Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei
2013-01-01
Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023
Unique and Conserved Features of the Barley Root Meristem
Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger
2017-01-01
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269
Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou
2011-01-01
The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460
Xu, Panglian; Yuan, Dongke; Liu, Ming; Li, Chunxin; Liu, Yiyang; Zhang, Shengchun; Yao, Nan; Yang, Chengwei
2013-04-01
Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.
Push-pull strategy in the regulation of postembryonic root development.
Choe, Goh; Lee, Ji-Young
2017-02-01
Unlike animals, plants continue to grow throughout their lives. The stem cell niche, protected in meristems of shoots and roots, enables this process. In the root, stem cells produce precursors for highly organized cell types via asymmetric cell divisions. These precursors, which are "transit-amplifying cells," actively divide for several rounds before entering into differentiation programs. In this review, we highlight positive feedback regulation between shoot- and root-ward signals during the postembryonic root growth, which is reminiscent of a "push-pull strategy" in business parlance. This property of molecular networks underlies the regulation of stem cells and their organizer, the "quiescent center," as well as of the signaling between stem cell niche, transit-amplifying cells, and beyond. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thibeault-Martel, Maxime; Krause, Cornelia; Morin, Hubert; Rossi, Sergio
2008-01-01
Background and Aims Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. Methods Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. Key Results Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. Conclusions The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring. PMID:18708643
Casparian bands occur in the periderm of Pelargonium hortorum stem and root.
Meyer, Chris J; Peterson, Carol A
2011-04-01
Casparian bands are characteristic of the endodermis and exodermis of roots, but also occur infrequently in other plant organs, for example stems and leaves. To date, these structures have not been detected in phellem cells of a periderm. The aim of this study was to determine whether Casparian bands occur in phellem cells using tests that are known to detect Casparian bands in cells that also contain suberin lamellae. Both natural periderm and wound-induced structures were examined in shoots and roots. Using Pelargonium hortorum as a candidate species, the following tests were conducted: (1) staining with berberine and counterstaining with aniline blue, (2) mounting sections in concentrated sulphuric acid and (3) investigating the permeability of the walls with berberine as an apoplastic, fluorescent tracer. (1) Berberine-aniline blue staining revealed a modification in the radial and transverse walls of mature phellem cells in both stems and roots. Three days after wounding through to the cortex of stems, the boundary zone cells (pre-existing, living cells nearest the wound) had developed vividly stained primary walls. By 17 d, staining of mature phellem cells of wound-induced periderm was similar to that of natural periderm. (2) Mature native phellem cells of stems resisted acid digestion. (3) Berberine was excluded from the anticlinal (radial and transverse) walls of mature phellem cells in stems and roots, and from the wound-induced boundary zone. Casparian bands are present in mature phellem cells in both stems and roots of P. hortorum. It is proposed that Casparian bands act to retard water loss and pathogen entry through the primary cell walls of the phellem cells, thus contributing to the main functions of the periderm.
Control of plant stem cell function by conserved interacting transcriptional regulators
Zhou, Yun; Liu, Xing; Engstrom, Eric M.; Nimchuk, Zachary L.; Pruneda-Paz, Jose L.; Tarr, Paul T.; Yan, An; Kay, Steve A.; Meyerowitz, Elliot M.
2014-01-01
SUMMARY Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center (QC), defines QC identity and functions interchangeably with WUS in control of shoot and root stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centers on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development. PMID:25363783
PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana
Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuše; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young
2015-01-01
Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain. PMID:25730098
Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine
Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Shi, Songtao; Wang, Songlin
2006-01-01
Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance. PMID:17183711
Mesenchymal Stem Cells Improve Motor Functions and Decrease Neurodegeneration in Ataxic Mice
Jones, Jonathan; Estirado, Alicia; Redondo, Carolina; Pacheco-Torres, Jesus; Sirerol-Piquer, Maria-Salomé; Garcia-Verdugo, José M; Martinez, Salvador
2015-01-01
The main objective of this work is to demonstrate the feasibility of using bone marrow-derived stem cells in treating a neurodegenerative disorder such as Friedreich's ataxia. In this disease, the dorsal root ganglia of the spinal cord are the first to degenerate. Two groups of mice were injected intrathecally with mesenchymal stem cells isolated from either wild-type or Fxntm1Mkn/Tg(FXN)YG8Pook (YG8) mice. As a result, both groups presented improved motor skills compared to nontreated mice. Also, frataxin expression was increased in the dorsal root ganglia of the treated groups, along with lower expression of the apoptotic markers analyzed. Furthermore, the injected stem cells expressed the trophic factors NT3, NT4, and BDNF, which bind to sensory neurons of the dorsal root ganglia and increase their survival. The expression of antioxidant enzymes indicated that the stem cell-treated mice presented higher levels of catalase and GPX-1, which are downregulated in the YG8 mice. There were no significant differences in the use of stem cells isolated from wild-type and YG8 mice. In conclusion, bone marrow mesenchymal stem cell transplantation, both autologous and allogeneic, is a feasible therapeutic option to consider in delaying the neurodegeneration observed in the dorsal root ganglia of Friedreich's ataxia patients. PMID:25070719
Aritua, Valente; Achor, Diann; Gmitter, Frederick G; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection.
Aritua, Valente; Achor, Diann; Gmitter, Frederick G.; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection. PMID:24058486
Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N
2017-01-01
Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua
2014-02-01
Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Yamaza, Takayoshi; Shea, Lonnie D.; Djouad, Farida; Kuhn, Nastaran Z.; Tuan, Rocky S.; Shi, Songtao
2010-01-01
The ultimate goal of this study is to regenerate lost dental pulp and dentin via stem/progenitor cell–based approaches and tissue engineering technologies. In this study, we tested the possibility of regenerating vascularized human dental pulp in emptied root canal space and producing new dentin on existing dentinal walls using a stem/progenitor cell–mediated approach with a human root fragment and an immunocompromised mouse model. Stem/progenitor cells from apical papilla and dental pulp stem cells were isolated, characterized, seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide, inserted into the tooth fragments, and transplanted into mice. Our results showed that the root canal space was filled entirely by a pulp-like tissue with well-established vascularity. In addition, a continuous layer of dentin-like tissue was deposited onto the canal dentinal wall. This dentin-like structure appeared to be produced by a layer of newly formed odontoblast-like cells expressing dentin sialophosphoprotein, bone sialoprotein, alkaline phosphatase, and CD105. The cells in regenerated pulp-like tissue reacted positively to anti-human mitochondria antibodies, indicating their human origin. This study provides the first evidence showing that pulp-like tissue can be regenerated de novo in emptied root canal space by stem cells from apical papilla and dental pulp stem cells that give rise to odontoblast-like cells producing dentin-like tissue on existing dentinal walls. PMID:19737072
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development
Yao, Xiaozhen; Feng, Haiyang; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui
2013-01-01
Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development. PMID:23483879
García-Cruz, Karla V.; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A.; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R.
2016-01-01
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. PMID:27474508
González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I
2015-05-12
Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Lovelace, Tyler W; Henry, Michael A; Hargreaves, Kenneth M; Diogenes, Anibal
2011-02-01
Immature teeth with open apices treated with conventional nonsurgical root canal treatment often have a poor prognosis as a result of the increased risk of fracture and susceptibility to recontamination. Regenerative endodontics represents a new treatment modality that focuses on reestablishment of pulp vitality and continued root development. This clinical procedure relies on the intracanal delivery of a blood clot (scaffold), growth factors (possibly from platelets and dentin), and stem cells. However, to date, the clinical presence of stem cells in the canal space after this procedure has not been demonstrated. The purpose of this clinical study was to evaluate whether regenerative endodontic procedures are able to deliver stem cells into the canal space of immature teeth in young patients and to identify the possible tissue origin for these cells. After informed consent, the first appointment consisted of NaOCl irrigation and treatment with a triple antibiotic paste. One month later, the root canal space was irrigated with sterile saline, and bleeding was evoked with collection of samples on paper points. Real-time reverse-transcription polymerase chain reaction and immunocytochemistry were conducted to compare the gene transcripts and proteins found in the root canal sample with levels found in the systemic circulation. Molecular analyses of blood collected from the canal system indicated the significant accumulation of transcripts for the stem cell markers CD73 and CD105 (up to 600-fold), compared with levels found in the systemic blood. Furthermore, this effect was selective because there was no change in expression of the differentiation markers ALK-P, DSPP, ZBTB16, and CD14. Histologic analyses demonstrated that the delivered cells expressed both CD105 and STRO-1, markers for a subpopulation of mesenchymal stem cells. Collectively, these findings demonstrate that the evoked-bleeding step in regenerative procedures triggers the significant accumulation of undifferentiated stem cells into the canal space where these cells might contribute to the regeneration of pulpal tissues seen after antibiotic paste therapy of the immature tooth with pulpal necrosis. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.
2009-01-01
Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286
de Luis Balaguer, Maria Angels; Fisher, Adam P.; Clark, Natalie M.; Fernandez-Espinosa, Maria Guadalupe; Möller, Barbara K.; Weijers, Dolf; Williams, Cranos; Lorenzo, Oscar; Sozzani, Rosangela
2017-01-01
Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells. PMID:28827319
Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control.
Zhang, Qian-Qian; Li, Ying; Fu, Zhao-Ying; Liu, Xun-Biao; Yuan, Kai; Fang, Ying; Liu, Yan; Li, Gang; Zhang, Xian-Sheng; Chong, Kang; Ge, Lei
2018-05-12
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Cellular and molecular mechanisms of tooth root development
Li, Jingyuan; Parada, Carolina
2017-01-01
ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844
Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv
2017-01-01
Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
USDA-ARS?s Scientific Manuscript database
Stem cells are important in the continuous formation of various tissues during postembryonic organogenesis. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed ...
Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin.
Sanz, Luis; Fernández-Marcos, María; Modrego, Abelardo; Lewis, Daniel R; Muday, Gloria K; Pollmann, Stephan; Dueñas, Montserrat; Santos-Buelga, Celestino; Lorenzo, Oscar
2014-12-01
Nitric oxide (NO) is a unique reactive nitrogen molecule with an array of signaling functions that modulates plant developmental processes and stress responses. To explore the mechanisms by which NO modulates root development, we used a pharmacological approach and NO-deficient mutants to unravel the role of NO in establishing auxin distribution patterns necessary for stem cell niche homeostasis. Using the NO synthase inhibitor and Arabidopsis (Arabidopsis thaliana) NO biosynthesis mutants (nitric oxide-associated1 [noa1], nitrate reductase1 [nia1] and nia2, and nia1 nia2 noa1), we show that depletion of NO in noa1 reduces primary root elongation and increases flavonol accumulation consistent with elevated reactive oxygen species levels. The elevated flavonols are required for the growth effect, because the transparent testa4 mutation reverses the noa1 mutant root elongation phenotype. In addition, noa1 and nia1 nia2 noa1 NO-deficient mutant roots display small root meristems with abnormal divisions. Concomitantly, auxin biosynthesis, transport, and signaling are perturbed. We further show that NO accumulates in cortex/endodermis stem cells and their precursor cells. In endodermal and cortical cells, the noa1 mutant acts synergistically to the effect of the wuschel-related homeobox5 mutation on the proximal meristem, suggesting that NO could play an important role in regulating stem cell decisions, which has been reported in animals. © 2014 American Society of Plant Biologists. All Rights Reserved.
García-Cruz, Karla V; García-Ponce, Berenice; Garay-Arroyo, Adriana; Sanchez, María De La Paz; Ugartechea-Chirino, Yamel; Desvoyes, Bénédicte; Pacheco-Escobedo, Mario A; Tapia-López, Rosalinda; Ransom-Rodríguez, Ivan; Gutierrez, Crisanto; Alvarez-Buylla, Elena R
2016-07-29
Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stahl, Yvonne; Simon, Rüdiger
2005-01-01
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kun; Li, Shi-zheng, E-mail: ychozon@yahoo.com.cn; Zhang, Yun-li
2011-11-11
Highlights: Black-Right-Pointing-Pointer Conditional medium and dan-shen root were used for cardiomyogenic differentiation. Black-Right-Pointing-Pointer They all could induce hPDMSCs to differentiate into cardiomyocytes. Black-Right-Pointing-Pointer The induction effect of the latter was slightly higher compared to that of the former. Black-Right-Pointing-Pointer Dan-shen root could be a good inducer for cardiomyogenic differentiation. -- Abstract: The aim of this study was to search for a good inducer agent using for cardiomyogenic differentiation of stem cells. Human placenta-derived mesenchymal stem cells (hPDMSCs) were isolated and incubated in enriched medium. Fourth passaged cells were treated with 10 mg/L dan-shen root for 20 days. Morphologic characteristics weremore » analyzed by confocal and electron microscopy. Expression of {alpha}-sarcomeric actin was analyzed by immunohistochemistry. Expression of cardiac troponin-I (TnI) was analyzed by immunohistofluorescence. Atrial natriuretic factor (ANF) and beta-myocin heavy chain ({beta}-MHC) were detected by reverse transcriptase polymerase chain reaction (RT-PCR). hPDMSCs treated with dan-shen root gradually formed a stick-like morphology and connected with adjoining cells. On the 20th day, most of the induced cells stained positive with {alpha}-sarcomeric actin and TnI antibody. ANF and {beta}-MHC were also detected in the induced cells. Approximately 80% of the cells were successfully transdifferentiated into cardiomyocytes. In conclusion, dan-shen root is a good inducer agent used for cardiomyogenic differentiation of hPDMSCs.« less
Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan
2016-03-01
Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P
2016-01-01
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; ...
2016-06-24
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Biomaterial Selection for Tooth Regeneration
Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong
2011-01-01
Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433
Rainer-Lethaus, Gina; Oberhuber, Walter
2018-01-01
Carbon (C) availability plays an essential role in tree growth and wood formation. We evaluated the hypothesis that a decrease in C availability (i) triggers mobilization of C reserves in the coarse roots of Picea abies to maintain growth and (ii) causes modification of wood structure notably under drought. The 6-year-old saplings were subjected to two levels of soil moisture (watered versus drought conditions) and root C status was manipulated by physically blocking phloem transport in the stem at three girdling dates (GDs). Stem girdling was done before the onset of bud break [day of the year (doy) 77], during vigorous aboveground shoot and radial stem growth (GD doy 138), and after cessation of shoot growth (GD doy 190). The effect of blockage of C transport on root growth, root phenology, and wood anatomical traits [cell lumen diameter (CLD) and cell wall thickness (CWT)] in earlywood (EW) and latewood (LW) was determined. To evaluate changes in belowground C status caused by girdling, non-structural carbohydrates (soluble sugars and starch) in coarse roots were determined at the time of girdling and after the growing season. Although fine root mass significantly decreased in response to blockage of phloem C transport, the phenology of root elongation growth was not affected. Surprisingly, radial root growth and CLD of EW tracheids in coarse roots were strikingly increased in drought-stressed trees, when girdling occurred before bud break or during aboveground stem growth. In watered trees, the growth response to girdling was less distinct, but the CWT of EW significantly increased. Starch reserves in the roots of girdled trees significantly decreased in both soil moisture treatments and at all GDs. We conclude that (i) radial growth and wood development in coarse roots of P. abies saplings are not only dependent on current photosynthates, and (ii) blockage of phloem transport induces physiological changes that outweigh drought effects imposed on root cambial activity and cell differentiation. PMID:29636766
Rubio, Maria C; Becana, Manuel; Kanematsu, Sumio; Ushimaru, Takashi; James, Euan K
2009-01-01
The activities and localizations of superoxide dismutases (SODs) were compared in root and stem nodules of the semi-aquatic legume Sesbania rostrata using gel-activity assays and immunogold labelling, respectively. Nodules were fixed by high-pressure freezing and dehydrated by freeze substitution. Stem nodules showed more total and specific SOD activities than root nodules because of the presence of chloroplastic CuZnSOD. Most of the total SOD activity of stem and root nodules resulted from 'cytosolic' CuZnSOD, localized in the cytoplasm and chromatin, and from MnSOD in the bacteroids and in the mitochondria of vascular tissue. FeSOD was present in nodule plastids and in leaf chloroplasts, and was found to be associated with chromatin. Superoxide production was detected histochemically in the vascular bundles and in the infected tissue of stem and root nodules, whereas peroxide accumulation was observed in the cortical cell walls and intercellular spaces, as well as within the infection threads of both nodule types. These data suggest a role of CuZnSOD and FeSOD in protecting nuclear DNA from reactive oxygen species and/or in modulating gene activity. The enhanced levels of CuZnSOD, MnSOD and superoxide production in vascular bundle cells are consistent with a role of CuZnSOD and superoxide in the lignification of xylem vessels, but also suggest additional functions in coping with superoxide production by the high respiratory activity of parenchyma cells.
Ozer, Alkan; Yuan, Guohua; Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C; Donly, Kevin J; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application.
Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C.; Donly, Kevin J.; MacDougall, Mary; Chen, Shuo
2013-01-01
Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation. The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP). The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application. PMID:24400037
Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun
2014-05-01
The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.
Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka
2017-05-01
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Unique Cellular Organization in the Oldest Root Meristem.
Hetherington, Alexander J; Dubrovsky, Joseph G; Dolan, Liam
2016-06-20
Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago [3-9]. However, no fossil root apices described to date were actively growing at the time of preservation [3-10]. Because the cellular organization of meristems changes when root growth stops, it has been impossible to compare cellular dynamics as stem cells transition to differentiated cells in extinct and extant taxa [11]. We predicted that meristems of actively growing roots would be preserved in coal balls. Here we report the discovery of the first fossilized remains of an actively growing root meristem from permineralized Carboniferous soil with detail of the stem cells and differentiating cells preserved. The cellular organization of the meristem is unique. The position of the Körper-Kappe boundary, discrete root cap, and presence of many anticlinal cell divisions within a broad promeristem distinguish it from all other known root meristems. This discovery is important because it demonstrates that the same general cellular dynamics are conserved between the oldest extinct and extant root meristems. However, its unique cellular organization demonstrates that extant root meristem organization and development represents only a subset of the diversity that has existed since roots first evolved. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya
2017-01-01
Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a dissociated monolayer and feeder-free culture system have the potential to generate oligodendrocyte progenitor cells and mature oligodendrocytes in vitro and in vivo. This culture method could be applied to prepare large amounts of oligodendrocyte progenitor cells and mature oligodendrocytes in a relatively short amount of time.
Zhang, Yonghong; Zheng, Lanlan; Hong, Jing Han; Gong, Ximing; Zhou, Chun; Pérez-Pérez, José Manuel; Xu, Jian
2016-05-01
TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1β), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R
2013-01-01
Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311
Zanwar, Kushal; Kumar Ganji, Kiran; Bhongade, Manohar L
2017-01-01
Statement of the Problem: Recently allogenic mesenchymal stem cells are proposed to have multipotential progenitor cell capabilities to differentiate into cementoblasts, osteoblasts, and periodontal ligament fibroblasts. Purpose: The aim of the present study was to compare the efficacy of human umbilical stem cells cultured on polylactic acid (PLA), polyglycolic acid (PGA) membrane with PLA/PGA membrane alone in the treatment of multiple gingival recession defects. Materials and Method: A total number of 14 cases of multiple gingival recession (Miller’s Class I or II) located in the anterior region were randomly selected and divided into test (stem cells in combination with PLA/PGA membrane) and control group (PLA/PGA membrane alone). Clinical parameters including gingival recession, probing pocket depth, clinical attachment level, and width of keratinized gingiva were recorded at baseline, and at 6 months postoperative. Results: At baseline, there was 2.28 mm and 2.14mm mean gingival recession at 16 sites and 14 sites in test and control groups respectively. At 6 months post-surgery, test group showed 1.57 mm mean reduction of gingival recession indicating 66% root coverage, while the control group showed 1.24mm mean reduction of gingival recession indicating 57% root coverage. Conclusion: In the present study, the stem cell with PLA/PGA membrane showed significantly higher mean root coverage compared to only PLA/PGA membrane group. PMID:28620633
Slack, Jonathan M W
2018-05-15
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.
Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas
2012-01-01
Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.
Determinate Root Growth and Meristem Maintenance in Angiosperms
Shishkova, S.; Rost, T. L.; Dubrovsky, J. G.
2008-01-01
Background The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). Scope and Conclusions This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context. PMID:17954472
Stem cell-based biological tooth repair and regeneration
Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T.
2010-01-01
Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease. PMID:21035344
Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2016-02-01
The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Yamamoto, Kazuyoshi; Kiss, John Z.
2002-01-01
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.
Yamamoto, Kazuyoshi; Kiss, John Z.
2002-01-01
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems. PMID:11842170
Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.
Hatfield, Ronald D; Chaptman, Ann K
2009-05-27
This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.
Ji, Baohui; Sheng, Lei; Chen, Gang; Guo, Shujuan; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong
2015-01-01
Endogenous regeneration through cell homing provides an alternative approach for tissue regeneration, except cell transplantation, especially considering clinical translation. However, tooth root regeneration through cell homing remains a provocative approach in need of intensive study. Both platelet-rich fibrin (PRF) and treated dentin matrix (TDM) are warehouses of various growth factors, which can promote cell homing. We hypothesized that endogenous stem cells are able to sense biological cues from PRF membrane and TDM, and contribute to the regeneration of tooth root, including soft and hard periodontal tissues. Therefore, the biological effects of canine PRF and TDM on periodontal ligament stem cells (PDLSCs) and bone marrow mesenchymal stem cells (BMSCs) were evaluated respectively in vitro. Beagle dogs were used as orthotopic transplantation model. It was found that PRF significantly recruited and stimulated the proliferation of PDLSCs and BMSCs in vitro. Together, PRF and TDM induced cell differentiation by upregulating the mineralization-related gene expression of bone sialoprotein (BSP) and osteopotin (OPN) after 7 days coculture. In vivo, transplantation of autologous PRF and allogeneic TDM into fresh tooth extraction socket achieved successful root regeneration 3 months postsurgery, characterized by the regeneration of cementum and periodontal ligament (PDL)-like tissues with orientated fibers, indicative of functional restoration. The results suggest that tooth root connected to the alveolar bone by cementum-PDL complex can be regenerated through the implantation of PRF and TDM in a tooth socket microenvironment, probably by homing of BMSCs and PDLSCs. Furthermore, bioactive cues and inductive microenvironment are key factors for endogenous regeneration. This approach provides a tangible pathway toward clinical translation.
Vascular Procr+ stem cells: Finding new branches while looking for the roots.
Gur-Cohen, Shiri; Lapidot, Tsvee
2016-10-01
Generation and growth of the blood vasculature network is a highly synchronized process, requiring coordinated efforts of endothelial cells and pericytes to maintain blood vessel integrity and regeneration. In a recent paper published in Cell Research, Yu et al. identified and characterized bipotent Procr-expressing vascular endothelial stem cells, which give rise to both endothelial cells and pericytes.
Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana.
Shen, Wen-Hui; Xu, Lin
2009-07-01
Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs. In higher plants, stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically. It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs. Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity. Here, we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.
Functionalized scaffolds to control dental pulp stem cell fate
Piva, Evandro; Silva, Adriana F.; Nör, Jacques E.
2014-01-01
Emerging understanding about interactions between stem cells, scaffolds and morphogenic factors has accelerated translational research in the field of dental pulp tissue engineering. Dental pulp stem cells constitute a sub-population of cells endowed with self-renewal and multipotency. Dental pulp stem cells seeded in biodegradable scaffolds and exposed to dentin-derived morphogenic signals give rise to a pulp-like tissue capable of generating new dentin. Notably, dentin-derived proteins are sufficient to induce dental pulp stem cell differentiation into odontoblasts. Ongoing work is focused on developing ways of mobilizing dentin-derived proteins and disinfecting the root canal of necrotic teeth without compromising the morphogenic potential of these signaling molecules. On the other hand, dentin by itself does not appear to be capable of inducing endothelial differentiation of dental pulp stem cells, despite the well known presence of angiogenic factors in dentin. This is particularly relevant in the context of dental pulp tissue engineering in full root canals, where access to blood supply is limited to the apical foramina. To address this challenge, scientists are looking at ways to use the scaffold as a controlled release device for angiogenic factors. The aim of this manuscript is to present and discuss current strategies to functionalize injectable scaffolds and customize them for dental pulp tissue engineering. The long-term goal of this work is to develop stem cell-based therapies that enable the engineering of functional dental pulps capable of generating new tubular dentin in humans. PMID:24698691
Differential detection of genetic Loci underlying stem and root lignin content in Populus.
Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Wullschleger, Stan D; Tuskan, Gerald A
2010-11-22
In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.
Agulló-Antón, María Ángeles; Ferrández-Ayela, Almudena; Fernández-García, Nieves; Nicolás, Carlos; Albacete, Alfonso; Pérez-Alfocea, Francisco; Sánchez-Bravo, José; Pérez-Pérez, José Manuel; Acosta, Manuel
2014-03-01
The rooting of stem cuttings is a common vegetative propagation practice in many ornamental species. A detailed analysis of the morphological changes occurring in the basal region of cultivated carnation cuttings during the early stages of adventitious rooting was carried out and the physiological modifications induced by exogenous auxin application were studied. To this end, the endogenous concentrations of five major classes of plant hormones [auxin, cytokinin (CK), abscisic acid, salicylic acid (SA) and jasmonic acid] and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid were analyzed at the base of stem cuttings and at different stages of adventitious root formation. We found that the stimulus triggering the initiation of adventitious root formation occurred during the first hours after their excision from the donor plant, due to the breakdown of the vascular continuum that induces auxin accumulation near the wounding. Although this stimulus was independent of exogenously applied auxin, it was observed that the auxin treatment accelerated cell division in the cambium and increased the sucrolytic activities at the base of the stem, both of which contributed to the establishment of the new root primordia at the stem base. Further, several genes involved in auxin transport were upregulated in the stem base either with or without auxin application, while endogenous CK and SA concentrations were specially affected by exogenous auxin application. Taken together our results indicate significant crosstalk between auxin levels, stress hormone homeostasis and sugar availability in the base of the stem cuttings in carnation during the initial steps of adventitious rooting. © 2013 Scandinavian Plant Physiology Society.
Barrio, Rafael A.; Romero-Arias, José Roberto; Noguez, Marco A.; Azpeitia, Eugenio; Ortiz-Gutiérrez, Elizabeth; Hernández-Hernández, Valeria; Cortes-Poza, Yuriria; Álvarez-Buylla, Elena R.
2013-01-01
A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems. PMID:23658505
Teng, Hong Mei; Fang, Min Feng; Hu, Zheng Hai
2009-02-01
Anatomical, histochemical and phytochemistry methods were used to investigate the structure of vegetative organs, and saponins localization and dynamic changes in Polygala sibirica L. The root consisted of developed periderm and secondary vascular. The secondary phloem was thick, and mainly composed of parenchyma. There were well-developed vessels and fibers in the secondary xylem. The stem was composed of epidermis, cortex and vascular bundle. The ring of sclerenchymatous cells lied between cortex and phloem might be the apoplastic protective screen which could protect the stem from drought. The leaf was bifacial one. The root and stem possessed characteristics adapting to arid environment. Histochemical localization results showed that saponins distributed in secondary phloem and phelloderm of root, in epidermis, cortex and phloem of stem, mainly in mesophyll of leaf. It displayed that saponins accumulated mainly in parenchyma cells of vegetative organs, among of which, the secondary phloem was the main storage site. The HPLC results also showed that the saponins accumulated in all the vegetative organs of Polygala sibirica L., with higher content in roots and lower content in the aerial part that included stems and leaves. The study indicated the aerial part of Polygala sibirica L. also had medicinal value. The saponins content had dynamic variance at the developmental stage, the crude drug should be gathered at period from April to May.
Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong
2016-01-15
In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. Copyright © 2015 Elsevier Inc. All rights reserved.
Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling
Lien, Wen-Hui; Fuchs, Elaine
2014-01-01
In mammals, Wnt/β-catenin signaling features prominently in stem cells and cancers, but how and for what purposes have been matters of much debate. In this review, we summarize our current knowledge of Wnt/β-catenin signaling and its downstream transcriptional regulators in normal and malignant stem cells. We centered this review largely on three types of stem cells—embryonic stem cells, hair follicle stem cells, and intestinal epithelial stem cells—in which the roles of Wnt/β-catenin have been extensively studied. Using these models, we unravel how many controversial issues surrounding Wnt signaling have been resolved by dissecting the diversity of its downstream circuitry and effectors, often leading to opposite outcomes of Wnt/β-catenin-mediated regulation and differences rooted in stage- and context-dependent effects. PMID:25030692
Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin
2015-02-01
L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.
Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.
2014-01-01
The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777
Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang
2013-01-01
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Zhou, Meng; Guo, Shuyu; Yuan, Lichan; Zhang, Yuxin; Zhang, Mengnan; Chen, Huimin; Lu, Mengting; Yang, Jianrong; Ma, Junqing
2017-12-01
During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.
Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis
Busch, Wolfgang; Cui, Hongchang; Wang, Jean Y; Blilou, Ikram; Hassan, Hala; Nakajima, Keiji; Matsumoto, Noritaka; Lohmann, Jan U; Scheres, Ben
2006-01-01
Stem cell function during organogenesis is a key issue in developmental biology. The transcription factor SHORT-ROOT (SHR) is a critical component in a developmental pathway regulating both the specification of the root stem cell niche and the differentiation potential of a subset of stem cells in the Arabidopsis root. To obtain a comprehensive view of the SHR pathway, we used a statistical method called meta-analysis to combine the results of several microarray experiments measuring the changes in global expression profiles after modulating SHR activity. Meta-analysis was first used to identify the direct targets of SHR by combining results from an inducible form of SHR driven by its endogenous promoter, ectopic expression, followed by cell sorting and comparisons of mutant to wild-type roots. Eight putative direct targets of SHR were identified, all with expression patterns encompassing subsets of the native SHR expression domain. Further evidence for direct regulation by SHR came from binding of SHR in vivo to the promoter regions of four of the eight putative targets. A new role for SHR in the vascular cylinder was predicted from the expression pattern of several direct targets and confirmed with independent markers. The meta-analysis approach was then used to perform a global survey of the SHR indirect targets. Our analysis suggests that the SHR pathway regulates root development not only through a large transcription regulatory network but also through hormonal pathways and signaling pathways using receptor-like kinases. Taken together, our results not only identify the first nodes in the SHR pathway and a new function for SHR in the development of the vascular tissue but also reveal the global architecture of this developmental pathway. PMID:16640459
Growth and development of the root apical meristem.
Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina
2012-02-01
A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Endophytic Colonization of Rice by a Diazotrophic Strain of Serratia marcescens
Gyaneshwar, Prasad; James, Euan K.; Mathan, Natarajan; Reddy, Pallavolu M.; Reinhold-Hurek, Barbara; Ladha, Jagdish K.
2001-01-01
Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium. PMID:11274124
Adult stem cell-based apexogenesis
Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua
2014-01-01
Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909
Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei
2014-01-01
A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.
Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung
2015-01-01
This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.
Xiong, Jimin; Gronthos, Stan; Bartold, P Mark
2013-10-01
Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.
Lan, Xiaoyang; Jörg, David J; Cavalli, Florence M G; Richards, Laura M; Nguyen, Long V; Vanner, Robert J; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle M; Pellacani, Davide; Park, Nicole I; Coutinho, Fiona J; Whetstone, Heather; Selvadurai, Hayden J; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H; Mungall, Andrew J; Moore, Richard A; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J; Taylor, Michael D; Hirst, Martin; Eaves, Connie J; Simons, Benjamin D; Dirks, Peter B
2017-09-14
Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...
2017-07-07
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith
2012-01-01
Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723
Tahir, Nawroz Abdul-Razzak; Azeez, Hoshyar Abdullah; Muhammad, Kadhm Abdullah; Faqe, Shewa Anwer; Omer, Dlshad Ali
2017-12-25
The chemical profile of the essential oil of callus and cell suspension cultures derivatives from stem and root of Hypericum triquetrifolium were explored by ITEX/GC-MS. The major constituents for stem derivatives were undecane (78.44%) and 2,4,6-trimethyl-octane (9.74%) for fresh calli, 2,4-dimethyl-benzaldehyde (46.94%), 2,3-dimethyl-undecane (28.39%), 2,4-dimethyl-1-hexene (10.17%), 1,2-oxolinalool (3.64%) and limonene (3.55%) for dry calli and undecane (61.24%), octane, 2,4,6-trimethyl- (16.73%), nonane, 3-methyl-(3.74%), 2,5-diphenyl-benzoquinone (3.70%) and limonene (3.60%) for cell suspension. However, for root derivatives, the dominated components were: undecane (49.94%), eucalyptol (12.07%), limonene (9.98%), toluene (9.03%) and 3-methyl-nonane (4.29%) for fresh calli, 2,4-dimethyl-benzaldehyde (29.80%), 1,1-dimethylethyl-cyclohexane (14.99%), 3-methyl-pentanal (14.99%), undecane (10.04%), beta-terpinyl acetate (8.60%), 1,2-oxolinalool (6.27%) and 2-pentyl-furan (4.09%) for dry calli, undecane (52.38%), 2,4,6-trimethyl-octane (13.81%), 3-methyl-nonane (5.73%), toluene (4.82%) and limonene (4.57%) for cell suspension derivative in root. The attained outcomes indicated that the alkane, aldehyde and monoterpene fractions dominated the chemical composition of essential oils.
Zhu, Xiaofei; Liu, Jie; Yu, Zongdong; Chen, Chao-An; Aksel, Hacer; Azim, Adham A; Huang, George T-J
2018-02-01
The goal of this study was to establish mini-swine as a large animal model for stem cell-based pulp regeneration studies. Swine dental pulp stem cells (sDPSCs) were isolated from mini-swine and characterized in vitro. For in vivo studies, we first employed both ectopic and semi-orthotopic study models using severe combined immunodeficiency mice. One is hydroxyapatite-tricalcium phosphate (HA/TCP) model for pulp-dentin complex formation, and the other is tooth fragment model for complete pulp regeneration with new dentin depositing along the canal walls. We found that sDPSCs are similar to their human counterparts exhibiting mesenchymal stem cell characteristics with ability to form colony forming unit-fibroblastic and odontogenic differentiation potential. sDPSCs formed pulp-dentin complex in the HA/TCP model and showed pulp regeneration capacity in the tooth fragment model. We then tested orthotopic pulp regeneration on mini-swine including the use of multi-rooted teeth. Using autologous sDPSCs carried by hydrogel and transplanted into the mini-swine root canal space, we observed regeneration of vascularized pulp-like tissue with a layer of newly deposited dentin-like (rD) tissue or osteodentin along the canal walls. In some cases, dentin bridge-like structure was observed. Immunohistochemical analysis detected the expression of nestin, dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein in odontoblast-like cells lining against the produced rD. We also tested the use of allogeneic sDPSCs for the same procedures. Similar findings were observed in allogeneic transplantation. This study is the first to show an establishment of mini-swine as a suitable large animal model utilizing multi-rooted teeth for further cell-based pulp regeneration studies.
Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun
2018-01-01
Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.
Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A; Zhao, Liangjun
2016-01-01
Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.
Expression and Localization of Plant Protein Disulfide Isomerase.
Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.
1993-01-01
A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974
Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2010-05-01
The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.
Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua
2006-02-01
To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.
Bowrin, Valerie; Sutton, Fedora
2016-01-01
Cassava (M. esculenta) gives rise to unique underground stem tubers when stem cuttings are planted in an inverted orientation. The nutritional profile of the stem and root tubers were similar except for protein content which was higher in stem than in root tubers. RT-PCR revealed that several key genes (Mec1, RZF, SuSy1 and PIN2) involved in root tuberization were also expressed in these stem tubers. At five weeks post planting, these genes were expressed in roots and underground stems as in the mature tubers. However at 15 weeks post planting, they were expressed in both root and stem tubers but not in adventitious roots or in the non-tuberized stems. Expression of, the root auxin efflux carrier gene PIN2 in the stem tubers indicate a role for auxin in the stem tuberization process.
Is polyploidy necessary for tissue differentiation in higher plants. [Triticum, helianthus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Hof, J.V.
1975-01-01
Measurements of relative DNA per nucleus of cells from various tissues show that cell differentiation can occur in the absence of polyploidy in higher plants. In Pisum polyploidy was present in roots, sepals, pods, pistils, and stamens but not in petals or leaves. In Triticum cells of leaves exhibited some polyploidy, but no polyploid cells were present in mature roots. No polyploid cells were found in any tissue of Helianthus examined (roots, cotyledons, stems, sepals, petals, pistils, and stamens). Therefore, as a general rule, polyploidy should not be considered essential in tissue or organ differentiation of higher plants. In Helianthusmore » polyploidy is unnecessary for the completion of the life cycle. (auth)« less
APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.
Würschum, Tobias; Gross-Hardt, Rita; Laux, Thomas
2006-02-01
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.
Identification of progenitor cancer stem cell in lentigo maligna melanoma.
Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M
2008-07-01
The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.
Two-photon Photoactivation to Measure Histone Exchange Dynamics in Plant Root Cells.
Rosa, Stefanie; Shaw, Peter
2015-10-20
Chromatin-binding proteins play a crucial role in chromatin structure and gene expression. Direct binding of chromatin proteins both maintains and regulates transcriptional states. It is therefore important to study the binding properties of these proteins in vivo within the natural environment of the nucleus. Photobleaching, photoactivation and photoconversion (photoswitching) can provide a non-invasive experimental approach to study dynamic properties of living cells and organisms. We used photoactivation to determine exchange dynamics of histone H2B in plant stem cells of the root (Rosa et al. , 2014). The stem cells of the root are located in the middle of the tissue, which made it impossible to carry out photoactivation of sufficiently small and well-defined sub-cellular regions with conventional laser illumination in the confocal microscope, mainly because scattering and refraction effects within the root tissue dispersed the focal spot and caused photoactivation of too large a region. We therefore used 2-photon activation, which has much better inherent resolution of the illuminated region. This is because the activation depends on simultaneous absorption of two or more photons, which in turns depends on the square (or higher power) of the intensity-a much sharper peak. In this protocol we will describe the experimental procedure to perform two-photon photoactivation experiments and the corresponding image analysis. This protocol can be used for nuclear proteins tagged with photoactivable GFP (PA-GFP) expressed in root tissues.
Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *
Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke
2005-01-01
Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140
STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.
Kang, Byung-Ho
2016-01-01
Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.
An Efficient Method for Adventitious Root Induction from Stem Segments of Brassica Species
Srikanth, Sandhya; Choong, Tsui Wei; Yan, An; He, Jie; Chen, Zhong
2016-01-01
Plant propagation via in vitro culture is a very laborious and time-consuming process. The growth cycle of some of the crop species is slow even in the field and the consistent commercial production is hard to maintain. Enhanced methods of reduced cost, materials and labor significantly impact the research and commercial production of field crops. In our studies, stem-segment explants of Brassica species were found to generate adventitious roots (AR) in aeroponic systems in less than a week. As such, the efficiency of rooting from stem explants of six cultivar varieties of Brassica spp was tested without using any plant hormones. New roots and shoots were developed from Brassica alboglabra (Kai Lan), B. oleracea var. acephala (purple kale), B. rapa L. ssp. chinensis L (Pai Tsai, Nai Bai C, and Nai Bai T) explants after 3 to 5 days of growing under 20 ± 2°C cool root zone temperature (C-RZT) and 4 to 7 days in 30 ± 2°C ambient root zone temperature (A-RZT). At the base of cut end, anticlinal and periclinal divisions of the cambial cells resulted in secondary xylem toward pith and secondary phloem toward cortex. The continuing mitotic activity of phloem parenchyma cells led to a ring of conspicuous white callus. Root initials formed from the callus which in turn developed into ARs. However, B. rapa var. nipposinica (Mizuna) explants were only able to root in C-RZT. All rooted explants were able to develop into whole plants, with higher biomass obtained from plants that grown in C-RZT. Moreover, explants from both RZTs produced higher biomass than plants grown from seeds (control plants). Rooting efficiency was affected by RZTs and explant cuttings of donor plants. Photosynthetic CO2 assimilation rate (Asat) and stomatal conductance (gssat) were significantly differentiated between plants derived from seeds and explants at both RZTs. All plants in A-RZT had highest transpiration rates. PMID:27446170
Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis.
Arung, Enos Tangke; Kusuma, Irawan Wijaya; Christy, Eva Oktoberiani; Shimizu, Kuniyoshi; Kondo, Ryuichiro
2009-10-01
In the course of searching for new materials to use as whitening agents, we screened 19 methanol extracts prepared from 14 medicinal plants from Central Kalimantan province, Indonesia. The screening methods used were the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay, a tyrosinase inhibition assay, and a melanin formation inhibition assay using B16 melanoma cells. The extracts of Willughbeia coriacea (bark part of aerial root), Phyllanthus urinaria (root), Eleutherine palmifolia (bulb), Eusideroxylon zwageri (seed), Dendrophthoe petandra (aerial root), Passiflora foetida (stem), and Vitex pinnata (root) showed DPPH radical-scavenging activity of more than 70% at 100 microg/ml. The extracts of W. coriacea (bark part of aerial root), P. urinaria (root), and D. petandra (aerial root) showed tyrosinase inhibitory activity of more than 40% using L-tyrosine as a substrate at 500 microg/ml. The extracts of W. coriacea (bark part of aerial root) and D. petandra (aerial root) showed tyrosinase inhibitory activity of more than 40% using L-DOPA as a substrate at 500 microg/ml. The extracts of W. coriacea (bark part of aerial root, 200 microg/ml), Glochidion philippcum (aerial root, 200 and 300 microg/ml), E. palmifolia (bulb, 50 microg/ml), E. zwageri (seed, 100 microg/ml), D. petandra (aerial root, 200 microg/ml), Lansium domesticum (bark, 25 microg/ml), P. foetida (stem, fruit, 300 microg/ml), and Solanum torvum (root, 300 microg/ml) strongly inhibited the melanin production of B16 melanoma cells without significant cytotoxicity. These findings indicate that some medicinal plants from Central Kalimantan are potential ingredients for skin-whitening cosmetics if their safety can be confirmed.
Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong
2016-01-01
The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption. PMID:27611344
Liu, Hui; Yan, Xiulin; Pandya, Mirali; Luan, Xianghong; Diekwisch, Thomas G H
2016-09-09
The tooth enamel organ (EO) is a complex epithelial cell assembly involved in multiple aspects of tooth development, including amelogenesis. The present study focuses on the role of the nonameloblast layers of the EO, the stratum intermedium, the stellate reticulum, and the outer enamel epithelium (OEE). The secretory stage stratum intermedium was distinguished by p63-positive epithelial stem cell marks, highly specific alkaline phosphatase labeling, as well as multiple desmosomes and gap junctions. At the location of the presecretory stage stellate reticulum, the pre-eruption EO prominently featured the papillary layer (PL) as a keratin immunopositive network of epithelial strands between tooth crowns and oral epithelium. PL cell strands contained numerous p63-positive epithelial stem cells, while BrdU proliferative cells were detected at the outer boundaries of the PL, suggesting that the stellate reticulum/PL epithelial cell sheath proliferated to facilitate an epithelial seal during tooth eruption. Comparative histology studies demonstrated continuity between the OEE and the general lamina of continuous tooth replacement in reptiles, and the outer layer of Hertwig's epithelial root sheath in humans, implicating the OEE as the formative layer for continuous tooth replacement and tooth root extension. Cell fate studies in organ culture verified that the cervical portion of the mouse molar EO gave rise to Malassez rest-like cell islands. Together, these studies indicate that the nonameloblast layers of the EO play multiple roles during odontogenesis, including the maintenance of several p63-positive stem cell reservoirs, a role during tooth root morphogenesis and tooth succession, a stabilizing function for the ameloblast layer, the facilitation of ion transport from the EO capillaries to the enamel layer, as well as safe and seamless tooth eruption.
EuroStemCell: A European infrastructure for communication and engagement with stem cell research.
Barfoot, Jan; Doherty, Kate; Blackburn, C Clare
2017-10-01
EuroStemCell is a large and growing network of organizations and individuals focused on public engagement with stem cells and regenerative medicine - a fluid and contested domain, where scientific, political, ethical, legal and societal perspectives intersect. Rooted in the European stem cell research community, this project has developed collaborative and innovative approaches to information provision and direct and online engagement, that reflect and respond to the dynamic growth of the field itself. EuroStemCell started as the communication and outreach component of a research consortium and subsequently continued as a stand-alone engagement initiative. The involvement of established European stem cell scientists has grown year-on-year, facilitating their participation in public engagement by allowing them to make high-value contributions with broad reach. The project has now had sustained support by partners and funders for over twelve years, and thus provides a model for longevity in public engagement efforts. This paper considers the evolution of the EuroStemCell project in response to - and in dialogue with - its evolving environment. In it, we aim to reveal the mechanisms and approaches taken by EuroStemCell, such that others within the scientific community can explore these ideas and be further enabled in their own public engagement endeavours. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Transcriptional profiling of Medicago truncatula meristematic root cells
Holmes, Peta; Goffard, Nicolas; Weiller, Georg F; Rolfe, Barry G; Imin, Nijat
2008-01-01
Background The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip® to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. Results Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially expressed from the two regions. With bioinformatics tools developed to functionally annotate the Medicago genome array we could identify significant changes in metabolism, signalling and the differentially expression of 55 transcription factors in meristematic and non-meristematic roots. Conclusion This is the first comprehensive analysis of M. truncatula root meristem cells using this genome array. This data will facilitate the mapping of regulatory and metabolic networks involved in the open root meristem of M. truncatula and provides candidates for functional analysis. PMID:18302802
Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.
Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin
2016-12-01
The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine
Wu, Xiaoshan; Hu, Lei; Li, Yan; Li, Yang; Wang, Fu; Ma, Ping; Wang, Jinsong; Zhang, Chunmei; Jiang, Canhua; Wang, Songlin
2018-01-01
The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals. PMID:29511365
Takeda, Norifumi; Jain, Rajan; LeBoeuf, Matthew R.; Padmanabhan, Arun; Wang, Qiaohong; Li, Li; Lu, Min Min; Millar, Sarah E.; Epstein, Jonathan A.
2013-01-01
The mammalian hair follicle relies on adult resident stem cells and their progeny to fuel and maintain hair growth throughout the life of an organism. The cyclical and initially synchronous nature of hair growth makes the hair follicle an ideal system with which to define homeostatic mechanisms of an adult stem cell population. Recently, we demonstrated that Hopx is a specific marker of intestinal stem cells. Here, we show that Hopx specifically labels long-lived hair follicle stem cells residing in the telogen basal bulge. Hopx+ cells contribute to all lineages of the mature hair follicle and to the interfollicular epidermis upon epidermal wounding. Unexpectedly, our analysis identifies a previously unappreciated progenitor population that resides in the lower hair bulb of anagen-phase follicles and expresses Hopx. These cells co-express Lgr5, do not express Shh and escape catagen-induced apoptosis. They ultimately differentiate into the cytokeratin 6-positive (K6) inner bulge cells in telogen, which regulate the quiescence of adjacent hair follicle stem cells. Although previous studies have suggested that K6+ cells arise from Lgr5-expressing lower outer root sheath cells in anagen, our studies indicate an alternative origin, and a novel role for Hopx-expressing lower hair bulb progenitor cells in contributing to stem cell homeostasis. PMID:23487314
Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.
2014-01-01
ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Fang; VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012; Gao, Lifen
In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression ofmore » osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.« less
Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B
2014-08-01
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.
Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A.; Zhao, Liangjun
2016-01-01
Thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa. PMID:27200031
The neurotrophic effects of different human dental mesenchymal stem cells.
Kolar, Mallappa K; Itte, Vinay N; Kingham, Paul J; Novikov, Lev N; Wiberg, Mikael; Kelk, Peyman
2017-10-03
The current gold standard treatment for peripheral nerve injury is nerve grafting but this has disadvantages such as donor site morbidity. New techniques focus on replacing these grafts with nerve conduits enhanced with growth factors and/or various cell types such as mesenchymal stem cells (MSCs). Dental-MSCs (D-MSCs) including stem cells obtained from apical papilla (SCAP), dental pulp stem cells (DPSC), and periodontal ligament stem cells (PDLSC) are potential sources of MSCs for nerve repair. Here we present the characterization of various D-MSCs from the same human donors for peripheral nerve regeneration. SCAP, DPSC and PDLSC expressed BDNF, GDNF, NGF, NTF3, ANGPT1 and VEGFA growth factor transcripts. Conditioned media from D-MSCs enhanced neurite outgrowth in an in vitro assay. Application of neutralizing antibodies showed that brain derived neurotrophic factor plays an important mechanistic role by which the D-MSCs stimulate neurite outgrowth. SCAP, DPSC and PDLSC were used to treat a 10 mm nerve gap defect in a rat sciatic nerve injury model. All the stem cell types significantly enhanced axon regeneration after two weeks and showed neuroprotective effects on the dorsal root ganglia neurons. Overall the results suggested SCAP to be the optimal dental stem cell type for peripheral nerve repair.
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu
2017-01-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. PMID:28053005
A Customized Self-Assembling Peptide Hydrogel for Dental Pulp Tissue Engineering
Hartgerink, Jeffrey D.; Cavender, Adriana C.; Schmalz, Gottfried
2012-01-01
Root canal therapy is common practice in dentistry. During this procedure, the inflamed or necrotic dental pulp is removed and replaced with a synthetic material. However, recent research provides evidence that engineering of dental pulp and dentin is possible by using biologically driven approaches. As tissue engineering strategies hold the promise to soon supersede conventional root canal treatment, there is a need for customized scaffolds for stem cell delivery or recruitment. We hypothesize that the incorporation of dental pulp-derived stem cells with bioactive factors into such a scaffold can promote cell proliferation, differentiation, and angiogenesis. In this study, we used a cell adhesive, enzyme-cleavable hydrogel made from self-assembling peptide nanofibers to encapsulate dental pulp stem cells. The growth factors (GFs) fibroblast growth factor basic, transforming growth factor β1, and vascular endothelial growth factor were incorporated into the hydrogel via heparin binding. Release profiles were established, and the influence of GFs on cell morphology and proliferation was assessed to confirm their bioactivity after binding and subsequent release. Cell morphology and spreading in three-dimensional cultures were visualized by using cell tracker and histologic stains. Subcutaneous transplantation of the hydrogel within dentin cylinders into immunocompromised mice led to the formation of a vascularized soft connective tissue similar to dental pulp. These data support the use of this novel biomaterial as a highly promising candidate for future treatment concepts in regenerative endodontics. PMID:21827280
Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii.
Sun, Qian; Wang, Di; Li, Fei-Fei; Yao, Guo-Dong; Li, Xue; Li, Ling-Zhi; Huang, Xiao-Xiao; Song, Shao-Jiang
2016-08-15
Three new prenylated flavones (1-3), along with three known analogues (4-6), were isolated from the stem and root bark of Daphne giraldii. Their structures were determined by comprehensive NMR and HRESIMS spectroscopic data analyses. The absolute configurations of compounds 2 and 3 were assigned by optical rotation comparison, CD and [Rh2(OCOCF3)4]-induced CD spectral methods. The in vitro cytotoxicity experiments carried out involving five cancer cell lines (U251, A549, HepG2, MCF-7 and Bcap37) showed that 2 markedly inhibited the proliferation of all tested cells with IC50 values ranging from 4.26 to 20.82μM. The preliminary structure-activity relationships of these flavones are discussed. In addition, compound 2 was found to effectively induce apoptosis in HepG2 cells according to a flow cytometry analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji
2013-01-01
Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108
Bosompem, Kwabena Mante; Anyan, William Kofi; Owusu, Kofi Baffour-Awuah; Tettey, Mabel Deladem; Kissi, Felicia Amanfo; Appiah, Alfred Ampomah; Penlap Beng, Veronique; Nyarko, Alexander Kwadwo
2017-01-01
Schistosomiasis is a Neglected Tropical Diseases which can be prevented with mass deworming chemotherapy. The reliance on a single drug, praziquantel, is a motivation for the search of novel antischistosomal compounds. This study investigated the anthelmintic activity of the stem bark and roots of Rauwolfia vomitoria against two life stages of Schistosoma mansoni. Both plant parts were found to be active against cercariae and adult worms. Within 2 h of exposure all cercariae were killed at a concentration range of 62.5–1000 µg/mL and 250–1000 µg/mL of R. vomitoria stem bark and roots, respectively. The LC50 values determined for the stem bark after 1 and 2 h of exposure were 207.4 and 61.18 µg/mL, respectively. All adult worms exposed to the concentrations range of 250–1000 µg/mL for both plant parts died within 120 h of incubation. The cytotoxic effects against HepG2 and Chang liver cell assessed using MTT assay method indicated that both plant extracts which were inhibitory to the proliferation of cell lines with IC50 > 20 μg/mL appear to be safe. This report provides the first evidence of in vitro schistosomicidal potency of R. vomitoria with the stem bark being moderately, but relatively, more active and selective against schistosome parasites. This suggests the presence of promising medicinal constituent(s). PMID:28348881
2010-01-01
Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN) and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN) models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not sufficient to fully reproduce root SCN organization and genetic profiles. We then highlight some experimental holes that remain to be studied and postulate some novel gene interactions. Finally, we suggest the existence of a generic dynamical motif that can be involved in both plant and animal SCN maintenance. PMID:20920363
Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon
NASA Astrophysics Data System (ADS)
Ding, T. P.; Zhou, J. X.; Wan, D. F.; Chen, Z. Y.; Wang, C. Y.; Zhang, F.
2008-03-01
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from -2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ 30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ 30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO 2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo ( αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ 30Si value from roots to stem, including larger ratio of dissolved H 4SiO 4 to precipitated SiO 2 in roots than in stem. There is a positive correlation between the δ 30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor ( αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO 2 contents and δ 30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ 30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ 30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.
Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W
Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah
2008-01-01
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421
Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B
2014-01-01
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007
Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei
2014-01-01
Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.
Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie
2015-12-01
Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (<1.26 mg kg(-1)), with a TF value (the ratio of Cd concentration in stem to root) above 1. Energy dispersive X-ray microanalysis indicated cotton leaf transpiration played a key role in extracting soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.
Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls
USDA-ARS?s Scientific Manuscript database
Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos
2018-01-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. PMID:29233938
Bustillo-Avendaño, Estefano; Ibáñez, Sergio; Sanz, Oscar; Sousa Barros, Jessica Aline; Gude, Inmaculada; Perianez-Rodriguez, Juan; Micol, José Luis; Del Pozo, Juan Carlos; Moreno-Risueno, Miguel Angel; Pérez-Pérez, José Manuel
2018-02-01
Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis ( Arabidopsis thaliana ). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved. © 2018 American Society of Plant Biologists. All Rights Reserved.
Gao, Kun; Chen, Fanjun; Yuan, Lixing; Mi, Guohua
2013-01-01
The inhibitory effect of ammonium on primary root growth has been well documented; however the underlying physiological and molecular mechanisms are still controversial. To avoid ammonium toxicity to shoot growth, we used a vertical two-layer split plate system, in which the upper layer contained nitrate and the lower layer contained ammonium. In this way, nitrogen status was maintained and only the apical part of the root system was exposed to ammonium. Using a kinematic approach, we show here that 1 mM ammonium reduces primary root growth, decreasing both elemental expansion and cell production. Ammonium inhibits the length of elongation zone and the maximum elemental expansion rate. Ammonium also decreases the apparent length of the meristem as well as the number of dividing cells without affecting cell division rate. Moreover, ammonium reduces the number of root cap cells but appears to affect neither the status of root stem cell niche nor the distal auxin maximum at the quiescent center. Ammonium also inhibits root gravitropism and concomitantly down-regulates the expression of two pivotal auxin transporters, AUX1 and PIN2. Insofar as ammonium inhibits root growth rate in AUX1 and PIN2 loss-of-function mutants almost as strongly as in wild type, we conclude that ammonium inhibits root growth and gravitropism by largely distinct pathways. PMID:23577185
Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua
2018-05-01
To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.
Periodontal tissue engineering strategies based on nonoral stem cells.
Requicha, João Filipe; Viegas, Carlos Alberto; Muñoz, Fernando; Reis, Rui Luís; Gomes, Manuela Estima
2014-01-01
Periodontal disease is an inflammatory disease which constitutes an important health problem in humans due to its enormous prevalence and life threatening implications on systemic health. Routine standard periodontal treatments include gingival flaps, root planning, application of growth/differentiation factors or filler materials and guided tissue regeneration. However, these treatments have come short on achieving regeneration ad integrum of the periodontium, mainly due to the presence of tissues from different embryonic origins and their complex interactions along the regenerative process. Tissue engineering (TE) aims to regenerate damaged tissue by providing the repair site with a suitable scaffold seeded with sufficient undifferentiated cells and, thus, constitutes a valuable alternative to current therapies for the treatment of periodontal defects. Stem cells from oral and dental origin are known to have potential to regenerate these tissues. Nevertheless, harvesting cells from these sites implies a significant local tissue morbidity and low cell yield, as compared to other anatomical sources of adult multipotent stem cells. This manuscript reviews studies describing the use of non-oral stem cells in tissue engineering strategies, highlighting the importance and potential of these alternative stem cells sources in the development of advanced therapies for periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.
Ravindran, Sriram; George, Anne
2015-01-01
Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205
MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root
Liberman, Louisa M.; Sparks, Erin E.; Moreno-Risueno, Miguel A.; Petricka, Jalean J.; Benfey, Philip N.
2015-01-01
Stem cells are defined by their ability to self-renew and produce daughter cells that proliferate and mature. These maturing cells transition from a proliferative state to a terminal state through the process of differentiation. In the Arabidopsis thaliana root the transcription factors SCARECROW and SHORTROOT regulate specification of the bipotent stem cell that gives rise to cortical and endodermal progenitors. Subsequent progenitor proliferation and differentiation generate mature endodermis, marked by the Casparian strip, a cell-wall modification that prevents ion diffusion into and out of the vasculature. We identified a transcription factor, MYB DOMAIN PROTEIN 36 (MYB36), that regulates the transition from proliferation to differentiation in the endodermis. We show that SCARECROW directly activates MYB36 expression, and that MYB36 likely acts in a feed-forward loop to regulate essential Casparian strip formation genes. We show that myb36 mutants have delayed and defective barrier formation as well as extra divisions in the meristem. Our results demonstrate that MYB36 is a critical positive regulator of differentiation and negative regulator of cell proliferation. PMID:26371322
Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong
2014-04-01
Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.
Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping
2017-01-01
The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534
Tang, Esther L H; Rajarajeswaran, Jayakumar; Fung, Shin Yee; Kanthimathi, M S
2013-12-09
Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by the death receptor and mitochondrial apoptotic pathways. This study is the first report on the antioxidant and anticancer properties of C. sativum root. The herb shows potential in preventing oxidative stress-related diseases and would be useful as supplements used in combination with conventional drugs to enhance the treatment of diseases such as cancer.
2013-01-01
Background Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. Methods Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. Results The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 μg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by the death receptor and mitochondrial apoptotic pathways. Conclusions This study is the first report on the antioxidant and anticancer properties of C. sativum root. The herb shows potential in preventing oxidative stress-related diseases and would be useful as supplements used in combination with conventional drugs to enhance the treatment of diseases such as cancer. PMID:24517259
Kravets, E A; Mikheev, A N; Ovsiannikova, L G; Grodzinskiĭ, D M
2011-01-01
The dose dependencies of growth and cytogenetical values have been built to determine the critical level of root apical meristem damage induced by cute irradiation in the range from 2 to 20 Gr. We have analyzed the frequencies of aberrant anaphases and the aberration distribution per cell, on the one hand, and the growth of biomass, the survival and regeneration of the root meristem, on the other hand. The critical level of damage to the stem apical meristem and root of seedlings was defined as 44-48% of aberrant anaphase. Exceeding of this level leads to the launch of suicidal program through induction of multiaberrant damages and interphase cell death. It appears that competition of clones of non-aberrant cells, the cells bearing 1 and 2 damages and multiaberrant cells plays the primary role in the mechanisms of recovery. The regeneration provides full or partial restoration of the main root apical meristem. However these local processes are insufficient to restore morphogenesis and survival of seedlings in excess of the critical level damage.
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective.
Huang, George T-J; Al-Habib, Mey; Gauthier, Philippe
2013-03-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic.
Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective
HUANG, GEORGE T.-J.; AL-HABIB, MEY; GAUTHIER, PHILIPPE
2013-01-01
There are two types of approaches to regenerate tissues: cell-based and cell-free. The former approach is to introduce exogenous cells into the host to regenerate tissues, and the latter is to use materials other than cells in an attempt to regenerate tissues. There has been a significant advancement in stem cell-based pulp and dentin regeneration research in the past few years. Studies in small and large animals have demonstrated that pulp/dentin-like tissues can be regenerated partially or completely in the root canal space with apical openings of 0.7-3.0 mm using dental pulp stem cells, including stem cells from apical papilla (SCAP) and subpopulations of pulp stem cells. Bone marrow mesenchymal stem cells (BMMSCs) and adipose tissue-derived MSCs (ADMSCs) have also been shown to regenerate pulp-like tissue. In contrast, the cell-free approach has not produced convincing evidence on pulp regeneration. However, one crucial concept has not been considered nor defined in the field of pulp/dentin regeneration and that is the critical size defect of dentin and pulp. Without such consideration and definition, it is difficult to predict or anticipate the extent of cell-free pulp regeneration that would occur. By reasoning, cell-free therapy is unlikely to regenerate an organ/tissue after total loss. Similarly, after a total loss of pulp, it is unlikely to regenerate without using exogenously introduced cells. A cell homing approach may provide a limited amount of tissue regeneration. Although stem cell-based pulp/dentin regeneration has shown great promise, clinical trials are difficult to launch at present. This article will address several issues that challenge and hinder the clinical applications of pulp/dentin regeneration which need to be overcome before stem cell-based pulp/dentin regeneration can occur in the clinic. PMID:23914150
Kim, Jeongyub; Lee, Jong-Seon; Jung, Jieun; Lim, Inhye; Lee, Ji-Yun; Park, Myung-Jin
2015-02-01
There is a growing body of evidence that small subpopulations of cells with stem cell-like characteristics within most solid tumors are responsible for the malignancy of aggressive cancer cells and that targeting these cells might be a good therapeutic strategy to reduce the risk of tumor relapse after therapy. Here, we examined the effects of emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component of the root and rhizome of Rheum palmatum that has several biological activities, including antitumor effects, on primary cultured glioma stem cells (GSCs). Emodin inhibited the self-renewal activity of GSCs in vitro as evidenced by neurosphere formation, limiting dilution, and soft agar clonogenic assays. Emodin inhibited the maintenance of stemness by suppressing the expression of Notch intracellular domain, nonphosphorylated β-catenin, and phosphorylated STAT3 proteins. In addition, treatment with emodin partially induced apoptosis, reduced cell invasiveness, and sensitized GSCs to ionizing radiation. Intriguingly, emodin induced proteosomal degradation of epidermal growth factor receptor (EGFR)/EGFR variant III (EGFRvIII) by interfering with the association of EGFR/EGFRvIII with heat shock protein 90, resulting in the suppression of stemness pathways. Based on these data, we propose that emodin could be considered as a potent therapeutic adjuvant that targets GSCs.
Space-time dynamics of Stem Cell Niches: a unified approach for Plants.
Pérez, Maria Del Carmen; López, Alejandro; Padilla, Pablo
2013-06-01
Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.
Space-time dynamics of stem cell niches: a unified approach for plants.
Pérez, Maria del Carmen; López, Alejandro; Padilla, Pablo
2013-04-02
Many complex systems cannot be analyzed using traditional mathematical tools, due to their irreducible nature. This makes it necessary to develop models that can be implemented computationally to simulate their evolution. Examples of these models are cellular automata, evolutionary algorithms, complex networks, agent-based models, symbolic dynamics and dynamical systems techniques. We review some representative approaches to model the stem cell niche in Arabidopsis thaliana and the basic biological mechanisms that underlie its formation and maintenance. We propose a mathematical model based on cellular automata for describing the space-time dynamics of the stem cell niche in the root. By making minimal assumptions on the cell communication process documented in experiments, we classify the basic developmental features of the stem-cell niche, including the basic structural architecture, and suggest that they could be understood as the result of generic mechanisms given by short and long range signals. This could be a first step in understanding why different stem cell niches share similar topologies, not only in plants. Also the fact that this organization is a robust consequence of the way information is being processed by the cells and to some extent independent of the detailed features of the signaling mechanism.
The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)
NASA Astrophysics Data System (ADS)
Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)
2015-11-01
Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.
Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation
NASA Astrophysics Data System (ADS)
Hayashi, Nobuya; Ono, Reoto; Shiratani, Masaharu; Yonesu, Akira
2015-06-01
The growth regulation characteristics of plants are investigated when plant seeds are irradiated with atmospheric discharge plasma. Enhancement of the germination and lengths of the stem and root of plants are observed after seeding. The total length of the stem and root increases approximately 1.6 times after a cultivation period of 72 h. The growth regulation effect is found to be maintained for 80 h of cultivation after seeding. The growth regulation originates from the change in the antioxidative activity of plant cells induced by active oxygen species generated in the oxygen plasma, which leads to the production of growth factor in plants.
Localization of lead accumulated by corn plants. [Zea mays L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, C.; Koeppe, D.E.; Miller, R.J.
1974-01-01
Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dicytosome vesicles. Dicytosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit then fusedmore » with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner.« less
Localization of Lead Accumulated by Corn Plants 1
Malone, Carl; Koeppe, D. E.; Miller, Raymond J.
1974-01-01
Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dictyosome vesicles. Dictyosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit fused with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner. Images PMID:16658711
Blackfoot Dictionary of Stems, Roots, and Affixes. Second Edition.
ERIC Educational Resources Information Center
Frantz, Donald G.; Russell, Norma Jean
The dictionary of stems, roots, and affixes for the Blackfoot language provides, for each entry, information on the item's morphological type (e.g., noun stem, verb stem, root), subclassification if relevant, English index, and certain diagnostic inflectional forms (full words or sentences), each with an English translation. In addition, entries…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei; Wang, Zhihua
The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type Imore » as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs. - Highlights: • NFIC promotes the proliferation of SCAPs in vitro. • NFIC promotes osteo/odontogenic differentiation of SCAPs in vitro. • Knockdown of NFIC inhibits odontogenic differentiation in SCAPs.« less
Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant
2017-12-01
There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
Antibacterial and antifungal activities of Euroschinus papuanus.
Khan, M R; Omoloso, A D; Kihara, M
2004-06-01
The crude methanolic extracts of the leaves, stem bark, stem heart wood, root bark and root heart wood of Euroschinus papuanus and the fractions obtained on partitioning with petrol, dichloromethane (D), ethyl acetate (E) and butanol (B), exhibited a broad spectrum antibacterial activity. Fractionation drastically enhanced the activity. Excellent activity was demonstrated by the E fractions of stem heart wood, D of root bark, and E of root heart wood. Antifungal activity was exhibited by the B fractions of leaves, stem heartwood and root bark. Copyright 2004 Elsevier B.V.
Effects of long-term hypergravity on growth of Arabidopsis seedlings
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Ando, Naoko; Tamaoki, Daisuke; Kamisaka, Seiichiro
Effects of altered gravity on growth of plant root are not yet well understood compared to that of shoot organ such as stem, epicotyl or hypocotyl. And besides, its effect on growth is not yet examined at cellular level either in the root or the shoot. In the present study, we examined effects of long-term hypergravity on growth not only of the root but also the shoot at cellular level. Seeds of Arabidopsis were sown on gelrite containing Murashige-Skoog medium and were started to be exposed to hypergravity before germination. Growth of the hypocotyl had been inhibited since 3 d after the onset of hypergravity treatment at both 100 and 300 G while that of the root was not at either gravity. Longitudinal length of epidermal cells in one cell file decreased in response to hypergravity at 300 G in 3 d old hypocotyls while the number of the epidermal cells did not.
Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp.
Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo; Lacerda de Carvalho, Acácia Fernandes; Rogatto, Silvia Regina; Pereira, Lygia da Veiga; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira
2011-11-01
Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. The pulp tissue was gently separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal abnormalities was evaluated by G banding. The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow cytometry and fluorescence analyses revealed the presence of a heterogeneous population positive for embryonic and mesenchymal cell markers. Adipogenic, chondrogenic and osteogenic differentiation was achieved after two weeks of cell culture under chemically defined in vitro conditions. In addition, some elongated cells spontaneously acquired a contraction capacity. Our results reinforce that the dental pulp is an important source of adult stem cells and encourage studies on therapeutic potential of mDPSC in experimental disease models. Copyright © 2011 Elsevier Ltd. All rights reserved.
Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research
Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John
2010-01-01
Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273
Human neural crest cells display molecular and phenotypic hallmarks of stem cells
Thomas, Sophie; Thomas, Marie; Wincker, Patrick; Babarit, Candice; Xu, Puting; Speer, Marcy C.; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Etchevers, Heather C.
2008-01-01
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. PMID:18689800
Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.
Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu; Zhao, Huabin; Zhu, Yu-Xian
2017-03-01
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Characters related to higher starch accumulation in cassava storage roots
Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan
2016-01-01
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed. PMID:26892156
Characters related to higher starch accumulation in cassava storage roots.
Li, You-Zhi; Zhao, Jian-Yu; Wu, San-Min; Fan, Xian-Wei; Luo, Xing-Lu; Chen, Bao-Shan
2016-02-19
Cassava (Manihot esculenta) is valued mainly for high content starch in its roots. Our understanding of mechanisms promoting high starch accumulation in the roots is, however, still very limited. Two field-grown cassava cultivars, Huanan 124(H124) with low root starch and Fuxuan 01(F01) with high root starch, were characterised comparatively at four main growth stages. Changes in key sugars in the leaves, stems and roots seemed not to be strongly associated with the final amount of starch accumulated in the roots. However, when compared with H124, F01 exhibited a more compact arrangement of xylem vascular bundles in the leaf axils, much less callose around the phloem sieve plates in the stems, higher starch synthesis-related enzymatic activity but lower amylase activity in the roots, more significantly up-regulated expression of related genes, and a much higher stem flow rate (SFR). In conclusion, higher starch accumulation in the roots results from the concurrent effects of powerful stem transport capacity highlighted by higher SFR, high starch synthesis but low starch degradation in the roots, and high expression of sugar transporter genes in the stems. A model of high starch accumulation in cassava roots was therefore proposed and discussed.
Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis.
Park, Joo-Young; Jeon, Soung Hoo; Choung, Pill-Hoon
2011-01-01
Periodontitis is the most common cause for tooth loss in adults and advanced types affect 10-15% of adults worldwide. The attempts to save tooth and regenerate the periodontal apparatus including cementum, periodontal ligament, and alveolar bone reach to the dental tissue-derived stem cell therapy. Although there have been several periodontitis models suggested, the apical involvement of tooth root is especially challenging to be regenerated and dental stem cell therapy for the state has never been investigated. Three kinds of dental tissue-derived adult stem cells (aDSCs) were obtained from the extracted immature molars of beagle dogs (n = 8), and ex vivo expanded periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and periapical follicular stem cells (PAFSCs) were transplanted into the apical involvement defect. As for the lack of cementum-specific markers, anti-human cementum protein 1 (rhCEMP1) antibody was fabricated and the aDSCs and the regenerated tissues were immunostained with anti-CEMP1 antibody. Autologous PDLSCs showed the best regenerating capacity of periodontal ligament, alveolar bone, and cementum as well as peripheral nerve and blood vessel, which were evaluated by conventional and immune histology, 3D micro-CT, and clinical index. The rhCEMP1 was expressed strongest in PDLSCs and in the regenerated periodontal ligament space. We suggest here the PDLSCs as the most favorable candidate for the clinical application among the three dental stem cells and can be used for treatment of advanced periodontitis where tooth removal was indicated in the clinical cases. © 2011 Cognizant Comm. Corp.
Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis.
Melaragno, JE; Mehrotra, B; Coleman, AW
1993-01-01
Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon. PMID:12271050
Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith
2013-01-15
Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. Published by Elsevier GmbH.
Kim, Jeongyub; Lee, Jong-Seon; Jung, Jieun; Lim, Inhye; Lee, Ji-Yun
2015-01-01
There is a growing body of evidence that small subpopulations of cells with stem cell-like characteristics within most solid tumors are responsible for the malignancy of aggressive cancer cells and that targeting these cells might be a good therapeutic strategy to reduce the risk of tumor relapse after therapy. Here, we examined the effects of emodin (1,3,8-trihydroxy-6-methylanthraquinone), an active component of the root and rhizome of Rheum palmatum that has several biological activities, including antitumor effects, on primary cultured glioma stem cells (GSCs). Emodin inhibited the self-renewal activity of GSCs in vitro as evidenced by neurosphere formation, limiting dilution, and soft agar clonogenic assays. Emodin inhibited the maintenance of stemness by suppressing the expression of Notch intracellular domain, nonphosphorylated β-catenin, and phosphorylated STAT3 proteins. In addition, treatment with emodin partially induced apoptosis, reduced cell invasiveness, and sensitized GSCs to ionizing radiation. Intriguingly, emodin induced proteosomal degradation of epidermal growth factor receptor (EGFR)/EGFR variant III (EGFRvIII) by interfering with the association of EGFR/EGFRvIII with heat shock protein 90, resulting in the suppression of stemness pathways. Based on these data, we propose that emodin could be considered as a potent therapeutic adjuvant that targets GSCs. PMID:25229646
Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal
2016-01-01
Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).
Shimizu, Noriko; Ishida, Takashi; Yamada, Masashi; Shigenobu, Shuji; Tabata, Ryo; Kinoshita, Atsuko; Yamaguchi, Katsushi; Hasebe, Mitsuyasu; Mitsumasu, Kanako; Sawa, Shinichiro
2015-12-01
Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Shi-Jean S. Sung; Daniel J. Leduc; James D. Haywood; Thomas L. Eberhardt; Mary Anne Sword Sayer; Stanley J. Zarnoch
2012-01-01
A field experiment of the effects of container cavity size and root pruning type on longleaf pine was established in November, 2004, in central Louisiana. Sapling stems were first observed to be leaning after hurricane Gustav (September, 2008) and again in August, 2009. To examine the relationship between stem displacement and root system architecture, a stem-displaced...
Clay, Nicole K; Nelson, Timothy
2005-06-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.
Clay, Nicole K.; Nelson, Timothy
2005-01-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745
Fujie, Makoto; Takamoto, Hirofumi; Kawasaki, Takeru; Fujiwara, Akiko; Yamada, Takashi
2010-02-01
We monitored growth and movement of Ralstonia solanacearum harboring the plasmid pRSS12 in tomato seedlings. The plasmid contains a gene for green fluorescent protein (GFP) and is stably maintained in R. solanacearum cells without selection pressure. Bacteria harboring the plasmid can be tracked in planta by visualizing GFP fluorescence. Stems of seedlings were infected with R. solanacearum cells transformed with pRSS12, and bacterial growth and movement, particularly around the vascular bundles, were monitored for more than 7 days. Our results showed that vascular bundles are independent of each other within the stem, and that it takes a long time for R. solanacearum cells to migrate from one vascular bundle to another. For real-time monitoring of bacteria in planta, tomato seedlings were grown on agar medium and bacterial suspension was applied to the root apex. The bacterial invasion process was monitored by fluorescent microscopy. Bacteria invaded taproots within 6 h, and movement of the bacteria was observed until 144 h after inoculation. In susceptible tomato cultivars, strong GFP fluorescence was observed in hypocotyls and lateral roots as well as the taproot. In resistant cultivars, however, GFP fluorescence was rarely observed on lateral roots. Our results show that this monitoring system can be used to assess bacterial pathogenicity efficiently. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis
Lu, Ying-Tang
2014-01-01
Roots play important roles in plant survival and productivity as they not only anchor the plants in the soil but are also the primary organ for the uptake of nutrients from the outside. The growth and development of roots depend on the specification and maintenance of the root meristem. Here, we report a previously unknown role of TIME FOR COFFEE (TIC) in controlling root meristem size in Arabidopsis. The results showed that loss of function of TIC reduced root meristem length and cell number by decreasing the competence of meristematic cells to divide. This was due to the repressed expression of PIN genes for decreased acropetal auxin transport in tic-2, leading to low auxin accumulation in the roots responsible for reduced root meristem, which was verified by exogenous application of indole-3-acetic acid. Downregulated expression of PLETHORA1 (PLT1) and PLT2, key transcription factors in mediating the patterning of the root stem cell niche, was also assayed in tic-2. Similar results were obtained with tic-2 and wild-type plants at either dawn or dusk. We also suggested that the MYC2-mediated jasmonic acid signalling pathway may not be involved in the regulation of TIC in controlling the root meristem. Taken together, these results suggest that TIC functions in an auxin–PLTs loop for maintenance of post-embryonic root meristem. PMID:24277277
Ginseng leaf-stem: bioactive constituents and pharmacological functions
Wang, Hongwei; Peng, Dacheng; Xie, Jingtian
2009-01-01
Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852
Harrison, M J
1996-04-01
A cDNA clone encoding a hexose transporter has been isolated from a library prepared from Medicago truncatula roots colonized by the mycorrhizal fungus Glomus versiforme. The clone (Mtst1) represents a M. truncatula gene and expression studies in yeast indicate that the encoded protein transports glucose and fructose but not sucrose. Transcripts corresponding to Mtst1 are expressed in leaves, stems and roots of M. truncatula, with the highest levels of expression in roots. In the roots, Mtst1 transcripts were detected in two distinct locations; the phloem fiber cells of the vascular tissue, and the cells of the root tip. Mtst1 expression in the roots is regulated in response to colonization by G. versiforme; transcript levels increased two- to fourfold in both M. truncatula and M. sativa following colonization by G. versiforme but did not increase during the unsuccessful interaction between G. versiforme and a M. sativa myc- mutant, suggesting that the increase in Mtst1 transcripts in the successful mycorrhizal interaction is correlated with internal growth of the fungus and potentially with a functioning symbiosis. Mtst1 transcripts were also detected in the cortical cells of the mycorrhizal root, specifically in areas of the root that were highly colonized by the mycorrhizal fungus. Thus, the formation of a symbiotic association with a VA mycorrhizal fungus is accompanied by a change in the cell type-specific expression of a transporter that potentially functions to supply sugars to root cells critically involved in the symbiotic association.
Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy
Lan, Xiaoyang; Jörg, David J.; Cavalli, Florence M. G.; Richards, Laura M.; Nguyen, Long V.; Vanner, Robert J.; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle; Pellacani, Davide; Park, Nicole I.; Coutinho, Fiona J.; Whetstone, Heather; Selvadurai, Hayden J.; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D.; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H.; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J.; Taylor, Michael D.; Hirst, Martin; Eaves, Connie J.; Simons, Benjamin D.; Dirks, Peter B.
2017-01-01
Summary Human glioblastomas (GBMs) harbour a subpopulation of glioblastoma stem cells (GSCs) that drive tumourigenesis. However, the origin of intra-tumoural functional heterogeneity between GBM cells remains poorly understood. Here we study the clonal evolution of barcoded GBM cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of GBM clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in GSCs. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, that in turn generates non-proliferative cells. We also identify rare “outlier” clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant GSCs. Finally, we show that functionally distinct GSCs can be separately targeted using epigenetic compounds, suggesting new avenues for GBM targeted therapy. PMID:28854171
Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel
2018-01-01
Commercial carnation ( Dianthus caryophyllus ) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, "2101-02 MFR" and "2003 R 8", as well as in the reference cultivar "Master". We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the "2003 R 8" cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of "2003 R 8". Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings.
Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.
Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J
2016-11-01
Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lp r ) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψ stem ), coincided with a dramatic reduction in Lp r , and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P 50 ] reached at -1.8 MPa) and then in older, coarse roots (P 50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lp r , pointing to a role in fine root mortality and turnover under drought stress. © 2016 American Society of Plant Biologists. All Rights Reserved.
Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana
Aceves-García, Pamela; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz
2016-01-01
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions. PMID:27379140
Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana.
Aceves-García, Pamela; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz
2016-01-01
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.
The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin.
Ring, Karla C; Murray, Peter E; Namerow, Kenneth N; Kuttler, Sergio; Garcia-Godoy, Franklin
2008-12-01
The purpose of this study was to compare the effect of 10 different endodontic irrigation and chelating treatments on dental pulp stem cell (DPSC) attachment to root canal surfaces. Thirty-eight extracted human nondiseased single-canal teeth were cleaned and shaped using ProTaper and ProFile rotary instrumentation (Tulsa Dentsply, Tulsa, OK). The irrigation treatments investigated were 6% sodium hypochlorite, 2% chlorhexidine gluconate, Aquatine Endodontic Cleanser, and Morinda citrifolia juice. The irrigation treatments were used in conjunction with EDTA or MTAD. The instrumented teeth were immediately placed in cell culture with confluent DPSCs for 1 week. The number of attached DPSCs appeared to be correlated with the cytotoxicity of the root canal irrigating solution (analysis of variance, p < 0.0001). The presence or absence of the smear layer had little influence on DPSC activity (chi-square, p > 0.05). The results suggest that biocompatible irrigants are needed to promote DPSC attachment to root canal dentin, which is essential to accomplish some regenerative endodontic therapies.
Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar
2015-10-01
Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
James, Euan K; Gyaneshwar, Prasad; Mathan, Natarajan; Barraquio, Wilfredo L; Reddy, Pallavolu M; Iannetta, Pietro P M; Olivares, Fabio L; Ladha, Jagdish K
2002-09-01
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.
A method for deriving homogenous population of oligodendrocytes from mouse embryonic stem cells.
Neman, J; de Vellis, J
2012-06-01
There is a pressing need for new therapeutics for the generation and transplantation of oligodendrocyte to the white matter to help replace and render injured cells that are lost in demyelinating disease. There are a few protocols describing a homogenous derivation of non-manipulated mouse embryonic stem cells to oligodendrocytes (ES-OL). Moreover, protocols that are successful in producing ES-OL do so with low efficiency. Therefore, we describe clear methodology for differentiation of mouse ES cells to oligodendrocyte to a high degree of homogenity and reproducibility in vitro. In addition, taking advantage of three defined media, we can generate a defined ES to oligodendrocyte lineage while selecting against neurons and astrocytes. More specifically, (1) Glial stem cell defining media (GSCDM), supplemented with appropriate combination of SHH and RA support pro-oligodendrocyte developing neural spheres from ES cells, (2) Oligodendrocyte differentiating media, induces lineage selection of oligodendrocytes progenitors from neural stem cells, and (3) Oligodendrocyte maturation media, supports oligodendrocytes progenitor maturation. Moreover, the ES cell derived oligodendrocytes display mature properites in the prescence of rat dorsal root gangila in vitro. Thus confirming thier potential for use to invesitgate developmental pathways and future potential use of cells in transplantation towards myelin repair. Copyright © 2012 Wiley Periodicals, Inc.
Stem cells as the root of pancreatic ductal adenocarcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balic, Anamaria; Dorado, Jorge; Alonso-Gomez, Mercedes
2012-04-01
Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulationsmore » that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.« less
Nisar, Nazia; Cuttriss, Abby J; Pogson, Barry J; Cazzonelli, Christopher I
2014-01-01
Cellular auxin homeostasis controls many aspects of plant growth, organogenesis and development. The existence of intracellular auxin transport mediated by endoplasmic reticulum (ER)-localized PIN5, PIN6 and PIN8 proteins is a relatively recent discovery shaping a new era in understanding auxin-mediated growth processes. Here we summarize the importance of PIN6 in mediating intracellular auxin transport during root formation, leaf vein patterning and nectary production. While, it was previously shown that PIN6 was strongly expressed in rosette leaf cell types important in vein formation, here we demonstrate by use a PIN6 promoter-reporter fusion, that PIN6 is also preferentially expressed in the vasculature of the primary root, cotyledons, cauline leaves, floral stem, sepals and the main transmitting tract of the reproductive silique. The strong, vein- specific reporter gene expression patterns enabled by the PIN6 promoter emphasizes that transcriptional control is likely to be a major regulator of PIN6 protein levels, during vasculature formation, and supports the need for ER-localized PIN proteins in selecting specialized cells for vascular function in land plants.
Chen, Yong-Jin; Zhao, Yin-Hua; Zhao, Ya-Juan; Liu, Nan-Xia; Lv, Xin; Li, Qiang; Chen, Fa-Ming; Zhang, Min
2015-08-01
Our aim is to investigate the cytobiological effects of autologous platelet-rich fibrin (PRF) on dental pulp stem cells (DPSCs) and to explore the ectopic and orthotopic possibilities of dental pulp revascularization and pulp-dentin complex regeneration along the root canal cavities of the tooth by using a novel tissue-engineered transplant composed of cell-sheet fragments of DPSCs and PRF granules. Canine DPSCs were isolated and characterized by assaying their colony-forming ability and by determining their cell surface markers and osteogenic/adipogenic differentiation potential. The biological effects of autologous PRF on DPSCs, including cell proliferation, alkaline phosphatase (ALP) activity and odonto-/osteogenic gene expression, were then investigated and quantified. A novel transplant consisting of cell-sheet fragments of DPSCs and PRF granules was adopted to regenerate pulp-dentin-like tissues in the root canal, both subcutaneously in nude mice and in the roots of canines. PRF promoted the proliferation of DPSCs in a dose- and time-dependent manner and induced the differentiation of DPSCs to odonto-/osteoblastic fates by increasing the expression of the Alp, Dspp, Dmp1 and Bsp genes. Transplantation of the DPSC/PRF construct led both to a favorable regeneration of homogeneous and compact pulp-like tissues with abundantly distributed blood capillaries and to the deposition of regenerated dentin along the intracanal walls at 8 weeks post-operation. Thus, the application of DPSC/PRF tissue constructs might serve as a potential therapy in regenerative endodontics for pulp revitalization or revascularization.
Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn
2016-01-01
Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156
Promise of periodontal ligament stem cells in regeneration of periodontium.
Maeda, Hidefumi; Tomokiyo, Atsushi; Fujii, Shinsuke; Wada, Naohisa; Akamine, Akifumi
2011-07-28
A great number of patients around the world experience tooth loss that is attributed to irretrievable damage of the periodontium caused by deep caries, severe periodontal diseases or irreversible trauma. The periodontium is a complex tissue composed mainly of two soft tissues and two hard tissues; the former includes the periodontal ligament (PDL) tissue and gingival tissue, and the latter includes alveolar bone and cementum covering the tooth root. Tissue engineering techniques are therefore required for regeneration of these tissues. In particular, PDL is a dynamic connective tissue that is subjected to continual adaptation to maintain tissue size and width, as well as structural integrity, including ligament fibers and bone modeling. PDL tissue is central in the periodontium to retain the tooth in the bone socket, and is currently recognized to include somatic mesenchymal stem cells that could reconstruct the periodontium. However, successful treatment using these stem cells to regenerate the periodontium efficiently has not yet been developed. In the present article, we discuss the contemporary standpoints and approaches for these stem cells in the field of regenerative medicine in dentistry.
Jamal, Mohamed; Chogle, Sami M; Karam, Sherif M; Huang, George T-J
2015-09-01
NOTCH plays a role in regulating stem cell function and fate decision. It is involved in tooth development and injury repair. Information regarding NOTCH expression in human dental root apical papilla (AP) and its residing stem cells (SCAP) is limited. Here we investigated the expression of NOTCH3, its ligand JAG1, and mesenchymal stem cell markers CD146 and STRO-1 in the AP or in the primary cultures of SCAP isolated from AP. Our in situ immunostaining showed that in the AP NOTCH3 and CD146 were co-expressed and associated with blood vessels having NOTCH3 located more peripherally. In cultured SCAP, NOTCH3 and JAG1 were co-expressed. Flow cytometry analysis showed that 7%, 16% and 98% of the isolated SCAP were positive for NOTCH3, STRO-1 and CD146, respectively with a rare 1.5% subpopulation of SCAP co-expressing all three markers. The expression level of NOTCH3 reduced when SCAP underwent osteogenic differentiation. Our findings are the first step towards defining the regulatory role of NOTCH3 in SCAP fate decision.
Esmaeili, Akbar
2013-05-01
Helichrysum has long been used medicinally, proving to be beneficial in treatment of acne, asthma, bronchitis and circulatory problems, and lymphatic system diseases. The objective of this research was to study the antioxidant and antibacterial activities and chemical composition of the compounds derived from the stems and roots of cultivated H. oligocephalum using gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The primary components found in the stem oil were ortho-vanillin (51.0%) and carvacrol (16.0%), and those found in the root oil were 1,8-cineole (30.6%) and isobornyl acetate (13.9%). Stem and root oils of H. oligocephalum demonstrated antibacterial activity, particularly in relation to Gram-positive bacteria. In a β-carotene/linoleic acid bleaching assay, the root oil of H. oligocephalum demonstrated an antioxidant effect. Antioxidant capacity measured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was 1205.0 for the stem oil and 722.8 μg/ml for the root oil.
Ho, Wai Mun; Ang, Lai Hoe; Lee, Don Koo
2008-01-01
The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated. A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium. Results showed that Pb was found in the root, stem, and seed capsule of kenaf but not in the leaf. Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb. In Pb-spiked treatments, roots accumulated more than 85% of total plant Pb which implies that kenaf root can be an important sink for bioavailable Pb. Scanning transmission electron microscope (STEM) X-ray microanalysis confirmed that electron-dense deposits located along cell walls of kenaf roots were Pb precipitates. The ability of kenaf to tolerate Pb and avoid phytotoxicity could be attributed to the immobilization of Pb in the roots and hence the restriction of upward movement (translocation factor < 1). With the application of fertilizer, kenaf was also found to have higher biomass and subsequently higher bioaccumulation capacity, indicating its suitability for phytoremediation of Pb-contaminated site.
Root and stem partitioning of Pinus taeda
Timothy J. Albaugh; H. Lee Allen; Lance W. Kress
2006-01-01
We measured root and stem mass at three sites (Piedmont (P), Coastal Plain (C), and Sandhills (S)) in the southeastern United States. Stand density, soil texture and drainage, genetic makeup and environmental conditions varied with site while differences in tree size at each site were induced with fertilizer additions. Across sites, root mass was about one half of stem...
Lasserre, Eric; Jobet, Edouard; Llauro, Christel; Delseny, Michel
2008-12-01
An inverse genetic approach was used to gain insight into the role of AP2/ERF-type transcription factors genes during plant development in Arabidopsis thaliana. Here we show that the expression pattern of AtERF38, which is, among the organs tested, more intensively expressed in mature siliques and floral stems, is closely associated with tissues that undergo secondary cell wall modifications. Firstly, public microarray data sets analysis indicates that AtERF38 is coregulated with several genes involved in secondary wall thickening. Secondly, this was experimentally confirmed in different types of cells expressing a Pro(AtERF38)::GUS fusion: histochemical analysis revealed strong and specific GUS activity in outer integument cells of mature seeds, endodermal cells of the roots in the primary developmental stage and some sclerified cells of mature inflorescence stems. All of these cells are known or shown here to be characterized by a reinforced wall. The latter, which have not been well characterized to date in Arabidopsis and may be suberized, could benefit of the use of AtERF38 as a specific marker. We were not able to detect any phenotype in an insertion line in which ectopic expression of AtERF38 is caused by the insertion of a T-DNA in its promoter. Nevertheless, AtERF28 may be considered as a candidate regulator of secondary wall metabolism in particular cell types that are not reinforced by the typical deposition of lignin and cellulose, but that have at least in common accumulation of suberin-like lipid polyesters in their walls.
Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.
Honda, Masaki; Sato, Momoko; Toriumi, Taku
2017-09-01
Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y.; Beaulieu, Jean
2015-01-01
One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells.
Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming
2010-06-15
The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.
Cano, Antonio; Sánchez-García, Ana Belén; Albacete, Alfonso; González-Bayón, Rebeca; Justamante, María Salud; Ibáñez, Sergio; Acosta, Manuel; Pérez-Pérez, José Manuel
2018-01-01
Commercial carnation (Dianthus caryophyllus) cultivars are vegetatively propagated from axillary stem cuttings through adventitious rooting; a process which is affected by complex interactions between nutrient and hormone levels and is strongly genotype-dependent. To deepen our understanding of the regulatory events controlling this process, we performed a comparative study of adventitious root (AR) formation in two carnation cultivars with contrasting rooting performance, “2101–02 MFR” and “2003 R 8”, as well as in the reference cultivar “Master”. We provided molecular evidence that localized auxin response in the stem cutting base was required for efficient adventitious rooting in this species, which was dynamically established by polar auxin transport from the leaves. In turn, the bad-rooting behavior of the “2003 R 8” cultivar was correlated with enhanced synthesis of indole-3-acetic acid conjugated to aspartic acid by GH3 proteins in the stem cutting base. Treatment of stem cuttings with a competitive inhibitor of GH3 enzyme activity significantly improved rooting of “2003 R 8”. Our results allowed us to propose a working model where endogenous auxin homeostasis regulated by GH3 proteins accounts for the cultivar dependency of AR formation in carnation stem cuttings. PMID:29755501
Huang, Li; Zhang, Haoqiang; Song, Yingying; Yang, Yurong; Chen, Hui; Tang, Ming
2017-01-01
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils. PMID:28443111
endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT
NASA Astrophysics Data System (ADS)
Morita, Miyo T.; Saito, Chieko; Nakano, Akihiko; Tasaka, Masao
Plants can sense the direction of gravity and change the growth orientation of their organs. Arabidopsis mutants have been isolated and characterized in order to elucidate the molecular mechanisms of gravitropism. endodermal-amyloplast less 1 ( eal1) is a unique mutant that completely lacks gravitropism in inflorescence stems and exhibits reduced gravitropism in hypocotyls, whereas its roots showed normal gravitropism. Previously, it was suggested that differentiation or development of amyloplasts in shoot statocytes (endodermal cells) is affected by the eal1 mutation. Here, we have identified EAL1 as a SHORT-ROOT ( SHR) allele based on map position. Three nucleotides in the SHR coding region were deleted in the eal1 mutant, resulting in the deletion of just one amino acid. The protein encoded by the novel allele of SHR appears to have retained its function as a transcription factor since the endodermal cell layer was formed both in roots and in shoots of eal1. SCARECROW (SCR) promoter activity monitored by reporter protein expression was significantly decreased in eal1, suggesting that the activity of SHR lacking one amino acid is reduced. In addition, transcription levels of SHOOT GRAVITROPISM 5 (SGR5), which is mainly expressed in the endodermis of inflorescence stems, was markedly decreased. Together with the presence of abnormal endodermal amyloplasts in eal1, these results strongly suggest that the endodermis observed in eal1 is not sufficiently differentiated to execute shoot gravitropism.
Shimamura, Satoshi; Yamamoto, Ryo; Nakamura, Takuji; Shimada, Shinji; Komatsu, Setsuko
2010-08-01
Aerenchyma provides a low-resistance O(2) transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O(2) dynamics in stem aerenchyma and evaluate O(2) supply via stem lenticels to the roots of soybean during soil flooding. Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O(2) microelectrodes, and O(2) transport to roots was evaluated using stable-isotope (18)O(2) as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO(2) via the stem lenticels. The radial distribution of the O(2) partial pressure (pO(2)) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200-300 microm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO(2) in stem aerenchyma from 17.5 to 7.6 kPa at 13 mm below the water level, and from 14.7 to 6.1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO(2) to increase again to 14-17 kPa at both positions within 10 min. After introducing (18)O(2) gas via the stem lenticels, significant (18)O(2) enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O(2) sustained root respiration. In contrast, slight (18)O(2) enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO(2) from submerged tissues to the atmosphere. Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O(2), and these connect to aerenchyma and enable O(2) transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a 'snorkel' that enables O(2) movement from air to the submerged roots.
Multiple mutant clones in blood rarely coexist
NASA Astrophysics Data System (ADS)
Dingli, David; Pacheco, Jorge M.; Traulsen, Arne
2008-02-01
Leukemias arise due to mutations in the genome of hematopoietic (blood) cells. Hematopoiesis has a multicompartment architecture, with cells exhibiting different rates of replication and differentiation. At the root of this process, one finds a small number of stem cells, and hence the description of the mutation-selection dynamics of blood cells calls for a stochastic approach. We use stochastic dynamics to investigate to which extent acquired hematopoietic disorders are associated with mutations of single or multiple genes within developing blood cells. Our analysis considers the appearance of mutations both in the stem cell compartment as well as in more committed compartments. We conclude that in the absence of genomic instability, acquired hematopoietic disorders due to mutations in multiple genes are most likely very rare events, as multiple mutations typically require much longer development times compared to those associated with a single mutation.
NASA Astrophysics Data System (ADS)
Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon
2012-07-01
The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with latrunculin B, an actin disrupting drug, showed gravitropism under 30 g conditions, during which amyloplasts were artificially sedimented by hypergravity. These results suggest that shoot amyloplasts are intrinsically dense enough to trigger gravity sensing without starch and, rather, intracellular environments that render amyloplasts sedimentable/mobile, such as actin organization, are essential for gravity sensing in Arabidopsis inflorescence stems.
Plant hormone cross-talk: the pivot of root growth.
Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina
2015-02-01
Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Diverse CLE peptides from cyst nematode species
USDA-ARS?s Scientific Manuscript database
Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...
Exploring Growth (and Mitosis) through a Learning Cycle.
ERIC Educational Resources Information Center
Lawson, Anton E.
1991-01-01
Presents a learning cycle lesson plan in which students investigate the question of how cells divide. Students use microscopes to explore actual plant root and stem tissues to generate and test hypotheses to answer the question. Includes teacher material, student material, and teaching tips. (MDH)
2011-01-01
Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice. PMID:21806801
Horibe, Hiroshi; Murakami, Masashi; Iohara, Koichiro; Hayashi, Yuki; Takeuchi, Norio; Takei, Yoshifumi; Kurita, Kenichi; Nakashima, Misako
2014-01-01
Insights into the understanding of the influence of the age of MSCs on their cellular responses and regenerative potential are critical for stem cell therapy in the clinic. We have isolated dental pulp stem cells (DPSCs) subsets based on their migratory response to granulocyte-colony stimulating factor (G-CSF) (MDPSCs) from young and aged donors. The aged MDPSCs were efficiently enriched in stem cells, expressing high levels of trophic factors with high proliferation, migration and anti-apoptotic effects compared to young MDPSCs. In contrast, significant differences in those properties were detected between aged and young colony-derived DPSCs. Unlike DPSCs, MDPSCs showed a small age-dependent increase in senescence-associated β-galactosidase (SA-β-gal) production and senescence markers including p16, p21, Interleukin (IL)-1β, -6, -8, and Groα in long-term culture. There was no difference between aged and young MDPSCs in telomerase activity. The regenerative potential of aged MDPSCs was similar to that of young MDPSCs in an ischemic hindlimb model and an ectopic tooth root model. These results demonstrated that the stem cell properties and the high regenerative potential of MDPSCs are independent of age, demonstrating an immense utility for clinical applications by autologous cell transplantation in dental pulp regeneration and ischemic diseases.
Sharma, Udit; Kataria, Vinod; Shekhawat, N S
2018-02-01
Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla . Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l -1 ) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l -1 . However, stem cuttings treated with a combination of auxins (2.0 mg l -1 IBA and 1.0 mg l -1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.
Temporal and spacial aspects of root and stem sucrose metabolism in loblolly pine trees
Shi-Jean S. Sung; Paul P. Kormanik; C.C. Black
1996-01-01
We studied root and stem sucrose metabolism in trees excavated from a 9-year-old artificially regenerated loblolly pine (Pinus taeda L.) plantation. Sucrose synthase (SS) activities in stem and taproot vascular cambial tissues followed similar seasonal patterns until they peaked during September. After September, stem SS activity disappeared...
Zhao, Yong; Peralta-Videa, Jose R.; Lopez-Moreno, Martha L.; Ren, Minghua; Saupe, Geoffrey; Gardea-Torresdey, Jorge L
2015-01-01
This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg−1, respectively, were watered every other day for 30 days with a KN solution at 250 μM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogenous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems. PMID:21174467
Engineering a Cure: Treena Livingston Arinzeh
ERIC Educational Resources Information Center
Lum, Lydia
2005-01-01
This article provides an overview of the accomplishments of Assistant Professor of Biomedical Engineering at the New Jersey Institute of Technology, Treena Livingston Arinzeh. It describes her exemplary work on stem cell research; her educational roots; and her work helping develop undergraduate and graduate curricula for the fledgling biomedical…
Patrick Brose; David Van Lear
2004-01-01
Fire ecology studies in eastern hardwood forests usually use plot-based inventory methods and focus on sprouting stems to detect changes in vegetative composition and structure. Rarely are individual stems studied and stems that fail to sprout are usually ignored. In this study, an individual stem mortality approach was employed. Four hundred fifty stems of eight...
Rowland, Owen; Zheng, Huanquan; Hepworth, Shelley R.; Lam, Patricia; Jetter, Reinhard; Kunst, Ljerka
2006-01-01
A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a β-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots. PMID:16980563
Expression and function of glycogen synthase kinase-3 in human hair follicles.
Yamauchi, Koichi; Kurosaka, Akira
2010-05-01
Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.
Analysis of the age of Panax ginseng based on telomere length and telomerase activity.
Liang, Jiabei; Jiang, Chao; Peng, Huasheng; Shi, Qinghua; Guo, Xiang; Yuan, Yuan; Huang, Luqi
2015-01-23
Ginseng, which is the root of Panax ginseng (Araliaceae), has been used in Oriental medicine as a stimulant and dietary supplement for more than 7,000 years. Older ginseng plants are substantially more medically potent, but ginseng age can be simulated using unscrupulous cultivation practices. Telomeres progressively shorten with each cell division until they reach a critical length, at which point cells enter replicative senescence. However, in some cells, telomerase maintains telomere length. In this study, to determine whether telomere length reflects ginseng age and which tissue is best for such an analysis, we examined telomerase activity in the main roots, leaves, stems, secondary roots and seeds of ginseng plants of known age. Telomere length in the main root (approximately 1 cm below the rhizome) was found to be the best indicator of age. Telomeric terminal restriction fragment (TRF) lengths, which are indicators of telomere length, were determined for the main roots of plants of different ages through Southern hybridization analysis. Telomere length was shown to be positively correlated with plant age, and a simple mathematical model was formulated to describe the relationship between telomere length and age for P. ginseng.
Dzobo, Kevin; Senthebane, Dimakatso Alice; Rowe, Arielle; Thomford, Nicholas Ekow; Mwapagha, Lamech M; Al-Awwad, Nasir; Dandara, Collet; Parker, M Iqbal
2016-12-01
Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-01-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999
Prasad, Madu Ghana Shyam; Ramakrishna, Juvva; Babu, Duvvi Naveen
2017-01-01
Stem cells are the pluripotent cells that have the capacity to differentiate into other specialized cells. Recently, many experiments have been conducted to study the potentiality of stem cells in the tissue regeneration. We report two cases treated utilizing stem cells from human exfoliated deciduous teeth (SHED) in the management of periapical lesions in permanent teeth. Two normal human deciduous teeth from children, 7‒8 years of age, were collected to isolate stem cells. Two patients, one with periapical pathology alone and the other with periapical lesion along with an open apex in young permanent teeth, were selected for the study. After initial debridement of the root canals, homing of SHED was carried out and the access cavity was sealed using glass-ionomer cement. Clinical examination after 7 days, 30 days, 90 days, 180 days and 365 days revealed no symptoms. Closure of open apex and periapical tissue healing were observed radiographically at one-month review and maintained until 365-day review. Positive response to electric pulp testing was recorded for the treated teeth from the 3- to 12-month follow-ups. The treated cases demonstrated complete resolution of periapical radiolucency in a span of 30 days, which was faster than the conventional methods. SHED could be considred effective in treating the periapical lesions and open apex in permanent teeth. PMID:28748053
Zach, Alexandra; Horna, Viviana; Leuschner, Christoph
2008-01-01
Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation.
Root development and structure in seedlings of Ginkgo biloba.
Bonacorsi, Nikole K; Seago, James L
2016-02-01
The popular, highly recognizable, well-known gymnosperm, Ginkgo biloba, was studied to document selected developmental features, which are little known in its primary root system from root tips to cotyledonary node following seed germination. Using seedlings grown in soil, vermiculite, or a mixture, we examined sections at various distances from the root cap to capture a developmental sequence of anatomical structures by using standard brightfield, epifluorescence, and confocal microscopic techniques. The vascular cylinder is usually a diarch stele, although modified diarchy and triarchy are found. Between exarch protoxylem poles, metaxylem usually develops into a complete disc, except near the transition region, which has irregularly arranged tracheary cells. The disc of primary xylem undergoes secondary growth on its metaxylem flanks with many tracheids added radially within a few weeks. Production of fibers in secondary phloem also accompanies secondary growth. In the cortex, endodermis produces Casparian bands early in development and continues into the upper transition region. Phi cells with phi-thickenings (bands of lignified walls) of a layer of inner cortex are often evident before endodermis, and then adjoining, additional layers of cortex develop phi cells; phi cells do not occur in the upper transition region or stem. An exodermis is produced early in root development and is continuous into the transition region and cotyledonary node. Seedling root axes of Ginkgo biloba are more complex than the literature suggests, and our findings contribute to our knowledge of root structure of this ancient gymnosperm. © 2016 Botanical Society of America.
Stem Cell Niche is Partially Lost during Follicular Plucking: A Preliminary Pilot Study
Kumar, Anil; Gupta, Somesh; Mohanty, Sujata; Bhargava, Balram; Airan, Balram
2013-01-01
Background: Clinical hair transplant studies have revealed that follicular unit extraction (FUE) is superior in terms of stable hair growth in comparison to follicular plucking (FP). Various reasons have been cited for this clinical outcome. FUE and FP are employed to obtain the hair follicle units for hair transplant and recently for cell based therapies in vitiligo. However, there is no scientific data available on the comparison of stem cell fraction in the cell suspension obtained by FUE and FP. Therefore, we undertook this study to compare the percentage of stem cells in the hair follicle obtained by FUE and FP. Objective: The purpose of the following study is to evaluate the quantitative stem cell pool in the hair follicle obtained by FUE and FP. Materials and Methods: A total of 3 human subjects were enrolled with age groups of 17-25 years. Both methods of tissue harvest: FUE and FP; were employed on each subject. There was no vitiligo lesion on the scalp in any of the patients. Hair follicles were incubated with trypsin-EDTA solution at 37°C for 90 min to separate outer root sheath cells. The cell suspension was passed through a 70 μm cell strainer; filtrate was centrifuged to obtain the cell pellet. Cells were labeled with cluster of differentiation (CD200) antibody and acquired with flowcytometry. Results: The mean percentage of CD200 positive cells in FUE and FP method come out to be 8.43 and 1.63 respectively (P = 0.0152). Conclusion: FUE is a better method of the hair follicle harvesting for cell based applications as the stem cell fraction is significantly higher in comparison to FP. PMID:24403776
Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M.; Sheibani, Nader
2016-01-01
Introduction Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. Methods A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Results Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Conclusions Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. PMID:25649306
Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K
2017-08-01
The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl
2008-01-01
In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination. PMID:19513241
USDA-ARS?s Scientific Manuscript database
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signaling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem), and vascular cambium are tightly controlled by CLE signaling pathway...
Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane
2017-08-01
Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key consideration for the success of future dendroclimatological studies on shrubs. © 2017 John Wiley & Sons Ltd.
Sotis, J J
2000-01-01
Since the human embryonic stem cell research involves destruction of human embryos and, therefore, hinges on the fundamental question of the status of the embryo, it is essential to examine this status carefully in order to establish fitting guidelines for research. The US National Institutes of Health has proposed its own guidelines on the matter recently (1999). The document, rooted in current pluralistic perspectives in moral philosophy (or bioethics), is criticised in this paper as morally inadequate. The argumentation of the criticism stems from the theological perspective on human personhood, which focuses on a continuity of personal identity from embryos to adult human beings. An additional concern for the author is the moral complicity in which the research dependent upon the destruction of human embryonic life is sanctioned.
Corpas, Francisco J; Barroso, Juan B; Carreras, Alfonso; Valderrama, Raquel; Palma, José M; León, Ana M; Sandalio, Luisa M; del Río, Luis A
2006-07-01
Nitric oxide (NO) is an important signalling molecule in different animal and plant physiological processes. Little is known about its biological function in plants and on the enzymatic source or site of NO production during plant development. The endogenous NO production from L-arginine (NO synthase activity) was analyzed in leaves, stems and roots during plant development, using pea seedlings as a model. NOS activity was analyzed using a novel chemiluminescence-based assay which is more sensitive and specific than previous methods used in plant tissues. In parallel, NO accumulation was analyzed by confocal laser scanning microscopy using as fluorescent probes either DAF-2 DA or DAF-FM DA. A strong increase in NOS activity was detected in stems after 11 days growth, coinciding with the maximum stem elongation. The arginine-dependent NOS activity was constitutive and sensitive to aminoguanidine, a well-known irreversible inhibitor of animal NOS, and this NOS activity was differentially modulated depending on the plant organ and seedling developmental stage. In all tissues studied, NO was localized mainly in the vascular tissue (xylem) and epidermal cells and in root hairs. These loci of NO generation and accumulation suggest novel functions for NO in these cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Taro, E-mail: koiket@hirakata.kmu.ac.jp; Wakabayashi, Taketoshi; Mori, Tetsuji
Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown ofmore » Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.« less
Karthikeyan, A; Chandrasekaran, K; Geetha, M; Kalaiselvi, R
2013-11-01
Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g-1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.
Shin, S Y; Albert, J S; Mortman, R E
2009-12-01
To describe a case in which a mandibular right second premolar with a necrotic pulp, sinus tract, periradicular radiolucency and an immature apex underwent revascularization via a single treatment approach. Revascularization procedures have the potential to heal a partially necrotic pulp, which can be beneficial for the continued root development of immature teeth. However, it is not clear which revascularization protocols are the most effective. This case report details the outcome of a successful revascularization procedure on tooth 45 (FDI) in a 12-year-old patient, eliminating the associated periapical pathosis within 19 months. The tooth was treated using coronal root irrigation with 6% NaOCl and 2% chlorhexidine without instrumentation in a single visit. The successful outcome of this case report suggests that this conservative revascularization treatment approach can preserve the vitality of the dental pulp stem cells and create a suitable environment for pulp regeneration, resulting in the completion of root maturation. The noninstrumentation procedure using 6% NaOCl and 2% chlorhexidine coronal irrigation may help preserve the remaining vital dental pulp stem cells believed to be critical for pulp revascularization. A single visit pulp revascularization protocol can be a favourable treatment option for an immature permanent tooth with a partially necrotic pulp.
Requirement for Foxd3 in Maintenance of Neural Crest Progenitors
Teng, Lu; Mundell, Nathan A.; Frist, Audrey Y.; Wang, Qiaohong; Labosky, Patricia A.
2008-01-01
Summary Understanding the molecular mechanisms of stem cell maintenance is critical for the ultimate goal of manipulating stem cells for treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3−/− embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue specific deletion of Foxd3 in the neural crest, we show that Foxd3flox/−; Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo. PMID:18367558
Requirement for Foxd3 in the maintenance of neural crest progenitors.
Teng, Lu; Mundell, Nathan A; Frist, Audrey Y; Wang, Qiaohong; Labosky, Patricia A
2008-05-01
Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.
Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming
2014-06-01
To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.
Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y; Beaulieu, Jean
2015-01-01
One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...
Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook
2017-09-01
Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.
Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon
2017-09-01
Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular defense response of oil palm to Ganoderma infection.
Ho, C-L; Tan, Y-C
2015-06-01
Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Della Rovere, F; Fattorini, L; D'Angeli, S; Veloccia, A; Del Duca, S; Cai, G; Falasca, G; Altamura, M M
2015-03-01
Adventitious roots (ARs) are essential for vegetative propagation. The Arabidopsis thaliana transcription factors SHORT ROOT (SHR) and SCARECROW (SCR) affect primary/lateral root development, but their involvement in AR formation is uncertain. LAX3 and AUX1 auxin influx carriers contribute to primary/lateral root development. LAX3 expression is regulated by SHR, and LAX3 contributes to AR tip auxin maximum. In contrast, AUX1 involvement in AR development is unknown. Xylogenesis is induced by auxin plus cytokinin as is AR formation, but the genes involved are largely unknown. Stem thin cell layers (TCLs) form ARs and undergo xylogenesis under the same auxin plus cytokinin input. The aim of this research was to investigate SHR, SCR, AUX1 and LAX3 involvement in AR formation and xylogenesis in intact hypocotyls and stem TCLs in arabidopsis. Hypocotyls of scr-1, shr-1, lax3, aux1-21 and lax3/aux1-21 Arabidopsis thaliana null mutant seedlings grown with or without auxin plus cytokinin were examined histologically, as were stem TCLs cultured with auxin plus cytokinin. SCR and AUX1 expression was monitored using pSCR::GFP and AUX1::GUS lines, and LAX3 expression and auxin localization during xylogenesis were monitored by using LAX3::GUS and DR5::GUS lines. AR formation was inhibited in all mutants, except lax3. SCR was expressed in pericycle anticlinally derived AR-forming cells of intact hypocotyls, and in cell clumps forming AR meristemoids of TCLs. The apex was anomalous in shr and scr ARs. In all mutant hypocotyls, the pericycle divided periclinally to produce xylogenesis. Xylary element maturation was favoured by auxin plus cytokinin in shr and aux1-21. Xylogenesis was enhanced in TCLs, and in aux1-21 and shr in particular. AUX1 was expressed before LAX3, i.e. in the early derivatives leading to either ARs or xylogenesis. AR formation and xylogenesis are developmental programmes that are inversely related, but they involve fine-tuning by the same proteins, namely SHR, SCR and AUX1. Pericycle activity is central for the equilibrium between xylary development and AR formation in the hypocotyl, with a role for AUX1 in switching between, and balancing of, the two developmental programmes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.
Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne
2015-06-01
It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.
Comparative wood anatomy of root and stem of Citharexylum myrianthum (Verbenaceae)
Carmen Regina Marcati; Leandro Roberto Longo; Alex Wiedenhoeft; Claudia Franca Barros
2014-01-01
Root and stem wood anatomy of C. myrianthum (Verbenaceae) from a semideciduous seasonal forest in Botucatu municipality (22º52â20âS and 48º26â37âW), São Paulo state, Brazil, were studied. Growth increments demarcated by semi-ring porosity and marginal bands of axial parenchyma were observed in the wood of both root and stem. Many qualitative features...
Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H
2016-11-01
Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.
Advanced Scaffolds for Dental Pulp and Periodontal Regeneration.
Bottino, Marco C; Pankajakshan, Divya; Nör, Jacques E
2017-10-01
No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented. Copyright © 2017 Elsevier Inc. All rights reserved.
Cloning higher plants from aseptically cultured tissues and cells
NASA Technical Reports Server (NTRS)
Krikorian, A. D.
1982-01-01
A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.
Antioxidant tannins from stem bark and fine root of Casuarina equisetifolia.
Zhang, Shang-Ju; Lin, Yi-Ming; Zhou, Hai-Chao; Wei, Shu-Dong; Lin, Guang-Hui; Ye, Gong-Fu
2010-08-16
Structures of condensed tannins from the stem bark and fine root of Casuarina equisetifolia were identified using MALDI-TOF MS and HPLC analyses. The condensed tannins from stem bark and fine root consist predominantly of procyanidin combined with prodelphinidin and propelargonidin, and epicatechin is the main extension unit. The condensed tannins had different polymer chain lengths, varying from trimers to tridecamer for stem bark and to pentadecamer for fine root. The antioxidant activities were measured by two models: 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/ antioxidant power (FRAP). The condensed tannins extracted from C. equisetifolia showed very good DPPH radical scavenging activity and ferric reducing/ antioxidant power, suggesting that these extracts may be considered as new sources of natural antioxidants for food and nutraceutical products.
Bi, J; Liu, Y; Liu, X M; Jiang, L M; Chen, X
2018-03-07
To investigate the antibacterial activity of a novel intracanal medicament, iRoot FM, against Porphyromonas endodontalis and its effects on the proliferation and osteo-/odontogenic differentiation of stem cells from apical papilla (SCAP). The agar diffusion test was used to compare the antimicrobial efficacy of iRoot FM with two traditional intracanal medicaments, calcium hydroxide [Ca(OH) 2 ] and triple antibiotic paste (TAP). The CCK-8 assay was used to assess the proliferation rate of SCAP when exposed to the three intracanal medicaments. The expression levels of ALP and DMP-1 and the capacity to form mineralized nodules were used to evaluate the osteo-/odontogenic differentiation of SCAP, as assessed by real-time PCR, Western blotting and alizarin red S staining. Data were statistically analysed with one-way analysis of variance (anova), and comparisons between each of two groups were analysed by the least significance difference method. P values less than 0.05 were considered statistically significant. The zone of inhibition against P. endodontalis produced by iRoot FM was 20.74 ± 4.35 mm, whilst the zones of inhibition of Ca(OH) 2 and TAP were 24.89 ± 3.84 mm and 34.51 ± 1.20 mm. The antibacterial capacity of iRoot FM was similar to that of Ca(OH) 2 (P > 0.05). SCAP, cultured in conditioned medium with iRoot FM, was associated with greater proliferation and osteo-/odontogenic differentiation capacity than those cultured in conditioned medium with Ca(OH) 2 and TAP (P < 0.05). Moreover, iRoot FM had no negative effects on the proliferation rate of SCAP. iRoot FM exhibited excellent antibacterial activity against P. endodontalis and could improve the proliferation and differentiation of SCAP. The findings provide evidence that iRoot FM has potential as an intracanal medicament for endodontic procedures in immature permanent teeth. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Lei, Chao; Fan, Sheng; Li, Ke; Meng, Yuan; Mao, Jiangping; Han, Mingyu; Zhao, Caiping; Bao, Lu; Zhang, Dong
2018-01-01
Adventitious root (AR) formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA)-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment). In total, 3355 differentially expressed proteins (DEPs) were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings. PMID:29495482
Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Hees, May Van; Wannijn, Jean; Smolders, Erik
2017-04-01
Flooded (paddy) rice (Oryza sativa) can take up ions from the irrigation water by foliar uptake via the exposed stem base. We hypothesised that the stem base uptake of radiocaesium (RCs) is a pathway for rice grown in RCs-contaminated environments. We developed a bi-compartmental device which discriminates the stem base from root RCs uptake from solutions, thereby using RCs isotopes ( 137 Cs and 134 Cs) with < 2% solution leak between the compartments. Radiocaesium uptake was linear over time (0-24 h). Radiocaesium uptake to the entire plant, expressed per dry weight of the exposed parts, was sixfold higher for the roots than for the exposed stem base. At equal RCs concentrations in both compartments, the exposed stem base and root uptake contributed almost equally to the total shoot RCs concentrations. Reducing potassium supply to the roots not only increased the root RCs uptake but also increased RCs uptake by the stem base. This study was the first to experimentally demonstrate active and internally regulated RCs uptake by the stem base of rice. Scenario calculations for the Fukushima-affected area predict that RCs in irrigation water could be an important source of RCs in rice as indirectly suggested from field data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-03-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Xiao, Chaowen; Barnes, William J; Zamil, M Shafayet; Yi, Hojae; Puri, Virendra M; Anderson, Charles T
2017-03-01
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2 AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2 AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1 AT plants, PGX2 AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
A Galacturonic Acid–Containing Xyloglucan Is Involved in Arabidopsis Root Hair Tip Growth[W
Peña, Maria J.; Kong, Yingzhen; York, William S.; O’Neill, Malcolm A.
2012-01-01
Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid–containing subunits, the latter containing the β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→ and/or α-l-fucosyl-(1→2)-β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair–specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid–containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-d-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed. PMID:23175743
López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo
2018-03-01
The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.
Scaffolds in regenerative endodontics: A review
Gathani, Kinjal M.; Raghavendra, Srinidhi Surya
2016-01-01
Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762
MINERAL AND BIOCHEMICAL ANALYSIS OF VARIOUS PARTS OF CISSUS QUADRANGULARIS LINN
Udayakumar, R.; Sundaran, M.; Krishna, Raghuram
2004-01-01
Ash, minerals and biochemical contents were determined in various parts of root, stem and leaf of Cissus quadrangularis. The maximum ash content was observed in the root. The maximum concentration of carbohydrate and protein in the root and phosphorus, iron, calcium and lipids in the stem were observed. PMID:22557157
ANTI – TUMOUR EFFECT OF BERBERIS ASIATICA ROXB. EX. DC. ON DALTON'S LYMPHOMA ASCITE
Kumar, E.P.; Elshurafa, Allam Ahmed; Elango, K.; Subburaju, T.; Suresh, B.
1998-01-01
Berberis asiatica Roxb. Ex. Dc., non Griff. Belongs to the family berberidaceae commonly occurring in the dry outer Himalaya, Assam etc. Roots along with stem bark s a reputed drug in Ayurvedic medicine contain several alkaloids. 50% Ethaolnic extract of roots reported to posses anti-cancer activity. The present study examines the antitumour effect of ethanolic root extract (BRE) against Dalton's lymphoma ascites tumour cells and solid tumour in swiss albino mice, A significant enhancement of mean survival time of BRE treated tumour bearing mice was found. Oral administration of BRE reduced the solid tumour induced by DLE and restored the altered haematological parameters to normal. PMID:22556858
Code of Federal Regulations, 2010 CFR
2010-01-01
... trailer skirts. Bark. The tough outer covering of the woody stems of trees, shrubs, and other woody plants....g., Christmas trees), trees with roots, and shrubs with roots and persistent woody stems, unless...
Tomlinson, Kyle W; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H T; de Bie, Steven; Sterck, Frank J
2013-08-01
Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).
Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute
2016-01-01
Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic conductivity due to anomalously narrow earlywood vessels in flooded stem parts, contribute to reduced radial growth after flooding events. Our findings support the value of flood rings to reconstruct spring flooding events that occurred prior to instrumental flood records. PMID:27379108
NASA Astrophysics Data System (ADS)
Mangabeira, Pedro Antonio; Gavrilov, Konstantin L.; Almeida, Alex-Alan Furtado de; Oliveira, Arno Heeren; Severo, Maria Isabel; Rosa, Tiago Santana; Silva, Delmira da Costa; Labejof, Lise; Escaig, Françoise; Levi-Setti, Riccardo; Mielke, Marcelo Schramm; Loustalot, Florence Grenier; Galle, Pierre
2006-03-01
High-resolution imaging secondary ion mass spectrometry (HRI-SIMS) in combination with inductively coupled plasma mass spectrometry (ICP-MS) were utilised to determine specific sites of chromium concentration in tomato plant tissues (roots, stems and leaves). The tissues were obtained from plants grown for 2 months in hydroponic conditions with Cr added in a form chromium salt (CrCl 3·6H 2O) to concentrations of 25 and 50 mg/L. The chemical fixation procedure used permit to localize only insoluble or strongly bound Cr components in tomato plant tissue. In this work no quantitative SIMS analysis was made. HRI-SIMS analysis revealed that the transport of chromium is restricted to the vascular system of roots, stems and leaves. No Cr was detected in epidermis, palisade parenchyma and spongy parenchyma cells of the leaves. The SIMS-300 spectra obtained from the tissues confirm the HRI-SIMS observations. The roots, and especially walls of xylem vessels, were determined as the principal site of chromium accumulation in tomato plants.
Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G
2016-06-01
To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Lauter, F R; Ninnemann, O; Bucher, M; Riesmeier, J W; Frommer, W B
1996-01-01
Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8755617
da Costa, Cibele T.; de Almeida, Márcia R.; Ruedell, Carolina M.; Schwambach, Joseli; Maraschin, Felipe S.; Fett-Neto, Arthur G.
2013-01-01
Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation. PMID:23717317
da Costa, Cibele T; de Almeida, Márcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G
2013-01-01
Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins needed for root tissue differentiation.
Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots.
Yamaguchi, Yasuka L; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro
2017-01-01
Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita , and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8 , TDR and WOX4 were activated not only in M. incognita -induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii -induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.
Mira, Mohamed M; Huang, Shuanglong; Kapoor, Karuna; Hammond, Cassandra; Hill, Robert D; Stasolla, Claudio
2017-11-28
Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Direct observation of organic contaminant uptake, storage, and metabolism within plant roots.
Wild, Edward; Dent, John; Thomas, Gareth O; Jones, Kevin C
2005-05-15
Two-photon excitation microscopy (TPEM) is used to visualize and track the uptake and movement of anthracene and phenanthrene from a contaminated growth medium into living unmodified roots of maize and wheat over a 56-day period. The degradation of anthracene was also directly observed within the cortex cells of both species. The power of this technique is that neither the plant nor the compound require altering (staining or sectioning) to visualize them, meaning they are in their natural form throughout the experiment. Initially both compounds bound to the epidermis along the zone of elongation, passing through the epidermal cells to reach the cortex within the root hair, and branching zones of the root. The PAHs entered the epidermis radially; however, once within the cortex cells this movement was dominated by slow lateral movement of both compounds toward the shoot. Highly focused "streams" of compound were observed to form over time; zones where phenanthrene concentrated extended up to 1500 microm in length over a 56-day period, for example, passing through several adjoining cells, and were detectable in cell walls and cell vacuoles. Radial movement was not observed to extend beyond the cortex cells to reach the vascular tissues of the plant. The longitudinal movement of both compounds was not observed to extend beyond the root base into the stem or vegetative parts of the plant. The lateral movement of both compounds within the cortex cells was dominated by movement within the cell walls, suggesting apoplastic flow through multiple cell walls, but with a low level of symplastic movement to transport compound into the cellular vacuoles. Degradation of anthracene to the partial breakdown products anthrone, anthraquinone, and hydroxyanthraquinone was observed directly in the zones of root elongation and branching. The technique and observations have important applications to the fields of agrochemistry and phytoremediation.
Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan
2016-04-01
Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Influence of root-bed size on the response of tobacco to elevated CO2 as mediated by cytokinins
Schaz, Ulrike; Düll, Barbara; Reinbothe, Christiane; Beck, Erwin
2014-01-01
The extent of growth stimulation of C3 plants by elevated CO2 is modulated by environmental factors. Under optimized environmental conditions (high light, continuous water and nutrient supply, and others), we analysed the effect of an elevated CO2 atmosphere (700 ppm, EC) and the importance of root-bed size on the growth of tobacco. Biomass production was consistently higher under EC. However, the stimulation was overridden by root-bed volumes that restricted root growth. Maximum growth and biomass production were obtained at a root bed of 15 L at ambient and elevated CO2 concentrations. Starting with seed germination, the plants were strictly maintained under ambient or elevated CO2 until flowering. Thus, the well-known acclimation effect of growth to enhanced CO2 did not occur. The relative growth rates of EC plants exceeded those of ambient-CO2 plants only during the initial phases of germination and seedling establishment. This was sufficient for a persistently higher absolute biomass production by EC plants in non-limiting root-bed volumes. Both the size of the root bed and the CO2 concentration influenced the quantitative cytokinin patterns, particularly in the meristematic tissues of shoots, but to a smaller extent in stems, leaves and roots. In spite of the generally low cytokinin concentrations in roots, the amounts of cytokinins moving from the root to the shoot were substantially higher in high-CO2 plants. Because the cytokinin patterns of the (xylem) fluid in the stems did not match those of the shoot meristems, it is assumed that cytokinins as long-distance signals from the roots stimulate meristematic activity in the shoot apex and the sink leaves. Subsequently, the meristems are able to synthesize those phytohormones that are required for the cell cycle. Root-borne cytokinins entering the shoot appear to be one of the major control points for the integration of various environmental cues into one signal for optimized growth. PMID:24790131
NASA Astrophysics Data System (ADS)
Romero-Arias, J. Roberto; Hernández-Hernández, Valeria; Benítez, Mariana; Alvarez-Buylla, Elena R.; Barrio, Rafael A.
2017-03-01
Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.
Yang, Bei-fen; Du, Le-shan; Li, Jun-min
2015-11-01
In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins withmore » at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.« less
Shade-Induced Action Potentials in Helianthus annuus L. Originate Primarily from the Epicotyl
Stephens, Nicholas R; Cleland, Robert E; Van Volkenburgh, Elizabeth
2006-01-01
Repeated observations that shading (a drastic reduction in illumination rate) increased the generation of spikes (rapidly reversed depolarizations) in leaves and stems of many cucumber and sunflower plants suggests a phenomenon widespread among plant organs and species. Although shaded leaves occasionally generate spikes and have been suggested to trigger systemic action potentials (APs) in sunflower stems, we never found leaf-generated spikes to propagate out of the leaf and into the stem. On the contrary, our data consistently implicate the epicotyl as the location where most spikes and APs (propagating spikes) originate. Microelectrode studies of light and shading responses in mesophyll cells of leaf strips and in epidermis/cortex cells of epicotyl segments confirm this conclusion and show that spike induction is not confined to intact plants. 90% of the epicotyl-generated APs undergo basipetal propagation to the lower epicotyl, hypocotyl and root. They propagate with an average rate of 2 ± 0.3 mm s−1 and always undergo a large decrement from the hypocotyl to the root. The few epicotyl-derived APs that can be tracked to leaf blades (< 10%) undergo either a large decrement or fail to be transmitted at all. Occasionally (5% of the observations) spikes were be generated in hypocotyl and lower epicotyl that moved towards the upper epicotyl unaltered, decremented, or amplified. This study confirms that plant APs arise to natural, nontraumatic changes. In simultaneous recordings with epicotyl growth, AP generation was found to parallel the acceleration of stem growth under shade. The possible relatedness of both processes must be further investigated. PMID:19521471
Johnson, Daniel M; McCulloh, Katherine A; Woodruff, David R; Meinzer, Frederick C
2012-10-01
Angiosperm and coniferous tree species utilize a continuum of hydraulic strategies. Hydraulic safety margins (defined as differences between naturally occurring xylem pressures and pressures that would cause hydraulic dysfunction, or differences between pressures resulting in loss of hydraulic function in adjacent organs (e.g., stems vs. leaves) tend to be much greater in conifers than angiosperms and serve to prevent stem embolism. However, conifers tend to experience embolism more frequently in leaves and roots than angiosperms. Embolism repair is thought to occur by active transport of sugars into empty conduits followed by passive water movement. The most likely source of sugar for refilling is from nonstructural carbohydrate depolymerization in nearby parenchyma cells. Compared to angiosperms, conifers tend to have little parenchyma or nonstructural carbohydrates in their wood. The ability to rapidly repair embolisms may rely on having nearby parenchyma cells, which could explain the need for greater safety margins in conifer wood as compared to angiosperms. The frequent embolisms that occur in the distal portions of conifers are readily repaired, perhaps due to the abundant parenchyma in leaves and roots, and these distal tissues may act as hydraulic circuit breakers that prevent tension-induced embolisms in the attached stems. Frequent embolisms in conifer leaves may also be due to weaker stomatal response to changes in ambient humidity. Although there is a continuum of hydraulic strategies among woody plants, there appear to be two distinct 'behaviors' at the extremes: (1) embolism prevention and (2) embolism occurrence and subsequent repair. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Water relations in silver birch during springtime: How is sap pressurised?
Hölttä, T; Dominguez Carrasco, M D R; Salmon, Y; Aalto, J; Vanhatalo, A; Bäck, J; Lintunen, A
2018-05-06
Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Strigolactones Suppress Adventitious Rooting in Arabidopsis and Pea1[C][W][OA
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B.; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-01-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776
Strigolactones suppress adventitious rooting in Arabidopsis and pea.
Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne
2012-04-01
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.
Inherent and environmental patterns in biomass allocation and allometry among higher plants
NASA Astrophysics Data System (ADS)
Poorter, Hendrik
2017-04-01
It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749
Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei
2015-03-06
A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0-9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids.
Xu, Ke-dong; Chang, Yun-xia; Zhang, Ju; Wang, Pei-long; Wu, Jian-xin; Li, Yan-yan; Wang, Xiao-wen; Wang, Wei; Liu, Kun; Zhang, Yi; Yu, De-shui; Liao, Li-bing; Li, Yi; Ma, Shu-ya; Tan, Guang-xuan; Li, Cheng-wei
2015-01-01
A new approach was established for the regeneration of Trichosanthes kirilowii from root, stem, and leaf explants by somatic embryogenesis (SE), involving a previously unreported SE structure, rhizoid tubers (RTBs). During SE, special rhizoids were first induced from root, stem, and leaf explants with average rhizoid numbers of 62.33, 40.17, and 11.53 per explant, respectively, on Murashige and Skoog (MS) medium (pH 4.0) supplemented with 1.0 mg/L 1-naphthaleneacetic acid (NAA) under dark conditions. Further, one RTB was formed from each of the rhizoids on MS medium (pH 4.0) supplemented with 20 mg/L thidiazuron (TDZ) under light conditions. In the suitable range (pH 4.0–9.0), a lower pH value increased the induction of rhizoids and RTBs. Approximately 37.77, 33.47, and 31.07% of in vivo RTBs from root, stem, and leaf explants, respectively, spontaneously developed into multiple plantlets on the same MS medium (supplemented with 20 mg/L TDZ) for induction of RTBs, whereas >95.00% of in vitro RTBs from each kind of explant developed into multiple plantlets on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine (BAP). Morphological and histological analyses revealed that RTB is a novel type of SE structure that develops from the cortex cells of rhizoids. PMID:25744384
Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela
2015-01-01
Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821
Viventi, Serena; Dottori, Mirella
2018-07-01
Sensory neurons of the dorsal root ganglia (DRG) are the primary responders to stimuli inducing feelings of touch, pain, temperature, vibration, pressure and muscle tension. They consist of multiple subpopulations based on their morphology, molecular and functional properties. Our understanding of DRG sensory neurons has been predominantly driven by rodent studies and using transformed cell lines, whereas less is known about human sensory DRG neurons simply because of limited availability of human tissue. Although these previous studies have been fundamental for our understanding of the sensory system, it is imperative to profile human DRG subpopulations as it is becoming evident that human sensory neurons do not share the identical molecular and functional properties found in other species. Furthermore, there are wide range of diseases and disorders that directly/indirectly cause sensory neuronal degeneration or dysfunctionality. Having an in vitro source of human DRG sensory neurons is paramount for studying their development, unique neuronal properties and for accelerating regenerative therapies to treat sensory neuropathies. Here we review the major studies describing generation of DRG sensory neurons from human pluripotent stem cells and fibroblasts and the gaps that need to be addressed for using in vitro-generated human DRG neurons to model human DRG tissue. Copyright © 2018 Elsevier Ltd. All rights reserved.
El Ashiry, Eman A; Alamoudi, Najlaa M; El Ashiry, Mahmoud K; Bastawy, Hagar A; El Derwi, Douaa A; Atta, Hazem M
2018-05-15
To evaluate tissue engineering technology to regenerate pulp-dentin like tissues in pulp canals of immature necrotic permanent teeth with apical periodontitis in dogs. The study was performed on 36 teeth in 12 dogs. The experiment was carried out using split mouth design. In each dog 3 teeth were selected for implementing the study procedure. Apical periodontitis was induced in Group A and B teeth. Group (A): immature upper left 2 nd permanent incisors that were transplanted with a construct of autologous dental pulp stem cells with growth factors seeded in a chitosn hydrogel scaffold. Group (B): immature upper right 2 nd permanent incisor that received only growth factors with scaffold. A third tooth in each dog was selected randomly for isolation of dental pulp stem cells (DPSCs). Both groups were closed with a double coronal seal of white MTA (Mineral trioxide aggregate) and glass ionomer cement. Both groups were monitored radiographically for 4 months and histologically after sacrificing the animals. There was no statistically significant difference in radiographic findings between group (A) and group (B) for healing of radiolucencies, while there was statistically significant difference between group (A) and group (B) regarding radicular thickening, root lengthening and apical closure. Histologically, group (A) teeth showed regeneration of pulp-dentin like tissue while group (B) teeth did not show any tissue regeneration. Dental pulp stem cells and growth factors incorporated in chitosan hydrogel are able to regenerate pulp-dentine like tissue and help in complete root maturation of non-vital immature permanent teeth with apical periodontitis in dogs.
Wang, Sainan; Mu, Jinquan; Fan, Zhipeng; Yu, Yan; Yan, Ming; Lei, Gang; Tang, Chunbo; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua; Zhang, Guangdong
2012-05-01
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering. Copyright © 2011 Elsevier B.V. All rights reserved.
Su, Yan; Andrews, James; Huang, Hong; Wang, Yue; Kong, Liangliang; Cannon, Peter; Xu, Ping
2016-05-23
PubMed is a widely used database for scientists to find biomedical-related literature. Due to the complexity of the selected research subject and its interdisciplinary nature, as well as the exponential growth in the number of disparate pieces of biomedical literature, it is an overwhelming challenge for scientists to define the right search strategies and quickly locate all related information. Specialized subsets and groupings of controlled vocabularies, such as Medical Subject Headings (MeSH), can enhance information retrieval in specialized domains, such as stem cell research. There is a need to develop effective search strategies and convenient solutions for knowledge organization in stem cell research. The understanding of the interrelationships between these MeSH terms also facilitates the building of knowledge organization systems in related subject fields. This study collected empirical data for MeSH-related terms from stem cell literature and developed a novel approach that uses both automation and expert-selection to create a set of terms that supports enhanced retrieval. The selected MeSH terms were reconstructed into a classified thesaurus that can guide researchers towards a successful search and knowledge organization of stem cell literature. First, 4253 MeSH terms were harvested from a sample of 5527 stem cell related research papers from the PubMed database. Next, unrelated terms were filtered out based on term frequency and specificity. Precision and recall measures were used to help identify additional valuable terms, which were mostly non-MeSH terms. The study identified 15 terms that specifically referred to stem cell research for information retrieval, which would yield a higher precision (97.7 %) and recall (94.4 %) rates in comparison to other approaches. In addition, 128 root MeSH terms were selected to conduct knowledge organization of stem cell research in categories of anatomy, disease, and others. This study presented a novel strategy and procedure to reengineer term selections of the MeSH thesaurus for literature retrieval and knowledge organization using stem cell research as a case. It could help scientists to select their own search terms and build up a thesaurus-based knowledge organization system in interested and interdisciplinary research subject areas.
Machine vision system for measuring conifer seedling morphology
NASA Astrophysics Data System (ADS)
Rigney, Michael P.; Kranzler, Glenn A.
1995-01-01
A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.
Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize1[C][W][OPEN
Chimungu, Joseph G.; Brown, Kathleen M.
2014-01-01
We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ18O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25355868
In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.
Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna
2015-01-01
Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.
Gravitropism in plants: Hydraulics and wall growth properties of responding cells
NASA Technical Reports Server (NTRS)
Cosgrove, Daniel J.
1989-01-01
Gravitropism is the asymmetrical alteration of plant growth in response to a change in the gravity vector, with the typical result that stems grow up and roots grow down. The gravity response is important for plants because it enables them to grow their aerial parts in a mechanically stable (upright) position and to develop their roots and leaves to make efficient use of soil nutrients and sunlight. The elucidation of gravitropic responses will tell much about how gravity exerts its morphogenetic effects on plants and how plants regulate their growth at the cellular and molecular levels.
[Preliminary establishment of transplanted human chronic myeloid leukemia model in nude mice].
Li, Xian-Min; Ding, Xin; Zhang, Long-Zhen; Cen, Jian-Nong; Chen, Zi-Xing
2011-12-01
Chronic myeloid leukemia (CML) is a malignant clonal disease derived from hematopoietic stem cells. CML stem cells were thought to be the root which could lead disease development and ultimately rapid change. However, a stable animal model for studying the characteristics of CML stem cells is currently lacking. This study was aimed to establish a transplanted human CML nude-mice model to further explore the biological behavior of CML stem cells in vivo, and to enrich CML stem cells in nude mice by series transplantation. The 4 - 6 weeks old BALB/c nude mice pretreated by splenectomy (S), cytoxan intraperitoneal injection (C) and sublethal irradiation (I) were transplanted intravenously with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase. Alternatively, 4 - 6 weeks old BALB/c nude mice pretreated by lethal irradiation were transplanted intravenously with 5 × 10(6) homologous bone marrow cells of BALB/c nude mice together with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase simultaneously. The leukemic cells engrafted and infiltrated in organs and bone marrow of the mice were tracked by reverse transcription-polymerase chain reaction (RT-PCR), plastic-embedded biopsy and flow cytometry. The results of these two methods were compared. The results showed that human CML cells engrafted and infiltrating into the bone marrow of two nude mice pretreated with SCI could be detected. In spite of the low successful rate, results suggested the feasibility of this method by using BALB/c nude mice as a human CML animal model. In contrast, in nude mice pretreated by the lethal dose irradiation, CML cells in the bone marrow could not be found. It is concluded that human bone marrow CML cells can results in leukemia in nude mice pretreated by SCI. Thus this study provides a new strategy for establishment of CML animal models which deserves further elaboration.
NASA Astrophysics Data System (ADS)
Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan
2016-05-01
The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01169a
Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes
NASA Technical Reports Server (NTRS)
Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2001-01-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
CRISPR/Cas9 system and its applications in human hematopoietic cells.
Hu, Xiaotang
2016-11-01
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
The slippery slope of hematopoietic stem cell aging.
Wahlestedt, Martin; Bryder, David
2017-12-01
The late stages of life, in most species including humans, are associated with a decline in the overall maintenance and health of the organism. This applies also to the hematopoietic system, where aging is not only associated with an increased predisposition for hematological malignancies, but also identified as a strong comorbidity factor for other diseases. Research during the last two decades has proposed that alterations at the level of hematopoietic stem cells (HSCs) might be a root cause for the hematological changes observed with age. However, the recent realization that not all HSCs are alike with regard to fundamental stem cell properties such as self-renewal and lineage potential has several implications for HSC aging, including the synchrony and the stability of the aging HSC state. To approach HSC aging from a clonal perspective, we recently took advantage of technical developments in cellular barcoding and combined this with the derivation of induced pluripotent stem cells (iPSCs). This allowed us to selectively approach HSCs functionally affected by age. The finding that such iPSCs were capable of fully regenerating multilineage hematopoiesis upon morula/blastocyst complementation provides compelling evidence that many aspects of HSC aging can be reversed, which indicates that a central mechanism underlying HSC aging is a failure to uphold the epigenomes associated with younger age. Here we discuss these findings in the context of the underlying causes that might influence HSC aging and the requirements and prospects for restoration of the aging HSC epigenome. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Phytophthora root rot of soybean (Glycine max Merr.) is caused by the oomycete Phytophthora sojae (Kaufm. and Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospo...
Antibacterial activity of Artocarpus heterophyllus.
Khan, M R; Omoloso, A D; Kihara, M
2003-07-01
The crude methanolic extracts of the stem and root barks, stem and root heart-wood, leaves, fruits and seeds of Artocarpus heterophyllus and their subsequent partitioning with petrol, dichloromethane, ethyl acetate and butanol gave fractions that exhibited a broad spectrum of antibacterial activity. The butanol fractions of the root bark and fruits were found to be the most active. None of the fractions were active against the fungi tested.
Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials.
Morano, Michela; Wrobel, Sandra; Fregnan, Federica; Ziv-Polat, Ofra; Shahar, Abraham; Ratzka, Andreas; Grothe, Claudia; Geuna, Stefano; Haastert-Talini, Kirsten
2014-01-01
Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR) whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation. Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs) and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs). The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12) cell sympathetic culture model system. We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell system. Our results evidence that nanotechnology as used in our setup is superior over stem cell engineering when it comes to in vitro models for PNR. Furthermore, np-NTFs can easily be suspended in regenerative hydrogel matrix and could be delivered that way to nerve conduits for future in vivo studies and medical application.
Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis
NASA Technical Reports Server (NTRS)
Weise, S. E.; Kiss, J. Z.
1999-01-01
Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.
NASA Astrophysics Data System (ADS)
Pollen, N.; Simon, A.
2006-12-01
Research on the interactions between vegetation and channel flow dynamics has shown that vegetation is an important control on river morphology and planform. Increased vegetation density is commonly linked to a decrease in bank erosion and lateral migration rates. Roots add to bank strength through the production of a reinforced soil-root matrix, and vegetation can also act to increase bank stability through its hydrological effects, including canopy interception, and removal of soil water through evapotranspiration. Flow dynamics are also affected by vegetation, with a number of studies showing a linkage between vegetation density and width- depth-velocity relations and bank roughness. To evaluate the effects of vegetation on channel morphology and planform, several experimental studies in flumes have used alfalfa sprouts (Medicago sativa) to seed the bed and banks of experimental channels. In such studies, the effects of vegetation are accounted for by qualitatively increasing the resistance of the bank material to lateral erosion. However, the material properties of alfalfa roots and stems, and the actual increase in resistance provided to the banks under different densities of alfalfa have thus far been ignored. To quantify this added erosion resistance, alfalfa sprouts were grown for 7 to 21 days, in sand with a d50 of 0.23 mm. At regular intervals, roots and stems were tested to measure tensile strength and forces required for pullout. Results of the tensile-strength measurements display the typical non-linear decrease of tensile strength (in MPa) with increasing root diameter but the curve is shifted to the left (weaker for a given diameter) of other riparian species. However, to calculate the increase in bank cohesion due to alfalfa roots, it is necessary to also account for the number of roots, and the distribution of different root diameters. The number of roots was calculated for a range of stem densities (0 to 10 stems/cm2), assuming a single, un-branching root per stem. Values for the additional cohesion provided by the alfalfa roots were calculated using the root- reinforcement model, RipRoot, producing values of 0 to 11.8 kPa. These results provide a means of quantifying the additional bank resistance provided to experimental channels under different stem/root densities. Cohesion values obtained in this way were successfully related to studies of braiding intensity published by others. The geometric properties of alfalfa scale up from experiments in flumes to approximate young trees on a floodplain. However, soil properties such as cohesion cannot be scaled. As such, the cohesion values due to roots calculated here represent the actual magnitude of reinforcement provided, rather than a scaled value.
A novel extracellular matrix protein from tomato associated with lignified secondary cell walls.
Domingo, C; Gómez, M D; Cañas, L; Hernández-Yago, J; Conejero, V; Vera, P
1994-01-01
A cDNA clone representing a novel cell wall protein was isolated from a tomato cDNA library. The deduced amino acid sequence shows that the encoded protein is very small (88 amino acids), contains an N-terminal hydrophobic signal peptide, and is enriched in lysine and tyrosine. We have designated this protein TLRP for tyrosine- and lysine-rich protein. RNA gel blot hybridization identified TLRP transcripts constitutively present in roots, stems, and leaves from tomato plants. The encoded protein seems to be highly insolubilized in the cell wall, and we present evidence that this protein is specifically localized in the modified secondary cell walls of the xylem and in cells of the sclerenchyma. In addition, the protein is localized in the protective periderm layer of the growing root. The highly localized deposition in cells destined to give support and protection to the plant indicates that this cell wall protein alone and/or in collaboration with other cell wall structural proteins may have a specialized structural function by mechanically strengthening the walls. PMID:7919979
Hatzilazarou, Stefanos P; Syros, Thomas D; Yupsanis, Traianos A; Bosabalidis, Artemios M; Economou, Athanasios S
2006-07-01
In vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots with or without indolic-3-butyric acid (IBA) was studied in order to improve acclimatization of microplants after root formation and transplantation. Peroxidase (POD) activity and isoforms, lignin content and anatomical observations were evaluated in the course of the three interdependent phases (induction, initiation and expression) of microshoot rooting. Microshoots treated or not treated with IBA achieved high rooting percentages both in vitro and ex vitro. At the end of the 2-week acclimatization period, the percentage of surviving microplants ranged from 80% to 100%, for in vitro and ex vitro rooted microshoots, respectively. Microshoots rooted in vitro and ex vitro showed a relationship between rooting and POD activity but in a different time course. It appeared that root formation occurred after the microshoots had reached and passed a peak of maximum enzyme activity. In all treatments, electrophoretic analysis (native PAGE) of PODs revealed the appearance of one anionic and three cationic POD isoforms (C(1), C(3) and C(4)). An additional cationic POD isoform (C(2)) appeared only in the ex vitro rooting. The lignin content was similar in microshoots rooted both in vitro and ex vitro. The sequential anatomical changes during the rooting process were similar in both in vitro and ex vitro rooting treatments. In the case of in vitro rooting, pith cells had vacuoles entirely filled with a dark substance, while in the case of ex vitro rooting, pith cells contained many amyloplasts. The origin of the adventitious roots, in both rooting conditions, was located in the cambial ring. Roots with organized tissue systems emerged from the microshoot stem 10-14 days after the root induction treatments; on day 10 for rooting in vitro, while a 4-day delay was noted in microshoots rooted ex vitro.
Vukovic, Nenad; Sukdolak, Slobodan; Solujic, Slavica; Niciforovic, Neda
2009-04-01
The chemical composition of essential oils obtained from the roots, stems, and leaves of Ballota nigra, growing in Serbia, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 115 individual compounds. The plant produces two types of essential oils. Oils derived from stems and leaves were sesquiterpene rich (78.17% and 88.40%, respectively), containing principally beta-caryophyllene, germacrene D, and alpha-humulene, present in appreciable amounts. In contrast, oil derived from the root was dominated by p-vinylguiacol (9.24%), borneol (7.51%), myrtenol (7.13%), trans-pinocarveol (5.22%), pinocarvone (4.37%), 2-methyl-3-phenylpropanal (4.32%), and p-cymen-8-ol (4.30%). Essential oil obtained from the roots was evaluated for the antimicrobial activity against seven bacterial species and one fungi.
USDA-ARS?s Scientific Manuscript database
The crown is the below ground portion of the stem of a grass which contains meristematic cells that give rise to new shoots and roots following winter. To better understand mechanisms of survival from freezing, histological analysis was performed on rye, wheat, barley and oat plants that had been fr...
Moore, T.A.; Hilbert, R.E.
1992-01-01
Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component parts, i.e. fragments of cell walls and fillings. The absence of differences in particle size between the peat and lignite also indicate little compaction of organic components; rather an extreme loss in water content and pore space has occurred from between the particles of organic material. ?? 1992.
NASA Technical Reports Server (NTRS)
Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.
1986-01-01
Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.
Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells
Richardson, Christine; Yan, Shan; Vestal, C. Greer
2015-01-01
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease. PMID:25622253
Sassi, Ahlem Ben; Skhiri, Fethia Harzallah; Chraief, Imed; Bourgougnon, Nathalie; Hammami, Mohamed; Aouni, Mahjoub
2014-01-01
The essential oils from the leaves, stems and roots of Chrysanthemum trifurcatum (Desf.) Batt. and Trab. var. macrocephalum (viv.) were obtained by hydrodistillation and their chemical compositions were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), in order to get insight into similarities and differences as to their active composition. A total of fifty compounds were identified, constituting 97.84%, 99.02% and 98.20% of total oil composition of the leaves, stems and roots, respectively. Monoterpene hydrocarbons were shown to be the main group of constituents of the leaves and stems parts in the ratio of 67.88% and 51.29%, respectively. But, the major group in the roots oil was found to be sesquiterpene hydrocarbons (70.30%). The main compounds in leaves oil were limonene (26.83%), γ-terpinene (19.68%), α-pinene (9.7%) and α-terpenyl acetate (7.16%). The stems oil, contains mainly limonene (32.91%), 4-terpenyl acetate (16.33%) and γ-terpinene (5.93%), whereas the main compounds in roots oil were α-calacorene (25.98%), α-cedrene (16.55%), β-bourbobene (14.91%), elemol (7.45%) and 2-hexenal (6.88%). The crude organic extracts of leaves, stems and roots, obtained by maceration with solvents of increasing polarity: petroleum ether, ethyl acetate and methanol, contained tannins, flavonoids and alkaloids. Meanwhile, essential oils and organic extracts were tested for antibacterial activities against eight Gram-positive and Gram-negative strains, using a microdilution method. The oil and methanolic extact from C. trifurcatum leaves showed a great potential of antibacterial effect against Bacillus subtilis and Staphylococcus epidermidis, with an IC50 range of 31.25-62.5 µg/ml.
Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B
2005-08-01
Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.
Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN
Chimungu, Joseph G.; Brown, Kathleen M.
2014-01-01
The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960
Liana abundance, diversity, and distribution on Barro Colorado Island, Panama.
Schnitzer, Stefan A; Mangan, Scott A; Dalling, James W; Baldeck, Claire A; Hubbell, Stephen P; Ledo, Alicia; Muller-Landau, Helene; Tobin, Michael F; Aguilar, Salomon; Brassfield, David; Hernandez, Andres; Lao, Suzanne; Perez, Rolando; Valdes, Oldemar; Yorke, Suzanne Rutishauser
2012-01-01
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution - critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.
Chochois, Vincent; Vogel, John P; Rebetzke, Gregory J; Watt, Michelle
2015-07-01
Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length [TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected. © 2015 American Society of Plant Biologists. All Rights Reserved.
Santos, Vanessa S; Souza, Vinicius P; Vilhalva, Divina A A; Ferreira, Fernanda P S; Paula, José R; Rezende, Maria Helena
2016-03-01
The occurrence of thickened underground systems in Asteraceae is widely reported in the literature. Given the great complexity of underground systems, which may originate from roots, stems, or both, morpho-anatomical analyses are essential to ensure the use of correct terminology. The goals of this study were to describe the morpho-anatomy and ontogeny, investigate the occurrence of secondary metabolites and evaluate the effects of seasonality on the underground system of Chrysolaena simplex (Less.) Dematt. Samples were studied using standard protocols of plant anatomy, scanning electron microscopy, histochemical and phytochemical. The underground system of C. simplex was categorised as a rhizophore which started from cotyledonary node. In adult individuals, with rhizophores completely developed, the primary roots degenerated and adventitious radicular systems are formed. The buds in the subterranean portions promote the rhizophore growing, and form aerial stems when exposed to light. Lipophilic droplets were evident in the parenchymatous cells of the cortex and pith, endodermis and buds. Inulin-type fructans were observed in the stem axis and buds of the rhizophore. The presence of buds, secondary metabolites and the storage of fructans and lipids in the rhizophore can be seen as adaptive traits.
Kim, K J; Kim, H J; Khalekuzzaman, M; Yoo, E H; Jung, H H; Jang, H S
2016-04-01
This work was designed to investigate the removal efficiency as well as the ratios of toluene and xylene transported from air to root zone via the stem and by direct diffusion from the air into the medium. Indoor plants (Schefflera actinophylla and Ficus benghalensis) were placed in a sealed test chamber. Shoot or root zone were sealed with a Teflon bag, and gaseous toluene and xylene were exposed. Removal efficiency of toluene and total xylene (m, p, o) was 13.3 and 7.0 μg·m(-3)·m(-2) leaf area over a 24-h period in S. actinophylla, and was 13.0 and 7.3 μg·m(-3)·m(-2) leaf area in F. benghalensis. Gaseous toluene and xylene in a chamber were absorbed through leaf and transported via the stem, and finally reached to root zone, and also transported by direct diffusion from the air into the medium. Toluene and xylene transported via the stem was decreased with time after exposure. Xylene transported via the stem was higher than that by direct diffusion from the air into the medium over a 24-h period. The ratios of toluene transported via the stem versus direct diffusion from the air into the medium were 46.3 and 53.7% in S. actinophylla, and 46.9 and 53.1% in F. benghalensis, for an average of 47 and 53% for both species. The ratios of m,p-xylene transported over 3 to 9 h via the stem versus direct diffusion from the air into the medium was 58.5 and 41.5% in S. actinophylla, and 60.7 and 39.3% in F. benghalensis, for an average of 60 and 40% for both species, whereas the ratios of o-xylene transported via the stem versus direct diffusion from the air into the medium were 61 and 39%. Both S. actinophylla and F. benghalensis removed toluene and xylene from the air. The ratios of toluene and xylene transported from air to root zone via the stem were 47 and 60 %, respectively. This result suggests that root zone is a significant contributor to gaseous toluene and xylene removal, and transported via the stem plays an important role in this process.
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.
2013-01-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O
2013-05-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.
Stemflow-induced processes of soil water storage
NASA Astrophysics Data System (ADS)
Germer, Sonja
2013-04-01
Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.
Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1.
Edamakanti, Chandrakanth Reddy; Do, Jeehaeh; Didonna, Alessandro; Martina, Marco; Opal, Puneet
2018-06-01
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with transcriptional changes detectable as early as a week after birth in SCA1-knockin mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1. We found that expanded ATXN1 stimulates the proliferation of postnatal cerebellar stem cells in SCA1 mice. These hyperproliferating stem cells tended to differentiate into GABAergic inhibitory interneurons rather than astrocytes; this significantly increased the GABAergic inhibitory interneuron synaptic connections, disrupting cerebellar Purkinje cell function in a non-cell autonomous manner. We confirmed the increased basket cell-Purkinje cell connectivity in human SCA1 patients. Mutant ATXN1 thus alters the neural circuitry of the developing cerebellum, setting the stage for the later vulnerability of Purkinje cells to SCA1. We propose that other late-onset degenerative diseases may also be rooted in subtle developmental derailments.
Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W
de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine
2013-01-01
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865
Farnese, F S; Oliveira, J A; Lima, F S; Leão, G A; Gusman, G S; Silva, L C
2014-08-01
Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As) for seven days. Growth, As absorption, malondialdehyde (MDA) content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.
NASA Astrophysics Data System (ADS)
Savidge, Rodney
Wild type (Col 0) Arabidopsis thaliana were grown in a growth chamber within the single mid-deck sized Advanced Biological Research System (ABRS) spaceflight hardware developed by NASA Kennedy Space Center. Before beginning this experiment, the plants, each rooted in individual transferable tubes containing nutrients, were cultivated hydroponically on halfstrength Hoagland's solution beneath either LED lighting similar to that provided by the ABRS growth chamber or white fluorescent lighting. The leaves of the basal whorl of plants pre-grown in ABRS lighting were small and purplish at the start of the experiment, whereas those under fluorescent lighting were larger and green. The plants were transferred to the ABRS soon after their inflorescence axes had started to elongate, and thereafter they were maintained under preset conditions (22 o C, approximately 1500 ppm CO2 , predominantly 125 µmol m-2 s-1 PAR) with pulses of water provided at 1-3 d intervals (as needed) to the module into which the root tubes were inserted. That module was pre-treated with half-strength Hoagland's nutrient solution on day 0, but no additional nutrients were provided the plants thereafter. Strong primary growth of all inflorescence stems occurred soon after initiating the ABRS experiment, and the plants began forming an overarching canopy of flowering stems beneath the LED lighting module within two weeks. After 38 days the root module was littered with seeds, siliques and abscised leaves, but all plants remained alive. Plants pre-grown in ABRS lighting were more advanced toward senescence, and leaves and stems of plants pre-grown in fluorescent lighting although greener were also acquiring a purplish hue. Microscopy revealed that the flowering stems achieved no secondary growth; however, progressive inward conversion of pith parenchyma into sclerenchyma cells did occur resulting in the inflorescence stems becoming abnormally woody.
The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.
Min, Ya; Kramer, Elena M
2017-10-01
In order to explore the functional conservation of JAGGED, a key gene involved in the sculpting of lateral organs in several model species, we identified its ortholog AqJAG in the lower eudicot species Aquilegia coerulea. We analyzed the expression patterns of AqJAG in various tissues and developmental stages, and used RNAi-based methods to generate knockdown phenotypes of AqJAG. AqJAG was strongly expressed in shoot apices, floral meristems, lateral root primordia and all lateral organ primordia. Silencing of AqJAG revealed a wide range of defects in the developing stems, leaves and flowers; strongest phenotypes include severe reduction of leaflet laminae due to a decrease in cell size and number, change of adaxial cell identity, outgrowth of laminar-like tissue on the inflorescence stem, and early arrest of floral meristems and floral organ primordia. Our results indicate that AqJAG plays a critical role in controlling primordia initiation and distal growth of floral organs, and laminar development of leaflets. Most strikingly, we demonstrated that AqJAG disproportionally controls the behavior of cells with adaxial identity in vegetative tissues, providing evidence of how cell proliferation is controlled in an identity-specific manner. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Gutsch, Annelie; Keunen, Els; Guerriero, Gea; Renaut, Jenny; Cuypers, Ann; Hausman, Jean-François; Sergeant, Kjell
2018-06-15
Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both the ecosystem and the health of humans. Plants employ various cellular and molecular mechanisms to minimize the impact of Cd toxicity and the cell walls function as defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall- and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (at 10 mg Cd per kg soil as CdSO 4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature plant stage as no difference in biomass was observed. The accumulation of Cd was highest in the roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodeling, defense response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defense against Cd stress. The identified proteins are linked to alterations in the cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Brick, Rachel M.; Sun, Aaron X.
2017-01-01
Abstract Adult tissue‐derived mesenchymal stem cells (MSCs) are known to produce a number of bioactive factors, including neurotrophic growth factors, capable of supporting and improving nerve regeneration. However, with a finite culture expansion capacity, MSCs are inherently limited in their lifespan and use. We examined here the potential utility of an alternative, mesenchymal‐like cell source, derived from induced pluripotent stem cells, termed induced mesenchymal progenitor cells (MiMPCs). We found that several genes were upregulated and proteins were produced in MiMPCs that matched those previously reported for MSCs. Like MSCs, the MiMPCs secreted various neurotrophic and neuroprotective factors, including brain‐derived neurotrophic factor (BDNF), interleukin‐6 (IL‐6), leukemia inhibitory factor (LIF), osteopontin, and osteonectin, and promoted neurite outgrowth in chick embryonic dorsal root ganglia (DRG) cultures compared with control cultures. Cotreatment with a pharmacological Trk‐receptor inhibitor did not result in significant decrease in MiMPC‐induced neurite outgrowth, which was however inhibited upon Jak/STAT3 blockade. These findings suggest that the MiMPC induction of DRG neurite outgrowth is unlikely to be solely dependent on BDNF, but instead Jak/STAT3 activation by IL‐6 and/or LIF is likely to be critical neurotrophic signaling pathways of the MiMPC secretome. Taken together, these findings suggest MiMPCs as a renewable, candidate source of therapeutic cells and a potential alternative to MSCs for peripheral nerve repair, in view of their ability to promote nerve growth by producing many of the same growth factors and cytokines as Schwann cells and signaling through critical neurotrophic pathways. stem cells translational Medicine 2018;7:45–58 PMID:29215199
Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua
2006-06-01
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.
Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J.; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe
2016-01-01
Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr−1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha−1 and NPP of perennial roots was 1·3 t ha−1 yr−1. Fine root biomass (0–30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha−1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha−1 yr−1 (69 % of total root NPP). Fine root turnover was 1·3 yr−1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. PMID:27551026
The ROOT and STEM of a Fruitful Business Education
ERIC Educational Resources Information Center
Badua, Frank
2015-01-01
The author discusses the role of the liberal arts in a business curriculum for an increasingly science, technology, engineering, and mathematics (STEM)-centered world. The author introduces the rhetoric, orthography, ontology, and teleology (ROOT) disciplines, and links them to the traditional liberal arts foundation of higher education. The…
Target seedling strategies for intensively managed plantations in the Oregon Coast Range
Mark Wall
2011-01-01
The target Douglas-fir seedling for outplanting on Roseburg Resources Company timberlands is a least-cost, large [stem] caliper 1- to 2-year old bareroot (>8 mm) or container (>6 mm) seedling with good form, high root growth potential, and the ability to withstand browse without the use of browse deterrents. This target is achieved through the use of large cell...
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Bai, Junhong; Wang, Wei; Huang, Laibing; Zhang, Guangliang; Wang, Dawei
2018-04-01
Plant samples including roots, stems and leaves of Phragmites australis and Suaeda salsa were collected in the short-term flooding and tidal flooding wetlands of the Yellow River Delta of China. Six heavy metals (e.g., As, Cd, Cr, Cu, Pb, and Zn) were measured in roots, stems and leaves of each plant species using inductively coupled plasma atomic absorption spectrometry (ICP-AAS) to investigate the levels, and transfer capabilities of heavy metals in these two plant species. Our results showed that in the tidal flooding wetlands, the contents of As, Cr and Cd in roots of Phragmites australis and Suaeda salsa were higher than those in their stems and leaves. Suaeda salsa showed higher contents of Pb and Zn in leaves than those in roots and stems, whereas lower levels of Pb and Zn were observed in Phragmites australis. In the short-term flooding wetlands, heavy metal contents exhibited a big difference between different tissues of Phragmites australis and Suaeda salsa, and both plant species showed higher levels of Pb and Zn in leaves. Suaeda salsa roots enriched more As and Cd, whereas higher enrichment levels were observed in Phragmites australis leaves, which indicated different transfer capacities of these two wetland plants. The transfer factors for stems and leaves of Phragmites australis in the tidal flooding wetlands significantly differed from those in the short-term flooding wetlands, however, no significant differences in transfer factors for stems and leaves of Suaeda salsa were observed between these two types of wetlands.
Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.
Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J
2018-02-01
Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.
Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.
Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu
2015-11-15
Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.
A generalized model for stability of trees under impact conditions
NASA Astrophysics Data System (ADS)
Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide
2016-04-01
Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.
Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.
2017-01-01
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties. PMID:28751896
Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori.
Shin, Il Shik; Masuda, Hideki; Naohide, Kinae
2004-08-01
In this study, the bactericidal activity of Korean and Japanese wasabi roots, stems and leaves against Helicobacter pylori were examined. Allyl isothiocyanate (AIT) in roots, stems and leaves of Korean wasabi were 0.75, 0.18 and 0.32 mg/g, respectively. AIT in roots, stems and leaves of Japanese wasabi were 1.18, 0.41 and 0.38 mg/g, respectively. All parts of wasabi showed bactericidal activities against H. pylori strain NCTC 11637, YS 27 and YS 50. The leaves of both wasabi showed the highest bactericidal activities with the minimum bactericidal concentration of 1.05-1.31 mg of dry weight/ml against three strains of H. pylori. The roots showed a little lower bactericidal activity with 2.09-4.17 mg of dry weight/ml against them. The main component related to antimicrobial activity in wasabi is well known to be AIT. In this study, the bactericidal activity of leaves was higher than that of roots, although AIT amount of leaves was lower than that of roots. These results suggest that certain components besides AIT in wasabi are effective in killing H. pylori.
Microbial community analysis of field-grown soybeans with different nodulation phenotypes.
Ikeda, Seishi; Rallos, Lynn Esther E; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu
2008-09-01
Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.
Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿
Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu
2008-01-01
Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybean roots. Fusarium solani was stably associated with nodulated (Nod+ and Nod++) roots and less abundant in Nod− soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod−, Nod+, or Nod++). The analysis of root samples indicated that the microbial community in Nod− soybeans was more similar to that in Nod++ soybeans than to that in Nod+ soybeans. PMID:18658280
Advances in cancer stem cell targeting: How to strike the evil at its root.
Pützer, Brigitte M; Solanki, Manish; Herchenröder, Ottmar
2017-10-01
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu
2012-03-23
Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-11-03
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-01-01
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117
de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita
2012-08-01
The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
Cancer Stem Cell Theory and the Warburg Effect, Two Sides of the Same Coin?
Pacini, Nicola; Borziani, Fabio
2014-01-01
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific “metabolic sign” has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific “metabolic sign” reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined. PMID:24857919
Cancer stem cell theory and the warburg effect, two sides of the same coin?
Pacini, Nicola; Borziani, Fabio
2014-05-19
Over the last 100 years, many studies have been performed to determine the biochemical and histopathological phenomena that mark the origin of neoplasms. At the end of the last century, the leading paradigm, which is currently well rooted, considered the origin of neoplasms to be a set of genetic and/or epigenetic mutations, stochastic and independent in a single cell, or rather, a stochastic monoclonal pattern. However, in the last 20 years, two important areas of research have underlined numerous limitations and incongruities of this pattern, the hypothesis of the so-called cancer stem cell theory and a revaluation of several alterations in metabolic networks that are typical of the neoplastic cell, the so-called Warburg effect. Even if this specific "metabolic sign" has been known for more than 85 years, only in the last few years has it been given more attention; therefore, the so-called Warburg hypothesis has been used in multiple and independent surveys. Based on an accurate analysis of a series of considerations and of biophysical thermodynamic events in the literature, we will demonstrate a homogeneous pattern of the cancer stem cell theory, of the Warburg hypothesis and of the stochastic monoclonal pattern; this pattern could contribute considerably as the first basis of the development of a new uniform theory on the origin of neoplasms. Thus, a new possible epistemological paradigm is represented; this paradigm considers the Warburg effect as a specific "metabolic sign" reflecting the stem origin of the neoplastic cell, where, in this specific metabolic order, an essential reason for the genetic instability that is intrinsic to the neoplastic cell is defined.
Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan
2016-05-21
The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.
Pulp regeneration concepts for non-vital teeth: from tissue engineering to clinical approaches.
Orti, Valérie; Collart-Dutilleul, Pierre-Yves; Piglionico, Sofía Silvia; Pall, Orsolya; Cuisinier, Frédéric; Panayotov, Ivan Vladislavov
2018-05-04
Following the basis of tissue engineering (Cells - Scaffold - Bioactive molecules), regenerative endodontic has emerged as a new concept of dental treatment. Clinical procedures have been proposed by endodontic practitioners willing to promote regenerative therapy. Preserving pulp vitality was a first approach. Later procedures aimed to regenerate a vascularized pulp in necrotic root canals. However, there is still no protocol allowing an effective regeneration of necrotic pulp tissue either in immature or mature teeth. This review explore in vitro and preclinical concepts developed during the last decade, especially the potential use of stem cells, bioactive molecules and scaffolds, and makes a comparison with the goals achieved so far in clinical practice. Regeneration of pulp-like tissue has been shown in various experimental conditions. However, the appropriate techniques are currently in a developmental stage. The ideal combination of scaffolds and growth factors to obtain a complete regeneration of the pulp-dentin complex is still unknown. The use of stem cells, especially from pulp origin, sounds promising for pulp regeneration therapy, but it has not been applied so far for clinical endodontics, in case of necrotic teeth. The gap observed between the hope raised from in vitro experiments and the reality of endodontic treatments suggests that clinical success may be achieved without external stem cell application. Therefore, procedures using the concept of cell homing, through evoked bleeding, that permit to recreate a living tissue that mimics the original pulp have been proposed. Perspectives for pulp tissue engineering in a near future include a better control of clinical parameters and pragmatic approach of the experimental results (autologous stem cells from cell homing, controlled release of growth factors). In the coming years, this therapeutic strategy will probably become a clinical reality, even for mature necrotic teeth.
Sevik, Hakan; Guney, Kerim
2013-01-01
This study analyzed the potential of producing Melissa officinalis L. using stem cuttings. Four different hormones (IAA, IBA, NAA, and GA3) were applied to the cuttings, with and without buds, in two doses (1000 mg/L and 5000 mg/L), and after 60 days, 10 morphological characteristics of newly generated plants were detected, and a statistical analysis was carried out. The results of the study show that the cuttings with at least one bud must be used in order to produce M. officinalis using stem cuttings. Even though the auxin group hormones (IAA, IBA, and NAA) do not have an apparent effect on rooting percentage, these hormones were detected to affect the morphological characteristics of the newly generated plants, especially root generation. GA3 application has a considerable effect on stem height.
Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi
2007-06-01
Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.
Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration
Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C.
2014-01-01
Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. PMID:25201919
Hao, Yueling; Cui, Hongchang
2012-01-01
SHORT-ROOT (SHR) is a key regulator of radial patterning and stem-cell renewal in the Arabidopsis root. Although SHR is expressed in the stele, its function in the vascular tissue was not recognized until recently. In shr, the protoxylem is missing due to the loss of expression of microRNA165A (miR165A) and microRNA166B (miR165B). shr is also defective in lateral root formation, but the mechanism remains unclear. To dissect the SHR developmental pathway, we recently have identified its direct targets at the genome scale by chromatin immunoprecipitation followed by microarray analysis (ChIP-chip). In further studies, we have shown that SHR regulates cytokinin homeostasis through cytokinin oxidase 3 and that this role of SHR is critical to vascular patterning in the root. In this communication we report that SHR also regulates miR165A and miR166B indirectly through its effect on cytokinin homeostasis. Although cytokinin is inhibitory to root growth, the root-apical-meristem defect in shr was not alleviated by reduction of endogenous cytokinin. These results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis. PMID:22476466
Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte
Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.
2016-01-01
Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730
Regeneration of dental pulp by stem cells.
Nakashima, M; Iohara, K
2011-07-01
Angiogenesis/vasculogenesis and neurogenesis are essential for pulp regeneration. Two subfractions of side-population (SP) cells, CD31(-)/CD146(-) SP cells and CD105(+) cells with angiogenic and neurogenic potential, were isolated by flow cytometry from canine dental pulp. In an experimental model of mouse hindlimb ischemia, transplantation of these cell populations resulted in an increase in blood flow, including high-density capillary formation. In a model of rat cerebral ischemia, stem cell transplantations enhanced neuronal regeneration and recovery from motor disability. Autologous transplantation of the CD31(-)/CD146(-) SP cells into an in vivo model of amputated pulp resulted in complete regeneration of pulp tissue with vascular and neuronal processes within 14 days. The transplanted cells expressed pro-angiogenic factors, implying trophic action on endothelial cells. Autologous transplantation of CD31(-)/CD146(-) SP cells or CD105(+) cells with stromal-cell-derived factor-1 (SDF-1) into root canals after whole pulp removal of mature teeth resulted in complete regeneration of pulp replete with nerves and vasculature by day 14, followed by dentin formation along the dentinal wall by day 35. Therefore, the potential utility of fractionated SP cells and CD105(+) cells in angiogenesis and neurogenesis was demonstrated by treatment of limb and cerebral ischemia following pulpotomy and pulpectomy.
Stemming Malay Text and Its Application in Automatic Text Categorization
NASA Astrophysics Data System (ADS)
Yasukawa, Michiko; Lim, Hui Tian; Yokoo, Hidetoshi
In Malay language, there are no conjugations and declensions and affixes have important grammatical functions. In Malay, the same word may function as a noun, an adjective, an adverb, or, a verb, depending on its position in the sentence. Although extensively simple root words are used in informal conversations, it is essential to use the precise words in formal speech or written texts. In Malay, to make sentences clear, derivative words are used. Derivation is achieved mainly by the use of affixes. There are approximately a hundred possible derivative forms of a root word in written language of the educated Malay. Therefore, the composition of Malay words may be complicated. Although there are several types of stemming algorithms available for text processing in English and some other languages, they cannot be used to overcome the difficulties in Malay word stemming. Stemming is the process of reducing various words to their root forms in order to improve the effectiveness of text processing in information systems. It is essential to avoid both over-stemming and under-stemming errors. We have developed a new Malay stemmer (stemming algorithm) for removing inflectional and derivational affixes. Our stemmer uses a set of affix rules and two types of dictionaries: a root-word dictionary and a derivative-word dictionary. The use of set of rules is aimed at reducing the occurrence of under-stemming errors, while that of the dictionaries is believed to reduce the occurrence of over-stemming errors. We performed an experiment to evaluate the application of our stemmer in text mining software. For the experiment, text data used were actual web pages collected from the World Wide Web to demonstrate the effectiveness of our Malay stemming algorithm. The experimental results showed that our stemmer can effectively increase the precision of the extracted Boolean expressions for text categorization.
Rana, Vivek; Maiti, Subodh Kumar
2018-04-01
Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.
Characterizing the Physics of Plant Root Gravitropism: A Systems Modeling Approach
1999-01-01
with its root directly downward, the root and stem undergo a gravitropic response. Statoliths (gravity-sensing organelles) within the root cap respond...this study is to model the plant root gravitropic response using classical controls and system identification principles. Specific objectives of this
[Changes of transport sugar content in different organs of Rehmannia glutinosa].
Wang, Dong-Hui; Liao, Na; Sun, Peng; Ji, Xue-Qi; Li, Xian-En; Qin, Min-Jian
2018-04-01
Raffinose series oligosaccharides are the transport and storage sugars of many plants, Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, medicinal parts ist he roots. Root and tuber of R. glutinosa contains stachyose, raffinose and other oligosaccharides, but the study about the process of growth and development of other organs in the non-structural changes in sugar content is rare.In this study, leaves, stems and roots of R. glutinosa were used as materials to analyze the diurnal variation and the changes of sugar content of sucrose, raffinose and stachyose in different organs of R. glutinosa. The results showed that the content of sucrose in R. glutinosa leaves gradually increased from seedling stage.However, the content of stachyose did not change much at the early stage of growth, and the stachyose rapidly increased at the later stage of growth. The raffinose content gradually decreased throughout the growing season, young leaves of R. glutinosa have higher ability to sucrose synthesis than mature leaves, while mature leaf has higher raffinose and stachyose synthesis ability than young leaves. Sucrose and stachyose content in stem gradually increased, while there was little change in raffinose content. The content of raffinose and stachyose in root increased rapidly from the beginning of fast growing period, while the content of sucrose did not change much. The content of sucrose in leaves of R. glutinosa did not change much at day and night, while the daily changes of raffinose and stachyose contents were very obvious. The contents of raffinose and stachyose in daytime were higher than those at night. The content of raffinose in root and stem was not changed much, but the change of stachyose in root, stem and leaf was very obvious, especially in stem and leaf. In summary, the leaf is the main synthetic organ of raffinose, leaves, stems and roots are stachyose synthesis organ. Sucrose, raffinose and stachyose are the major transport forms of carbohydrates in R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.
Yang, Yingzhen; Jittayasothorn, Yingyos; Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan
2013-01-01
Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.
Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan
2013-01-01
Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs. PMID:23874962
Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model
2011-02-01
renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1...pathetic ganglia and adrenal medulla and died at birth (Gitler et al., 2003). To circumvent early lethality of the Nf1NC mice, we utilized a previously...Supplemental experimental procedures Tissue Processing For histological analysis, we utilized both paraffin sections and frozen sections. For both
Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M
2016-03-01
Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral trioxide aggregate indicate that the material is cytocompatible and bioactive. The tested new tricalcium silicate cement confirms its suitability as an alternative to MTA in vital pulp therapy.
NASA Technical Reports Server (NTRS)
Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.
1991-01-01
Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.
Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe
2016-08-21
In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of Watering and Fertilization on Carbohydrate Reserves in Sugar Maple Seedlings
Clayton M., Jr. Carl; John R. Donnelly; Boyd W. Post
1978-01-01
Sugar maple seedlings, grown under three nutrient and three moisture levels, were analyzed after three growing seasons for starch and ethanol-soluble sugars. Analytical procedures are detailed in the appendix. Fertilization did not affect carbohydrate levels in stems or roots. Water stress caused a significant reduction in the amount of carbohydrates in stems and roots...
Lou, Lili; Han, Lingfei; Meng, Dali; Li, Ning; Li, Xian
2011-06-01
From the stems and roots of Jasminum lanceolarium Roxb., two new compounds, janceolaroside A and janceoside A, have been isolated along with three known compounds, (-)olivil 4'-O-beta-D-glucopyranoside, (+)-cycloolivil-6-O-beta-D-glucopyranoside and syringin. The structures of the new compounds were determined by spectroscopic methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio
2006-04-15
Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{submore » 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.« less
Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Li, Siqi; van Bodegom, Peter M.; Cornelissen, Johannes H. C.
2016-01-01
Background and Aims Flooding imposes stress upon terrestrial plants because it results in oxygen deficiency, which is considered a major problem for submerged plants. A common response of terrestrial plants to flooding is the formation of aquatic adventitious roots. Some studies have shown that adventitious roots on submerged plants are capable of absorbing water and nutrients. However, there is no experimental evidence for the possible oxygen uptake function of adventitious roots or for how important this function might be for the survival of plants during prolonged submergence. This study aims to investigate whether adventitious roots absorb oxygen from the water column, and whether this new function is beneficial to the survival of completely submerged plants. Methods Taking Alternanthera philoxeroides (Mart.) Griseb. as a representative species, the profiling of the underwater oxygen gradient towards living and dead adventitious roots on completely submerged plants was conducted, the oxygen concentration in stem nodes with and without adventitious roots was measured, and the growth, survival and non-structural carbohydrate content of completely submerged plants with and without adventitious roots was investigated. Key Results Oxygen profiles in the water column of adventitious roots showed that adventitious roots absorbed oxygen from water. It is found that the oxygen concentration in stem nodes having adventitious roots was higher than that in stem nodes without adventitious roots, which implies that the oxygen absorbed by adventitious roots from water was subsequently transported from the roots to other plant tissues. Compared with plants whose adventitious roots had been pruned, those with intact adventitious roots had slower leaf shedding, slower plant mass reduction, more efficient carbohydrate economy and prolonged survival when completely submerged. Conclusions The adventitious roots of A. philoxeroides formed upon submergence can absorb oxygen from ambient water, thereby alleviating the adverse effects of oxygen deficiency, enabling efficient utilization of carbohydrates and delaying the death of completely submerged plants. PMID:27063366
Distribution of Potato virus Y in potato plant organs, tissues, and cells.
Kogovšek, P; Kladnik, A; Mlakar, J; Znidarič, M Tušek; Dermastia, M; Ravnikar, M; Pompe-Novak, M
2011-11-01
The distribution of Potato virus Y (PVY) in the systemically infected potato (Solanum tuberosum) plants of the highly susceptible cultivar Igor was investigated. Virus presence and accumulation was analyzed in different plant organs and tissues using real-time polymerase chain reaction and transmission electron microscopy (TEM) negative staining methods. To get a complete insight into the location of viral RNA within the tissue, in situ hybridization was developed and optimized for the detection of PVY RNA at the cellular level. PVY was shown to accumulate in all studied leaf and stem tissues, in shoot tips, roots, and tubers; however, the level of virus accumulation was specific for each organ or tissue. The highest amounts of viral RNA and viral particles were found in symptomatic leaves and stem. By observing cell ultrastructure with TEM, viral cytoplasmic inclusion bodies were localized in close vicinity to the epidermis and in trichomes. Our results show that viral RNA, viral particles, and cytoplasmic inclusion bodies colocalize within the same type of cells or in close vicinity.
Anxiety and the aging brain: stressed out over p53?
Scrable, Heidi; Burns-Cusato, Melissa; Medrano, Silvia
2009-12-01
We propose a model in which cell loss in the aging brain is seen as a root cause of behavioral changes that compromise quality of life, including the onset of generalized anxiety disorder, in elderly individuals. According to this model, as stem cells in neurogenic regions of the adult brain lose regenerative capacity, worn-out, dead, or damaged neurons fail to be replaced, leaving gaps in function. As most replacement involves inhibitory interneurons, either directly or indirectly, the net result is the acquisition over time of a hyper-excitable state. The stress axis is subserved by all three neurogenic regions in the adult brain, making it particularly susceptible to these age-dependent changes. We outline a molecular mechanism by which hyper-excitation of the stress axis in turn activates the tumor suppressor p53. This reinforces the loss of stem cell proliferative capacity and interferes with the feedback mechanism by which the glucocorticoid receptor turns off neuroendocrine pathways and resets the axis.
Chrepa, Vanessa; Pitcher, Brandon; Henry, Michael A; Diogenes, Anibal
2017-04-01
Apical papilla represents a source of an enriched mesenchymal stem cell (MSC) population (stem cells of the apical papilla [SCAPs]) that modulates root development and may participate in regenerative endodontic procedures in immature teeth with pulp necrosis. The characteristics and phenotype of this tissue in the presence of inflammation are largely unknown. The purpose of this study was to characterize a human apical papilla sample that was isolated from an immature tooth with pulp necrosis and apical periodontitis. Inflamed periapical tissue that included part of the apical papilla (apical papilla clinical sample [CS]) was collected from an immature mandibular premolar previously diagnosed with pulp necrosis and apical periodontitis during an apexification procedure. Harvested cells from this tissue (SCAP CS) were compared with inflamed periapical progenitor cells (IPAPCs) and normal SCAP (SCAP-RP89) in flow cytometry and quantitative osteogenesis experiments. Part of the issue was further processed for immunohistochemistry and compared with apical papilla and coronal pulp sections from normal immature teeth as well as inflamed periapical tissues from mature teeth. Similar to SCAP-RP89, 96.6% of the SCAP CS coexpressed the MSC markers CD73, CD90, and CD105, whereas only 66.3% of IPAPCs coexpressed all markers. The SCAP CS showed a significantly greater mineralization potential than both SCAP-RP89 and IPAPCs. Finally, immunohistochemical analysis revealed moderate infiltration of cells expressing the inflammatory markers CD45/68 in the apical papilla CS and prominent CD24, CD105, and von Willebrand factor expression. Under inflammatory conditions, human apical papilla was found moderately inflamed with retained SCAP vitality and stemness and increased osteogenic and angiogenesis potential. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Phototropism in Arabidopsis roots is mediated by two sensory systems
NASA Astrophysics Data System (ADS)
Kiss, John Z.; Ruppel, Nicholas J.; Hangarter, Roger P.
Phototropism has been well-characterized in stems and stem-like organs, but there have been relatively few studies of root phototropism. Our experiments suggest that there are two photosensory systems that elicit phototropic responses in roots of Arabidopsis thaliana: a previously identified blue-light photoreceptor system mediated by phototropin (= NPH1 protein) and a novel red-light-based mechanism. The phototropic responses in roots are much weaker than the graviresponse, which competes with and often masks the phototropic response. It was through the use of mutant plants with a weakened graviresponse that we were able to identify the activity of the red-light-dependent phototropic system. In addition, the red-light-based photoresponse in roots is even weaker compared to the blue-light response. Our results also suggest that phytochrome may be involved in mediating positive phototropism in roots.
Hancock, Jessica E; Loya, Wendy M; Giardina, Christian P; Li, Laigeng; Chiang, Vincent L; Pregitzer, Kurt S
2007-01-01
We conducted a glasshouse mesocosm study that combined (13)C isotope techniques with wild-type and transgenic aspen (Populus tremuloides) in order to examine how altered lignin biosynthesis affects plant production and soil carbon formation. Our transgenic aspen lines expressed low stem lignin concentration but normal cellulose concentration, low lignin stem concentration with high cellulose concentration or an increased stem syringyl to guaiacyl lignin ratio. Large differences in stem lignin concentration observed across lines were not observed in leaves or fine roots. Nonetheless, low lignin lines accumulated 15-17% less root C and 33-43% less new soil C than the control line. Compared with the control line, transformed aspen expressing high syringyl lignin accumulated 30% less total plant C - a result of greatly reduced total leaf area - and 70% less new soil C. These findings suggest that altered stem lignin biosynthesis in Populus may have little effect on the chemistry of fine roots or leaves, but can still have large effects on plant growth, biomass partitioning and soil C formation.
Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics.
Torode, Thomas A; O'Neill, Rachel; Marcus, Susan E; Cornuault, Valérie; Pose, Sara; Lauder, Rebecca P; Kračun, Stjepan K; Rydahl, Maja Gro; Andersen, Mathias C F; Willats, William G T; Braybrook, Siobhan A; Townsend, Belinda J; Clausen, Mads H; Knox, J Paul
2018-02-01
A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis ( Arabidopsis thaliana ), Miscanthus x giganteus , and notably sugar beet ( Beta vulgaris ) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic ( Allium sativum ) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls. © 2018 The author(s). All Rights Reserved.
Sánchez-García, Ana Belén; Ibáñez, Sergio; Cano, Antonio; Acosta, Manuel; Pérez-Pérez, José Manuel
2018-01-01
Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.
Cano, Antonio; Acosta, Manuel
2018-01-01
Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation. PMID:29709027
Root resistance to cavitation is accurately measured using a centrifuge technique.
Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L
2015-02-01
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cell therapy worldwide: an incipient revolution.
Rao, Mahendra; Mason, Chris; Solomon, Susan
2015-01-01
The regenerative medicine field is large, diverse and active worldwide. A variety of different organizational and product models have been successful, and pioneering entrepreneurs have shown both what can work and, critically, what does not. Evolving regulations, novel funding mechanisms combined with new technological breakthroughs are keeping the field in a state of flux. The field struggles to cope with the lack of infrastructure and investment, it nevertheless has evolved from its roots in human stem cell therapy and tissue and organ transplants to a field composed of a variety of products from multiple cell sources with approval for use in numerous countries. Currently, tens of thousands of patients have been treated with some kind of cell therapy.
Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.
Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong
2016-02-01
Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Larbat, Romain; Paris, Cédric; Le Bot, Jacques; Adamowicz, Stéphane
2014-07-01
Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
2003-01-01
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.
Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in these two murine models suggesting the specificity of Notch pathway in this regard. These data provide a novel role of ODC in augmenting tumorigenesis via negatively regulated Notch-mediated expansion of stem cell compartment.« less
Glas, Martin; Coch, Christoph; Trageser, Daniel; Dassler, Juliane; Simon, Matthias; Koch, Philipp; Mertens, Jerome; Quandel, Tamara; Gorris, Raphaela; Reinartz, Roman; Wieland, Anja; Von Lehe, Marec; Pusch, Annette; Roy, Kristin; Schlee, Martin; Neumann, Harald; Fimmers, Rolf; Herrlinger, Ulrich; Brüstle, Oliver; Hartmann, Gunther; Besch, Robert; Scheffler, Björn
2013-06-01
Cellular heterogeneity, for example, the intratumoral coexistence of cancer cells with and without stem cell characteristics, represents a potential root of therapeutic resistance and a significant challenge for modern drug development in glioblastoma (GBM). We propose here that activation of the innate immune system by stimulation of innate immune receptors involved in antiviral and antitumor responses can similarly target different malignant populations of glioma cells. We used short-term expanded patient-specific primary human GBM cells to study the stimulation of the cytosolic nucleic acid receptors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene I (RIG-I). Specifically, we analyzed cells from the tumor core versus "residual GBM cells" derived from the tumor resection margin as well as stem cell-enriched primary cultures versus specimens without stem cell properties. A portfolio of human, nontumor neural cells was used as a control for these studies. The expression of RIG-I and MDA5 could be induced in all of these cells. Receptor stimulation with their respective ligands, p(I:C) and 3pRNA, led to in vitro evidence for an effective activation of the innate immune system. Most intriguingly, all investigated cancer cell populations additionally responded with a pronounced induction of apoptotic signaling cascades revealing a second, direct mechanism of antitumor activity. By contrast, p(I:C) and 3pRNA induced only little toxicity in human nonmalignant neural cells. Granted that the challenge of effective central nervous system (CNS) delivery can be overcome, targeting of RIG-I and MDA5 could thus become a quintessential strategy to encounter heterogeneous cancers in the sophisticated environments of the brain. Copyright © 2013 AlphaMed Press.
Rhizophores in Rhizophora mangle L: an alternative interpretation of so-called ''aerial roots''.
Menezes, Nanuza L de
2006-06-01
Rhizophora mangle L., one of the most common mangrove species, has an aerial structure system that gives it stability in permanently swampy soils. In fact, these structures, known as "aerial roots" or "stilt roots", have proven to be peculiar branches with positive geotropism, which form a large number of roots when in contact with swampy soils. These organs have a sympodial branching system, wide pith, slightly thickened cortex, collateral vascular bundles, polyarch stele and endarch protoxylem, as in the stem, and a periderm produced by a phellogen at the apex similar to a root cap. They also have the same type of trichosclereid that occurs in the stem, with negative geotropism, unlike true Rhizophora roots, which do not form trichosclereids at all. On the other hand, these branches do not form leaves and in this respect they are similar to roots. These peculiar branches are rhizophores or special root-bearing branches, analogous to those found in Lepidodendrales and other Carboniferous tree ferns that grew in swampy soils.
Dong, Jing; Wu, Feibo; Zhang, Guoping
2006-09-01
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.
Anatomical investigations on root, stem, and leaf of Gentiana olivieri Griseb
Tüzün, Canan Yağci; Toker, Mehmet Cihat; Toker, Gülnur
2011-01-01
Background: Gentiana olivieri Griseb. (Afat) (Gentianaceae), which has many bioactive compounds is used as antidiabetic, hepatoprotective, digestive aid, antidepressant, and antianemic in traditional medicine. Materials and Methods: Root, stem, and leaf sections of G. olivieri were taken free hand or by sliding microtome and examined on light microscope. Results: Anatomical characters of the species were observed to be similar to the usual features of Gentianaceae anatomy. Conclusion: Intraxylary phloem, which was primarily the distinguishing feature between Gentianoideae and Menyanthoideae sub-families was observed in G. olivieri roots. PMID:21472072
Yang, Shi-Jian; Zhang, Yong-Jiang; Sun, Mei; Goldstein, Guillermo; Cao, Kun-Fang
2012-04-01
Despite considerable investigations of diurnal water use characteristics in different plant functional groups, the research on daily water use strategies of woody bamboo grasses remains lacking. We studied the daily water use and gas exchange of Sinarundinaria nitida (Mitford) Nakai, an abundant subtropical bamboo species in Southwest China. We found that the stem relative water content (RWC) and stem hydraulic conductivity (K(s)) of this bamboo species did not decrease significantly during the day, whereas the leaf RWC and leaf hydraulic conductance (K(leaf)) showed a distinct decrease at midday, compared with the predawn values. Diurnal loss of K(leaf) was coupled with a midday decline in stomatal conductance (g(s)) and CO(2) assimilation. The positive root pressures in the different habitats were of sufficient magnitude to refill the embolisms in leaves. We concluded that (i) the studied bamboo species does not use stem water storage for daily transpiration; (ii) diurnal down-regulation in K(leaf) and gs has the function to slow down potential water loss in stems and protect the stem hydraulic pathway from cavitation; (iii) since K(leaf) did not recover during late afternoon, refilling of embolism in bamboo leaves probably fully depends on nocturnal root pressure. The embolism refilling mechanism by root pressure could be helpful for the growth and persistence of this woody monocot species.
Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R
2012-04-01
Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.
Huang, Li-Chun; Lius, Suwenza; Huang, Bau-Lian; Murashige, Toshio; Mahdi, El Fatih M.; Van Gundy, Richard
1992-01-01
Repeated grafting of 1.5-centimeter long shoot tips from an adult Sequoia sempervirens tree onto fresh, rooted juvenile stem cuttings in vitro resulted in progressive restoration of juvenile traits. After four successive grafts, stem cuttings of previously adult shoots rooted as well, branched as profusely, and grew with as much or more vigor as those of seedling shoots. Reassays disclosed retention for 3 years of rooting competence at similar levels as originally restored. Adventitious shoot formation was remanifested and callus development was depressed in stem segments from the repeatedly grafted adult. The reversion was associated with appearance and disappearance of distinctive leaf proteins. Neither gibberellic acid nor N6-beneyladenine as nutrient supplements duplicated the graft effects. ImagesFigure 2Figure 5Figure 8 PMID:16668609
Huong, Le T; Thang, Tran D; Ogunwande, Isiaka A
2015-02-01
The essential oils obtained from the leaves, stems, roots and fruits of Alpinia polyantha D. Fang (Zingiberaceae) have been studied. The leaf oil was comprised mainly of camphor (16.1%), α-pinene (15.2%) and β-agarofuran (12.9%), while the major constituents of the stem oil were α-pinene (12.4%), β-cubebene (10.6%), β-agarofuran (10.3%) and globulol (8.8%). However, β-cubebene (12.6%), fenchyl acetate (10.8%), β-maaliene (9.0%), aristolone (8.8%) and α-pinene (8.2%) were the compounds occurring in higher amounts in the root oil. The quantitatively significant compounds of the fruit oil were δ-cadinene (10.9%), β-caryophyllene (9.1%), β-pinene (8.7%) and α-muurolene (7.7%).
Statistical Analysis Of Heavy Metals Concentration In Watermelon Plants Irrigated By Wastewater
NASA Astrophysics Data System (ADS)
Khanjani, M. J.; Maghsoudi moud, A. A.; Saffari, V. R.; Hashamipor, S. M.; Soltanizadeh, M.
2008-01-01
Concentration of heavy metals in vegetables irrigated by urban wastewater is a cause of serious concern due to the potentials health problems of consuming contaminated produce. In this study it is tried to model the concentration of heavy metals (Cd, Cr, Cu, Fe,…) as a function of their concentration in watermelon roots and stems. Our study shows there is a good relationship between them for most of collected data. By measuring the concentration in root and stem of watermelon plant samples before harvesting, the concentration of heavy metal in watermelon's fruit can be estimated by presented mathematical models. This study shows the concentrations of heavy metals in fruits, roots and stems of watermelon plants are very high and in dangerous level when irrigated by municipal waste water.
Pollock, Claire B; McDonough, Sara; Wang, Victor S; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J; Feldman, Adam S; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I
2014-03-30
Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells.
Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E
1978-01-01
The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.
Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis
Aronsson, Per; Munissi, Joan J. E.; Gruhonjic, Amra; Fitzpatrick, Paul A.; Landberg, Göran; Nyandoro, Stephen S.; Erdelyi, Mate
2016-01-01
As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae), a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1) was isolated along with the known tetralones trans-isoshinanolone (2) and cis-isoshinanolone (3), and the naphthoquinones plumbagin (4) and 3,3′-biplumbagin (5). Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM) against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively), and for the methanol extract of the stem bark (IC50 59.6 μg/mL). The radical scavenging activity of the isolated constituents (1–5) was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed. PMID:28933383
Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis.
Aronsson, Per; Munissi, Joan J E; Gruhonjic, Amra; Fitzpatrick, Paul A; Landberg, Göran; Nyandoro, Stephen S; Erdelyi, Mate
2016-01-15
As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae), a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8'-oxo-biplumbagin ( 1 ) was isolated along with the known tetralones trans -isoshinanolone ( 2 ) and cis -isoshinanolone ( 3 ), and the naphthoquinones plumbagin ( 4 ) and 3,3'-biplumbagin ( 5 ). Compounds 2 , 4 , and 5 showed cytotoxicity (IC 50 520-82.1 μM) against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC 50 16.1, 29.7 and > 100 μg/mL, respectively), and for the methanol extract of the stem bark (IC 50 59.6 μg/mL). The radical scavenging activity of the isolated constituents ( 1 - 5 ) was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.
[Human stem cells from apical papilla can regenerate dentin-pulp complex].
Xiong, Huacui; Chen, Ke; Huang, Yibin; Liu, Caiqi
2013-10-01
To regenerate dentin-pulp complex by tissue engineering with human stem cells from apical papilla cells (SCAP) as the seed cells. SCAP was separated from from normal human impacted third molars with immature roots by outgrowth culture. The cells were then cultured in the differentiation medium for 3 weeks or in normal medium for 60 days, and analyzed for mineralization potential by Alizarin red staining. The osteo/odontogenic markers including alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OC) and dentin sialoprotein (DSP) were investigated by immunofluorescence staining and reverse transcription-polymerase chain reaction. The co-cultured mixture of SCAP and HA/TCP, or HA/TCP alone was implanted subcutaneously on the back of nude mice for 8 weeks, and the implants were collected and examined by HE and immunohistochemical staining. Round alizarin red-positive nodules formed in the isolated cells after cell culture in the differentiation medium for 3 weeks or in normal medium for 60 days with positive staining for osteo/odontogenic markers. SCAP with HA/TCP could regenerate pulp-dentin complex-like tissue in nude mice. The cells near the dentin-like tissue were positive for DSP. No mineral tissue was found in mice receiving HA/TCP implantation. SCAP may serve as a promising seed cell for dentin-pulp complex tissue engineering.
Fractionations of rare earth elements in plants and their conceptive model.
Ding, ShiMing; Liang, Tao; Yan, JunCai; Zhang, ZiLi; Huang, ZeChun; Xie, YaNing
2007-02-01
Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.
Phototropism in Arabidopsis roots is mediated by two sensory systems.
Kiss, J Z; Ruppel, N J; Hangarter, R P
2001-01-01
Phototropism has been well-characterized in stems and stem-like organs, but there have been relatively few studies of root phototropism. Our experiments suggest that there are two photosensory systems that elicit phototropic responses in roots of Arabidopsis thaliana: a previously identified blue-light photoreceptor system mediated by phototropin (=NPH1 protein) and a novel red-light-based mechanism. The phototropic responses in roots are much weaker than the graviresponse, which competes with and often masks the phototropic response. It was through the use of mutant plants with a weakened graviresponse that we were able to identify the activity of the red-light-dependent phototropic system. In addition, the red-light-based photoresponse in roots is even weaker compared to the blue-light response. Our results also suggest that phytochrome may be involved in mediating positive phototropism in roots. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.
Matsunaga, Kelly K S; Tomescu, Alexandru M F
2016-04-01
The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian-Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant-substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2010-01-01
Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors. PMID:20403175
Valletta, Alessio; Trainotti, Livio; Santamaria, Anna Rita; Pasqua, Gabriella
2010-04-19
Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.
Proteomic Profiles Reveal the Function of Different Vegetative Tissues of Moringa oleifera.
Wang, Lei; Zou, Qiong; Wang, Jinxing; Zhang, Junjie; Liu, Zeping; Chen, Xiaoyang
2016-12-01
Moringa oleifera is a rich source of bioactive compounds and is widely used in traditional medicine and food for its nutritional value; however, the protein and peptide components of different tissues are rarely discussed. Here, we describe the first investigation of M. oleifera proteomes using mass spectrometry and bioinformatics methods. We aimed to elucidate the protein profiles of M. oleifera leaves, stem, bark, and root. Totally 202 proteins were identified from four vegetative organs. We identified 101 proteins from leaves, 51 from stem, 94 from bark and 67 from root, finding that only five proteins existed in both four vegetative parts. The calculated pI of most of the proteins is distributed in 5-10 and the molecular weight distributed below 100 kDa. Functional classification analysis revealed that proteins which are involved in catalytic activities are the most abundant both in leaves, stem, bark and root. Identification of several heat shock proteins in four vegetative tissues might be adaptive for resistance to high temperature environmental stresses of tropical or subtropical areas. Some enzymes involved in antioxidant processes were also identified in M. oleifera leaves, stem, bark and root. Among the four tissues studies here, leaves protein content and molecular diversity were the highest. The identification of the flocculating protein MO2.1 and MO2.2 in the bark and root provides clue to clarify the antimicrobial molecular mechanisms of root and bark. This study provides information on the protein compositions of M. oleifera vegetative tissues that will be beneficial for potential drug and food supplement development and plant physiology research.
Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J
1999-12-15
Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.
Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico
USDA-ARS?s Scientific Manuscript database
The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...
Long range lateral root activity by neo-tropical savanna trees.
Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian Scholz
2004-01-01
The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...
Aspen Root Sucker Formation and Apical Dominance
Robert E. Farmer
1962-01-01
Root suckering is the primary mode of regeneration in the aspens, Populus tremuloides Michx. and P. grandidentata Michx. When stems of these species are cut, numerous suckers originating in the root pericycle are formed on their extensive lateral root systems. During their first season of growth, suckers ordinarily reach a height...
Shen, Yun-xia; Zhao, Yan-li; Zhang, Ji; Zuo, Zhi-tian; Wang, Yuan-zhong; Zhang, Qing-zhi
2016-03-01
The application of traditional Chinese medicine (TCM) and their preparations have a long history. With the deepening of the research, the market demand is increasing. However, wild resources are so limited that it can not meet the needs of the market. The development of wild and cultivated samples and research on accumulation dynamics of chemical component are of great significance. In order to compare composition difference of different parts (root, stem, and leaf) of wild and cultivated G. rigescens, Fourier infrared spectroscopy (FTIR) and second derivative spectra were used to analyze and evaluate. The second derivative spectra of 60 samples and the rate of affinity (the match values) were measured automatically using the appropriate software (Omnic 8.0). The results showed that the various parts of wild and cultivated G. rigescens. were high similar the peaks at 1732, 1 643, 1 613, 1 510, 1 417, 1 366, 1 322, 1 070 cm(-1) were the characteristic peak of esters, terpenoids and saccharides, respectively. Moreover, the shape and peak intensity were more distinct in the second derivative spectrum of samples. In the second derivative spectrum range of 1 800-600 cm(-1), the fingerprint characteristic peak of samples and gentiopicroside standards were 1 679, 1 613, 1 466, 1 272, 1 204, 1 103, 1 074, 985, 935 cm(-1). The characteristic peak intensity of gentiopicroside of roots of wild and cultivated samples at 1 613 cm(-1) (C-C) was higher than stems and leaves which indicated the higher content of gentiopicroside in root than in stem and leaves. Stems of wild samples at 1 521, 1 462 and 1 452 cm(-1) are the skeletal vibration peak of benzene ring of lignin, and the stem of cultivated sample have stronger peak than other samples which showed that rich lignin in stems. The iInfrared spectrum of samples were similar with the average spectral of root of wild samples, and significant difference was found for the correlation between second derivative spectrum of samples and average spectral of wild samples root, and the sequence of similarity was root > stem > leaf. Therefore, FTIR combined with second derivative spectra was an express and comprehensive approach to analyze and evaluate in the imperceptible differences among different parts of wild and cultivated of G. rigescens.
Du, W; Amarachintha, S; Wilson, A; Pang, Q
2017-02-01
Fanconi anemia (FA) is an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Here we investigate the relationship between DNA damage response (DDR) and leukemogenesis using the Fanca knockout mouse model. We found that chronic exposure of the Fanca -/- hematopoietic stem cells to DNA crosslinking agent mitomycin C in vivo leads to diminished DDR, and the emergence/expansion of pre-leukemia stem cells (pre-LSCs). Surprisingly, although genetic correction of Fanca deficiency in the pre-LSCs restores DDR and reduces genomic instability, but fails to prevent pre-LSC expansion or delay leukemia development in irradiated recipients. Furthermore, we identified transcription program underlying dysregulated DDR and cell migration, myeloid proliferation, and immune response in the Fanca -/- pre-LSCs. Forced expression of the downregulated DNA repair genes, Rad51c or Trp53i13, in the Fanca -/- pre-LSCs partially rescues DDR but has no effect on leukemia, whereas shRNA knockdown of the upregulated immune receptor genes Trem1 or Pilrb improves leukemia-related survival, but not DDR or genomic instability. Furthermore, Trem1 cooperates with diminished DDR in vivo to promote Fanca -/- pre-LSC expansion and leukemia development. Our study implicates diminishing DDR as a root cause of FA leukemogenesis, which subsequently collaborates with other signaling pathways for leukemogenic transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Shengke; Xie, Ruohan; Wang, Haixin
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cdmore » sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.« less
Ecological and agricultural applications of synchrotron IR microscopy
NASA Astrophysics Data System (ADS)
Raab, T. K.; Vogel, J. P.
2004-10-01
The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 μm provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes ("Cellulose synthase-like" genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, and pmr6 have been characterized by these methods, and biochemical relations between two of the genes suggested by IR spectroscopy and multivariate statistical techniques could not have been inferred through classical molecular biology. In ecological experiments, live plants can also be imaged in small microcosms with mid-IR transmitting ZnSe windows. Small exudate molecules may be spatially mapped in relation to root architecture at diffraction-limited resolution, and the effect of microbial symbioses on the quantity and quality of exudates inferred. Synchrotron IR microscopy provides a useful adjunct to molecular biological methods and underground observatories in the ongoing assessment of the role of root-soil-microbe communication.
Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants.
Roncato-Maccari, Lauren D B; Ramos, Humberto J O; Pedrosa, Fabio O; Alquini, Yedo; Chubatsu, Leda S; Yates, Marshall G; Rigo, Liu U; Steffens, Maria Berenice R; Souza, Emanuel M
2003-07-01
Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.; Hardison, L.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings
Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A.; Acosta, Manuel; Pérez-Pérez, José Manuel
2015-01-01
Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species. PMID:26230608
Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F
2012-12-01
In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.
Immuno- and gene expression analysis of EGFR and Nestin during mice skin development.
Falodah, Fawaz Adnan; Al-Karim, Saleh
2016-06-01
Skin stem cell populations reside in the adult hair follicle, sebaceous gland, dermis and epidermis. However, the origin of most of the stem cell populations found in the adult epidermis is still unknown. Far more unknown is the embryonic origin of other stem cells that populate the other layers of this tissue. The main objectives of the present study were to identify the precise anatomical localization of stem cells in mice during skin developing; and to determine the expression levels by using immuno- and gene expression analysis. In this comparative cross sectional study, six ages been chosen and divided into: embryonic days (E12.5, E14.5 and E19.5) and litter days (L7, L14 and L19). Skin were removed from the back side and processed to assess both immuno- and gene-expression of EGFR and Nestin surface antigen markers. Data of the different studied age groups was compared using the SPSS software. EGFR was mainly expressed in the outer root sheath (ORS), in basal and, to a lesser extent, in suprabasal keratinocytes and tend to lie where the dermis comes closest to the skin surface, while Nestin expressed throughout the dermis in the early embryo, but it is subsequently restricted to the follicular connective tissue sheaths later in development and to hair follicles after birth. Immunoexpression analysis showed a strong EGFR expression in all group ages except E12.5 which recorded as moderate, while Nestin showed strong expression level for all embryonic stages, while in the litters it was moderate. The qRT-PCR results were consistent with those of the immunohistochemical study. The Pearson correlation analyze present a correlation between the cases of study with age (p≤0.01), which indicated to the effect of age to mice development. EGFR and Nestin showed to have vital role during mice development, and considered to be suitable markers for the study of skin stem cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pilling, J; Willmitzer, L; Fisahn, J
2000-02-01
Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the transgenic lines but slightly reduced in apical segments of stems from mature plants. Stem segments from the base of juvenile PME-overexpressing plants did not differ in PME activity from the control, whereas in apical parts PME was less active than in the wild-type. During the early stages of development stems of these transgenic plants elongated more rapidly than those of the wild-type. Further evidence that overexpression of a plant-derived PME has an impact on plant development is based on modifications of tuber yield, which was reduced in the transgenic lines. Cell walls from transgenic tubers showed significant differences in their cation-binding properties in comparison with the wild-type. In particular, cell walls displayed increased affinity for sodium and calcium, while potassium binding was constant. Furthermore, the total ion content of transgenic potatoes was modified. Indications of PME-mediated differences in the distribution of ions in transgenic plants were also obtained by monitoring relaxations of the membrane potential of roots subsequent to changes in the ionic composition of the bathing solution. However, no effects on the chemical structure of pectin from tuber cell walls could be detected.
Murillo-Amador, Bernardo; Rueda-Puente, Edgar Omar; Troyo-Diéguez, Enrique; Córdoba-Matson, Miguel Víctor; Hernández-Montiel, Luis Guillermo; Nieto-Garibay, Alejandra
2015-05-10
Despite the ecological and socioeconomic importance of wild Capsicum annuum L., few investigations have been carried out to study basic characteristics. The peninsula of Baja California has a unique characteristic that it provides a high degree of isolation for the development of unique highly diverse endemic populations. The objective of this study was to evaluate for the first time the growth type, associated vegetation, morphometric traits in plants, in fruits and mineral content of roots, stems and leaves of three wild populations of Capsicum in Baja California, Mexico, near biosphere reserves. The results showed that the majority of plants of wild Capsicum annuum have a shrub growth type and were associated with communities consisting of 43 species of 20 families the most representative being Fabaceae, Cactaceae and Euphorbiaceae. Significant differences between populations were found in plant height, main stem diameter, beginning of canopy, leaf area, leaf average and maximum width, stems and roots dry weights. Coverage, leaf length and dry weight did not show differences. Potassium, sodium and zinc showed significant differences between populations in their roots, stems and leaves, while magnesium and manganese showed significant differences only in roots and stems, iron in stems and leaves, calcium in roots and leaves and phosphorus did not show differences. Average fruit weight, length, 100 fruits dry weight, 100 fruits pulp dry weight and pulp/seeds ratio showed significant differences between populations, while fruit number, average fruit fresh weight, peduncle length, fruit width, seeds per fruit and seed dry weight, did not show differences. We concluded that this study of traits of wild Capsicum, provides useful information of morphometric variation between wild populations that will be of value for future decision processes involved in the management and preservation of germplasm and genetic resources.
Seasonal variation in xylem pressure of walnut trees: root and stem pressures.
Ewers, F W; Améglio, T; Cochard, H; Beaujard, F; Martignac, M; Vandame, M; Bodet, C; Cruiziat, P
2001-09-01
Measurements of air and soil temperatures and xylem pressure were made on 17-year-old orchard trees and on 5-year-old potted trees of walnut (Juglans regia L.). Cooling chambers were used to determine the relationships between temperature and sugar concentration ([glucose] + [fructose] + [sucrose], GFS) and seasonal changes in xylem pressure development. Pressure transducers were attached to twigs of intact plants, root stumps and excised shoots while the potted trees were subjected to various temperature regimes in autumn, winter and spring. Osmolarity and GFS of the xylem sap (apoplast) were measured before and after cooling or warming treatments. In autumn and spring, xylem pressures of up to 160 kPa were closely correlated with soil temperature but were not correlated with GFS in xylem sap. High root pressures were associated with uptake of mineral nutrients from soil, especially nitrate. In autumn and spring, xylem pressures were detected in root stumps as well as in intact plants, but not in excised stems. In contrast, in winter, 83% of the xylem sap osmolarity in both excised stems and intact plants could be accounted for by GFS, and both GFS and osmolarity were inversely proportional to temperature. Plants kept at 1.5 degrees C developed positive xylem pressures up to 35 kPa, xylem sap osmolarities up to 260 mosmol l(-1) and GFS concentrations up to 70 g l(-1). Autumn and spring xylem pressures, which appeared to be of root origin, were about 55% of the theoretical pressures predicted by osmolarity of the xylem sap. In contrast, winter pressures appeared to be of stem origin and were only 7% of the theoretical pressures, perhaps because of a lower stem water content during winter.
Castillo-Michel, Hiram A; Zuverza-Mena, Nubia; Parsons, Jason G; Dokken, Kenneth M; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2009-03-01
This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As(2)O(5), As(V)) at 0, 20, and 40 mg As(V)L(-1). Results from the ICP-OES analysis showed that at 20mg As(V)L(-1), red flowered plants had 280+/-11 and 98+/-7 mg As kg(-1) dry wt in roots and stems, respectively, while white flowered plants had 196+/-30 and 103+/-13 mg As kg(-1) dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg As(V)L(-1), As was at 290+/-77 and 151+/-60 mg As kg(-1) in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406+/-36, 213+/-12, and 177+/-40 mg As kg(-1) in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)(3) species in both types of plants.
Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan
2012-01-01
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802
Root Formation in Ethylene-Insensitive Plants1
Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.
1999-01-01
Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660
Regenerative endodontics: a comprehensive review.
Kim, S G; Malek, M; Sigurdsson, A; Lin, L M; Kahler, B
2018-05-19
The European Society of Endodontology and the American Association for Endodontists have released position statements and clinical considerations for regenerative endodontics. There is increasing literature on this field since the initial reports of Iwaya et al. (Dental Traumatology, 17, 2001, 185) and Banchs & Trope (Journal of Endodontics, 30, 2004, 196). Endogenous stem cells from an induced periapical bleeding and scaffolds using blood clot, platelet rich plasma or platelet-rich fibrin have been utilized in regenerative endodontics. This approach has been described as a 'paradigm shift' and considered the first treatment option for immature teeth with pulp necrosis. There are three treatment outcomes of regenerative endodontics; (i) resolution of clinical signs and symptoms; (ii) further root maturation; and (iii) return of neurogenesis. It is known that results are variable for these objectives, and true regeneration of the pulp/dentine complex is not achieved. Repair derived primarily from the periodontal and osseous tissues has been shown histologically. It is hoped that with the concept of tissue engineering, namely stem cells, scaffolds and signalling molecules, that true pulp regeneration is an achievable goal. This review discusses current knowledge as well as future directions for regenerative endodontics. Patient-centred outcomes such as tooth discolouration and possibly more appointments with the potential for adverse effects needs to be discussed with patients and parents. Based on the classification of Cvek (Endodontics and Dental Traumatology, 8, 1992, 45), it is proposed that regenerative endodontics should be considered for teeth with incomplete root formation although teeth with near or complete root formation may be more suited for conventional endodontic therapy or MTA barrier techniques. However, much is still not known about clinical and biological aspects of regenerative endodontics. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo
2009-01-01
Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181
Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials
Ibañez-Cabellos, José Santiago; de Cutanda, Sergio Bañuls-Sánchez; Berenguer-Pascual, Ester; Beltrán-García, Jesús; García-López, Eva; Pallardó, Federico V.; García-Giménez, José Luis; Pallarés-Sabater, Antonio; Zarzosa-López, Ignacio; Monterde, Manuel
2017-01-01
Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed. PMID:28751918
NASA Astrophysics Data System (ADS)
Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.
2017-12-01
The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.
Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A
2001-06-01
The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%).
Karioti, Anastasia; Hadjipavlou-Litina, Dimitra; Mensah, Merlin L K; Fleischer, Theophilus C; Skaltsa, Helen
2004-12-29
The chemical composition of the essential oils obtained from the leaves, the barks of the stem and the root, as well as from the fresh and dried fruits of Xylopia aethiopica, growing in Ghana, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 93 individual compounds. The monoterpene hydrocarbons formed the main portion in all studied samples. beta-Pinene was predominant in all cases, while trans-m-mentha-1(7),8-diene was the main compound in the essential oils of the leaves and the barks of roots and stems. Their potential antioxidant activity was also investigated and found to be significant in scavenging superoxide anion radical.
Tong, Yuru; Su, Ping; Zhao, Yujun; Zhang, Meng; Wang, Xiujuan; Liu, Yujia; Zhang, Xianan; Gao, Wei; Huang, Luqi
2015-01-01
1-Deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) genes are the key enzyme genes of terpenoid biosynthesis but still unknown in Tripterygium wilfordii Hook. f. Here, three full-length cDNA encoding DXS1, DXS2 and DXR were cloned from suspension cells of T. wilfordii with ORF sizes of 2154 bp (TwDXS1, GenBank accession no.KM879187), 2148 bp (TwDXS2, GenBank accession no.KM879186), 1410 bp (TwDXR, GenBank accession no.KM879185). And, the TwDXS1, TwDXS2 and TwDXR were characterized by color complementation in lycopene accumulating strains of Escherichia coli, which indicated that they encoded functional proteins and promoted lycopene pathway flux. TwDXS1 and TwDXS2 are constitutively expressed in the roots, stems and leaves and the expression level showed an order of roots > stems > leaves. After the suspension cells were induced by methyl jasmonate, the mRNA expression level of TwDXS1, TwDXS2, and TwDXR increased, and triptophenolide was rapidly accumulated to 149.52 µg·g−1, a 5.88-fold increase compared with the control. So the TwDXS1, TwDXS2, and TwDXR could be important genes involved in terpenoid biosynthesis in Tripterygium wilfordii Hook. f. PMID:26512659
Anthony, Ogbonnaya Enyinnaya; Ojeifo, Uadia Patrick
2016-05-01
The phytochemical composition and acute toxicity of Telfairia occidentalis aqueous extracts were investigated in this study. Phytochemical screening was carried out on the pulverized leaf, root, pod and stem samples. Proximate analysis was also conducted for the root to ascertain the effect of drying procedures on its composition. Fifty-six (56) Wister albino rats, male and female were divided into two broad groups of 28 animals per group. The first group was randomly separated into seven (7) groups of four (4) animals per group. The control group received distilled water alone while the other groups received varied doses (1500mg/kg, 2250mg/kg and 3000mg/kg) of the Soluble and Insoluble Tefairia occidentalis root fraction. The second group of 28 animals was also distributed into 7 groups of 4 animals per group. Six test groups received varied doses (1500mg/kg, 2250mg/kg and 3000mg/kg) of Telfairia occidentalis fruit and stem extracts. The animals were observed for the first 12hr for any toxic symptoms and for 48 hr for mortality rate. Surviving animals were sacrificed after 48 hours. Phytochemical screening results reveal the presence of tannins, flavonoid, steroid, terpenoids, saponin, alkaloid, glycosides, proteins and carbohydrates. Flavonoid and saponin was not detected in stem sample; alkaloid is present in all samples except pod; and cyanogenic glycoside was found in both root and pod samples. Except for the fibre content, the method of preparation of the root had no significant effect on the proximate composition of the sample. The root extracts cause insignificant reduction in Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) activities, except for the significant reduction in ALT activity at highest dose. The pod extract significantly increased the ALT and AST activities, which is dose dependent, while the stem extract only caused increased activity of ALT, but not AST. None of the extracts administered had any significant effect on the levels of serum creatinine and urea. Thus, while the root extract may exhibit some hepatoprotective effect (or nephrotoxic due to cyanogenic glycoside) and its proximate composition, not affected by heat treatment, the pod and stem extracts of Telfairia occidentalis may have some effects on rat hepatocytes.
NASA Astrophysics Data System (ADS)
McGuire, M. A.; Bloemen, J.; Aubrey, D. P.; Steppe, K.; Teskey, R. O.
2016-12-01
Currently, the most pressing problem regarding respiration in trees is determining the rate of respiration in woody tissues. In stems and roots, barriers to diffusion promote the buildup of CO2 from respiration to high concentrations, often in the range of 3 to 10% and sometimes exceeding 20%, substantially higher than that of the atmosphere ( 0.04%). A substantial portion of this internal CO2 released from respiring cells in roots and stems can dissolve in xylem sap and move upward in the xylem stream, resulting in internal transport of respired CO2 that rivals the efflux of respired CO2from woody tissues. The importance of such internal CO2 transport for the assessment of above- and below-ground respiration has gained increasing interest and here we will synthesize the latest research. The most important recent finding has been that in tree roots, a large fraction of respired CO2 remains within the root system rather than diffusing into the soil. This CO2 is transported in xylem sap into the shoot, and because respiration is almost always measured as the flux of CO2 into the atmosphere from plant tissues, it represents an unaccounted- for component of tree root metabolism. In Populus deltoides trees, for which xylem CO2 transport and soil CO2 efflux near the tree was measured, twice the amount of CO2 derived from below-ground autotrophic respiration entered the xylem stream as diffused into the soil environment. For both Eucalyptus and Quercus, up to 24 and 19% of root-respired CO2 was transported via the transpiration stream, respectively, illustrating that a significant internal transport of root-respired CO2 is present across a wide range of plant families. These findings suggest that root and soil respiration can be substantially underestimated by "soil-centric" measurements. Moreover, internal transport of respired CO2, which has only recently been recognized and measured, has important implications for our understanding of carbon dynamics at both plant and ecosystem levels.
Peckys, Diana B; Korf, Ulrike; Wiemann, Stefan; de Jonge, Niels
2017-08-09
The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Since drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells, and compared the results with a drug resistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy (STEM) were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting- and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug, and thus point towards a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity. © 2017 by The American Society for Cell Biology.
Nadir Erbilgin; Alex Szele; Kier Dean Klepzig; Kenneth Francis Raffa
2001-01-01
Root and lower stem insects cause significant damage to conifers, vector phytopathogenic fungi, and can predispose trees to bark beetle attacks. The development of effective sampling techniques is an important component in managing these cryptic insects. We tested the effects of trap type and stereochemistry of a-pinene, in combination with ethanol, on catches of the...
Matthew H. Gocke; Daniel J. Robinson
2010-01-01
The ability to root stem cuttings collected from hedged stump sprouts formed on recently felled trees was evaluated for 26 codominant northern red oak (Quercus rubra L.) trees growing in Durham County, NC. Sprouting occurred, the same year as felling, on 23 of the 26 tree stumps and sprout number was significantly and positively correlated with stump diameter. The...
Carbon allocation to young loblolly pine roots and stems
Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch
1995-01-01
This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.
Helmisaari, Heljä-Sisko; Derome, John; Nöjd, Pekka; Kukkola, Mikko
2007-10-01
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.
Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E
2010-05-01
Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.
Wang, Xiong; Shi, Ying; Zhou, Qiong; Liu, Xiaoming; Xu, Shizheng; Lei, Tiechi
2012-10-01
In the bulge region of the hair follicle, a densely and concentrically packed cell mass is encircled by the arrector pili muscle (APM), which offers a specilized microenvironment (niche) for housing heterogeneous adult stem cells. However, the detailed histological architecture and the cellular composition of the bulge region warrants intensive study and may have implications for the regulation of hair follicle growth regulation. This study was designed to define the gene-expression profiles of putative stem cells and lineage-specific precursors in the mid-portions of plucked hair follicles prepared according to the presence of detectable autofluorescence. The structure was also characterized by using a consecutive sectioning technique. The bulge region of the hair follicle with autofluorescence was precisely excised by employing a micro-dissection procedure. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to identify the gene expression profiles specific for epithelial, melanocyte and stromal stem cells in the bulge region of the hair follicle visualized by autofluorescence. The morphology and its age-dependent changes of bulge region of the hair follicles with autofluorescence segment were also examined in 9 scalp skin specimens collected from patients aged 30 weeks to 75 years, by serial sectioning and immuno-staining. Gene expression profile analysis revealed that there were cells with mRNA transcripts of Dct(Hi)Tyrase(Lo)-Tyrp1(Lo)MC1R(Lo)MITF(Lo)/K15(Hi)/NPNT(Hi) in the bulge region of the hair follicle with autofluorescence segments, which differed from the patterns in hair bulbs. Small cell-protrusions that sprouted from the outer root sheath (ORS) were clearly observed at the APM inserting level in serial sections of hair follicles by immunohistological staining, which were characteristically replete with K15+/K19+expressing cells. Likewise, the muscle bundles of APM positive for smooth muscle actin intimately encircled these cell-protrusions, and the occurrence frequency of the cell-protrusions was increased in fetal scalp skin compared with adult scalp skin. This study provided the evidence that the cell-protrusions occurring at the ORS relative to the APM insertion are more likely to be characteristic of the visible niches that are filled with abundant stem cells. The occurrence frequency of these cell-protrusions was significantly increased in fetal scalp skin samples (128%) as compared with the scalp skins of younger (49.4%) and older (25.4%) adults (P<0.01), but difference in the frequency between the two adult groups were not significant. These results indicated that these cell-protrusions function as a niche house for the myriad stem cells and/or precursors to meet the needs of the development of hair follicles in an embryo. The micro-dissection used in this study was simple and reliable in excising the bulge region of the hair follicle with autofluorescence segments dependent on their autofluorescence is of value for the study of stem cell culture.
Impact of root growth and root hydraulic conductance on water availability of young walnut trees
NASA Astrophysics Data System (ADS)
Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.
2015-04-01
Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces. These models were combined to a global optimization algorithm to obtain parameters that best fit the observed soil-plant-atmosphere water dynamics. Eventually, relations between root system conductance and growth as well as water access strategies were quantitatively analyzed.
Ling, Anna Pick Kiong; Tan, Kinn Poay; Hussein, Sobri
2013-01-01
Objective: Labisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Methods: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L. Results: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture. Conclusions: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs. PMID:23825148
Marques, Ana P G C; Rangel, António O S S; Castro, Paula M L
2007-01-01
The levels of zinc accumulated by roots, stems, and leaves of two plant species, Rubus ulmifolius and Phragmites australis, indigenous to the banks of a stream in a Portuguese contaminated site were investigated in field conditions. R. ulmifolius, a plant for which studies on phytoremediation potential are scarce, dominated on the right side of the stream, while P. australis proliferated on the other bank. Heterogeneous Zn concentrations were found along the banks of the stream. Zn accumulation in both species occurred mainly in the roots, with poor translocation to the aboveground sections. R. ulmifolius presented Zn levels in the roots ranging from 142 to 563 mg kg(-1), in the stems from 35 to 110 mg kg(-1), and in the leaves from 45 to 91 mg kg(-1), vs. average soil total Zn concentrations varying from 526 to 957 mg kg(-1). P. australis showed Zn concentrations in the roots from 39 to 130 mg kg(-1), in the stems from 31 to 63 mg kg(-1), and in the leaves from 37 to 83 mg kg(-1), for the lower average soil total Zn levels of 138 to 452 mg kg(-1) found on the banks where they proliferated. Positive correlations were found between the soil total, available and extractable Zn fractions, and metal accumulation in the roots and leaves of R. ulmifolius and in the roots and stems of P. australis. The use of R. ulmifolius and P. australis for phytoextraction purposes does not appear as an effective method of metal removing, but these native metal tolerant plant species may be used to reduce the effects of soil contamination, avoiding further Zn transfer to other environmental compartments.
Siriwardane, A S; Dharmadasa, R M; Samarasinghe, Kosala
2013-02-01
Withania somnifera (L.) Dunal. (Family: Solanaceae) is a therapeutically important medicinal plant in traditional and Ayurveda systems of medicine in Sri Lanka. Witheferin A, is a potential anticancer compound found in W. somnifera. In the present study, attempts have been made to compare witheferin A content, in different parts of (root, stem, bark, leaf) two varieties of (LC1 and FR1) W. somnifera grown in same soil and climatic conditions. Ground sample (1g) of leaves, bark, stem and roots of two W. somnifera varieties were extracted with CHCl3 three times. Thin Layer Chromatographic analysis (TLC) of withaferin A in both plant extracts were performed on pre-coated Silica gel 60 GF254 plates in hexane: ethyl acetate: methanol (2: 14: 1) mobile phase. Densitometer scanning was performed at lambda(max) = 215 nm. HPLC of W. somnifera extracts was performed using Kromasil C18 reverse phase column. Both varieties of W. somnifera differed in withaferin A. After visualizing TLC plates with vanillin-sulphuric acid leaf and bark extracts of both varieties showed high intensity purple colour spots (R(f) 0.14) than in stem and roots. The highest amount of withaferin A (3812 ppm) was observed in leaves of variety LC1 while the lowest amount was observed in roots of variety FR1 (5 ppm). According to the results it could be concluded that content of Witheferin A was vary leaf > bark > stem > roots in both varieties. Therefore, there is a high potential of incorporation of leaves and bark of W. somnifera for the preparation of Ayurveda drug leading to anticancer activity instead of roots.
Samant, Suvidha; Huo, Tian; Dawson, Jeffrey O; Hahn, Dittmar
2016-02-01
Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.
Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.
Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A
2017-06-01
Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.
Han, In Ho; Sun, Fangfang; Choi, Yoon Ji; Zou, Fengming; Nam, Kyoung Hyup; Cho, Won Ho; Choi, Byung Kwan; Song, Geun Sung; Koh, Kwangnak; Lee, Jaebeom
2015-11-01
Carbon nanotubes (CNTs) are promising candidates as novel scaffolds for peripheral nerve regeneration. Schwann cells (SCs) are attractive therapeutic targets due to their pivotal role in peripheral nerve regeneration, but primary SCs have limitations for clinical application. However, adipose-derived stem cells (ASCs) may differentiate into Schwann-like cells. The present study assesses the potential applicability of multiwall CNTs (MWNTs) composited with polydimethylsiloxane (PDMS), which were then seeded with differentiated adipose-derived stem cells (dASCs) to promote neuronal differentiation and growth. Aqueous MWNT dispersion was filtered, and the PDMS/MWNT sheets were prepared using a simple printing-transfer method. Characterization of PDMS/MWNT sheets indicated their unique physical properties, such as superior mechanical strength and electroconductivity, compared with bare PDMS sheets. ASCs were differentiated into Schwann-like cells using a mixture of glial growth factors. Dorsal root ganglion (DRG) neurons were co-cultured with SCs and dASCs on PDMS/MWNTs sheets or noncoated dishes. An alamar blue proliferation assay of dASC and SCs showed significantly more dASC and SCs cultured on PDMS/MWNT sheets at 48 h and 72 h than when cultured on noncoated dishes (p < 0.05). Additionally, when DRG were cultured on PDMS/MWNT sheets seeded with dASCs, the proliferation of DRG neurons and the longest neurite outgrowth length per neuron were significantly greater than when DRG were cultured on PDMS/MWNT sheets alone or on noncoated dishes seeded with SCs or dASCs (p < 0.05). Overall, PDMS/MWNT sheets exhibited excellent biocompatibility for culturing Schwann-like cells differentiated from ASCs. Seeding the dASCs on PDMS/MWNT sheets may produce synergistic effects in peripheral nerve regeneration, similarly to SCs. © 2015 Wiley Periodicals, Inc.
Jiménez-Fernández, Daniel; Landa, Blanca B; Kang, Seogchan; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A
2013-01-01
Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.
NASA Astrophysics Data System (ADS)
Scherer, Günther; Pietrzyk, Peter
The Arabidopsis Atpla-I-3 knockout mutant (gene nr. At1g61859) is deficient in gravitropism and phototropism indicating a defect in the auxin transport system. The mutant roots form higher numbers of root coils on 45° angle tilted agar. Root tip coils exhibit right-handed spiral pattern of the rhizodermis cells suggesting that torsion of rhizodermis cells could provide a driving force for asymmetrical growth and coiling. WAICO1 was designed to test whether the tendency to for coils by asymmetric tip growth may be provided by torsion of external rhizodermis cells or, alternatively, the asymmetric growth is driven by intrinsic forces in the root. Coil formation is often increased in root agravitropic mutants so that an increase of coils by lack of gravity -and thus absence of gravisensing -was the favoured working hypothesis. Two agar boxes each of wild type and mutant seedlings were grown inside of an outer growth container at 22.5° C in constant light and at a 45° angle tilted, in the 1G rotor and in the microgravity rotor. At first, the samples grown in microgravity could be retrieved from orbit as cooled (4° -8° C) material. They were investigated by microscopy and compared to photographs made in orbit of 1G and µG plants by astronaut. Plants first grown in 1G were retrieved much later (see below). Mutant and wt formed high numbers of coils in microgravity, whereas in 1G none were observed which is comparable to growth experiments on the ground. However, the mutant developed a lower percentage of spiral pattern in the rhizodermal cells despite an even higher number of coils as observed in the wt. The results show that asymmetrical growth of root tips is an intrinsic property and independent of forces that may be exerted by the rhizodermal pattern. Surprisingly, in both wild type and mutant a much higher number of lateral roots were found in µG-grown plants than in plants grown in the 1G-centrifuge after 12 d, suggesting that gravity suppresses lateral root formation. When mutants and wt only grown in the 1G centrifuge were compared the mutant leaves and cotyledons were smaller than in wt and hypocotyls were longer, but when the plants in µG for 12d were compared this difference was not found. Hence, gravity had an influence on leaf expansion and hypocotyl length in the mutant. The samples grown for 12d in 1G were kept in µG after 12d on due to a technical failure of the 1G centrifuge. They were retrieved about a year later. They had grown to full senescence and were preserved in a beautiful state as "straw". The observations on the root patterns by the astronaut photos at day 12 could be confirmed but plants had grown on and newer roots made coils just as the plants grown µG. Leaf sizes were different for wt and mutant. The most striking observation was that the mutants had developed small flower stems with a few flower buds but many flowers were incomplete, without the proper sepal or petal number or without gynaecium. The wild type plants had not developed any clear flower stem but only several malformed cell clumps shortly above the rosette. In ground laboratory experiments the mutants flower earlier which might explain why they developed flowers to some extent whereas the wt not at all. Microgravity might be a "stress" for flower formation. Taken together, several gravity-induced (or microgravity-induced) changes in differentiation occurred.
Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D.; Tucker, Haley O.; Yao, Zhengju; Guo, Xizhi
2015-01-01
Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling. PMID:26171970
Influence of the Typha community on mine drainage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, C.D.; Aharrah, E.C.
1984-12-01
This study investigated potential positive influences of the Typha community on mine drainage. The pH increased as the water flowed through two, two-pond systems, and the iron and manganese concentrations decreased. The water quality remained constant or deteriorated in non-vegetated ponds. Typha from the ponds and a non-mined site were assayed for iron and manganese. Roots/rhizomes concentrated the most iron, while the exterior stem layers contained more iron than the remaining stems or leaves. Manganese concentrations were similar in the roots/rhizomes, the leaves, and the exterior stem layers, while stems contained less. Iron concentrations in the Typha from June andmore » September were similar, but manganese concentrations in these Typha were different. Typha from mined sites accumulated more iron and manganese in the roots/rhizomes than Typha from non-mined sites. Bacteria and algae were identified and numerous species which function as oxidizers were recorded. These microbes play an important role in the Typha community and should also be considered in future studies as agents in the removal of metallic ions.« less
Michael T. Thompson; Maggie. Toone
2012-01-01
Tree diameter growth models are widely used in many forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. An individual tree model has been developed to estimate diameter growth of multi-stem woodland tree species where the diameter is measured at root collar. The model was...
Daniel C. Dey; William C. Parker
1997-01-01
Initial stem diameter of bareroot red oak planting stock was a better morphological indicator of future height and diameter growth in a shelterwood underplanting than were initial shoot length and number of first-order lateral roots. Stem diameter near the root collar provides an integrated measure of the growth potential of red oak planting stock because of its strong...
Adventive plants from ovules and nucelli in Citrus.
Kochba, J; Spiegel-Roy, P; Safran, H
1972-09-01
1- to 8-week-old ovules and nucelli from three Citrus cultivars-Shamouti and Valencia (Citrus sinensis) oranges and Marsh Seedless (C. paradisi) grapefruit-were cultured in vitro. No embryo differentiation was observed in the explants prior to culture. The Shamouti ovules had degenerated and were apparently unfertilized. Embryoids formed on Murashige and Tucker nutrient medium supplemented with 500 mg/l malt extract. Whole plants developed on the same basal medium supplemented with kinetin and indole-3-acetic acid (IAA), coconut milk or gibberellic acid (GA3). A higher kinetin/IAA ratio or the addition of coconut milk favoured stem elongation more than root formation while a lower kinetin/IAA ratio favoured root formation and inhibited stem elongation. The addition of GA3 to the basal medium stimulated rooting and stem elongation. These results can be of aid in mutation research, allowing irradiation at stages prior to embryonic development.
Evidence for xylem adaptations to drought in ancient Cordaites of the Carboniferous
NASA Astrophysics Data System (ADS)
Medeiros, J. S.; Hewins, C.; Serbet, R.; Taylor, T. N.; Taylor, E. L.; Ward, J. K.
2013-12-01
Ancient land plants faced the same challenges to growth and survival as modern land plants, including the need to resist xylem embolisms imposed by drought in order to main water supply to leaves. Cordaites, considered to be ancestors of the conifers, were some of the first trees on Earth and are often described as the most drought resistant plants in the North American landscape from the Late Missisipian (~320 MYA) to the early Permian (~250 MYA). Cordaites were common in both mires and dry uplands, however, suggesting considerable variation in drought tolerance, but neither the extent of this variation nor the particular xylem features associated with dryland habitats have been previously examined. We measured xylem anatomical traits including tracheid diameter (D) and wall thickness (t), for Cordaites roots and stems from three sites in Central North America: What Cheer IA, Sahara IL and Lewis Creek KY. From these data we calculated mechanical strength (t/b), which was used to estimate vulnerability to drought embolism (P50) based on comparisons with modern plants. In addition, we used the model of Wilson et al. (2008) to calculate the specific conductivity (Ksp), a measure of xylem water transport capacity. D and Ksp of Cordaites stems were similar to that typical of modern conifers but t/b tended to be lower. However, Cordaites exhibited significant variation in D, t, Ksp and t/b across sites. Stem P50 estimated from comparisons with modern plants ranged from approximately -4 at Lewis Creek to as low as -7 MPa at Sahara. We also found differences between stems and roots for Cordaites. Compared to stems, roots had larger D and higher Ksp, but lower t and t/b, resulting in a P50 ranging from approximately -2 to -4 MPa. In the roots of Sahara Cordaites, lower t/b in roots was a result of both significantly larger conduits and significantly thinner conduit walls compared to stems. Thus, hydraulic segmentation in Cordaites could have facilitated their survival in drier upland habitats, as root embolisms early on during drought could have hydraulically isolated the plant from drying soil. Our data suggest that Cordaites were similar in water transport properties but with low to moderate drought tolerance compared to modern conifers. Observation that Cordaites water transport properties varied across sites supports the idea that they were an ecological diverse plant group. Furthermore, Cordaites from Sahara exhibited a suite of traits typical of modern drought adapted plants, including: low D and Ksp combined with greater t, higher t/b and greater differentiation in t/b between roots and stems. Thus, we provide evidence from fossilized plants that associations between xylem features and habitat, as well as some modern drought adaptations, may be nearly as old as trees themselves.
CLE signaling systems during plant development and nematode infection.
Kiyohara, Syunsuke; Sawa, Shinichiro
2012-12-01
Plants contain numerous CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR) (CLE) genes encoding small secreted peptide hormones that function in a variety of developmental and physiological processes. The first known Arabidopsis CLE gene was originally discovered through the analysis of clv3 mutants, which exhibit fasciated stems and an increased number of floral organs. In total, 32 CLE genes have been identified in Arabidopsis. Amongst these are CLV3 and CLE40, which repress the expression of homeobox-containing genes WUSCHEL (WUS) and WUSCHEL-related homeobox 5 (WOX5) to control shoot apical meristem (SAM) and root columella initial cell activity, respectively. Interestingly, the CLE signaling pathway appears to be conserved amongst plants. In this review, we discuss the latest research uncovering the diverse functions and activities of CLE peptides in plants; especially during shoot, root and vascular development. In addition, we discuss the important role of CLE peptides during infection by phytoparasitic nematodes. Understanding the molecular properties of CLE peptides and their modes of action will provide further insight into plant cell-cell communication, which could also be applied to manipulate plant-nematode interactions.
Effect of pruning the parent root on growth of aspen suckers
Ashbel F. Hough
1965-01-01
Various portions of the root systems of bigtooth aspen (Populus grandidentata) suckers were severed, and the subsequent height and radial growth of stems were measured. Aspen vegetative regeneration is heavily dependent on the parent roots for at least 25 years following initial suckering. The distal portion of the parent root contributes more to...
Root morphology and growth of bare-root seedlings of Oregon white oak
Peter J. Gould; Constance A. Harrington
2009-01-01
Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...
Carbon allocation to root and shoot systems of woody plants
Mark D. Coleman; J.G. Isebrands
1994-01-01
Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...
Kim, Yun-Hee; Yang, Kyoung-Sil; Kim, Cha Young; Ryu, Sun-Hwa; Song, Wan-Keun; Kwon, Suk-Yoon; Lee, Haeng-Soon; Bang, Jae-Wook; Kwak, Sang-Soo
2008-03-31
Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RTPCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.
Yu, Hongwei; Fischer, Gregory; Ebert, Allison D; Wu, Hsiang-En; Bai, Xiaowen; Hogan, Quinn H
2015-02-12
Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs). MSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4(th) lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2-3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation. These data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.
Jung, Namhee; Park, Saeyoung; Choi, Yoonyoung; Park, Joo-Won; Hong, Young Bin; Park, Hyun Ho Choi; Yu, Yeonsil; Kwak, Geon; Kim, Han Su; Ryu, Kyung-Ha; Kim, Jae Kwang; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul
2016-11-09
Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19 , GFAP , MBP , NGFR , S100B , and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR , S100B , and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.
Chen, Jian; Wang, Zhang-wei; Zhang, Xiao-shan; Qin, Pu-feng; Lu, Hai-jun
2015-08-01
In situ research was conducted on the response of mercury enrichment in rice organs to elevated gaseous elemental mercury (GEM) with open-top chambers (OTCs) fumigation experiment and soil Hg enriched experiment. The results showed that Hg concentrations in roots were generally correlated with soil Hg concentrations (R = 0.9988, P < 0.05) but insignificantly correlated with air Hg concentrations (P > 0.05), indicating that Hg in rice roots was mainly from soil. Hg concentrations in stems increased linearly (R(B) = 0.9646, R(U) = 0.9831, P < 0.05) with elevated GEM, and Hg concentrations in upper stems were usually higher than those in bottom stems in OTCs experiment. Hg concentrations in bottom stems were generally correlated with soil Hg concentrations (R = 0.9901, P < 0.05) and second-order polynomial (R = 0.9989, P < 0.05) was fitted for Hg concentrations in upper stems to soil Hg concentrations, and Hg concentrations in bottom stems were usually higher than those in upper stems in soil Hg enriched experiment, indicating the combining impact of Hg from air and soil on the accumulation of mercury in stems. Hg concentrations in foliage were significantly correlated (P < 0.05) with air Hg and linearly correlated with soil Hg (R = 0.9983, P = 0.0585), implying that mercury in foliage was mainly from air and some of Hg in root from soil was transferred to foliage through stem. Based on the function in these filed experiments, it was estimated that at least 60%-94% and 56%-77% of mercury in foliage and upper-stem of rice was from the atmosphere respectively, and yet only 8%-56% of mercury in bottom-stem was attributed to air. Therefore, mercury in rice aboveground biomass was mainly from the atmosphere, and these results will provide theoretical basis for the regional atmospheric mercury budgets and the model of mercury cycling.
Tissue-engineering-based Strategies for Regenerative Endodontics
Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C.
2014-01-01
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings. PMID:25201917
Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan
2015-01-01
A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494
NASA Astrophysics Data System (ADS)
Vovides, Alejandra G.; Marín-Castro, Beatriz; Barradas, Guadalupe; Berger, Uta; López-Portillo, Jorge
2016-12-01
This work presents the development of a low-cost method to measure the length cable roots of black mangrove (Avicennia germinans) trees to define the boundaries of central part of the anchoring root system (CPRS) without the need to fully expose root systems. The method was tested to locate and measure the length shallow woody root systems. An ultrasonic Doppler fetal monitor (UD) and a stock of steel rods (SR) were used to probe root locations without removing sediments from the surface, measure their length and estimate root-soil plate dimensions. The method was validated by comparing measurements with root lengths taken through direct measurement of excavated cable roots and from root-soil plate radii (exposed root-soil material when a tree tips over) of five up-rooted trees with stem diameters (D130) ranging between 10 and 50 cm. The mean CPRS radius estimated with the use of the Doppler was directly correlated with tree stem diameter and was not significantly different from the root-soil plate mean radius measured from up-rooted trees or from CPRS approximated by digging trenches. Our method proved to be effective and reliable in following cable roots for large amounts of trees of both black and white mangrove trees. In a period of 40 days of work, three people were capable of measuring 648 roots belonging to 81 trees, out of which 37% were found grafted to other tree roots. This simple method can be helpful in following shallow root systems with minimal impact and help map root connection networks of grafted trees.
Zafar, Hira; Ali, Attarad; Zia, Muhammad
2017-01-01
Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.
Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain
Berta, Temugin; Qadri, Yawar; Tan, Ping-Heng; Ji, Ru-Rong
2018-01-01
Introduction Currently the treatment of chronic pain is inadequate and compromised by debilitating central nervous system side effects. Here we discuss new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. Areas covered The DRGs contain the cell bodies of primary sensory neurons including nociceptive neurons. After painful injuries, primary sensory neurons demonstrate maladaptive molecular changes in DRG cell bodies and in their axons. These changes result in hypersensitivity and hyperexcitability of sensory neurons (peripheral sensitization) and are crucial for the onset and maintenance of chronic pain. We discuss the following new strategies to target DRGs and primary sensory neurons as a means of alleviating chronic pain and minimizing side effects: inhibition of sensory neuron-expressing ion channels such as TRPA1, TRPV1, and Nav1.7, selective blockade of C- and Aβ-afferent fibers, gene therapy, and implantation of bone marrow stem cells. Expert opinion These peripheral pharmacological treatments, as well as gene and cell therapies, aimed at DRG tissues and primary sensory neurons can offer better and safer treatments for inflammatory, neuropathic, cancer, and other chronic pain states. PMID:28480765
Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang
2018-01-01
The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01) in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01) were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis) and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum). In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840
Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan
2015-08-01
Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.
NASA Astrophysics Data System (ADS)
Oberhuber, Walter; Gruber, Andreas
2010-05-01
Radial stem growth indices of trees are known to be valuable long-term measures of overall tree vigor and are frequently applied to identify the climatic factors limiting tree growth. Based on several tree-ring studies conducted within inner-Alpine dry valleys, it is well established that growth of Pinus sylvestris is primarily limited by spring precipitation (April through June) and severe drought results in abrupt growth reductions and increased tree mortality. However, the record breaking heat-wave in summer 2003 had only minor impact on growth of drought exposed coniferous trees within the dry inner-Alpine valley of the Inn river (750 m a.s.l., Tyrol, Austria), where mean annual precipitation and temperature amount to 716 mm and 7.3 °C, respectively. To examine short-term influences of drought stress on growth processes more closely, we determined the influence of meteorological factors (air temperature, precipitation) and soil moisture on intra-annual dynamics of tree ring development and stem radial growth in Pinus sylvestris at two sites differing in soil moisture characteristics (xeric and dry-mesic). Radial stem development was continuously followed during 2007 and 2008 by band dendrometers and repeated micro-sampling of the developing tree ring of mature trees. In 2007, when air temperature at the beginning of the growing season in April exceeded long-term mean by 6.4 °C, cambial cell division started in early April at both study plots. A delayed onset of cambial activity of c. 2 wk was found in 2008, when average climate conditions prevailed in spring, suggesting that resumption of cambial cell division after winter dormancy is temperature-controlled. Wood formation stopped c. 4 wk earlier at the xeric compared to dry-mesic site in both study years, which indicates a strong influence of drought stress on cell differentiation processes. This is supported by radial widths of earlywood cells, which were found to be significantly narrower at the xeric compared to the dry-mesic site (P < 0.05). Furthermore, early culmination of radial growth was found at both study plots around mid-May, prior to occurrence of more favourable climatic conditions, i.e. an increase in precipitation during summer. We suggest that early achievement of maximum growth rate in spring can be regarded as an adaptation to cope with extreme environmental conditions prevailing within the study area, which require an early switch of carbon allocation to belowground organs to ensure adequate resource acquisition on the drought prone substrate. Sustainably reduced tree vigor, higher tree mortality and strikingly reduced stem growth of shallowly rooted trees support our reasoning. In conclusion, our results suggest that in Pinus sylvestris exposed to dry inner-Alpine climate (i) a temperature threshold rather than water availability triggers onset of aboveground stem growth in spring, and (ii) recurring drought periods combined with nutrient deficiency of shallow, stony soils cause elevated carbohydrate requirements of the root system and associated symbiotic mycorrhizal hyphae to maintain the capability of absorbing scarce water und nutrient resources at the expense of aboveground stem growth.
Jia, Dongfeng; Gong, Xiaoqing; Li, Mingjun; Li, Chao; Sun, Tingting
2018-01-01
Plant height is an important trait for fruit trees. The dwarf characteristic is commonly associated with highly efficient fruit production, a major objective when breeding for apple (Malus domestica). We studied the function of MdNAC1, a novel NAC transcription factor (TF) gene in apple related to plant dwarfing. Localized primarily to the nucleus, MdNAC1 has transcriptional activity in yeast cells. Overexpression of the gene results in a dwarf phenotype in transgenic apple plants. Their reduction in size is manifested by shorter, thinner stems and roots, and a smaller leaf area. The transgenics also have shorter internodes and fewer cells in the stems. Levels of endogenous abscisic acid (ABA) and brassinosteroid (BR) are lower in the transgenic plants, and expression is decreased for genes involved in the biosynthesis of those phytohormones. All of these findings demonstrate that MdNAC1 has a role in plants dwarfism, probably by regulating ABA and BR production. PMID:29702625
Medicinal potential from in vivo and acclimatized plants of Cleome rosea.
Simões, Claudia; De Mattos, José Carlos P; Sabino, Kátia C C; Caldeira-de-Araújo, Adriano; Coelho, Marsen G P; Albarello, Norma; Figueiredo, Solange F L
2006-02-01
Methanolic extracts obtained from different organs of Cleome rosea, collected from its natural habitat and from in vitro-propagated plants, were submitted to in vitro biological assays. Inhibition of nitric oxide (NO) production by J774 macrophages and antioxidant effects by protecting the plasmid DNA from the SnCl(2)-induced damage were evaluated. Extracts from the stem of both origins and leaf of natural plants inhibited NO production. The plasmid DNA strand breaks induced by SnCl(2) were reduced by extracts from either leaf or stem of both sources. On the other hand, root extracts did not show any kind of effects on plasmid DNA, and presented significant toxic effects to J774 cells. The results showed that C. rosea presents medicinal potential and that the acclimatization process reduces the plant toxicity both to plasmid DNA and to J774 cells, suggesting the use of biotechnology tools to obtain elite plants as source of botanical material for pharmacological and phytochemical studies.
Lead effects on Brassica napus photosynthetic organs.
Ferreyroa, Gisele V; Lagorio, M Gabriela; Trinelli, María A; Lavado, Raúl S; Molina, Fernando V
2017-06-01
In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment contents were evaluated through reflectance measurements. Pb content in organs was found to decrease in the order; roots>stems>leaves. Lead content in senescent leaves at FL stage was significantly higher than harvested leaves, strongly suggesting a detoxification mechanism. Leaves and stems harvested at the PM stage showed damage at subcellular level, namely chloroplast disorganization, cell wall damage and presence of osmiophilic bodies. Chlorophyll content increased in the presence of Pb at the FL stage, compared with control; at the PM stage, chlorophyll contents decreased with low Pb concentration but showed no significant differences with control at high Pb soil concentration. The results suggest an increase in antioxidants at low Pb concentration and cell damage at higher lead concentration. Copyright © 2017 Elsevier Inc. All rights reserved.
Shah, Darshil U; Reynolds, Thomas P S; Ramage, Michael H
2017-07-20
From the stems of agricultural crops to the structural trunks of trees, studying the mechanical behaviour of plant stems is critical for both commerce and science. Plant scientists are also increasingly relying on mechanical test data for plant phenotyping. Yet there are neither standardized methods nor systematic reviews of current methods for the testing of herbaceous stems. We discuss the architecture of plant stems and highlight important micro- and macrostructural parameters that need to be controlled and accounted for when designing test methodologies, or that need to be understood in order to explain observed mechanical behaviour. Then, we critically evaluate various methods to test structural properties of stems, including flexural bending (two-, three-, and four-point bending) and axial loading (tensile, compressive, and buckling) tests. Recommendations are made on best practices. This review is relevant to fundamental studies exploring plant biomechanics, mechanical phenotyping of plants, and the determinants of mechanical properties in cell walls, as well as to application-focused studies, such as in agro-breeding and forest management projects, aiming to understand deformation processes of stem structures. The methods explored here can also be extended to other elongated, rod-shaped organs (e.g. petioles, midribs, and even roots). © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E
2013-01-01
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed.
Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.
2013-01-01
Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose uptake by sieve elements, (d) Affinity for sucrose uptake by sieve elements exceeds by far that by phloem parenchyma cells, (e) Patch-clamp studies provide a feasible basis for quantification of sucrose uptake by single cells. The consequences of the findings for whole-plant carbohydrate partitioning are discussed. PMID:23914194
NASA Astrophysics Data System (ADS)
Gerosa, Giacomo; Fusaro, Lina; Monga, Robert; Finco, Angelo; Fares, Silvano; Manes, Fausto; Marzuoli, Riccardo
2015-07-01
Young plants of Holm oak (Quercus ilex) were exposed in non-limiting water conditions to four different levels of ozone (O3) concentrations in Open-Top Chambers during one growing season to evaluate biomass losses on roots, stems and leaves in relation to O3 exposure (AOT40) and phytotoxical ozone dose (POD1) absorbed. The exposure-effect and dose-effect relationships for the total biomass were statistically significant and indicated a reduction of 4% and 5.2% of the total biomass for each increase step of 10000 ppb h of AOT40 and 10 mmol m-2 of POD1, respectively. The results indicate a critical level for Holm oak protection of 7 mmol m-2 of POD1, which corresponds to 4% of total biomass reduction. The linear regressions based on the POD1 were significant for roots and stem biomass losses, but not significant for leaf biomass. The biomass loss rate at increasing POD1 was higher for roots than for stems and leaves, suggesting that stem growth under high levels of O3 is less affected than root growth. Because of the scarcity of data from the Mediterranean area, these results can be relevant for the O3 risk assessment models and for the definition of new O3 critical levels for forests in Europe.
Age and stem origin of Appalachian hardwood reproduction following a clearcut-herbicide treatment
G.R., Jr. Trimble; E.H. Tryon; H. Clay Smith; J.D. Hillier; J.D. Hillier
1986-01-01
Seven years after a clearcut-herbicide treatment in a West Virginia Appalachian hardwood stand, root-stem age was determined for sugar maple, black cherry, and white ash. Sugar maple stems originated from advanced reproduction, black cherry originated primarily from seedlings that germinated during or after treatment, and white ash stems were a mixture of seedlings,...
Review: Wind impacts on plant growth, mechanics and damage.
Gardiner, Barry; Berry, Peter; Moulia, Bruno
2016-04-01
Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.
Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng
2012-08-01
A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.
John R. Donnelly
1977-01-01
Sugar maple cuttings were collected twice a week throughout June from four mature trees. Some of the cuttings were analyzed for carbohydrate (starch and sugars) and nitrogen content; the others were stuck in rooting beds. Rooting response showed significant daily and clonal variations. Cuttings rooted best when their terminal leaves were mature, as judged by size and...
First report of root rot of cowpea caused by Fusarium equiseti in Georgia in the United States
USDA-ARS?s Scientific Manuscript database
Root rot was observed on cowpea in Tift County, Georgia, in May of 2015. The disease occurred on approximately 10% of cowpea plants in 2 fields (2 ha). Symptoms appeared as sunken reddish brown lesions on roots and stems under the soil line, secondary roots became dark brown and rotted, and infected...
John R. Donnelly
1971-01-01
Softwood stem cuttings from three mature sugar maple trees were treated with several types and concentrations of growth regulators. Lack of statistical significance was due to extreme variability in tree response: low levels of auxin stimulated rooting in two study trees, while auxins inhibited rooting in the other tree. It is postulated that variations in rooting...
Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian
2018-06-01
Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.
Effects of Growth Factors on Dental Stem/ProgenitorCells
Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.
2014-01-01
Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538
Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species.
Ma, Xingmao; Gurung, Arun; Deng, Yang
2013-01-15
Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids×Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0-1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (>200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. Copyright © 2012 Elsevier B.V. All rights reserved.
Black Stain Root Disease of Conifers (FIDL)
Paul F. Hessburg; Donald J. Goheen; Robert V. Bega
1995-01-01
The black stain fungus?Leptographium wageneri (Kendrick) Wingfield*?infects and kills several species of western conifers. The fungus colonizes water-conducting tissues of the host's roots, root collars, and lower stems, ultimately blocking the movement of water to foliage. Severely infected trees exhibit wilting symptoms characteristic of vascular wilt diseases...
Adventitious Root Formation of Forest Trees and Horticultural Plants - From Genes to Applications
USDA-ARS?s Scientific Manuscript database
Adventitious root formation is a key step in the clonal propagation of forest trees and horticultural crops. Difficulties in forming adventitious roots (ARs) on stem cuttings and plants produced in vitro hinders the propagation of elite trees and efficient production of many horticultural plant spec...
Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea
2016-01-01
Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but also in winter. The presence of the signal in meristematic tissues supports their role in meristem maintenance. The reporter lines will be useful to study the involvement of cytokinins in acclimation of poplar growth to stress.
Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.
Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan
2015-07-01
In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.
Differences of Cd uptake and expression of OAS and IRT genes in two varieties of ryegrasses.
Chi, Sunlin; Qin, Yuli; Xu, Weihong; Chai, Yourong; Feng, Deyu; Li, Yanhua; Li, Tao; Yang, Mei; He, Zhangmi
2018-06-16
Pot experiment was conducted to study the difference of cadmium uptake and OAS and IRT genes' expression between the two ryegrass varieties under cadmium stress. The results showed that with the increase of cadmium levels, the dry weights of roots of the two ryegrass varieties, and the dry weights of shoots and plants of Abbott first increased and then decreased. When exposed to 75 mg kg -1 Cd, the dry weights of shoot and plant of Abbott reached the maximum, which increased by 11.13 and 10.67% compared with the control. At 75 mg kg -1 Cd, cadmium concentrations in shoot of the two ryegrass varieties were higher than the critical value of Cd hyperaccumulator (100 mg kg -1 ), 111.19 mg kg -1 (Bond), and 133.69 mg kg -1 (Abbott), respectively. The OAS gene expression in the leaves of the two ryegrass varieties showed a unimodal curve, which was up to the highest at the cadmium level of 150 mg kg -1 , but fell back at high cadmium levels of 300 and 600 mg kg -1 . The OAS gene expression in Bond and Abbott roots showed a bimodal curve. The OAS gene expression in Bond root and Abbott stem mainly showed a unimodal curve. The expression of IRT genes family in the leaves of ryegrass varieties was basically in line with the characteristics of unimodal curve, which was up to the highest at cadmium level of 75 or 150 mg kg -1 , respectively. The IRT expression in the ryegrass stems showed characteristics of bimodal and unimodal curves, while that in the roots was mainly unimodal. The expression of OAS and IRT genes was higher in Bond than that in Abbott due to genotype difference between the two varieties. The expression of OAS and IRT was greater in leaves than that in roots and stems. Ryegrass tolerance to cadmium can be increased by increasing the expression of OAS and IRT genes in roots and stems, and transfer of cadmium from roots and stems to the leaves can be enhanced by increasing expression OAS and IRT in leaves.
Thoms, Ronny; Köhler, Michael; Gessler, Arthur
2017-01-01
We investigated soluble carbohydrate transport in trees that differed in their phloem loading strategies in order to better understand the transport of photosynthetic products into the roots and the rhizosphere as this knowledge is needed to better understand the respiratory processes in the rhizosphere. We compared beech, which is suggested to use mainly passive loading of transport sugars along a concentration gradient into the phloem, with ash that uses active loading and polymer trapping of raffinose family oligosaccharides (RFOs). We pulse-labeled 20 four-year old European beech and 20 four-year old ash trees with 13CO2 and tracked the fate of the label within different plant compartments. We extracted soluble carbohydrates from leaves, bark of stems and branches, and fine roots, measured their amount and isotopic content and calculated their turnover times. In beech one part of the sucrose was rapidly transported into sink tissues without major exchange with storage pools whereas another part of sucrose was strongly exchanged with unlabeled possibly stored sucrose. In contrast the storage and allocation patterns in ash depended on the identity of the transported sugars. RFO were the most important transport sugars that had highest turnover in all shoot compartments. However, the turnover of RFOs in the roots was uncoupled from the shoot. The only significant relation between sugars in the stem base and in the roots of ash was found for the amount (r2 = 0.50; p = 0.001) and isotopic content (r2 = 0.47; p = 0.01) of sucrose. The negative relation of the amounts suggested an active transport of sucrose into the roots of ash. Sucrose concentration in the root also best explained the concentration of RFOs in the roots suggesting that RFO in the roots of ash may be resynthesized from sucrose. Our results interestingly suggest that in both tree species only sucrose directly entered the fine root system and that in ash RFOs are transported indirectly into the fine roots only. The direct transport of sucrose might be passive in beech but active in ash (sustained active up- and unloading to co-cells), which would correspond to the phloem loading strategies. Our results give first hints that the transport of carbohydrates between shoot and root is not necessarily continuous and involves passive (beech) and active (ash) transport processes, which may be controlled by the phloem unloading. PMID:28934229
Prosopis pubescens (Screw bean mesquite) seedlings are hyper accumulators of copper
Zappala, Marian N.; Ellzey, Joanne T.; Bader, Julia; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge
2013-01-01
Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma spectroscopy (ICP-OES). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was utilized to localize copper within leaves. A 600 ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. In order for a plant to be considered a hyper accumulator, the plant must accumulate a leaf: root ratio of <1. Screw bean mesquite exposed to copper had a leaf: root ratios of 0.355 when cotyledons were included. We showed that Prosopis pubescens grown in soil is a hyper accumulator of copper. We recommend that this plant should be field tested. PMID:23612918
Sobczak, Miroslaw; Avrova, Anna; Jupowicz, Justyna; Phillips, Mark S; Ernst, Karin; Kumar, Amar
2005-02-01
The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.
NASA Astrophysics Data System (ADS)
Dangaria, Smit J.
2011-12-01
Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and uniquely derived from pre-implantation green fluorescent protein (GFP)-labeled progenitors. Together, these studies illustrate the capacity of natural extracellular surface topographies to instruct PDLPs to fully regenerate complex cellular and structural morphologies of tissues once lost to disease. We suggest that our strategy could be used for the replantation of teeth lost due to trauma or as a novel approach for tooth replacement using tooth-shaped replicas.
Effects of long-term hypergravity treatment on the development of inflorescence stems of arabidopsis
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Tamaoki, Daisuke; Kamisaka, Seiichiro; Yamaguchi, Takashi; Shinohara, Hironori; Kume, Atsushi; Inoue, Hiroshi
Hypergravity experiments with plants have been mostly performed using a commercial centrifuge in the dark. In order to see longer-term effect of hypergravity on the development of plant shoots, however, it is necessary to carry out the experiments in the light. In the present study, we have set up a centrifuge equipped with lighting system, which supports long-term plant growth under hypergravity condition, in order to see long-term effects of hypergravity on the development of vascular tissues of inflorescence stems. Arabidopsis plants (Arabidopsis thaliana (L.) Heynh., Col-0), which were grown under 1 G conditions for 20-23 days and having the first visible flower bud, i.e., at Arabidopsis growth stage number 5 (according to Boys et al., 2001), were selected as the plant material. These plants were exposed to hypergravity stimulus at 10 G in a direction from the shoot to root for 10 days in the continuous light. Effects of hypergravity on growth of inflorescence stems, lignin content, and morphometrical parameters of the stem tissues were examined. As a result, the length of the inflorescence stem was decreased. Cross sectional area as well as cell number, and lignin content in the stem were increased under hypergravity. The length of basal internodes of the stem was decreased under hypergravity. In conclusion, the inflorescence stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under long-term hypergravity conditions.
Biava, Pier Mario; Burigana, Fabio; Germano, Roberto; Kurian, Philip; Verzegnassi, Claudio; Vitiello, Giuseppe
2017-09-20
A long history of research has pursued the use of embryonic factors isolated during cell differentiation processes for the express purpose of transforming cancer cells back to healthy phenotypes. Recent results have clarified that the substances present at different stages of cell differentiation-which we call stem cell differentiation stage factors (SCDSFs)-are proteins with low molecular weight and nucleic acids that regulate genomic expression. The present review summarizes how these substances, taken at different stages of cellular maturation, are able to retard proliferation of many human tumor cell lines and thereby reprogram cancer cells to healthy phenotypes. The model presented here is a quantum field theory (QFT) model in which SCDSFs are able to trigger symmetry breaking processes during cancer development. These symmetry breaking processes, which lie at the root of many phenomena in elementary particle physics and condensed matter physics, govern the phase transitions of totipotent cells to higher degrees of diversity and order, resulting in cell differentiation. In cancers, which share many genomic and metabolic similarities with embryonic stem cells, stimulated re-differentiation often signifies the phenotypic reversion back to health and non-proliferation. In addition to acting on key components of the cellular cycle, SCDSFs are able to reprogram cancer cells by delicately influencing the cancer microenvironment, modulating the electrochemistry and thus the collective electrodynamic behaviors between dipole networks in biomacromolecules and the interstitial water field. Coherent effects in biological water, which are derived from a dissipative QFT framework, may offer new diagnostic and therapeutic targets at a systemic level, before tumor instantiation occurs in specific tissues or organs. Thus, by including the environment as an essential component of our model, we may push the prevailing paradigm of mutation-driven oncogenesis toward a closer description of reality. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Stem sap flow in plants under low gravity conditions
NASA Astrophysics Data System (ADS)
Tokuda, Ayako; Hirai, Hiroaki; Kitaya, Yoshiaki
2016-07-01
A study was conducted to obtain a fundamental knowledge for plant functions in bio-regenerative life support systems in space. Stem sap flow in plants is important indicators for water transport from roots to atmosphere through leaves. In this study, stem sap flow in sweetpotato was assessed at gravity levels from 0.01 to 2 g for about 20 seconds each during parabolic airplane flights. Stem sap flow was monitored with a heat balance method in which heat generated with a tiny heater installed in the stem was transferred upstream and downstream by conduction and upstream by convection with the sap flow through xylems of the vascular tissue. Thermal images of stem surfaces near heated points were captured using infrared thermography and the internal heat convection corresponding to the sap flow was analyzed. In results, the sap flow in stems was suppressed more at lower gravity levels without forced air circulation. No suppression of the stem sap flow was observed with forced air circulation. Suppressed sap flow in stems would be caused by suppression of transpiration in leaves and would cause restriction of water and nutrient uptake in roots. The forced air movement is essential to culture healthy plants at a high growth rate under low gravity conditions in space.
A new mechanism for aging: chemical "age spots" in immortal DNA strands in distributed stem cells.
Sherley, James L
2008-01-01
The existence of immortal DNA strands (IDSs) in distributed stem cells (DSCs) of adult human tissues was first inferred by Cairns. Cairns deduced the existence of IDSs by connecting two seemingly disparate observations - one his own and the other belonging to Lark. Cairns noted a mathematical discrepancy between predicted human tissue cell mutation rates and human cancer incidence. He integrated this insight with Lark's earlier discovery of non-random mitotic chromosome segregation in both plant root tip cells and mouse fetal fibroblast cultures to predict the existence of IDSs as the essential elements of a mutation-defense mechanism in DSCs. Since Cairns' seminal prediction, several laboratories have identified IDSs in diverse mammalian cells with DSC properties. Past studies focused on the potential roles of IDSs as originally envisioned in DSC genetic fidelity or in the maintenance of the DSC phenotype. Another possible consequence of IDSs, aging, has received little attention. Herein, the potential for cumulative chemical modifications and decompositions (i.e., "age spots") of IDSs in DSCs to act as a major determinant of human aging is considered. If accrued chemical alterations of IDSs prove to be essential determinants of aging, then a means to restore IDSs may yield new strategies for tissue rejuvenation.
Livingston, David P.; Henson, Cynthia A.; Tuong, Tan D.; Wise, Mitchell L.; Tallury, Shyamalrau P.; Duke, Stanley H.
2013-01-01
The crown is the below ground portion of the stem of a grass which contains meristematic cells that give rise to new shoots and roots following winter. To better understand mechanisms of survival from freezing, a histological analysis was performed on rye, wheat, barley and oat plants that had been frozen, thawed and allowed to resume growth under controlled conditions. Extensive tissue disruption and abnormal cell structure was noticed in the center of the crown of all 4 species with relatively normal cells on the outside edge of the crown. A unique visual response was found in oat in the shape of a ring of cells that stained red with Safranin. A tetrazolium analysis indicated that tissues immediately inside this ring were dead and those outside were alive. Fluorescence microscopy revealed that the barrier fluoresced with excitation between 405 and 445 nm. Three dimensional reconstruction of a cross sectional series of images indicated that the red staining cells took on a somewhat spherical shape with regions of no staining where roots entered the crown. Characterizing changes in plants recovering from freezing will help determine the genetic basis for mechanisms involved in this important aspect of winter hardiness. PMID:23341944
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Craig H.; Smart, Lawrence B.
Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less
Carlson, Craig H.; Smart, Lawrence B.
2016-08-19
Here, the root biomass is an important trait often disregarded in woody perennial selection due to the challenge and expense of accurately and efficiently measuring large populations. In this study, we aim to develop a simple method that can predict root dry weight within a diverse shrub willow ( Salix) breeding population representing species hybrids and their parents using root electrical capacitance (REC). The REC method was tested on plants started from cuttings and grown in pots with potting mix in the greenhouse for 11 wk to assess the relationship of REC with 24 biomass traits and its usefulness inmore » allometric models for root and stem dry biomass. As a result, strong linear and positive correlations were found between REC and root dry biomass (r = 0.88). The total proportion of variance of root and stem dry biomass explained by predictors in multiple regression was 85% and 69%, respectively. The relative importance of predictor variables in allometric models was dominated by the contribution of REC. Here, this work provides an efficient and nondestructive technique to indirectly quantify root biomass of genetically diverse shrub willow progeny, which has great promise for selection of genotypes with varying root biomass and for the accurate estimation of belowground carbon sequestration.« less
Chen, M H; Wang, P J; Maeda, E
1987-10-01
The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.
Galtier, J; Hueber, F M
2001-09-22
A new anatomically preserved fern, discovered from the basalmost Carboniferous of Australia, shows a unique combination of very primitive anatomical characters (solid centrarch cauline protostele) with the elaboration of an original model of the arborescent habit. This plant possessed a false trunk composed of a repetitive branching system of very small stems, which established it as the oldest tree-fern known to date. The potential of this primitive zygopterid fern to produce such an unusual growth form-without real equivalent among living plants-is related to the possession of two kinds of roots that have complementary functional roles: (i) large roots produced by stems with immediate positive geotropism, strongly adapted to mechanical support and water uptake from the soil; and (ii) small roots borne either on large roots or on petiole bases for absorbing humidity inside the false trunk.
Christensen-Dalsgaard, Karen K; Ennos, Anthony R; Fournier, Meriem
2007-01-01
Roots have been described as having larger vessels and so greater hydraulic efficiency than the stem. Differences in the strength and stiffness of the tissue within the root system itself are thought to be an adaptation to the loading conditions experienced by the roots and to be related to differences in density. It is not known how potential mechanical adaptations may affect the hydraulic properties of the roots. The change in strength, stiffness, conductivity, density, sapwood area, and second moment of area distally along the lateral roots of two tropical tree species in which the strain is known to decrease rapidly was studied and the values were compared with those of the trunk. It was found that as the strain fell distally along the roots, so did the strength and stiffness of the tissue, whereas the conductivity increased exponentially. These changes appeared to be related to differences in density. In contrast to the distal-most roots, the tissue of the proximal roots had a lower conductivity and higher strength than that of the trunk. This suggests that mechanical requirements on the structure rather than the water potential gradient from roots to branches are responsible for the general pattern that roots have larger vessels than the stem. In spite of their increased transectional area, the buttressed proximal roots were subjected to higher levels of stress and had a lower total conductivity than the rest of the root system.
The Origin and Composition of Cucurbit “Phloem” Exudate1[OA
Zhang, Cankui; Yu, Xiyan; Ayre, Brian G.; Turgeon, Robert
2012-01-01
Cucurbits exude profusely when stems or petioles are cut. We conducted studies on pumpkin (Cucurbita maxima) and cucumber (Cucumis sativus) to determine the origin and composition of the exudate. Morphometric analysis indicated that the exudate is too voluminous to derive exclusively from the phloem. Cold, which inhibits phloem transport, did not interfere with exudation. However, ice water applied to the roots, which reduces root pressure, rapidly diminished exudation rate. Sap was seen by microscopic examination to flow primarily from the fascicular phloem in cucumber, and several other cucurbit species, but primarily from the extrafascicular phloem in pumpkin. Following exposure of leaves to 14CO2, radiolabeled stachyose and other sugars were detected in the exudate in proportions expected of authentic phloem sap. Most of this radiolabel was released during the first 20 s. Sugars in exudate were dilute. The sugar composition of exudate from extrafascicular phloem near the edge of the stem differed from that of other sources in that it was high in hexose and low in stachyose. We conclude that sap is released from cucurbit phloem upon wounding but contributes negligibly to total exudate volume. The sap is diluted by water from cut cells, the apoplast, and the xylem. Small amounts of dilute, mobile sap from sieve elements can be obtained, although there is evidence that it is contaminated by the contents of other cell types. The function of P-proteins may be to prevent water loss from the xylem as well as nutrient loss from the phloem. PMID:22331409
[Seedling index of Salvia miltiorrhiza and its simulation model].
Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan
2012-10-01
Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.
Jiménez-Fernández, Daniel; Landa, Blanca B.; Kang, Seogchan; Jiménez-Díaz, Rafael M.; Navas-Cortés, Juan A.
2013-01-01
Background Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. Methodology We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. Findings The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. Conclusions The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms. PMID:23613839
Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven
2016-02-01
Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhou, Guifen; Lv, Guiyuan
2012-06-01
To study the scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale. The types and contents of flavonoids from different parts of D. officinale were analyzed by TLC and HPLC. The antioxidant effect was tested by scavenging DPPH free radicals activity. The stems, leaves and flowers contained the same type of flavone C-A glycosides and 8 common peaks were identified. The content of flavone C-A glycosides was significantly different. The content of flavone C-glycosides in leaves and flowers was higher than that in stems. The flavonoid in roots was less. Stems contained naringenin, which was not identified in root, leave and flower. Both stems and leaves had antioxidant capacity of eliminating DPPH free radicals, of which scavenging DPPH free radicals activity of leaves was better than stems. Considering the content of flavonoid and antioxidant activity leave and flower of D. officinale may substitute stems. The study provides a preliminary basis for the development and utilization of leave and flower of D. officinale.
Efficacy of management tools for control of Pythium root rot of Douglas fir seedlings, 2010
USDA-ARS?s Scientific Manuscript database
This study investigated the efficacy of management tools for control of Pythium root rot of Douglas fir seedlings. This effort was conducted as part of the IR-4 Ornamental Horticulture program to evaluate fungicides and biopesticides for management of root, crown and stem rot of ornamental plants ca...
Evidence for Early Morphological Decomposition in Visual Word Recognition
ERIC Educational Resources Information Center
Solomyak, Olla; Marantz, Alec
2010-01-01
We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…
Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.