment level change, keratinized tissue (KT) change, and patient-based outcomes. Both authors independently assessed the quality of each included trial and extracted the relevant data. Results: From 158 potential titles, 17 controlled trials were included in the meta-analysis. There were no differences between ADMG and SCTG for mean root coverage, percent root coverage, and clinical attachment level gain. ADMG was statistically better than SCTG for gain in width of KT (−0.43 mm; 95% confidence interval: −0.72, −0.15). Only one study compared patient-based outcomes. Conclusion: This review found that an ADMG would be a suitable root coverage substitute for an SCTG when avoidance of the second surgical site is preferred. PMID:29551861
Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions.
Rabara, Roel C; Tripathi, Prateek; Rushton, Paul J
2017-01-01
Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG) in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.
Infrared monitoring of dinitrotoluenes in sunflower and maize roots.
Dokken, K M; Davis, L C
2011-01-01
Infrared microspectroscopy (IMS) is emerging as an important analytical tool for the structural analysis of biological tissue. This report describes the use of IMS coupled to a synchrotron source combined with principal components analysis (PCA) to monitor the fate and effect of dinitrotoluenes in the roots of maize and sunflower plants. Infrared imaging revealed that maize roots metabolized 2,4-dinitrotoluene (DNT) and 2,6-DNT. The DNTs and their derivative aromatic amines were predominantly associated with epidermis and xylem. Both isomers of DNT altered the structure and production of pectin and pectic polysaccharides in maize and sunflower plant roots. Infrared peaks diagnostic for aromatic amines were seen at the 5 mg L concentrations for both DNTs in maize and sunflower treated tissue. However, only infrared peaks for nitro groups, not aromatic amines, were present in the maize treated at 10 mg L For sunflower, the 10 mg L level was toxic and also produced very dark root systems making spectra difficult to obtain. Maize and sunflower seem unable to metabolize effectively at concentrations higher than about 5 mg L DNT in hydroponic solution. Based on the results of this study, IMS combined with PCA can be an effective means of determining the fate and metabolism of organic contaminants in plant tissue when isotopically labeled compounds are not available. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Sahu, Binod B.; Baumbach, Jordan L.; Singh, Prashant; Srivastava, Subodh K.; Yi, Xiaoping
2017-01-01
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, ‘Essex’, was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen. PMID:28095498
Sahu, Binod B; Baumbach, Jordan L; Singh, Prashant; Srivastava, Subodh K; Yi, Xiaoping; Bhattacharyya, Madan K
2017-01-01
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.
Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping
2017-01-01
The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sukheung; Roberts, D.M.
1990-07-01
A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less
de Souza, C R; Aragão, F J; Moreira, E C O; Costa, C N M; Nascimento, S B; Carvalho, L J
2009-03-24
Cassava is one of the most important tropical food crops for more than 600 million people worldwide. Transgenic technologies can be useful for increasing its nutritional value and its resistance to viral diseases and insect pests. However, tissue-specific promoters that guarantee correct expression of transgenes would be necessary. We used inverse polymerase chain reaction to isolate a promoter sequence of the Mec1 gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in cassava storage roots. In silico analysis revealed putative cis-acting regulatory elements within this promoter sequence, including root-specific elements that may be required for its expression in vascular tissues. Transient expression experiments showed that the Mec1 promoter is functional, since this sequence was able to drive GUS expression in bean embryonic axes. Results from our computational analysis can serve as a guide for functional experiments to identify regions with tissue-specific Mec1 promoter activity. The DNA sequence that we identified is a new promoter that could be a candidate for genetic engineering of cassava roots.
Lomonte, Cristina; Wang, Yaodong; Doronila, Augustine; Gregory, David; Baker, Alan J M; Siegele, Rainer; Kolev, Spas D
2014-01-01
Localization of Hg in root tissues of vetivergrass (Chrysopogon zizanioides) was investigated by micro-Proton Induced X-ray Emission (PIXE) spectrometry to gain a better understanding of Hg uptake and its translocation to the aerial plant parts. Tillers of C. zizanioides were grown in a hydroponic culture for 3 weeks under controlled conditions and then exposed to Hg for 10 days with or without the addition of the chelators (NH(4))(2)S(2)O(3) or KI. These treatments were used to study the effects of these chelators on localization of Hg in the root tissues to allow better understanding of Hg uptake during its assisted-phytoextraction. Qualitative elemental micro-PIXE analysis revealed that Hg was mainly localized in the root epidermis and exodermis, tissues containing suberin in all Hg treatments. Hg at trace levels was localized in the vascular bundle when plants were treated with a mercury solution only. However, higher Hg concentrations were found when the solution also contained (NH(4))(2)S(2)O(3) or KI. This finding is consistent with the observed increase in Hg translocation to the aerial parts of the plants in the case of chemically induced Hg phytoextraction.
Rana, Vivek; Maiti, Subodh Kumar
2018-04-01
Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.
Zarate, Frederick M; Schulwitz, Sarah E; Stevens, Kevin J; Venables, Barney J
2012-07-01
Constructed wetlands are a potential method for the removal of two pharmaceutical and personal care products from wastewater effluent. Triclosan (TCS; 5-chloro-2-[2,4-dichlorophenoxy]phenol) and triclocarban (TCC; 3,4,4'-trichlorocarbanillide) are antimicrobial agents added to a variety of consumer products whose accumulation patterns in constructed wetlands are poorly understood. Here, we report the accumulation of TCS, its metabolite methyl-triclosan (MTCS; 5-chloro-2-[2,4-dichlorophenoxy]), and TCC in wetland plant tissues and sediments. Three wetland macrophytes: Typha latifolia, Pontederia cordata, and Sagittaria graminea were sampled from a constructed wetland in Denton, Texas, USA. MTCS concentrations were below the method detection limit (MDL) for all species. TCS root tissue concentrations in T. latifolia were significantly greater than root concentrations in P. cordata (mean±SE in ng g(-1): 40.3±11.3 vs. 15.0±1.9, respectively), while for TCC, shoot tissue concentrations in S. graminea were significantly greater than in T. latifolia (22.8±9.3 vs. 9.0 (MDL), respectively). For both TCS and TCC, T. latifolia root tissue concentrations were significantly greater than shoot concentrations (TCS: 40.3±11.3 vs. 17.2±0.2, TCC: 26.0±3.6 vs. 9.0, (MDL)). TCC concentrations in P. cordata roots were significantly greater than in shoots (34.4±5.3 vs. 15.4±2.8, respectively). TCS concentrations in T. latifolia roots and sediments and TCC concentrations in sediments generally decreased from wetland inflow to outflow. To our knowledge, this is the first study documenting species and tissue specific differences in the accumulation of TCS and TCC in plants from an operational constructed wetland. The species specific differences in bioaccumulation suggest TCS and TCC removal from constructed wetlands could be enhanced through targeted plantings. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regulation of phytochrome message abundance in root caps of maize
NASA Technical Reports Server (NTRS)
Johnson, E. M.; Pao, L. I.; Feldman, L. J.
1991-01-01
In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochrome-mediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps is not known.
Interaction of Escherichia coli with growing salad spinach plants.
Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M
2003-10-01
In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.
Zwetsloot, Marie J; Kessler, André; Bauerle, Taryn L
2018-04-01
Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Poncini, Lorenzo; Wyrsch, Ines; Dénervaud Tendon, Valérie; Vorley, Thomas; Boller, Thomas; Geldner, Niko; Métraux, Jean-Pierre; Lehmann, Silke
2017-01-01
Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.
Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu
2017-01-01
Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.
Benhamou, Nicole; Garand, Chantal; Goulet, Alain
2002-01-01
The influence exerted by nonpathogenic Fusarium oxysporum strain Fo47 in triggering cucumber protection against infection by Pythium ultimum was investigated ultrastructurally. Macroscopic and microscopic observations of the pathogen colony in dual cultures revealed that reduction of Pythium growth was associated with marked disorders, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and complete loss of the protoplasm. Cytochemical labeling of cellulose with an exoglucanase-gold complex showed that the cellulose component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. A similar antagonistic process was observed at the root cell surface. Most striking and interesting was the finding that mycoparasitism, as evidenced by the frequent occurrence of Fo47 hyphae within nearly empty cells of the pathogen, occurred not only at the root surface but also within the invaded root tissues. The specific labeling pattern obtained with the exoglucanase-gold complex confirmed that Fo47 successfully penetrated cells of the pathogen, both in the rhizosphere and inside the root tissues. Pythium cells that could evade the first defensive line in the rhizosphere could penetrate the root epidermis, but their growth was restricted to the outermost tissues. Positive correlations between Fo47 treatment and induced resistance to infection by P. ultimum in cucumber were confirmed by (i) the reduction of pathogen viability; (ii) the elaboration of newly formed barriers, a phenomenon which was not seen in Fo47-free plants, where the pathogen proliferated in all root tissues within a few days; and (iii) the occlusion of intercellular spaces with a dense material likely enriched in phenolics. Taken together, our observations provide the first convincing evidence that Fo47 exerts a direct inhibitory effect on P. ultimum through a combination of antibiosis and mycoparasitism, in addition to being a strong inducer of plant defense reactions. PMID:12147506
Trabulsi, Manal; Oh, Tae-Ju; Eber, Robert; Weber, Daniel; Wang, Hom-Lay
2004-11-01
Enamel matrix derivative (EMD) has been shown to promote periodontal wound healing and/or regeneration when applied to tooth root surfaces in soft tissue dehiscence models. In addition, guided tissue regeneration (GTR)-based root coverage using collagen membrane (GTRC) has shown promising results. However, limited information is available regarding how EMD may influence GTRC outcome. Twenty-six patients with Miller's Class I or II gingival recession defects of 2.5 mm were recruited for the study. Subjects were randomly assigned to receive either EMD + collagen (EMDC; test group) or collagen membrane (GTRC; control group). Clinical parameters, including plaque index (PI), gingival index (GI), relative clinical attachment levels (RCAL) to the stent, recession depth (RD), recession width (RW), probing depth (PD), gingival tissue thickness (GTT), and width of keratinized gingiva (KG) were assessed at baseline, and 3 and 6 months after surgery. A repeated measure of analysis of variance (ANOVA) was used to determine differences between treatment groups and time effect. Both treatments (GTRC and EMDC) resulted in a statistically significant decrease in RD and RW between baseline and 6 months (P <0.05). However, no difference was noted between treatment groups. The percent of root coverage after 6 months was 75% for GTRC and 63% for EMDC. Complete 100% root coverage was achieved in five patients in the GTRC group, compared to only one patient in the EMDC group. There was a statistically significant gain (P <0.05) in the clinical attachment level (CAL) between baseline and 6 months in both groups, as reflected on the RCAL data. No other significant differences were noted on other clinical parameters (PD, GTT, KG, GI, and PI). GTR-based root coverage utilizing collagen membrane, with or without enamel matrix derivative, can be successfully used in obtaining gingival recession coverage. The application of EMD during GTRC procedures did not add additional benefit to the final clinical outcome.
Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C
2011-10-01
The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the different soluble sugars) flag the initial responses to the slight decrease in soil water availability (10-15% decrease). Further alterations in sucrose to ABA and in raffinose to ABA relative values (in all organs) indicate that soil water availability continues to decrease. Such alterations when associated with changes in the root hormone balance indicate that the stress response is initiated. It is concluded that metabolic balance (e.g. IAA/bioactive Cks, carbohydrates/IAA, sucrose/ABA, raffinose/ABA, ABA/IAA) is relevant in triggering adjustment mechanisms.
Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu
2014-08-01
In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Scanning electron microscopic study of the effects of Er:YAG laser on root cementum.
Fujii, T; Baehni, P C; Kawai, O; Kawakami, T; Matsuda, K; Kowashi, Y
1998-11-01
Use of Er:YAG laser has been proposed for the removal of microbial deposits and calculus present on teeth affected by periodontal disease. However, the influence of Er:YAG laser irradiation on root surfaces has not yet been fully investigated. The aim of the present study was to evaluate the effects of Er:YAG laser irradiation on root cementum by scanning electron microscopy (SEM). Specimens were obtained from extracted human periodontally-diseased teeth using a water-cooled high-speed bur. An Er:YAG laser beam was then applied at various powers ranging from 25 to 100 mJ/ pulse/sec. The laser irradiation was performed under water irrigation, with the tip held perpendicular to the root surface in the contact mode. Following laser exposure, specimens were fixed, dehydrated, and dried at critical-point in liquid CO2. After mounting on SEM plates and sputter-coating with gold, the cementum surface was examined by SEM. Observations of the root surface showed a relatively flat surface in control specimens. In Er:YAG exposed specimens, the laser beam created a circular, notched-edge, crater-like defect on the root. The bottom of the lesion showed an irregular and sharp-pointed surface. Subsequently, the specimens were fractured with a sharp scalpel perpendicularly to the surface. SEM observations of these specimens showed a 15 microm layer of damaged tissue within the laser-irradiated cementum. The tissue presented an amorphous appearance and the Sharpey's and matrix fiber bundles were not clearly distinguishable. These observations indicate that cementum tissue could be damaged by Er:YAG laser irradiation.
Root growth regulation and gravitropism in maize roots does not require the epidermis
NASA Technical Reports Server (NTRS)
Bjorkman, T.; Cleland, R. E.
1991-01-01
We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.
Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production
Vuković, Rosemary; Likić, Saša; Jelaska, Sibila
2015-01-01
Summary Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid. PMID:27904326
Tal, Haim; Moses, Ofer; Zohar, Ron; Meir, Haya; Nemcovsky, Carlos
2002-12-01
Acellular dermal matrix allograft (ADMA) has successfully been applied as a substitute for free connective tissue grafts (CTG) in various periodontal procedures, including root coverage. The purpose of this study was to clinically compare the efficiency of ADMA and CTG in the treatment of gingival recessions > or = 4 mm. Seven patients with bilateral recession lesions participated. Fourteen teeth presenting gingival recessions > or = 4 mm were randomly treated with ADMA or CTG covered by coronally advanced flaps. Recession, probing depth, and width of keratinized tissue were measured preoperatively and 12 months postoperatively. Changes in these clinical parameters were calculated within and compared between groups and analyzed statistically. Baseline recession, probing depth, and keratinized tissue width were similar for both groups. At 12 months, root coverage gain was 4.57 mm (89.1%) versus 4.29 mm (88.7%) (P = NS), and keratinized tissue gain was 0.86 mm (36%) versus 2.14 mm (107%) (P < 0.05) for ADMA and CTG, respectively. Probing depth remained unchanged (0.22 mm/0 mm), with no difference between the groups. Recession defects may be covered using ADMA or CTG, with no practical difference. However, CTG results in significantly greater gain of keratinized gingiva.
Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar
2015-01-01
Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389
Multiphasic Scaffolds for Periodontal Tissue Engineering
Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.
2014-01-01
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362
Multiphasic scaffolds for periodontal tissue engineering.
Ivanovski, S; Vaquette, C; Gronthos, S; Hutmacher, D W; Bartold, P M
2014-12-01
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. © International & American Associations for Dental Research.
Gonzalez-Meler, Miquel A.; Lynch, Douglas J.; Baltzer, Jennifer L.
2016-01-01
Plants appear to produce an excess of leaves, stems and roots beyond what would provide the most efficient harvest of available resources. One way to understand this overproduction of tissues is that excess tissue production provides a competitive advantage. Game theoretic models predict overproduction of all tissues compared with non-game theoretic models because they explicitly account for this indirect competitive benefit. Here, we present a simple game theoretic model of plants simultaneously competing to harvest carbon and nitrogen. In the model, a plant's fitness is influenced by its own leaf, stem and root production, and the tissue production of others, which produces a triple tragedy of the commons. Our model predicts (i) absolute net primary production when compared with two independent global datasets; (ii) the allocation relationships to leaf, stem and root tissues in one dataset; (iii) the global distribution of biome types and the plant functional types found within each biome; and (iv) ecosystem responses to nitrogen or carbon fertilization. Our game theoretic approach removes the need to define allocation or vegetation type a priori but instead lets these emerge from the model as evolutionarily stable strategies. We believe this to be the simplest possible model that can describe plant production. PMID:28120794
Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian Mustard1
de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman
1999-01-01
Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues. PMID:9952452
Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming
2015-01-01
Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169
McNickle, Gordon G; Gonzalez-Meler, Miquel A; Lynch, Douglas J; Baltzer, Jennifer L; Brown, Joel S
2016-11-16
Plants appear to produce an excess of leaves, stems and roots beyond what would provide the most efficient harvest of available resources. One way to understand this overproduction of tissues is that excess tissue production provides a competitive advantage. Game theoretic models predict overproduction of all tissues compared with non-game theoretic models because they explicitly account for this indirect competitive benefit. Here, we present a simple game theoretic model of plants simultaneously competing to harvest carbon and nitrogen. In the model, a plant's fitness is influenced by its own leaf, stem and root production, and the tissue production of others, which produces a triple tragedy of the commons. Our model predicts (i) absolute net primary production when compared with two independent global datasets; (ii) the allocation relationships to leaf, stem and root tissues in one dataset; (iii) the global distribution of biome types and the plant functional types found within each biome; and (iv) ecosystem responses to nitrogen or carbon fertilization. Our game theoretic approach removes the need to define allocation or vegetation type a priori but instead lets these emerge from the model as evolutionarily stable strategies. We believe this to be the simplest possible model that can describe plant production. © 2016 The Author(s).
Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun
2015-08-01
Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.
2016-06-01
enhance angiogenesis and stimulate endothelial cells, which favors early healing of the soft tissue.30 EMD is FDA approved for application to root...aesthetic concerns, which can be important to a person’s identity and self -image.5 Another indication is root sensitivity which often results in pain to...cold, heat and even touch leading to an impaired ability to eat or drink and brush one’s teeth. Studies have shown soft tissue coverage procedures
1983-03-01
sodium hypochlorite using a standard endodontic irrigating syringe (Monoject Endodontic Syringe, Sherwood Medical Co., St. Louis, MO), and the...the sample. The Joel R. Kessler 8 teeth were placed in a 5.25% sodium hypochlorite solution for 30 minutes in order to remove soft tissue on the root...molars. J Endodon 1975;1:211-14. 7. Senia ES, Marshall FJ, Rosen S. The solvent action of sodium hypochlorite on pulp tissue of extracted teeth. Oral
Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu
2010-01-01
Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955
Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka
2017-05-01
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Colville, Louise; Sáez, Clara M Blanco; Lewis, Gwilym P; Kranner, Ilse
2015-07-01
Homoglutathione (γ-glutamyl-cysteinyl-β-alanine) is a homologue of glutathione (γ-glutamyl-cysteinyl-glycine), which is a ubiquitous and indispensable tripeptide in eukaryotes with multi-facetted functions, many of which relate to cellular redox regulation. Homoglutathione is unique to the Leguminosae family, but studies of its occurrence have been restricted to the Papilionoideae subfamily, and almost exclusively to crop species. To determine whether the distribution of homoglutathione in the Leguminosae has a phylogenetic basis the occurrence of homoglutathione was investigated in the leaves, roots and seeds of 73 wild species of Leguminosae, representing 30 tribes across the Caesalpinioideae, Mimosoideae and Papilionoideae subfamilies. Homoglutathione was found only in the Papilionoideae, and was generally restricted to the 'Old World Clade'. It is proposed that homoglutathione may have arisen following a whole genome duplication event after the divergence of the Old World Clade. Homoglutathione is believed to fulfil the same functional roles as glutathione, but this study showed that homoglutathione and glutathione have different tissue-specific distribution patterns. Homoglutathione tended to occur more frequently in root tissue, and higher concentrations were found in leaves and roots, whereas glutathione tended to be present at the highest concentrations in seeds. This may reflect a distinct role for homoglutathione, particularly in roots, or an inability of homoglutathione to functionally replace glutathione in reproductive tissues. However, no relationships with environmental factors or nodulation were observed. Greater understanding of the factors that influence homoglutathione distribution may help to elucidate its unique function in some legume species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu
2016-01-01
Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles. PMID:27513952
Babu, Harsha Mysore; Gujjari, Sheela Kumar; Prasad, Deepak; Sehgal, Praveen Kumar; Srinivasan, Aishwarya
2011-01-01
Background: Gingival recession (GR) can result in root sensitivity, esthetic concern to the patient, and predilection to root caries. The purpose of this randomized clinical study was to evaluate (1) the effect of guided tissue regeneration (GTR) procedure using a bioabsorbable collagen membrane, in comparison to autogenous subepithelial connective tissue graft (SCTG) for root coverage in localized gingival recession defects; and (2) the change in width of keratinized gingiva following these two procedures. Materials and Methods: A total of 10 cases, showing at least two localized Miller's Class I or Class II gingival recession, participated in this study. In a split mouth design, the pairs of defects were randomly assigned for treatment with either SCTG (SCTG Group) or GTR-based collagen membrane (GTRC Group). Both the grafts were covered with coronally advanced flap. Recession depth (RD), recession width (RW), width of keratinized gingiva (KG), probing depth (PD), relative attachment level (RAL), plaque index (PI), and gingival index (GI) were recorded at baseline, 3 and 6 months postoperatively. Results: Six months following root coverage procedures, the mean root coverage was found to be 84.84% ± 16.81% and 84.0% ± 15.19% in SCTG Group and GTRC Group, respectively. The mean keratinized gingival width increase was 1.50 ± 0.70 mm and 2.30 ± 0.67 mm in the SCTG and GTRC group, respectively, which was not statistically significant. Conclusion: It may be concluded that resorbable collagen membrane can be a reliable alternative to autogenous connective tissue graft in the treatment of gingival recession. PMID:22368359
Differential Role of Glutamate Dehydrogenase in Nitrogen Metabolism of Maize Tissues 1
Loyola-Vargas, Victor Manuel; de Jimenez, Estela Sanchez
1984-01-01
Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation. PMID:16663876
[The applications of periodontal gingival surgery. Ⅱ: alternative materials].
Mao, Er-Jia
2018-04-01
The main purposes of periodontal graft surgery include achieving root coverage, improving the clinical attachment level and keratinized tissue, and advancing the procedure of periodontal plastic surgery. Autogenous graft, such as subepithelial connective tissue graft-based procedure, provide the best outcomes for mean and complete root coverage, as well as increase in keratinized tissue. However, a disadvantage of the procedure is in the location of the operation itself: the additional surgical site (palate). Therefore, clinicians are always looking for graft substitutes. This article will discuss the evidence supporting the use of 1) acellular dermal matrix (ADM); 2) xenogeneic collagen matrix (XCM); 3) recombinant human platelet-derived growth factor (rhPDGF); 4) enamel matrix derivative (EMD); 5) guided tissue regeneration (GTR); 6) living cellular construct (LCC), all of which are used in conjunction with coronally advanced flaps as alternatives to autogenous donor tissue. The decision tree for treatments of Miller recession-type defects are also discussed.
Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize
NASA Technical Reports Server (NTRS)
Stinemetz, C. L.; Kuzmanoff, K. M.; Evans, M. L.; Jarrett, H. W.
1987-01-01
Recent evidence indicates a role for calcium and calmodulin in the gravitropic response of primary roots of maize (Zea mays, L.). We examined this possibility by testing the relationship between calmodulin activity and gravitropic sensitivity in roots of the maize cultivars Merit and B73 x Missouri 17. Roots of the Merit cultivar require light to the gravitropically competent. The gravitropic response of the Missouri cultivar is independent of light. The occurrence of calmodulin in primary roots of these maize cultivars was tested by affinity gel chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with bovine brain calmodulin as standard. The distribution of calmodulin activity was measured using both the phosphodiesterase and NAD kinase assays for calmodulin. These assays were performed on whole tissue segments, crude extracts, and purified extracts. In light-grown seedlings of the Merit cultivar or in either dark- or light-grown seedlings of the Missouri cultivar, calmodulin activity per millimeter of root tissue was about 4-fold higher in the apical millimeter than in the subtending 3 millimeters. Calmodulin activity was very low in the apical millimeter of roots of dark-grown (gravitropically nonresponsive) seedlings of the Merit cultivar. Upon illumination, the calmodulin activity in the apical millimeter increased to a level comparable to that of light-grown seedlings and the roots became gravitropically competent. The time course of the development of gravitropic sensitivity following illumination paralleled the time course of the increase in calmodulin activity in the apical millimeter of the root. The results are consistent with the suggestion that calmodulin plays an important role in the gravitropic response of roots.
A role for the root cap in root branching revealed by the non-auxin probe naxillin.
De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom
2012-09-01
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.
A role for the root cap in root branching revealed by the non-auxin probe naxillin
De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom
2013-01-01
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. PMID:22885787
Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.
2007-01-01
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275
Shimizu, Emi; Ricucci, Domenico; Albert, Jeffrey; Alobaid, Adel S; Gibbs, Jennifer L; Huang, George T-J; Lin, Louis M
2013-08-01
Revitalization procedures have been widely used for the treatment of immature permanent teeth with apical periodontitis. The treatment procedures appear to be capable of encouraging continued root development and thickening of the canal walls. The nature of tissues formed in the canal space and at the root apex after revitalization has been shown histologically in several animal studies; similar studies in humans were recently reported. A 9-year-old boy had a traumatic injury to his upper anterior teeth. Tooth #9 suffered a complicated crown fracture with a pulp exposure, which was restored with a composite resin. The tooth developed a chronic apical abscess. Revitalization procedures were performed on tooth #9 because it was an immature permanent tooth with an open apex and thin canal walls. Twenty-six months after revitalization, the tooth had a horizontal crown fracture at the cervical level and could not be restored. The tooth was extracted and processed for routine histological and immunohistochemical examination to identify the nature of tissues formed in the canal space. Clinically and radiographically, the revitalization of the present case was successful because of the absence of signs and symptoms and the resolution of periapical lesion as well as thickening of the canal walls and continued root development. The tissue formed in the canal was well-mineralized cementum- or bone-like tissue identified by routine histology and immunohistochemistry. No pulp-like tissue characterized by the presence of polarized odontoblast-like cells aligning dentin-like hard tissue was observed. The tissues formed in the canal of revitalized human tooth are similar to cementum- or bone-like tissue and fibrous connective tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Root coverage of a previously restored tooth. A case report with a 7-year follow-up
Corsair, Alexander
2009-01-01
This case report describes the treatment of a maxillary canine that had 4 mm of marginal gingival recession. The exposed root had been previously restored with a composite class 5 restoration. The restoration was removed and the root planed and demineralized. The root was then covered by a subepithelial connective tissue graft harvested from the palate. The flap was coronally positioned to completely cover the graft and exposed root. The healing was photographed post-operatively at one month, six months, and seven years. Root coverage increased to 100% after seven years. The zone of attached gingiva also increased. PMID:23674903
Root coverage of a previously restored tooth. A case report with a 7-year follow-up.
Corsair, Alexander
2009-01-01
This case report describes the treatment of a maxillary canine that had 4 mm of marginal gingival recession. The exposed root had been previously restored with a composite class 5 restoration. The restoration was removed and the root planed and demineralized. The root was then covered by a subepithelial connective tissue graft harvested from the palate. The flap was coronally positioned to completely cover the graft and exposed root. The healing was photographed post-operatively at one month, six months, and seven years. Root coverage increased to 100% after seven years. The zone of attached gingiva also increased.
Complication of improper management of sodium hypochlorite accident during root canal treatment
Faras, Fatemah; Abo-Alhassan, Fawaz; Sadeq, Abdullah; Burezq, Hisham
2016-01-01
Sodium Hypochlorite (NaOCl) is a common irrigation solution used in root canal treatment. It has strong antibacterial and tissue dissolving properties. Nevertheless, it has some serious complications, some of which are life-threatening. A young male presented with severe chemical burn of the right infraorbital area and partial necrosis of the hard palate resulting from extrusion of NaOCl during root canal treatment of the upper right 2nd molar tooth. The patient had a facial scar, and mucosal damage healed nearly completely. Several precautions must be taken during NaOCl use to prevent the spread of the solution into surrounding tissues. Early recognition of NaOCl accident and proper immediate management are important to achieve the best possible outcome. PMID:27891318
Ricardo, C P; Sovia, D
1974-03-01
Sucrose storage in tuberous roots was not observed when the tissues had very high activities of acid invertase. High activities of the enzyme were always present in the roots at early stages of their development. In species where the activity of the enzyme decreased during root development, sucrose was stored. Thus, acid invertase was undetectable in mature roots of carrots (Daucus carota L.) where sucrose formed almost 80% of the dry matter. Conversely, radish (Raphanus sativus L.) and turnip (Brassica rapa L.) roots, in which the activity of the enzyme remained high until maturity, did not store appreciable amounts of sucrose (2% and 9%, respectively, of the dry matter in the mature roots), reducing sugars being the main reserve (more than 80% of the dry matter in mature turnips). The correlation between sucrose content and acid invertase activity was furthermore evident in both sucrose- and hexose-storing roots when the activity of this enzyme was affected by changes in the mineral nutrition. Deficiencies of nitrogen and sulphur reduced the activity of acid and alkaline invertases and led to increase in sucrose content and decrease in reducing sugars. However, the decline of alkaline invertase activity in tissues low in acid invertase had no clear effect on sugar content. Sodium chloride (10(-1)M) affected acid invertase and sugars in a manner similar to that of the two deficiencies, but had practically no effect on alkaline invertase. The changes in sugar content produced by the variations in mineral nutrition were small in hexose-storing roots in relation to those of sucrose-storing roots. It is possible that this result is related to the different levels of acid invertase in the two types of roots.
Rasmussen, Amanda; Hosseini, Seyed Abdollah; Hajirezaei, Mohammed-Reza; Druege, Uwe; Geelen, Danny
2015-01-01
Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. It is shown that the decline in adventitious rooting is linked to the ontogenetic switch from vegetative to floral and is mainly attributed to the cutting base. Using rms mutants it is demonstrated that the decline is not a result of increased strigolactones inhibiting adventitious root formation. Monitoring endogenous levels of a range of other hormones including a range of cytokinins in the rooting zone revealed that a peak in jasmonic acid is delayed in cuttings from floral plants. Additionally, there is an early peak in indole-3-acetic acid levels 6h post excision in cuttings from vegetative plants, which is absent in cuttings from floral plants. These results were confirmed using DR5:GUS expression. Exogenous supplementation of young cuttings with either jasmonic acid or indole-3-acetic acid promoted adventitious rooting, but neither of these hormones was able to promote adventitious rooting in mature cuttings. DR5:GUS expression was observed to increase in juvenile cuttings with increasing auxin treatment but not in the mature cuttings. Therefore, it seems the vegetative to floral ontogenetic switch involves an alteration in the tissue’s auxin homeostasis that significantly reduces the indole-3-acetic acid pool and ultimately results in a decline in adventitious root formation. PMID:25540438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudinski, J.B.; Torn, M.S.; Riley, W.J.
2009-02-01
Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissuemore » is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).« less
Prakash, Ashwin; Adlakha, Himanshu; Rabideau, Nicole; Hass, Cara J; Morris, Shaine A; Geva, Tal; Gauvreau, Kimberlee; Singh, Michael N; Lacro, Ronald V
2015-08-18
Aortic diameter is an imperfect predictor of aortic complications in connective tissue disorders (CTDs). Novel indicators of vascular phenotype severity such as aortic stiffness and vertebral tortuosity index have been proposed. We assessed the relation between aortic stiffness by cardiac MRI, surgical root replacement, and rates of aortic root dilation in children and young adults with CTDs. Retrospective analysis of cardiac MRI data on children and young adults with a CTD was performed to derive aortic stiffness measures (strain, distensibility, and β-stiffness index) at the aortic root, ascending aorta, and descending aorta. Vertebral tortuosity index was calculated as previously described. Rate of aortic root dilation before cardiac MRI was calculated as change in echocardiographic aortic root diameter z score per year. In 83 CTD patients (median age, 24 years; range, 1-55; 17% <18 years of age; 60% male), ascending aorta distensibility was reduced in comparison with published normative values: median z score, -1.93 (range, -8.7 to 1.3; P<0.0001 versus normals). Over a median follow-up period of 2.7 years, there were no aortic dissections or deaths, but 16 of 83 (19%) patients underwent surgical aortic root replacement. In multivariable analysis, lower aortic root strain (P=0.05) and higher vertebral tortuosity index (P=0.01) were independently associated with aortic root replacement. Lower ascending aorta strain (P=0.02) was associated with a higher rate of aortic root dilation. Higher aortic stiffness is associated with higher rates of surgical aortic replacement and aortic root dilation in children and young adults with CTDs. © 2015 American Heart Association, Inc.
Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F
2015-10-01
Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.
Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju
2017-01-11
Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.
Effect of low-level laser therapy on dental root cementum remodeling in rats.
Alsulaimani, M; Doschak, M; Dederich, D; Flores-Mir, C
2015-05-01
To investigate the amount of the cementum layer formed over the rat's dental root surfaces by daily application of low-level laser therapy (LLLT) for 2 weeks. Twelve female Sprague-Dawley (SD) rats were divided into two groups: six rats received daily LLLT (Ga-Al-As, 830 nm), and six rats received no treatment (control). The treatment lasted 2 weeks. In vivo Micro-CT imaging analyzed the root's hard tissue volumetric changes. The cementum thickness was evaluated histologically. Total cementum thicknesses in the LLLT group increased significantly (p = 0.015) compared to the control group. This significant increase in the cementum thickness, verified histologically, was not detectable during in vivo Micro-CT imaging, which showed no significant difference between the groups regarding the root hard tissues volumetric changes over the 2-week evaluation period. Two weeks of daily application of LLLT significantly increased rat's dental root cementum thickness as determined histologically. However, in vivo Micro-CT imaging failed to accurately reveal this cementum growth as it was not possible to differentiate dentinal changes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata)
Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd
2016-01-01
Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688
Hirano, T; Homma, M; Oka, K
1994-02-01
The effects of organic-solvent extracts of Urtica dioica (Urticaceae) on the Na+,K(+)-ATPase of the tissue of benign prostatic hyperplasia (BPH) were investigated. The membrane Na+,K(+)-ATPase fraction was prepared from a patient with BPH by a differential centrifugation of the tissue homogenate. The enzyme activity was inhibited by 10(-4)-10(-5) M of ouabain. The hexane extract, the ether extract, the ethyl acetate extract, and the butanol extract of the roots caused 27.6-81.5% inhibition of the enzyme activity at 0.1 mg/ml. In addition, a column extraction of stinging nettle roots using benzene as an eluent afforded efficient enzyme inhibiting activity. Steroidal components in stinging nettle roots, such as stigmast-4-en-3-one, stigmasterol, and campesterol inhibited the enzyme activity by 23.0-67.0% at concentrations ranging from 10(-3)-10(-6) M. These results suggest that some hydrophobic constituents such as steroids in the stinging nettle roots inhibited the membrane Na+,K(+)-ATPase activity of the prostate, which may subsequently suppress prostate-cell metabolism and growth.
Dental Pulp and Dentin Tissue Engineering and Regeneration – Advancement and Challenge
Huang, George T.-J.
2012-01-01
Hard tissue is difficult to repair especially dental structures. Tooth enamel is incapable of self-repairing whereas dentin and cememtum can regenerate with limited capacity. Enamel and dentin are commonly under the attack by caries. Extensive forms of caries destroy enamel and dentin and can lead to dental pulp infection. Entire pulp amputation followed by the pulp space disinfection and filled with an artificial rubber-like material is employed to treat the infection --commonly known as root canal or endodontic therapy. Regeneration of dentin relies on having vital pulps; however, regeneration of pulp tissue has been difficult as the tissue is encased in dentin without collateral blood supply except from the root apical end. With the advent of modern tissue engineering concept and the discovery of dental stem cells, regeneration of pulp and dentin has been tested. This article will review the recent endeavor on pulp and dentin tissue engineering and regeneration. The prospective outcome of the current advancement and challenge in this line of research will be discussed. PMID:21196351
Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T
2011-01-01
Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.
Jeltsch, Florian; Wurst, Susanne
2015-01-01
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119
Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration
Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.
2014-01-01
Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919
Re-do aortic root replacement after an allograft aortic root replacement.
Vrtik, Marian; Tesar, Peter J
2009-10-01
Structural degeneration of allograft aortic root is a global process. In addition to valvular degeneration, the allograft wall calcification poses a risk of systemic calcific embolization and late phase anastomotic aneurysm formation and rupture (anecdotal). Furthermore, the valve annulus is often small, and the tissues are rigid making the implantation of an adequately sized prosthesis within the allograft wall difficult. To avoid these issues, we routinely perform re-do aortic root replacement with either a mechanical valve conduit or bio-root composite graft. The technique has been successfully used in 22 consecutive patients with no operative mortality and minimal morbidity.
USDA-ARS?s Scientific Manuscript database
Phytophthora root rot of soybean (Glycine max Merr.) is caused by the oomycete Phytophthora sojae (Kaufm. and Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospo...
Qi, Ruhu; John, Peter Crook Lloyd
2007-07-01
The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.
Inhibition of strigolactones promotes adventitious root formation
Beveridge, Christine A.; Geelen, Danny
2012-01-01
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species. PMID:22580687
Radford, J E; White, R G
2001-01-01
Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.
Disease notes - Bacterial root rot
USDA-ARS?s Scientific Manuscript database
Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...
Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J
2010-05-01
A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.
Black, Marykate Z; Minchin, Peter E H; Gould, Nick; Patterson, Kevin J; Clearwater, Michael J
2012-10-01
In vivo measurements of (14)C tracer distribution have usually involved monitoring the β(-) particles produced as (14)C decays. These particles are only detectable over short distances, limiting the use of this technique to thin plant material. In the present experiments, X-ray detectors were used to monitor the Bremsstrahlung radiation emitted since β(-) particles were absorbed in plant tissues. Bremsstrahlung radiation is detectable through larger tissue depths. The aim of these experiments was to demonstrate the Bremsstrahlung method by monitoring in vivo tracer-labelled photosynthate partitioning in small kiwifruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) plants in response to root pruning. A source shoot, consisting of four leaves, was pulse labelled with (14)CO(2). Detectors monitored import into a fruit and the root system, and export from a source leaf. Repeat pulse labelling enabled the comparison of pre- and post-treatment observations within an individual plant. Diurnal trends were observed in the distribution of tracer, with leaf export reduced at night. Tracer accumulated in the roots declined after approximately 48 h, which may have resulted from export of (14)C from the roots in carbon skeletons. Cutting off half the roots did not affect tracer distribution to the remaining half. Tracer distribution to the fruit was increased after root pruning, demonstrating the higher competitive strength of the fruit than the roots for carbohydrate supply. Increased partitioning to the fruit following root pruning has also been demonstrated in kiwifruit field trials.
Chahal, Gurparkash Singh; Chhina, Kamalpreet; Chhabra, Vipin; Bhatnagar, Rakhi; Chahal, Amna
2014-01-01
Background: A surface smear layer consisting of organic and inorganic material is formed on the root surface following mechanical instrumentation and may inhibit the formation of new connective tissue attachment to the root surface. Modification of the tooth surface by root conditioning has resulted in improved connective tissue attachment and has advanced the goal of reconstructive periodontal treatment. Aim: The aim of this study was to compare the effects of citric acid, tetracycline, and doxycycline on the instrumented periodontally involved root surfaces in vitro using a scanning electron microscope. Settings and Design: A total of 45 dentin samples obtained from 15 extracted, scaled, and root planed teeth were divided into three groups. Materials and Methods: The root conditioning agents were applied with cotton pellets using the Passive burnishing technique for 5 minutes. The samples were then examined by the scanning electron microscope. Statistical Analysis Used: The statistical analysis was carried out using Statistical Package for Social Sciences (SPSS Inc., Chicago, IL, version 15.0 for Windows). For all quantitative variables means and standard deviations were calculated and compared. For more than two groups ANOVA was applied. For multiple comparisons post hoc tests with Bonferroni correction was used. Results: Upon statistical analysis the root conditioning agents used in this study were found to be effective in removing the smear layer, uncovering and widening the dentin tubules and unmasking the dentin collagen matrix. Conclusion: Tetracycline HCl was found to be the best root conditioner among the three agents used. PMID:24744541
Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim
2010-06-01
A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.
Doma, Madhavi; Abhayankar, Gauri; Reddy, V D; Kavi Kishor, P B
2012-07-01
Leaves of Withania somnifera contained more withaferin A and withanolide A than roots indicating that these compounds mainly accumulate in leaves. With an increase in age of the plant, withaferin A was enhanced with a corresponding decrease in withanolide A. Hairy root cultures were induced from leaf explants using Agrobacterium rhizogenes and the transgenic nature of hairy roots was confirmed by partial isolation and sequencing of rolB gene, which could not be amplified in untransformed plant parts. In hairy roots, withaferin A accumulated at 2, 3 and 4% but not at 6% sucrose, the highest amount being 1733 microg/g dry weight at 4% level. High and equal amounts of withaferin A and withanolide A accumulated (890 and 886 microg/g dry tissue respectively) only at 3% sucrose. Increasing concentrations of glucose enhanced withaferin A and it peaked at 5% level (3866 microg/g dry tissue). This amount is 2842 and 34% higher compared to untransformed roots and leaves (collected from 210-day-old plants) respectively. Withanolide A was detected at 5% glucose but not at other concentrations. While chitosan and nitric oxide increased withaferin A, jasmonic acid decreased it. Acetyl salicylic acid stimulated accumulation of both withaferin A and withanolide A at higher concentrations. Triadimefon, a fungicide, enhanced withaferin A by 1626 and 3061% (not detected earlier) compared to hairy and intact roots respectively.
Bumgarner, Natalie R; Scheerens, Joseph C; Mullen, Robert W; Bennett, Mark A; Ling, Peter P; Kleinhenz, Matthew D
2012-01-15
Understanding the effects of temperature and nitrogen levels on key variables, particularly under field conditions during cool seasons of temperate climates, is important. Here, we document the impact of root-zone heating and nitrogen (N) fertility on the accumulation and composition of fall- and spring-grown lettuce biomass. A novel, scalable field system was employed. Direct-seeded plots containing a uniform, semi-solid, and nearly stable rooting medium were established outdoors in 2009 and 2010; each contained one of eight combinations of root-zone heating (-/+) and N fertility (0, 72, 144, and 576 mg day(-1)). Root-zone heating increased but withholding N decreased biomass accumulation in both years. Low N supplies were also associated with greater anthocyanin and total antioxidant power but lower N and phosphorus levels. Tissue chlorophyll a and vitamin C levels tracked root-zone temperature and N fertility more closely in 2009 and 2010, respectively. Experimentally imposed root-zone temperature and N levels influenced the amount and properties of fall- and spring-grown lettuce tissue. Ambient conditions, however, dictated which of these factors exerted the greatest effect on the variables measured. Collectively, the results point to the potential for gains in system sustainability and productivity, including with respect to supplying human nutritional units. Copyright © 2011 Society of Chemical Industry.
Redinbaugh, Margaret G.; Sabre, Mara; Scandalios, John G.
1990-01-01
The catalase activity, CAT-2 and CAT-3 isozyme protein levels, and the steady-state mRNA levels for each of the three catalase genes were determined in the scutellum, root, epicotyl, and leaf of the developing maize (Zea mays L.) seedling. Catalase activity was highest in the scutellum, with 10-fold lower enzyme activity in the leaf and epicotyl. Very low levels of catalase activity were found in the root. The highest levels of CAT-2 protein were found in the scutellum, with about 10-fold lower levels in the green leaf. CAT-2 protein was present in trace amounts early in root development and no CAT-2 protein was detected in the epicotyl. Shortly after germination, CAT-3 protein was present at high levels in both the epicotyl and green leaf. With development, the amount of CAT-3 protein decreased slowly in the epicotyl and rapidly in the green leaf. Low levels of this isozyme were detected in the scutellum and root. The Cat1 transcript accumulated to low levels in all four tissues during the 14 day developmental period. High levels of the Cat2 transcript were found in the scutellum, with moderate levels of the mRNA in the green leaf. The Cat2 transcript levels were very low in the root and epicotyl. While the Cat3 mRNA level in the scutellum was low, high levels of the Cat3 transcript were detected in the root, epicotyl, and leaf. There was a positive correlation between the accumulation of a catalase isozyme and its transcript, indicating that the tissue specificity of maize catalase gene expression was regulated pretranslationally. Images Figure 3 Figure 4 PMID:16667285
Zhou, Meixue; Shabala, Sergey
2018-01-01
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops—barley (Hordeum vulgare) and wheat (Triticum aestivum)—was investigated by measuring the magnitude of ROS-induced net K+ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H2O2 treatment, a significant positive correlation was found for the magnitude of ROS-induced K+ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H2O2-induced net K+ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals. PMID:29494514
Carrot injury and yield response to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, J.P.; Oshima, R.J.
1976-11-01
Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less
Shiono, Katsuhiro; Hashizaki, Riho; Nakanishi, Toyofumi; Sakai, Tatsuko; Yamamoto, Takushi; Ogata, Koretsugu; Harada, Ken-Ichi; Ohtani, Hajime; Katano, Hajime; Taira, Shu
2017-09-06
Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods. Here, we report the first multi-imaging of two plant hormones, one of cytokinin [i.e., trans-zeatin (tZ)] and abscisic acid (ABA) using a new technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging. Protonated signals of tZ (m/z 220.1) and ABA (m/z 265.3) were chosen on longitudinal sections of rice roots for MS imaging. tZ was broadly distributed about 40 mm behind the root apex but was barely detectable at the apex, whereas ABA was mainly detected at the root apex. Multi-imaging using MALDI-TOF-MS enabled the visualization of the localization and quantification of plant hormones. Thus, this tool is applicable to a wide range of plant species growing under various environmental conditions.
Sterilization of root canal spaces using an Nd:YAG laser, in vitro
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Yee, Barbara; Marshall, Sally J.; Marshall, Grayson W.
1995-05-01
A smear layer is created during the cleaning and shaping of root canal systems. The Nd:YAG laser has been shown to be effective in removing that smear layer and any tissue remnants from prepared root canal systems suggesting that it may aid in root canal sterilization without detrimental thermal effects to adjacent tissues. The root canal system of 72 single-rooted teeth was conventionally prepared and sterilized using gamma radiation. The teeth were divided into three groups of 24 each, 8 of which were inoculated only with sterile broth and remained as negative controls. Sixteen teeth of each group were inoculated with one of three organisms of 106 to 1010 CFU/(mu) l: B subtilis (BS), E. coli (EC) and S. marcescens (SM) (10 (mu) l). Eight in each group were not treated further and served as positive controls. Sixteen test teeth were treated with the laser three times using each exposure parameter: 1 W, 10 Hz pulses per second (pps); 2 W, 20 Hz; and 3 W, 30 Hz inserted to the radiographic apex. Laser exposures were completed while withdrawing the fiber from the root canal system. At completion of laser exposure, all teeth were cultured, using sterile paper points and plated on brain heat infusion agar. Three cultures were taken for each tooth, the plates incubated for 72 hours, and read for the presence of growth of colony-forming units. The laser was able to reduce the number of organisms placed in root canal systems, and suggests that the laser may be used in root canal therapy for bacterial reduction and cleaning of the root canal space.
Listeria monocytogenes - Danger for health safety vegetable production.
Kljujev, Igor; Raicevic, Vera; Jovicic-Petrovic, Jelena; Vujovic, Bojana; Mirkovic, Milica; Rothballer, Michael
2018-04-22
The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 10 6 cells/mm 3 absolutely dry root) and spinach (1.39 × 10 6 cells/mm 3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the larval vessels of root. Our results suggest that L. monocytogenes is very good endophytic colonizer of vegetable plant roots. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Han Guo; Xu, Ning; Yu, Qing
The separate distolingual (DL) roots of three-rooted mandibular first molars are thought to be too difficult for performing apical surgery. This article represents microsurgical treatment of a three-rooted mandibular first molar with a separate DL root. The procedure includes incision and flap retraction, osteotomy, apicoectomy, retropreparation and retrofilling of the root canal, using micro instruments, ultrasonic retrotips and mineral trioxide aggregate (MTA) under a dental operating microscope. Two mm in length of apical root resection, 2 mm in depth of root canal retropreparation with a personalised ultrasonic retrotip, and 2 mm in length of retrofilling with MTA are the key points for accomplishment of apical surgery on separate DL roots. The case was followed up for 15 months after surgery. Clinical and radiographic examinations revealed complete healing of periapical tissue. Separate DL roots of three-rooted mandibular first molars can be treated by endodontic microsurgery with modifications from standard protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.
2011-01-01
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha -1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ±more » 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha -1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.« less
Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance
Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.
2014-01-01
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294
Mathematical modelling of the uptake and transport of salt in plant roots.
Foster, Kylie J; Miklavcic, Stanley J
2013-11-07
In this paper, we present and discuss a mathematical model of ion uptake and transport in roots of plants. The underlying physical model of transport is based on the mechanisms of forced diffusion and convection. The model can take account of local variations in effective ion and water permeabilities across the major tissue regions of plant roots, represented through a discretized coupled system of governing equations including mass balance, forced diffusion, convection and electric potential. We present simulation results of an exploration of the consequent enormous parameter space. Among our findings we identify the electric potential as a major factor affecting ion transport across, and accumulation in, root tissues. We also find that under conditions of a constant but realistic level of bulk soil salt concentration and plant-soil hydraulic pressure, diffusion plays a significant role even when convection by the water transpiration stream is operating. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.
Luby, Claire H; Maeda, Hiroshi A; Goldman, Irwin L
2014-01-01
Carrot roots (Daucus carota L. var. sativa) produce tocochromanol compounds, collectively known as vitamin E. However, little is known about their types and amounts. Here we determined the range and variation in types and amounts of tocochromanols in a variety of cultivated carrot accessions throughout carrot postharvest storage and reproductive stages and in wild-type roots (Daucus carota L. var. carota). Of eight possible tocochromanol compounds, we detected and quantified α-, and the combined peak for β- and γ- forms of tocopherols and tocotrienols. Significant variation in amounts of tocochromanol compounds was observed across accessions and over time. Large increases in α-tocopherol were noted during both reproductive growth and the postharvest stages. The variation of tocochromanols in carrot root tissue provides useful information for future research seeking to understand the role of these compounds in carrot root tissue or to breed varieties with increased levels of these compounds. PMID:26504534
Vignoletti, Fabio; Nunez, Javier; Sanz, Mariano
2014-04-01
To review the biological processes of wound healing following periodontal and periimplant plastic surgery when different technologies are used in a) the coverage of root and implant dehiscences, b) the augmentation of keratinized tissue (KT) and c) the augmentation of soft tissue volume. An electronic search from The National Library of Medicine (MEDLINE-PubMed) was performed: English articles with research focus in oral soft tissue regeneration, providing histological outcomes, either from animal experimental studies or human biopsy material were included. Barrier membranes, enamel matrix derivatives, growth factors, allogeneic and xenogeneic soft tissue substitutes have been used in soft tissue regeneration demonstrating different degrees of regeneration. In root coverage, these technologies were able to improve new attachment, although none has shown complete regeneration. In KT augmentation, tissue-engineered allogenic products and xenogeneic collagen matrixes demonstrated integration within the host connective tissue and promotion of keratinization. In soft tissue augmentation and peri-implant plastic surgery there are no histological data currently available. Soft tissue substitutes, growth differentiation factors demonstrated promising histological results in terms of soft tissue regeneration and keratinization, whereas there is a need for further studies to prove their added value in soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Racial Equity in Selection in Air Force Officer Training School and Undergraduate Flying Training
1977-05-01
8217- _____________________OTS Steles W3UN Ne- I 6031L a.go& isease of -A N "SN N 32iell(E 23.5 7 5.1 35 4 -9 North Central(NM 37 272 14 10.2 51 0 100.0 othS,32...23.2 Quant. M 58.0 54.1 56.3 45.9 33.5 37.8- " SD 26.5 25.7 26.2 24.1 21.6 23.°2 Bio . Inv. Ma 39.6 - 39.6 36.8 - 36.8 SD 7.9 - 7.9 12.1 - 12.1 Off. Qual
Environmental Control of Root System Biology.
Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R
2016-04-29
The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.
The Physiology of Adventitious Roots1
Steffens, Bianka; Rasmussen, Amanda
2016-01-01
Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895
Tarquini, Giacomo
This retrospective study aimed to compare the effectiveness of an equine collagen matrix (ECM) with that of a subepithelial connective tissue graft (CTG) in patients affected by Class I and II gingival recessions treated with a coronally advanced flap (CAF) technique. Records of 50 consecutive patients were analyzed. Recession depth, probing depth, keratinized tissue width, and percentage of root coverage had been recorded at baseline and at the 1-year follow-up. The number of patients that achieved complete root coverage was also assessed. According to the investigated parameters, ECM and CTG provide similar results when used in association with a CAF technique.
Hydroxamic acid content and toxicity of rye at selected growth stages.
Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R
2005-08-01
Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at different stages. Hydroxamic acids may account for the phytoxicity of extracts derived from rye at early growth stages, but other compounds are probably responsible in later growth stages.
Jaumard, N V; Udupa, J K; Siegler, S; Schuster, J M; Hilibrand, A S; Hirsch, B E; Borthakur, A; Winkelstein, B A
2013-10-01
For some patients with radiculopathy a source of nerve root compression cannot be identified despite positive electromyography (EMG) evidence. This discrepancy hampers the effective clinical management for these individuals. Although it has been well-established that tissues in the cervical spine move in a three-dimensional (3D) manner, the 3D motions of the neural elements and their relationship to the bones surrounding them are largely unknown even for asymptomatic normal subjects. We hypothesize that abnormal mechanical loading of cervical nerve roots during pain-provoking head positioning may be responsible for radicular pain in those cases in which there is no evidence of nerve root compression on conventional cervical magnetic resonance imaging (MRI) with the neck in the neutral position. This biomechanical imaging proof-of-concept study focused on quantitatively defining the architectural relationships between the neural and bony structures in the cervical spine using measurements derived from 3D MR images acquired in neutral and pain-provoking neck positions for subjects: (1) with radicular symptoms and evidence of root compression by conventional MRI and positive EMG, (2) with radicular symptoms and no evidence of root compression by MRI but positive EMG, and (3) asymptomatic age-matched controls. Function and pain scores were measured, along with neck range of motion, for all subjects. MR imaging was performed in both a neutral position and a pain-provoking position. Anatomical architectural data derived from analysis of the 3D MR images were compared between symptomatic and asymptomatic groups, and the symptomatic groups with and without imaging evidence of root compression. Several differences in the architectural relationships between the bone and neural tissues were identified between the asymptomatic and symptomatic groups. In addition, changes in architectural relationships were also detected between the symptomatic groups with and without imaging evidence of nerve root compression. As demonstrated in the data and a case study the 3D stress MR imaging approach provides utility to identify biomechanical relationships between hard and soft tissues that are otherwise undetected by standard clinical imaging methods. This technique offers a promising approach to detect the source of radiculopathy to inform clinical management for this pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aung, Han Phyo; Mensah, Akwasi Dwira; Aye, Yi Swe; Djedidi, Salem; Oikawa, Yosei; Yokoyama, Tadashi; Suzuki, Sohzoh; Dorothea Bellingrath-Kimura, Sonoko
2016-11-01
This study was carried out to assess the effect of Bacillus pumilus on the roots of four cruciferous vegetables with different root structures in regard to enhancement of 137 Cs bioavailability in contaminated rhizosphere soil. Results revealed that B. pumilus inoculation did not enhance the plant biomass of vegetables, although it increased root volume and root surface areas of all vegetables except turnip. The pH changes due to rhizosphere acidification by B. pumilus inoculation and root exudation did not affect the bioavailability of 137 Cs. However, concentrations of 137 Cs in plant tissues and soil-to-plant transfer values increased as a result of the larger root volume and root surface area of vegetables due to inoculation. Moreover, leafy vegetables, which possessed larger root volume and root surface areas, had a higher 137 Cs transfer value than root vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.
McGuire, Michael K; Scheyer, E Todd
2010-08-01
For root coverage therapy, the connective tissue graft (CTG) plus coronally advanced flap (CAF) is considered the gold standard therapy against which alternative therapies are generally compared. When evaluating these therapies, in addition to traditional measures of root coverage, subject-reported, qualitative measures of esthetics, pain, and overall preferences for alternative procedures should also be considered. This study determines if a xenogeneic collagen matrix (CM) with CAF might be as effective as CTG+CAF in the treatment of recession defects. This study was a single-masked, randomized, controlled, split-mouth study of dehiscence-type recession defects in contralateral sites; one defect received CTG+CAF and the other defect received CM+CAF. A total of 25 subjects (8 male, 17 female; mean age: 43.7 +/- 12.2 years) were evaluated at 6 months and 1 year. The primary efficacy endpoint was recession depth at 6 months. Secondary endpoints included traditional periodontal measures, such as width of keratinized tissue and percentage of root coverage. Subject-reported values of pain, discomfort, and esthetic satisfaction were also recorded. At 6 months, recession depth was on average 0.52 mm for test sites and 0.10 mm for control sites. Recession depth change from baseline was statistically significant between test and control, with an average of 2.62 mm gained at test sites and 3.10 mm gained at control sites for a difference of 0.4 mm (P = 0.0062). At 1 year, test percentage of root coverage averaged 88.5%, and controls averaged 99.3% (P = 0.0313). Keratinized tissue width gains were equivalent for both therapies and averaged 1.34 mm for test sites and 1.26 mm for control sites (P = 0.9061). There were no statistically significant differences between subject-reported values for esthetic satisfaction, and subjects' assessments of pain and discomfort were also equivalent. When balanced with subject-reported esthetic values and compared to historical root coverage outcomes reported by other investigators, CM+CAF presents a viable alternative to CTG+CAF, without the morbidity of soft tissue graft harvest.
NASA Astrophysics Data System (ADS)
Kelleway, Jeffrey J.; Mazumder, Debashish; Baldock, Jeffrey A.; Saintilan, Neil
2018-05-01
The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants. We found a significant site effect (F3, 36 = 15.78; P < 0.001) with mean leaf δ13C values 2.0‰ more depleted at the lowest salinity site compared to the other locations. There was a larger within-plant fractionation effect, however, with leaf samples (mean ± SE = -29.1 ± 0.2) more depleted in 13C than stem samples (-27.1 ± 0.1), while cable root (-25. 8 ± 0.1), pneumatophores (-25.7 ± 0.1) and fine roots (-26.0 ± 0.2) were more enriched in 13C relative to both aboveground tissue types (F4, 36 = 223.45; P < 0.001). The within-plant δ13C fractionation we report for A. marina is greater than that reported in most other ecosystems. This has implications for studies of estuarine carbon cycling. The consistent and large size of the fractionation from leaf to woody stem (∼2.0‰) and mostly consistent fractionation from leaf to root tissues (>3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.
Xiong, Jimin; Gronthos, Stan; Bartold, P Mark
2013-10-01
Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigating the Skoog-Miller Model for Organogenesis Using Sweet Potato Root Explants.
ERIC Educational Resources Information Center
Delany, William; And Others
1994-01-01
Describes an experiment in which groups of students in a plant tissue culture course worked together to test application of the Skoog-Miller model (developed by Skoog and Miller in regeneration of tobacco experiments to demonstrate organogenesis) to sweet potato root explants. (ZWH)
Cellular and Molecular Changes in Orthodontic Tooth Movement
Zainal Ariffin, Shahrul Hisham; Yamamoto, Zulham; Zainol Abidin, lntan Zarina; Megat Abdul Wahab, Rohaya; Zainal Ariffin, Zaidah
2011-01-01
Tooth movement induced by orthodontic treatment can cause sequential reactions involving the periodontal tissue and alveolar bone, resulting in the release of numerous substances from the dental tissues and surrounding structures. To better understand the biological processes involved in orthodontic treatment, improve treatment, and reduce adverse side effects, several of these substances have been proposed as biomarkers. Potential biological markers can be collected from different tissue samples, and suitable sampling is important to accurately reflect biological processes. This paper covers the tissue changes that are involved during orthodontic tooth movement such as at compression region (involving osteoblasts), tension region (involving osteoclasts), dental root, and pulp tissues. Besides, the involvement of stem cells and their development towards osteoblasts and osteoclasts during orthodontic treatment have also been explained. Several possible biomarkers representing these biological changes during specific phenomenon, that is, bone remodelling (formation and resorption), inflammation, and root resorption have also been proposed. The knowledge of these biomarkers could be used in accelerating orthodontic treatment. PMID:22125437
AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.
2006-01-01
• Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296
Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia).
Birch, Gavin; Nath, Bibhash; Chaudhuri, Punarbasu
2015-04-01
Industrial activities and urbanization have had a major consequence for estuarine ecosystem health and water quality globally. Likewise, Sydney estuary has been significantly impacted by widespread, poor industrial practices in the past, and remediation of legacy contaminants have been undertaken in limited parts of this waterway. The objective of the present investigation was to determine the effectiveness of remediation of a former Pb-contaminated industrial site in Homebush Bay on Sydney estuary (Australia) through sampling of inter-tidal sediments and mangrove (Avicennia marina) tissue (fine nutritive roots, pneumatophores, and leaves). Results indicate that since remediation 6 years previously, Pb and other metals (Cu, Ni and Zn) in surficial sediment have increased to concentrations that approach pre-remediation levels and that they were considerably higher than pre-settlement levels (3-30 times), as well as at the reference site. Most metals were compartmentalized in fine nutritive roots with bio-concentration factors greater than unity, while tissues of pneumatophores and leaves contained low metal concentrations. Lead concentrations in fine nutritive root, pneumatophore, and leaf tissue of mangroves from the remediated site were similar to trees in un-remediated sites of the estuary and were substantially higher than plants at the reference site. The situation for Zn in fine nutritive root tissue was similar. The source of the metals was either surface/subsurface water from the catchment or more likely remobilized contaminated sediment from un-remediated parts of Homebush Bay. Results of this study demonstrate the problems facing management in attempting to reduce contamination in small parts of a large impacted area to concentrations below local base level.
NASA Astrophysics Data System (ADS)
Bidhari, L. A.; Purwanto, E.; Yunus, A.
2018-03-01
The good quality banana seeds are still difficult to obtain. There are two ways to provide seeds, namely conventional and tissue culture (in vitro). Tomato extract contains natural ZPT or phytohormone which can be utilized in modification of banana tissue culture media. The aim of this study was to determine the influence of media types and tomato extracts in various concentrations for multiplication of banana cv. Ambon in vitro. The study was conducted from October - December 2016 at the Tissue Culture Laboratory of Horticulture Seed Center, Salaman, Magelang. The experimental design used was completely randomized design with two treatment factors. The firs factor was media type with the addition of foliar fertilizer, the second factor was modification of tomato extract with 4 levels. The results showed that the different of the treated media treatment did not affect the emerge of leaf and leaf length, the number of roots and root length. The emerge of the leaves of all treatments occurred at 6 days after planting with the highest average length was obtained in MS treatment with a combination of tomato extract 50 ml/l (10.3 cm). The use of MS medium with a combination of tomato extract 50 ml/l generated the average root number 15.5 with a root lengths 7.5 cm. Substitution of MS medium with tomato extract and foliar fertilizer did not show better results compared to the use of MS media in the multiplication of banana shoots in tissue culture.
Das, Sayan; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A
2010-08-19
The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN) in cowpea (Vigna unguiculata). Based on histological and reactive oxygen species (ROS) profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction. Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk) were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi). At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue) and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue). At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively. In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism.
NASA Astrophysics Data System (ADS)
McGuire, M. A.; Bloemen, J.; Aubrey, D. P.; Steppe, K.; Teskey, R. O.
2016-12-01
Currently, the most pressing problem regarding respiration in trees is determining the rate of respiration in woody tissues. In stems and roots, barriers to diffusion promote the buildup of CO2 from respiration to high concentrations, often in the range of 3 to 10% and sometimes exceeding 20%, substantially higher than that of the atmosphere ( 0.04%). A substantial portion of this internal CO2 released from respiring cells in roots and stems can dissolve in xylem sap and move upward in the xylem stream, resulting in internal transport of respired CO2 that rivals the efflux of respired CO2from woody tissues. The importance of such internal CO2 transport for the assessment of above- and below-ground respiration has gained increasing interest and here we will synthesize the latest research. The most important recent finding has been that in tree roots, a large fraction of respired CO2 remains within the root system rather than diffusing into the soil. This CO2 is transported in xylem sap into the shoot, and because respiration is almost always measured as the flux of CO2 into the atmosphere from plant tissues, it represents an unaccounted- for component of tree root metabolism. In Populus deltoides trees, for which xylem CO2 transport and soil CO2 efflux near the tree was measured, twice the amount of CO2 derived from below-ground autotrophic respiration entered the xylem stream as diffused into the soil environment. For both Eucalyptus and Quercus, up to 24 and 19% of root-respired CO2 was transported via the transpiration stream, respectively, illustrating that a significant internal transport of root-respired CO2 is present across a wide range of plant families. These findings suggest that root and soil respiration can be substantially underestimated by "soil-centric" measurements. Moreover, internal transport of respired CO2, which has only recently been recognized and measured, has important implications for our understanding of carbon dynamics at both plant and ecosystem levels.
Gbadegesin, M A; Beeching, J R
2011-06-07
Cassava can be cultivated on impoverished soils with minimum inputs, and its storage roots are a staple food for millions in Africa. However, these roots are low in bioavailable nutrients and in protein content, contain cyanogenic glycosides, and suffer from a very short post-harvest shelf-life, and the plant is susceptible to viral and bacterial diseases prevalent in Africa. The demand for improvement of cassava with respect to these traits comes from both farmers and national agricultural institutions. Genetic improvement of cassava cultivars by molecular biology techniques requires the availability of appropriate genes, a system to introduce these genes into cassava, and the use of suitable gene promoters. Cassava root-specific promoter for auxin-repressed protein was isolated using the gene walking approach, starting with a cDNA sequence. In silico analysis of promoter sequences revealed putative cis-acting regulatory elements, including root-specific elements, which may be required for gene expression in vascular tissues. Research on the activities of this promoter is continuing, with the development of plant expression cassettes for transformation into major African elite lines and farmers' preferred cassava cultivars to enable testing of tissue-specific expression patterns in the field.
Possibilities and limits of imaging endodontic structures with CBCT.
Weber, Marie-Theres; Stratz, Nadja; Fleiner, Jonathan; Schulze, Dirk; Hannig, Christian
2015-01-01
An adequate portrayal of the root canal anatomy by diagnostic imaging is a prerequisite for a successful diagnosis and therapy in endodontics. The introduction of dental cone beam computed tomography (CBCT) has considerably expanded the scope of imaging diagnostics. The aim of the following study was to evaluate the imaging of endodontic structures with CBCT. One hundred and twenty teeth were examined with a CBCT device (ProMax 3D). Subsequently, the findings of the three-dimensional images were evaluated and compared to those of dental radiographs and tangential section preparations of the examined teeth. Results with high prevalence, such as existing roots and root canals, as well as results with low prevalence, e.g., extremely fine anatomical structures of the endodontic tissue, could be visualized precisely by dental CBCT; side canals, ramifications, communications, pulp stones, and obliterations could also be detected. Additionally, the length of curved root canals could be determined accurately. Likewise, root fractures were visualized reliably with CBCT. However, carious lesions could not be diagnosed adequately, and the evaluation of fillings and prosthetic restorations was complicated due to scattered X-ray artifacts. CBCT datasets qualify to visualize and diagnose small anatomical structures of the endodontic tissue.
Radiosensitivity of different tissues from carrot root at different phases of growth in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degani, N.; Pickholtz, D.
1980-09-01
The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lagmore » phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.« less
DR5 as a reporter system to study auxin response in Populus.
Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B
2013-03-01
KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.
James M. Vose; Michael G. Ryan
2002-01-01
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2], and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates....
Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M
2015-02-01
Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.
Abhary, Mohammad; Siritunga, Dimuth; Stevens, Gene; Taylor, Nigel J.; Fauquet, Claude M.
2011-01-01
Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181–194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications. PMID:21283593
Abhary, Mohammad; Siritunga, Dimuth; Stevens, Gene; Taylor, Nigel J; Fauquet, Claude M
2011-01-25
Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181-194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications.
Expression and Localization of Plant Protein Disulfide Isomerase.
Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.
1993-01-01
A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974
Impact of needle insertion depth on the removal of hard-tissue debris.
Perez, R; Neves, A A; Belladonna, F G; Silva, E J N L; Souza, E M; Fidel, S; Versiani, M A; Lima, I; Carvalho, C; De-Deus, G
2017-06-01
To evaluate the effect of depth of insertion of an irrigation needle tip on the removal of hard-tissue debris using micro-computed tomographic (micro-CT) imaging. Twenty isthmus-containing mesial roots of mandibular molars were anatomically matched based on similar morphological dimensions using micro-CT evaluation and assigned to two groups (n = 10), according to the depth of the irrigation needle tip during biomechanical preparation: 1 or 5 mm short of the working length (WL). The preparation was performed with Reciproc R25 file (tip size 25, .08 taper) and 5.25% NaOCl as irrigant. The final rinse was 17% EDTA followed by bidistilled water. Then, specimens were scanned again, and the matched images of the canals, before and after preparation, were examined to quantify the amount of hard-tissue debris, expressed as the percentage volume of the initial root canal volume. Data were compared statistically using the Mann-Whitney U-test. None of the tested needle insertion depths yielded root canals completely free from hard-tissue debris. The insertion depth exerted a significant influence on debris removal, with a significant reduction in the percentage volume of hard-tissue debris when the needle was inserted 1 mm short of the WL (P < 0.05). The insertion depth of irrigation needles significantly influenced the removal of hard-tissue debris. A needle tip positioned 1 mm short of the WL resulted in percentage levels of hard-tissue debris removal almost three times higher than when positioned 5 mm from the WL. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.