Sample records for root system distribution

  1. Modelling Root Systems Using Oriented Density Distributions

    NASA Astrophysics Data System (ADS)

    Dupuy, Lionel X.

    2011-09-01

    Root architectural models are essential tools to understand how plants access and utilize soil resources during their development. However, root architectural models use complex geometrical descriptions of the root system and this has limitations to model interactions with the soil. This paper presents the development of continuous models based on the concept of oriented density distribution function. The growth of the root system is built as a hierarchical system of partial differential equations (PDEs) that incorporate single root growth parameters such as elongation rate, gravitropism and branching rate which appear explicitly as coefficients of the PDE. Acquisition and transport of nutrients are then modelled by extending Darcy's law to oriented density distribution functions. This framework was applied to build a model of the growth and water uptake of barley root system. This study shows that simplified and computer effective continuous models of the root system development can be constructed. Such models will allow application of root growth models at field scale.

  2. A conceptual approach to approximate tree root architecture in infinite slope models

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic paraboloids represent a cordate-root-system with radius r, height h and a constant, species-independent curvature. This procedure simplifies the classification of tree species into the three defined geometric solids. In this study we introduce a conceptual approach to estimate the 2- and 3-dimensional distribution of different tree root systems, and to implement it in a raster environment, as it is used in infinite slope models. Hereto we used the PCRaster extension in a python framework. The results show that root distribution and root growth are spatially reproducible in a simple raster framework. The outputs exhibit significant effects for a synthetically generated slope on local scale for equal time-steps. The preliminary results depict an initial step to develop a vegetation module that can be coupled with hydro-mechanical slope stability models. This approach is expected to yield a valuable contribution to the implementation of vegetation-related properties, in particular effects of root-reinforcement, into physically-based approaches using infinite slope models.

  3. Estimation of tree root distribution using electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Uhlemann, Sebastian

    2016-04-01

    Trees influence soil-mantled slopes mechanically by anchoring in the soil with coarse roots. Forest-stands play an important role in mechanical reinforcement to reduce the susceptibility to slope failures. However, the effect of stabilisation of roots is connected with the distribution of roots in the ground. The architecture and distribution of tree roots is diverse and strongly dependent on species, plant age, stand density, relief, nutrient supply as well as climatic and pedologic conditions. Particularly trees growing on inclined slopes show shape-shifting root systems. Geophysical techniques are commonly used to non-invasively study hydrological and geomorphological subsurface properties, by imaging contrasting physical properties of the ground. This also poses the challenge for geophysical imaging of root systems, as properties, such as electrical resistivity, of dry and wet roots fall within the range of soils. The objective of this study is whether electrical resistivity tomography (ERT) allows a reliable reproduction of root systems of alone-standing trees on diverse inclined slopes. In this regard, we set the focus on the branching of secondary roots of two common walnut trees (Juglans regia L.) that were not disturbed in the adjacencies and thus expected to develop their root systems unhindered. Walnuts show a taproot-cordate root system with a strong tap-root in juvenile age and a rising cordate rooting with increasing age. Hence, mature walnuts can exhibit a root system that appears to be deformed or shifted respectively when growing at hillslope locations. We employed 3D ERT centred on the tree stem, comprising dipole-dipole measurements on a 12-by-41 electrode grid with 0.5 m and 1.0m electrode spacing in x- and y-direction respectively. Data were inverted using a 3D smoothness constrained non-linear least-squares algorithm. First results show that the general root distribution can be estimated from the resistivity models and that shape-shifting effects of secondary roots of the two Juglans regia in differently inclined ambiences can be imaged using 3D ERT. The results of this study can yield a grasp about the dimension of root architecture of single trees by using non-invasive geophysical techniques and give evidence about how roots influence the soil mantle mechanically and hydrologically according to the spatial distribution of their coarse roots.

  4. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; ...

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  5. The development of the rhizosphere: simulation of root exudation for two contrasting exudates: citrate and mucilage

    NASA Astrophysics Data System (ADS)

    Sheng, Cheng; Bol, Roland; Vetterlein, Doris; Vanderborght, Jan; Schnepf, Andrea

    2017-04-01

    Different types of root exudates and their effect on soil/rhizosphere properties have received a lot of attention. Since their influence of rhizosphere properties and processes depends on their concentration in the soil, the assessment of the spatial-temporal exudate concentration distribution around roots is of key importance for understanding the functioning of the rhizosphere. Different root systems have different root architectures. Different types of root exudates diffuse in the rhizosphere with different diffusion coefficient. Both of them are responsible for the dynamics of exudate concentration distribution in the rhizosphere. Hence, simulations of root exudation involving four kinds of plant root systems (Vicia faba, Lupinus albus, Triticum aestivum and Zea mays) and two kinds of root exudates (citrate and mucilage) were conducted. We consider a simplified root architecture where each root is represented by a straight line. Assuming that root tips move at a constant velocity and that mucilage transport is linear, concentration distributions can be obtained from a convolution of the analytical solution of the transport equation in a stationary flow field for an instantaneous point source injection with the spatial-temporal distribution of the source strength. By coupling the analytical equation with a root growth model that delivers the spatial-temporal source term, we simulated exudate concentration distributions for citrate and mucilage with MATLAB. From the simulation results, we inferred the following information about the rhizosphere: (a) the dynamics of the root architecture development is the main effect of exudate distribution in the root zone; (b) a steady rhizosphere with constant width is more likely to develop for individual roots when the diffusion coefficient is small. The simulations suggest that rhizosphere development depends in the following way on the root and exudate properties: the dynamics of the root architecture result in various development patterns of the rhizosphere. Meanwhile, Results improve our understanding of the impact of the spatial and temporal heterogeneity of exudate input on rhizosphere development for different root system types and substances. In future work, we will use the simulation tool to infer critical parameters that determine the spatial-temporal extent of the rhizosphere from experimental data.

  6. From experiments to simulations: tracing Na+ distribution around roots under different transpiration rates and salinity levels

    NASA Astrophysics Data System (ADS)

    Perelman, Adi; Jorda, Helena; Vanderborght, Jan; Pohlmeier, Andreas; Lazarovitch, Naftali

    2017-04-01

    When salinity increases beyond a certain threshold it will result in reduced crop yield at a fixed rate, according to Maas and Hoffman model (1976). Thus, there is a great importance of predicting salinization and its impact on crops. Current models do not consider the impact of environmental conditions on plants salt tolerance, even though these conditions are affecting plant water uptake and therefore salt accumulation around the roots. Different factors, such as transpiration rates, can influence the plant sensitivity to salinity by influencing salt concentrations around the roots. Better parametrization of a model can help improving predicting the real effects of salinity on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and study how this distribution is being affected by transpiration rate and plant water uptake. Results from tomato plants growing on Rhizoslides (capillary paper growth system), show that Na+ concentration is higher at the root- substrate interface, compared with the bulk. Also, Na+ accumulation around the roots decreased under low transpiration rate, which is supporting our hypothesis. Additionally, Rhizoslides enable to study roots' growth rate and architecture under different salinity levels. Root system architecture was retrieved from photos taken during the experiment and enabled us to incorporate real root systems into a simulation. To observe the correlation of root system architectures and Na+ distribution in three dimensions, we used magnetic resonance imaging (MRI). MRI provides fine resolution of Na+ accumulation around a single root without disturbing the root system. With time, Na+ was accumulating only where roots were found in the soil and later on around specific roots. These data are being used for model calibration, which is expected to predict root water uptake in saline soils for different climatic conditions and different soil water availabilities.

  7. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen.

    PubMed

    Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.

  8. Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen

    PubMed Central

    Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

  9. From Experiments to Simulations: Downscaling Measurements of Na+ Distribution at the Root-Soil Interface

    NASA Astrophysics Data System (ADS)

    Perelman, A.; Guerra, H. J.; Pohlmeier, A. J.; Vanderborght, J.; Lazarovitch, N.

    2017-12-01

    When salinity increases beyond a certain threshold, crop yield will decrease at a fixed rate, according to the Maas and Hoffman model (1976). Thus, it is highly important to predict salinization and its impact on crops. Current models do not consider the impact of the transpiration rate on plant salt tolerance, although it affects plant water uptake and thus salt accumulation around the roots, consequently influencing the plant's sensitivity to salinity. Better model parametrization can improve the prediction of real salinity effects on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and to examine how this distribution is affected by the transpiration rate and plant water uptake. Results from tomato plants that were grown on rhizoslides (a capillary paper growth system) showed that the Na+ concentration was higher at the root-substrate interface than in the bulk. Also, Na+ accumulation around the roots decreased under a low transpiration rate, supporting our hypothesis. The rhizoslides enabled the root growth rate and architecture to be studied under different salinity levels. The root system architecture was retrieved from photos taken during the experiment, enabling us to incorporate real root systems into a simulation. Magnetic resonance imaging (MRI) was used to observe correlations between root system architectures and Na+ distribution. The MRI provided fine resolution of the Na+ accumulation around a single root without disturbing the root system. With time, Na+ accumulated only where roots were found in the soil and later around specific roots. Rhizoslides allow the root systems of larger plants to be investigated, but this method is limited by the medium (paper) and the dimension (2D). The MRI can create a 3D image of Na+ accumulation in soil on a microscopic scale. These data are being used for model calibration, which is expected to enable the prediction of root water uptake in saline soils for different climatic conditions and different soil water availabilities.

  10. The species diversity and roots distribution of forest in course of succession in the lower sub-tropical Dinghushan, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Hao, Y.

    2017-12-01

    The study of root biomass distribution provides a good insight into the role of the root system, their structure and function at the ecosystem level. Therefore, many studies of root distribution and root dynamics e have been carried out. In the sub-tropical area of South China, monsoon evergreen broad-leaved forest is one of the most characteristic and most valuable zonal vegetation with stand age of 400 years in Dinghushan, where we choose the 4 typical communities (Com.1 Pinus massoniana community; Com.2 Pinus massoniana + Castanopsis chinensis + Schima superba community; Com.3 Castanopsis fissa community; Com.4 Cryptocarya concinna + Castanopsis chinensis + Cryptocarya chinensis + Schima superba community) to study the species diversity and roots distribution. Root systems of representative communities were examined systemically with regard to their structure, underground stratification and biomass distribution, by the method of root biological measure and ecological technique, Excavation of skeleton roots and observation of fine roots were carried out. The conclusions mainly including: The root biomass was increased with the species diversity and evenness of the communities improved in lower sub-tropical evergreen broad-leaved forest in course of succession. The main reason is that the diversity increase resulted in the great increase of total individuals. The individual number is 93 in Com.1 and increase to 7024 in Com.4, and the number of species and total population of individual were fast increased 32 and 2680 after 25 years when man-made needle forest was founded. In a set of successional stages, the amount of tree roots linearly increased in communities series. In monsoon evergreen broad-leaved forest, the total tree root biomass amounted to 115.70 ton/ha, Needle and broad-leaved mixed forest dominated by coniferous 50.61ton/ ha, Broad-and needle-leaved mixed forest dominated by broad-leaved heliophytes 64.20 ton/ha. Root biomass of community in later successional stage tended to distribute in the upper soil layers with the succession process, and this trend became slower in the later successional stage of the forest. 35% of total root biomass distributed in 0-10 cm layer in Com.2 but it increase to 61% in Com.4. Furthermore, more diversity of the vegetation has more clearly layers roots.

  11. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  12. Root Systems of Individual Plants, and the Biotic and Abiotic Factors Controlling Their Depth and Distribution: a Synthesis Using a Global Database.

    NASA Astrophysics Data System (ADS)

    Tumber-Davila, S. J.; Schenk, H. J.; Jackson, R. B.

    2017-12-01

    This synthesis examines plant rooting distributions globally, by doubling the number of entries in the Root Systems of Individual Plants database (RSIP) created by Schenk and Jackson. Root systems influence many processes, including water and nutrient uptake and soil carbon storage. Root systems also mediate vegetation responses to changing climatic and environmental conditions. Therefore, a collective understanding of the importance of rooting systems to carbon sequestration, soil characteristics, hydrology, and climate, is needed. Current global models are limited by a poor understanding of the mechanisms affecting rooting, carbon stocks, and belowground biomass. This improved database contains an extensive bank of records describing the rooting system of individual plants, as well as detailed information on the climate and environment from which the observations are made. The expanded RSIP database will: 1) increase our understanding of rooting depths, lateral root spreads and above and belowground allometry; 2) improve the representation of plant rooting systems in Earth System Models; 3) enable studies of how climate change will alter and interact with plant species and functional groups in the future. We further focus on how plant rooting behavior responds to variations in climate and the environment, and create a model that can predict rooting behavior given a set of environmental conditions. Preliminary results suggest that high potential evapotranspiration and seasonality of precipitation are indicative of deeper rooting after accounting for plant growth form. When mapping predicted deep rooting by climate, we predict deepest rooting to occur in equatorial South America, Africa, and central India.

  13. Effects of field experimental warming on wheat root distribution under conventional tillage and no-tillage systems.

    PubMed

    Hou, Ruixing; Ouyang, Zhu; Han, Daorui; Wilson, Glenn V

    2018-03-01

    Despite the obvious importance of roots to agro-ecosystem functioning, few studies have attempted to examine the effects of warming on root biomass and distribution, especially under different tillage systems. In this study, we performed a field warming experiment using infrared heaters on winter wheat, in long-term conventional tillage and no-tillage plots, to determine the responses of root biomass and distribution to warming. Soil monoliths were collected from three soil depths (0-10, 10-20, and 20-30 cm). Results showed that root biomass was noticeably increased under both till and no-till tillage systems (12.1% and 12.9% in 2011, and 9.9% and 14.5% in 2013, in the two tillage systems, respectively) in the 0-30 cm depth, associated with a similar increase in shoot biomass. However, warming-induced root biomass increases occurred in the deeper soil layers (i.e., 10-20 and 20-30 cm) in till, while the increase in no-till was focused in the surface layer (0-10 cm). Differences in the warming-induced increases in root biomass between till and no-till were positively correlated with the differences in soil total nitrogen ( R 2  = .863, p  <   .001) and soil bulk density ( R 2  = .853, p  <   .001). Knowledge of the distribution of wheat root in response to warming should help manage nutrient application and cycling of soil C-N pools under anticipated climate change conditions.

  14. Single Plant Root System Modeling under Soil Moisture Variation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  15. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  16. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  17. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.

  18. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548

  19. Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Vanderborght, J.; Pohlmeier, A.

    2017-08-01

    Differential uptake of water and solutes by plant roots generates heterogeneous concentration distributions in soils. Noninvasive observations of root system architecture and concentration patterns therefore provide information about root water and solute uptake. We present the application of magnetic resonance imaging (MRI) to image and monitor root architecture and the distribution of a tracer, GdDTPA2- (Gadolinium-diethylenetriaminepentacetate) noninvasively during an infiltration experiment in a soil column planted with white lupin. We show that inversion recovery preparation within the MRI imaging sequence can quantitatively map concentrations of a tracer in a complex root-soil system. Instead of a simple T1 weighting, the procedure is extended by a wide range of inversion times to precisely map T1 and subsequently to cover a much broader concentration range of the solute. The derived concentrations patterns were consistent with mass balances and showed that the GdDTPA2- tracer represents a solute that is excluded by roots. Monitoring and imaging the accumulation of the tracer in the root zone therefore offers the potential to determine where and by which roots water is taken up.

  20. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using measurements of soil water potentials, water contents, and root distributions. The results showed that this modelling approach reproduced soil water dynamics well in the different plots and treatments. Root water uptake reduced when the effective soil water potential decreased to around -70 to -100 kPa in the root zone. Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957-2971, doi:10.5194/hess-16-2957-2012, 2012.

  1. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  3. Root production, distribution, and turnover in conventional and organic northern highbush blueberry systems

    USDA-ARS?s Scientific Manuscript database

    Northern highbush blueberry is a shallow-rooted crop with very fine, fibrous roots. Recently, we installed minirhizotrons (root observation tubes) in a conventional and an organic blueberry planting in western Oregon. We wanted to know exactly when and where new roots were being produced and determi...

  4. Root production, distribution, and turnover in conventional and organic northern highbush blueberry systems

    USDA-ARS?s Scientific Manuscript database

    Northern highbush blueberry (Vaccinium corymbosum L.) is a shallow-rooted crop with very fine, fibrous roots. Recently, we installed minirhizotrons (root observation tubes) in a conventional and an organic blueberry planting in western Oregon. We wanted to know exactly when and where new roots were ...

  5. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. [Root system distribution and biomechanical characteristics of Bambusa oldhami].

    PubMed

    Zhou, Ben-Zhi; Xu, Sheng-Hua; An, Yan-Fei; Xu, Sheng-Hua

    2014-05-01

    To determine the mechanism of soil stabilizing through Bambusa oldhami root system, the vertical distribution of B. oldhami root system in soil was investigated, and the tensile strength of individual root and soil shear strength were measured in B. oldhami forest. The dry mass, length, surface area and volume of the B. oldhami root system decreased with the increasing soil depth, with more than 90% of the root system occurring in the 0-40 cm soil layer. The root class with D 1 mm occupied the highest percentage of the total in terms of root length, accounting for 79.6%, but the lowest percentage of the total in terms of root volume, accounting for 8.2%. The root class with D >2 mm was the opposite, and the root class with D= 1-2 mm stayed in between. The maximum tensile resistance of B. oldhami root, either with 12% moisture content or a saturated moisture content, increased with the increasing root diameter, while the tensile strength decreased with the increasing root diameter in accordance with power function. Tensile strength of the root, with either of the two moisture contents, was significantly different among the diameter classes, with the highest tensile strength occurring in the root with D < or = 1 mm and the lowest in the root with D > or = 2 mm. The tensile strength of root with 12% moisture content was significantly higher than that with the saturated moisture content, and less effect of moisture content on root tensile strength would occur in thicker roots. The shear strengths of B. oldhami forest soil and of bare soil both increased with the increasing soil depth. The shear strength of B. oldhami forest soil had a linear positive correlation with the root content in soil, and was significantly higher than that of bare soil. The shear strength increment in B. oldhami forest was positively correlated with the root content in soil according to an exponential function, but not related significantly with soil depth.

  7. Root interaction between Bromud tectorum and Poa pratensis: a three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bookman, P.A.; Mack, R.N.

    1982-06-01

    The spatial distribution of roots of two alien grasses, Bromus tectorum and Poa pratensis, grown singly and in a mixture, was examined using a double-labelling radioisotope technique. Interactions between the root systems of these plants led to a restricted B. tectorum rooting volume in P. pratensis neighborhoods greater than or equal to30-d-old. The roots of B. tectorum failed to develop laterally. The altered B. tectorum root systems may contribute to its inability to persist in established P. pratensis swards.

  8. 3D Electrical Resistivity Tomography and Mise-à-la-Masse Method as Tools for the Characterization of Vine Roots

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.

    2017-12-01

    The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.

  9. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit

    PubMed Central

    Ferl, Robert J; Paul, Anna-Lisa

    2016-01-01

    Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721

  10. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  11. A (Sub)Micro-Scale Investigation of Fe Plaque Distribution in Selected Wetland Plant Root Epidermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan

    This study focuses on investigation of the distribution of Fe plaque in the root epidermis of the selected wetland plant species (Phragmites australis, Typha latifolia and Spartina alterniflora) using synchrotron X-ray microfluoresces, X-ray absorption near edge structure and transmission X-ray microscope techniques with (sub)micro-scale resolution. The wetland plants were collected in Liberty State Park, New Jersey, USA, and Yangtze River intertidal zone, Shanghai, China, respectively, during the different time period. Although a number of early studies have reported that Fe-oxides can precipitate on the surface of aquatic plants in the rhizosphere to form iron plaque, the role of Fe plaquemore » in regulating metal biogeochemical cycle has been in discussion for decades. The results from this study show that Fe is mainly distributed in the epidermis non-uniformly, and the major Fe species is ferric Fe (Fe3+). This information is needed to make broad inferences about the relevant plant metal uptake mechanisms because Fe accumulation and distribution in the root system is important to understanding the metal transport processes that control the mobility of metals in plants. This study improves our understanding of Fe plaque distributions and speciation in the wetland plant root system, and helps us to understand the function of Fe plaque in metal transport and accumulation through the root system.« less

  12. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Zhang, Weiguo; Qian, Yu; ...

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  13. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  14. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems

    PubMed Central

    Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza

    2017-01-01

    Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270

  15. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Characterizing roots and water uptake in a ground cover rice production system.

    PubMed

    Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon

    2017-01-01

    Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity.

  17. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems.

    PubMed

    Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza

    2017-02-01

    Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. [Finite element analysis of the stress distribution of two-piece post crown with different adhesives ].

    PubMed

    He, Lihui; Liu, Lijie; Gao, Bei; Gao, Shang; Chen, Yifu; Zhihui, Liu

    2013-08-01

    To establish three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots, and analyze the stress distribution characteristic to the residual roots with different adhesives, so as to get the best combination under different conditions. The complete mandibular first molar in vitro was selected, the crown was removed along the cemento-enamel junction, then the residual roots were scanned by CT. CT images were imported into a reverse engineering software, and the three-dimensional finite element model of the mandibular first molar residual roots was reconstructed. Titanium two-piece post crown of the mandibular first molar residual roots was produced, then was scanned by CT. The model was reconstructed and assembled by MIMICS. The stress distribution of the root canal and root section under the vertical load and lateral load with different bonding systems were analyzed. Three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots was established. With the increasing of elastic modulus of the adhesives, the maximum stress within the root canal was also increasing. Elastic modulus of zinc phosphate was the biggest, so the stress within the root canal was the biggest; elastic modulus of Superbond C&B was the smallest, so the stress within the root canal was the smallest. Lateral loading stress was much larger than the vertical load. Under vertical load, the load on the root section was even with different bonding systems. Under lateral load, the maximum stress was much larger than the vertical load. The stress on the root section was minimum using zinc phosphate binder, and the stress on the root section was maximum using Superbond C&B. In two-piece post crown restorations, there is significant difference between different adhesives on tooth protection. When the tooth structure of the root canal orifices is weak, in order to avoid the occurrence of splitting, the larger elastic modulus bonding system is the first choice, such as zinc phosphate binder. When the resistance form of the root canal orifices is good enough but the root is too weak, it is suggested that the smaller elastic modulus bonding system is the first choice, such as Superbond C&B.

  19. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and promoted the root allocation ratio in deeper soil and wide row (20-40 cm) in horizontal direction. The ridge-furrow culture without film mulching was helpful to root growth and increased the maize yield.

  20. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    2016-06-15

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  1. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.

  3. Root Traits, Nodulation and Root Distribution in Soil for Five Wild Lentil Species and Lens culinaris (Medik.) Grown under Well-Watered Conditions.

    PubMed

    Gorim, Linda Y; Vandenberg, Albert

    2017-01-01

    The efficient use of resources such as water and nutrients by plants is increasingly important as the world population food demand continues to grow. With the increased production of lentil in the temperate zones of North America, improvement in yield needs to be maintained. The use of wild lentil genotypes as sources of genetic diversity for introgression into cultivated lentil is an important breeding strategy, but little is known about their root systems. We evaluated the root systems of five wild lentil species and Lens culinaris under fully watered conditions. Plants were grown in 60 cm tubes containing equal volumes of soil collected from the reconstructed A, B, and C horizons. Significant differences were observed for root traits and fine root distribution between and within species and the proportion of root biomass partitioned into each soil layer was unique for each genotype. We also observed variability in nodule number and nodule shape within and between genotypes. Some genotypes more efficiently used water for either biomass or seed production. The allocation of resources to seed production also varied between genotypes. These observations could have impact on the design of future lentil breeding in the context of strategies for managing changes in rainfall amount and distribution for lentil production ecosystems.

  4. A radioisotope based methodology for plant-fungal interactions in the rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A. G.; Bonito, G.; Lee, S.

    In plant ecophysiology research there is interest in studying the biology of the rhizosphere because of its importance in plant nutrient-interactions. The rhizosphere is the zone of soil surrounding a plant's root system where microbes (such as fungi) are influenced by the root and the roots by the microbes. We are investigating a methodology for imaging the distribution of molecular compounds of interest in the rhizosphere without disturbing the root or soil habitat. Our intention is to develop a single photon emission computed tomography (SPECT) system (PhytoSPECT) to image the bio-distribution of fungi in association with a host plant's roots.more » The technique we are exploring makes use of radioactive isotopes as tracers to label molecules that bind to fungal-specific compounds of interest and to image the fungi distribution in the plant and/or soil. We report on initial experiments designed to test the ability of fungal-specific compounds labeled with an iodine radioisotope that binds to chitin monomers (N-acetylglucosamine). Chitin is a compound not found in roots but in fungal cell walls. We will test the ability to label the compound with radioactive isotopes of iodine ({sup 125}I, and {sup 123}I).« less

  5. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13.7%-28.5%. It was concluded that no-till farming and straw mulching (plastic) could increase crop root length and root surface area, optimize the spatial distribution of roots in the soil, enhance crop root layer absorption ability, so as to improve crop yield and water utilization.

  6. Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features

    NASA Astrophysics Data System (ADS)

    Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger

    2014-05-01

    Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root. In order to confirm this assumption and possibly find more important root properties which have an influence on soil stabilization, the root systems of seven trees (three grey alder, four mountain maple) were excavated and analyzed. The study site is a catchment, where shallow landslides are common. It is located in the Prättigau valley in the Eastern Swiss Alps and was eco-engineered in 1997. The substrate is coarse-grained morainic material, mean annual air temperature reaches 4.64°C, average precipitation is 1170 mm, and the altitude is about 1000 m a.s.l.. The root system of each tree was uncovered carefully by hand to keep the roots undamaged, before removal it was photographed in situ to document the root distribution. The root systems were then cut into single root pieces of about 20 cm length and the position of each sample was documented. The root samples were then hierarchically classified in several root classes. The tensile strength of more than 500 samples was determined. In addition, the values for age, diameter, and root moisture were ascertained. Since it was assumed, that the cellular structure of the roots has an influence on the tensile strength, two microscopic thin-sections were prepared from all successfully tested root samples. The microscopic analysis focused on anatomical parameters such as the size and number of vessels, their distribution as well as their conductivity. The results for the final correlation between the anatomical characteristics and the root's tensile strength are presented for both tree species.

  7. Characterizing roots and water uptake in a ground cover rice production system

    PubMed Central

    Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon

    2017-01-01

    Background and aims Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. Methods A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Results Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Conclusions Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity. PMID:28686687

  8. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    PubMed

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  9. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  10. Carbon allocation to root and shoot systems of woody plants

    Treesearch

    Mark D. Coleman; J.G. Isebrands

    1994-01-01

    Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...

  11. Bio-engineering traits of Pinus radiata D.Don

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Marden, Michael; Marrosu, Roberto; Schwarz, Massimiliano; Phillips, Chris John; Cohen, Denis; Niedda, Marcello

    2017-04-01

    Pinus radiata is widely cultivated in New Zealand. Due to steep slopes and intense rainfall, the silviculture of Pinus radiata forests is important to control erosion and slope stability. Bio-engineering traits such as root distribution and root tensile strength are fundamental to understand the effectiveness of Pinus radiata. This information is needed to use the state of the art root reinforcement model (the Root Bundle Model) and the physically-based slope stability model SOSlope. Yet, little is known about root distribution and tensile strength for this specie. We measured soil moisture and carried out 30 field tensile tests on roots of Pinus radiata. We also measured root distribution data from 5 plants, digging arc of circles 0.6 radian around the trees in four opposite directions. We fully excavated the root system of two trees. Using the Root Bundle Model, results of our measurements allow estimation of root reinforcement. With the slope stability model SOSlope, information on the intensity and frequency of harvesting and on the development of weak zones that can be supported by a stand of Pinus radiata in relation to slope stability can be calculated. An added value is that the collected data allow us to make inferences between number and sizes of roots, and growth direction.

  12. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  13. Effect of Piriformospora indica inoculation on root development and distribution of maize (Zea mays L.) in the presence of petroleum contaminated soil

    NASA Astrophysics Data System (ADS)

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim

    2014-05-01

    The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.

  14. Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on ¹³C isotope discrimination analysis.

    PubMed

    Gealy, David; Moldenhauer, Karen; Duke, Sara

    2013-02-01

    Weed-suppressive rice cultivars hold promise for improved and more economical weed management in rice. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but these phenomena are difficult to measure and not well understood. Thus, above-ground productivity, weed suppression, and root distribution of 11 rice cultivars and two weed species were evaluated in a drill-seeded, flood-irrigated system at Stuttgart, Arkansas, USA in a two-year study. The allelopathic cultivars, PI 312777 and Taichung Native 1 (TN-1), three other weed-suppressive cultivars, three indica-derived breeding selections, and three non-suppressive commercial cultivars were evaluated in field plots infested with barnyardgrass (Echinochloa crus-galli (L.) Beauv.) or bearded sprangletop (sprangletop, Leptochloa fusca (L.) Kunth var. fascicularis (Lam.) N. Snow). The allelopathic cultivars produced more tillers and suppressed both weed species to a greater extent than did the breeding selections or the non-suppressive cultivars. (13)C isotope discrimination analysis of mixed root samples to a depth of 15 cm revealed that the allelopathic cultivars typically produced a greater fraction of their total root mass in the surface 0-5 cm of soil depth compared to the breeding selections or the non-suppressive cultivars, which tended to distribute their roots more evenly throughout the soil profile. These trends in root mass distribution were apparent at both early (pre-flood) and late-season stages in weed-free and weed-infested plots. Cultivar productivity and root distribution generally responded similarly to competition with the two weed species, but barnyardgrass reduced rice yield and root mass more than did sprangletop. These findings demonstrate for the first time that roots of the allelopathic cultivars PI 312777 and TN-1 explore the upper soil profile more thoroughly than do non-suppressive cultivars under weed-infested and weed-free conditions in flood-irrigated U.S. rice production systems. They raise the interesting prospect that root proliferation near the soil surface might enhance the weed-suppressive activity of allelochemical exudates released from roots. Plant architectural design for weed suppressive activity should take these traits into consideration along with other proven agronomic traits such as high tillering and yield.

  15. Measurement of Bremsstrahlung radiation for in vivo monitoring of 14C tracer distribution between fruit and roots of kiwifruit (Actinidia arguta) cuttings.

    PubMed

    Black, Marykate Z; Minchin, Peter E H; Gould, Nick; Patterson, Kevin J; Clearwater, Michael J

    2012-10-01

    In vivo measurements of (14)C tracer distribution have usually involved monitoring the β(-) particles produced as (14)C decays. These particles are only detectable over short distances, limiting the use of this technique to thin plant material. In the present experiments, X-ray detectors were used to monitor the Bremsstrahlung radiation emitted since β(-) particles were absorbed in plant tissues. Bremsstrahlung radiation is detectable through larger tissue depths. The aim of these experiments was to demonstrate the Bremsstrahlung method by monitoring in vivo tracer-labelled photosynthate partitioning in small kiwifruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) plants in response to root pruning. A source shoot, consisting of four leaves, was pulse labelled with (14)CO(2). Detectors monitored import into a fruit and the root system, and export from a source leaf. Repeat pulse labelling enabled the comparison of pre- and post-treatment observations within an individual plant. Diurnal trends were observed in the distribution of tracer, with leaf export reduced at night. Tracer accumulated in the roots declined after approximately 48 h, which may have resulted from export of (14)C from the roots in carbon skeletons. Cutting off half the roots did not affect tracer distribution to the remaining half. Tracer distribution to the fruit was increased after root pruning, demonstrating the higher competitive strength of the fruit than the roots for carbohydrate supply. Increased partitioning to the fruit following root pruning has also been demonstrated in kiwifruit field trials.

  16. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to farming, forest management and climate change. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and our own code was used to noninvasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure at 31µm resolution, and extract quantitative information (root volume and surface area) from the 3D data, respectively. Based on themore » mesh generated from the root structure, computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soil hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. The flow variability and soil water distributions under different scenarios were investigated. Parameterizations were evaluated to show their impacts on the average conductivity. The pore-scale modeling approach provides realistic simulations of rhizosphere flow processes and provides useful information that can be linked to upscaled models.« less

  17. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    PubMed

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  18. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  19. A multi-imaging approach to study the root–soil interface

    PubMed Central

    Rudolph-Mohr, Nicole; Vontobel, Peter; Oswald, Sascha E.

    2014-01-01

    Background and Aims Dynamic processes occurring at the soil–root interface crucially influence soil physical, chemical and biological properties at a local scale around the roots, and are technically challenging to capture in situ. This study presents a novel multi-imaging approach combining fluorescence and neutron radiography that is able to simultaneously monitor root growth, water content distribution, root respiration and root exudation. Methods Germinated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography. Key Results The interrelated patterns of root growth and distribution in the soil, root respiration, exudation and water uptake could all be studied non-destructively and at high temporal and spatial resolution. The older parts of the root system with greater root-length density were associated with fast decreases of water content and rapid changes in oxygen concentration. pH values around the roots located in areas with low soil water content were significantly lower than the rest of the root system. Conclusions The results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system. PMID:25344936

  20. A program for the Bayesian Neural Network in the ROOT framework

    NASA Astrophysics Data System (ADS)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  1. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site

    DOE PAGES

    Feng, Huan; Qian, Yu; Gallagher, Frank J.; ...

    2015-11-01

    Liberty State Park in New Jersey, USA, is a “brownfield” site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May–September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT)more » techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.« less

  2. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals.

    PubMed

    Sabino, C P; Garcez, A S; Núñez, S C; Ribeiro, M S; Hamblin, M R

    2015-08-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 μM) was introduced into the canals and then irradiated (λ = 660 nm, P = 100 mW, beam diameter = 2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency.

  3. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals

    PubMed Central

    Sabino, C. P.; Garcez, A. S.; Núñez, S. C.; Ribeiro, M. S.; Hamblin, M. R.

    2014-01-01

    Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 µM) was introduced into the canals and then irradiated (λ=660 nm, P=100 mW, beam diameter=2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency. PMID:25060900

  4. Effects of tree roots on shallow landslides distribution and frequency in the European Alps using a new physically-based discrete element model

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano

    2017-04-01

    Shallow landslides are hillslope processes that play a key role in shaping landscapes in forested catchments. Shallow landslides are, in some regions, the dominant regulating mechanisms by which soil is delivered from the hillslopes to steep channels and fluvial systems. Several studies have highlighted the importance of roots to better understand mechanisms of root reinforcement and their contributions to the stabilization of hillslopes. In this context, the spatio-temporal distribution of root reinforcement has a major repercussion on the dynamic of sediment transport at the catchment scale and on the availability of productive soils. Here we present a new model for shallow slope stability calculations, SOSlope, that specifically considers the effects of root reinforcement on shallow landslide initiation. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. Tree roots govern tensile and compressive force redistribution and determine the stability of the slope, the timing, location, and dimension of the failure mass. We use SOSlope to quantify the role of protection forest in several localities in the European Alps, making use of detailed field measurements of root densities and root-size distribution, and root tensile and compressive strength for three species common in the Alps (spruce, fir, and beech) to compute landslide distributions and frequency during landslide-triggering rainfall events. We show the mechanisms by which tree roots impart reinforcement to slopes and offer protection against shallow landslides.

  5. Slope Root biomechanical properties and their contribution to soil reinforcement in the Landslide-prone region, the Bailong River Basin

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hong, M.; Huang, Z.; Zhao, Y.; Zhang, Y.

    2016-12-01

    The presence of vegetation increases soil burden stability along slopes and therefore reduces soil erosion. The contribution of the vegetation is due to the root's mechanical (reinforcing soil shear resistance) controls on superficial landslide. The study focused on the biotechnical characteristics of the root system of commonly grown shrub species in the Bailong River Basin, one of the most serious geo-hazards regions in China. The aim of this paper is to increase the understanding on slope root biomechanical properties of different shrubs species and their contribution to soil reinforcement. Field investigations were carried out to estimate the root density distribution with depth (root area ratio). Laboratory tests were conducted to measure the root tensile breaking force and the root tensile strength. Root tensile strength measurements were carried out on single root specimens and root area ratio was estimated analyzing the whole root system. The direct shear tests were used to quantify the soil mechanical reinforcement. The improvement of soil mechanical properties obtained by the presence of shrubs was estimated using two different models(the Fibrt Bundle Model and the Finite Element Model). The results indicates that the soil-root system shear strength of Robinia pseudoacacia Linn (L.), Populus simonii (L.), Olea europaea (L.), and Zanthoxylum bungeanum (L.) increment ranged from 62.4 to 26.3 kPa and its effect on the slope stability was significantly different. Robinia pseudoacacia Linn (L.) roots presented the highest tensile strength and soil reinforcement values. Similarly at each considered depth Robinia pseudoacacia Linn (L.) showed that the highest soil reinforcement effect (1461N) while Olea europaea (L.) presented the lowest soil reinforcement effect (1329N). The finite element model shows that the FoS of Zanthoxylum bungeanum (L.) is the largest of these plants when considering root additional cohesion. This research can provide a basic theory of afforestation mode in spatial distribution and hence control shallow landslide.

  6. Can diversity in root architecture explain plant water use efficiency? A modeling study

    PubMed Central

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-01-01

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment. PMID:26412932

  7. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    PubMed

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  8. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  9. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

  10. Distribution of glucosinolates and sulphur-rich cells in roots of field-grown canola (Brassica napus).

    PubMed

    McCully, Margaret E; Miller, Celia; Sprague, Susan J; Huang, Cheng X; Kirkegaard, John A

    2008-01-01

    To investigate the role played by the distribution pattern of glucosinolates (GSLs) in root systems in the release of biocides to the rhizosphere, GSLs have been localized, for the first time, to specific regions and cells in field-grown roots. GSL concentrations in separated tissues of canola (Brassica napus) were determined by chemical analysis, and cell-specific concentrations by extrapolation from sulphur concentrations obtained by quantitative cryo-analytical scanning electron microscopy (SEM). In roots with secondary growth, GSL concentrations in the outer secondary tissues were up to 5x those of the inner core. The highest GSL concentrations (from sulphur measurements) were in two cell layers just under the outermost periderm layer, with up to 100x published concentrations for whole roots. Primary tissues had negligible GSL. Release and renewal of the peripheral GSLs is probably a normal developmental process as secondary thickening continues and surface cells senesce, accounting for published observations that intact roots release GSLs and their biocide hydrolosates to the rhizosphere. Absence of myrosin idioblasts close to the root surface suggests that GSLs released developmentally are hydrolysed by myrosinase in the rhizosphere, ensuring a continuous localized source of biotoxic hydrolysates which can deter soil-borne pests, and influence microbial populations associated with long-lived components of the root system.

  11. Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations

    Treesearch

    R. J. Ansley; T. W. Boutton; P. W. Jacoby

    2007-01-01

    This study quantified honey mesquite (Prosopis glandulosa) root growth and water use efficiency following chronic soil drought or wetness on a clay loam site in north Texas. Root systems of mature trees were containerized with barriers inserted into the soil. Soil moisture within containers was manipulated with irrigation (Irrigated) or rain...

  12. Seasonal differences in trace element concentrations and distribution in Spartina alterniflora root tissue

    DOE PAGES

    Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...

    2018-04-13

    This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less

  13. Seasonal differences in trace element concentrations and distribution in Spartina alterniflora root tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Qian, Yu; Cochran, J. Kirk

    This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less

  14. An assessment of models that predict soil reinforcement by plant roots

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.; Loades, K. W.; Mickovski, S.; Bengough, A. G.; Bransby, M. F.; Davies, M. C. R.; Sonnenberg, R.

    2009-04-01

    Predicting soil reinforcement by plant roots is fraught with uncertainty because of spatio-temporal variability, the mechanical complexity of roots and soil, and the limitations of existing models. In this study, the validity of root-reinforcement models was tested with data from numerous controlled laboratory tests of both fibrous and woody root systems. By using pot experiments packed with homogeneous soil, each planted with one plant species and grown in glasshouses with controlled water and temperature regimes, spatio-temporal variability was reduced. After direct shear testing to compare the mechanical behaviour of planted versus unplanted samples, the size distribution of roots crossing the failure surface was measured accurately. Separate tensile tests on a wide range of root sizes for each test series provided information on the scaling of root strength and stiffness, which was fitted using power-law relationships. These data were used to assess four root-reinforcement models: (1) Wu et al.'s (1979) root-reinforcement model, (2) Rip-Root fibre bundle model (FBM) proposed by Pollen & Simon (2005), (3) a stress-based FBM and (4) a strain-based FBM. For both fibrous (barley) and woody (willow) root systems, all of the FBMs provided a better prediction of reinforcement than Wu's root-reinforcement model. As FBMs simulate progressive failure of roots, they reflect reality better than the Wu model which assumes all roots break (and contribute to increased shear strength) simultaneously. However, all of the FBMs contain assumptions about the distribution of the applied load within the bundle of roots and the failure criterion. The stress-based FBM assumes the same stiffness for different sized roots, resulting in progressive failure from the largest to smallest roots. This is not observed in testing where the smallest roots fail first. The Rip-Root FBM predicts failure from smallest to largest roots, but the distribution of load between different sized roots is based on unverified scaling rules (stiffness is inversely proportional to diameter). In the strain-based FBM, both stiffness and strength data are used to evaluate root breakage. As roots stretch across the shear surface, the stress mobilised in individual roots depends on both their individual stiffness and strain. Small roots being stiffer, mobilise more stress for the same strain (or shear displacement) and therefore fail first. The strain based FBM offers promise as a starting point to predict the reinforcement of soil by plant roots using sound mechanical principles. Compared to other models, it provided the best prediction of root reinforcement. Further developments are required to account particularly for the stochastic variability of the mechanical behaviour and spatial distribution of roots and this will be achieved by adapting advanced fibre bundle methods. Pollen, N., and A. Simon. 2005. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 41: W07025. Wu T. H., W. P. McKinnell, and D. N. Swanston. 1979. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 16: 19-33.

  15. Genetic analysis of the gravitropic set-point angle in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Hangarter, R. P.; Kiss, J. Z. (Principal Investigator)

    2003-01-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  16. Characterizing root system characteristics with Electrical resistivity Tomography: a virtual rhizotron simulation

    NASA Astrophysics Data System (ADS)

    Rao, Sathyanarayan; Ehosioke, Solomon; Lesparre, Nolwenn; Nguyen, Frédéric; Javaux, Mathieu

    2017-04-01

    Electrical Resistivity Tomography (ERT) is more and more used for monitoring soil water content in a cropped soil. Yet, the impact of roots on the signal is often neglected and a topic of controversy. In several studies related to soil-root system, it has been showed that the measured root mass density statistically correlates with the electrical conductivity (EC) data obtained from ERT. In addition, some studies suggest that some roots are more electrically conductive than soil for most water content. Thus, higher EC of roots suggest that it might have a measurable impact on ERT signals. In this work, virtual rhizotrons are simulated using the software package called R-SWMS that solves water and solute transport in plant root-soil system, including root growth. The distribution of water content obtained from R-SWMS simulation is converted into EC data using pedo-physical models. The electrical properties of roots and rhizosphere are explicitly included in the EC data to form a conductivity map (CM) with a very detailed spatial resolution. Forward ERT simulations is then carried out for CM generated for various root architectures and soil conditions to study the impact of roots on ERT forward (current and voltage patterns) and inverse solutions. It is demonstrated that under typical injection schemes with lateral electrodes, root system is hardly measurable. However, it is showed that adding electrodes and constraints on the ERT inversion based on root architecture help quantifying root system mass and extent.

  17. Effects of NaOCl, EDTA and MTAD when applied to dentine on stress distribution in post-restored roots with flared canals.

    PubMed

    Belli, S; Eraslan, O; Eraslan, O; Eskitascioglu, M; Eskitascioglu, G

    2014-12-01

    To evaluate the effect of NaOCl, EDTA and MTAD on the stress distribution and levels in roots with flared canals and three different aesthetic post systems using finite element stress analysis (FEA). Three-dimensional (3D) FEA models simulating a maxillary incisor with excessive structural loss and flared root canals were created. The dentine of the first models of each post group was assumed as homogenous, whereas the others were deemed as having their elastic modulus affected up to 100 μm deep as a result of irrigation protocol (5.25 NaOCl, 17% EDTA and MTAD for 2 h). A sound incisor tooth model was used as the control. Restorations were created according to the post system used (pre-fabricated fibre post (PFP)), polyethylene fibre (Ribbond) post and core build-up (RBP), and one-piece milled zirconia post and core (ZP). Ceramic crowns were added to the models. A 300-N static load was applied at the centre of the palatal surface of the models to calculate the stress distributions. The SolidWorks/Cosmosworks structural analysis programmes were used for FEA analysis. Results were presented by considering von Mises criteria. The analysis of the von Mises stresses revealed that RBP created less stress in the remaining root dentine when compared to PFP and ZP. ZP maintained the stresses inside its body and reduced stress on the palatal surface of the root; however, it forwarded more stress towards the apical area. NaOCl-, EDTA- and MTAD-treated dentine increased the stresses within the root structure regardless of the effect of the post system used (11-15.4 MPa for PFP, 9.5-13.02 MPa for RBP and 14.2 MPa for ZP). Amongst the irrigation solutions used, EDTA and MTAD increased the stresses more than NaOCl in all models. All the irrigation solutions showed the same stress levels and distributions in the ZP model. NaOCl-, EDTA- and MTAD- treated dentine and a rigid post with high elastic modulus may increase fracture risk in roots with flared canals by increasing the stresses within root dentine. Therefore, solutions that alter the elastic modulus of dentine less (such as NaOCl) or an individually shaped post-core system constructed with a material that has an elastic modulus close to dentine (polyethylene fibre) should be used in weak roots. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. FEM analysis of different dental root canal-post systems in young permanent teeth.

    PubMed

    Vitale, M C; Chiesa, M; Coltellaro, F; Bignardi, C; Celozzi, M; Poggio, C

    2008-09-01

    Aim of this work was to carry out a comparative evaluation of the structural behaviour of different root canal posts (cylindrical, conical and triple conical) fitted in a second lower bicuspid and subjected to compression and bending test. This study has been carried out by numerical method of structural analysis of finite elements (FEM, Finite Element Method). Different tridimensional models were obtained by CAT images of an extracted tooth, endodontically treated, filled with guttapercha and triple conical glass post. Images have been elaborated by a software for images (Mimics and Ansys) and CAD (Rhinoceros 3 D). In the models a II Class restoration has been virtually created. In the numerical simulation dental tissues (enamel, dentine and root cement), guttapercha, root canal cement, different posts, different techniques of cementation and crown restoration (composites and adhesive systems) have been considered. Strain distributions in dental tissues, in root canal cement and in posts have been compared. The equivalent tensions and the single components (traction, compression and cut) have been analysed. In all examined posts, the most strained part is resulted the coronal one, even if the total tension, in the different tooth-post analyzed systems, resulted uniformly distributed. A similar behaviour was shown by the root canal cement. According to the analyzed conditions of bond and load, varying according to the geometry of the considered posts, our results confirm that there is no substantial difference of deformation in posts, root canal cement and treated tooth.

  19. Effect of restoration technique on stress distribution in roots with flared canals: an FEA study.

    PubMed

    Belli, Sema; Eraslan, Öznur; Eraslan, Oğuz; Eskitaşcıoğlu, Gürcan

    2014-04-01

    The aim of this finite element analysis (FEA) study was to test the effect of different restorative techniques on stress distribution in roots with flared canals. Five three-dimensional (3D) FEA models that simulated a maxillary incisor with excessive structure loss and flared root canals were created and restored with the following techniques/materials: 1) a prefabricated post: 2) one main and two accessory posts; 3) i-TFC post-core (Sun Medical); 4) the thickness of the root was increased by using composite resin and the root was then restored using a prefabricated post; 5) an anatomic post was created by using composite resin and a prefabricated glass-fiber post. Composite cores and ceramic crowns were created. A 300-N static load was applied at the center of the palatal surface of the tooth to calculate stress distributions. SolidWorks/Cosmosworks structural analysis programs were used for FEA analysis. The analysis of the von Mises and tensile stress values revealed that prefabricated post, accessory post, and i-TFC post systems showed similar stress distributions. They all showed high stress areas at the buccal side of the root (3.67 MPa) and in the cervical region of the root (> 3.67 MPa) as well as low stress accumulation within the post space (0 to 1 MPa). The anatomic post kept the stress within its body and directed less stress towards the remaining tooth structure. The creation of an anatomic post may save the remaining tooth structure in roots with flared canals by reducing the stress levels.

  20. Phytoextraction of initial cutting of Salix matsudana for Cd and Cu.

    PubMed

    Wang, Wen-Wen; Cheng, Liu Ke; Hao, Jie Wei; Guan, Xin; Tian, Xing-Jun

    2016-06-27

    Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1 cm in diameter) and fine (<1 cm in diameter) initial cuttings of Salix matsudana were planted in a nutrient solution with single and mixed (Cd + Cu) treatments. The roots of several initial cuttings were removed daily to eradicate rhizofiltration. Results revealed that the existence of the root system altered distribution and interaction of Cd and Cu in plant organs and enhanced tolerance and phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.

  1. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  2. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  3. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  4. [Endodontics in motion: new concepts, materials and techniques 3. The role of irrigants during root canal treatment].

    PubMed

    van der Sluis, L W M

    2015-10-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm) and their products from the root canal wall, their removal out of the root canal system and their chemical dissolution or disruption. Each of the endodontic irrigation systems has its own irrigant flow characteristics, which should fulfill these aims. Without flow (convection), the irrigant would have to be distributed through diffusion. This process is slow and depends on temperature and concentration gradients. On the other hand, convection is a faster and more efficient transport mechanism. During irrigant flow, frictional forces will occur, for example between the irrigant and the root canal wall (wall shear stress). These frictional forces have a mechanical cleaning effect on the root canal wall. These frictional forces are the result of the flow characteristics related to the different irrigation systems.

  5. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  6. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.

    PubMed

    Lynch, Jonathan P

    2013-07-01

    A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

  7. Highly resolved imaging at the soil - plant root interface: A combination of fluorescence imaging and neutron radiography

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Lehmann, E.

    2012-12-01

    This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The oxygen deficit pattern intensified with increasing root age. Due to the high soil water content after rewatering, the aeration from atmosphere was limited. pH dynamic was closely related to the root age. Initially, the soil pH strongly decreased around the young growing tap root. This pattern changed with time to an increased pH around the tap root but a strong acidification in the vicinity of lateral roots. After each rewatering, the pH increased which might be due to the dilution of H+ in high soil water contents. With our coupled imaging set up we were able to monitor the dynamics of oxygen, pH and water content around the roots of plant with high spatial and temporal resolutions over day and night at a wide range of soil water contents. Our experimental set up provides the opportunity to simultaneousely map the dynamics of these vital parameters in the root zone of plants.

  8. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  9. Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Qian, Yu; Cochran, J. Kirk

    Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less

  10. Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy

    DOE PAGES

    Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...

    2017-01-18

    Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less

  11. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    PubMed

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter

  12. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Measuring and modeling three-dimensional water uptake of a growing faba bean (Vicia faba) within a soil column

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry

    2014-05-01

    A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of water uptake by the roots in the lower and wetter compartments. By comparing transpiration rates of experiments with and without additional paraffin layers, we were able to quantify restrictions of plant growth to available soil water. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Stingaciu, L., H. Schulz, A. Pohlmeier, S. Behnke, H. Zilken, M. Javaux, H. Vereecken (2013), In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Water Uptake Modeling, Vadose Zone Journal, 12(1). [3] Koebernick, N., U. Weller, K. Huber, S. Schlüter, H.-J. Vogel, R. Jahn; H. Vereecken, D. Vetterlein, In situ visualisation and quantification of root-system architecture and growth with X-ray CT, Manuscript submitted for publication.

  14. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  15. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  16. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis.

    PubMed

    Uga, Yusaku; Assaranurak, Ithipong; Kitomi, Yuka; Larson, Brandon G; Craft, Eric J; Shaff, Jon E; McCouch, Susan R; Kochian, Leon V

    2018-04-20

    Genetic improvement of root system architecture is a promising approach for improved uptake of water and mineral nutrients distributed unevenly in the soil. To identify genomic regions associated with the length of different root types in rice, we quantified root system architecture in a set of 26 chromosome segment substitution lines derived from a cross between lowland indica rice, IR64, and upland tropical japonica rice, Kinandang Patong, (IK-CSSLs), using 2D & 3D root phenotyping platforms. Lengths of seminal and crown roots in the IK-CSSLs grown under hydroponic conditions were measured by 2D image analysis (RootReader2D). Twelve CSSLs showed significantly longer seminal root length than the recurrent parent IR64. Of these, 8 CSSLs also exhibited longer total length of the three longest crown roots compared to IR64. Three-dimensional image analysis (RootReader3D) for these CSSLs grown in gellan gum revealed that only one CSSL, SL1003, showed significantly longer total root length than IR64. To characterize the root morphology of SL1003 under soil conditions, SL1003 was grown in Turface, a soil-like growth media, and roots were quantified using RootReader3D. SL1003 had larger total root length and increased total crown root length than did IR64, although its seminal root length was similar to that of IR64. The larger TRL in SL1003 may be due to increased crown root length. SL1003 carries an introgression from Kinandang Patong on the long arm of chromosome 1 in the genetic background of IR64. We conclude that this region harbors a QTL controlling crown root elongation.

  17. Anatomy of Sodium Hypochlorite Accidents Involving Facial Ecchymosis – A Review

    PubMed Central

    Zhu, Wan-chun; Gyamfi, Jacqueline; Niu, Li-na; Schoeffel, G. John; Liu, Si-ying; Santarcangelo, Filippo; Khan, Sara; Tay, Kelvin C-Y.; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Objectives Root canal treatment forms an essential part of general dental practice. Sodium hypochlorite (NaOCl) is the most commonly used irrigant in endodontics due to its ability to dissolve organic soft tissues in the root canal system and its action as a potent antimicrobial agent. Although NaOCl accidents created by extrusion of the irrigant through root apices are relatively rare and are seldom life-threatening, they do create substantial morbidity when they occur. Methods To date, NaOCl accidents have only been published as isolated case reports. Although previous studies have attempted to summarise the symptoms involved in these case reports, there was no endeavor to analyse the distribution of soft tissue distribution in those reports. In this review, the anatomy of a classical NaOCl accident that involves facial swelling and ecchymosis is discussed. Results By summarising the facial manifestations presented in previous case reports, a novel hypothesis that involves intravenous infusion of extruded NaOCl into the facial vein via non-collapsible venous sinusoids within the cancellous bone is presented. Conclusions Understanding the mechanism involved in precipitating a classic NaOCl accident will enable the profession to make the best decision regarding the choice of irrigant delivery techniques in root canal débridement, and for manufacturers to design and improve their irrigation systems to achieve maximum safety and efficient cleanliness of the root canal system. PMID:23994710

  18. Anatomy of sodium hypochlorite accidents involving facial ecchymosis - a review.

    PubMed

    Zhu, Wan-chun; Gyamfi, Jacqueline; Niu, Li-na; Schoeffel, G John; Liu, Si-ying; Santarcangelo, Filippo; Khan, Sara; Tay, Kelvin C-Y; Pashley, David H; Tay, Franklin R

    2013-11-01

    Root canal treatment forms an essential part of general dental practice. Sodium hypochlorite (NaOCl) is the most commonly used irrigant in endodontics due to its ability to dissolve organic soft tissues in the root canal system and its action as a potent antimicrobial agent. Although NaOCl accidents created by extrusion of the irrigant through root apices are relatively rare and are seldom life-threatening, they do create substantial morbidity when they occur. To date, NaOCl accidents have only been published as isolated case reports. Although previous studies have attempted to summarise the symptoms involved in these case reports, there was no endeavour to analyse the distribution of soft tissue distribution in those reports. In this review, the anatomy of a classical NaOCl accident that involves facial swelling and ecchymosis is discussed. By summarising the facial manifestations presented in previous case reports, a novel hypothesis that involves intravenous infusion of extruded NaOCl into the facial vein via non-collapsible venous sinusoids within the cancellous bone is presented. Understanding the mechanism involved in precipitating a classic NaOCl accident will enable the profession to make the best decision regarding the choice of irrigant delivery techniques in root canal débridement, and for manufacturers to design and improve their irrigation systems to achieve maximum safety and efficient cleanliness of the root canal system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. LATERAL ROOT DISTRIBUTION OF TREES IN AN OLD-GROWTH DOUGLAS-FIR FOREST INFERRED FROM UPTAKE OF TRACER 15N

    EPA Science Inventory

    Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are almost no data describing the lateral extent and overlap of competing root systems. We quantified th...

  20. Belowground adaptation and resilience to drought conditions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Gentine, P.; Bras, R. L.

    2012-12-01

    The most expansive drought in 50 years stretched across the Midwest in 2012. In light of predicted increases in the variability of climate, this type of event can no longer be considered extreme. Understanding the resilience of both managed and natural vegetation and how these systems may adapt to this new climate reality is critical in predicting changes to the global carbon, energy and water balance. An eco-hydrological model (tRIBS+VEGGIE) was employed to model the sensitivity of vegetation to varying drought intensities. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable root carbon allocation scheme. A stochastic climate generator was used to create a series of synthetic climate realizations varying the drought characteristics - in particular the interstorm period. This change in the seasonal distribution of precipitation impacts the spatial (soil layers) and temporal distribution of soil moisture which directly impacts the water resource niche for vegetation. This change in resource niche is reflected in a shift in the optimal static rooting strategy further highlighting the need for the incorporation of a dynamic scheme that responds to local conditions.

  1. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  2. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of nutrients. The experiment required a specific geometry for the acquisition of ERT data using the heat-pulse water-content sensor's steel needles as electrodes. ERT data were analyzed using the sensed water contents and deriving pore-water resistivities using Archie's law. This design should provide a more optimal root-zone environment by maintaining a more uniform water content and on-demand supply of water than designs with one particle size at all column heights. The monitoring capability offers an effective means to describe the relationship between root-system performance and plant growth.

  3. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, P.R.; Arora, R.; El Ghaouth, A.

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} rootmore » fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.« less

  4. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    PubMed Central

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  5. Root architecture and wind-firmness of mature Pinus pinaster.

    PubMed

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  6. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number.

    PubMed

    Prince, Silvas J; Valliyodan, Babu; Ye, Heng; Yang, Ming; Tai, Shuaishuai; Hu, Wushu; Murphy, Mackensie; Durnell, Lorellin A; Song, Li; Joshi, Trupti; Liu, Yang; Van de Velde, Jan; Vandepoele, Klaas; Grover Shannon, J; Nguyen, Henry T

    2018-05-10

    Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural (RSA) traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNP) based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, three significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions. This article is protected by copyright. All rights reserved.

  7. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

    PubMed Central

    Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia

    2013-01-01

    This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227

  8. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and evaluate energy fluxes afterwards. The results show that a minimum of energy is exported in mixed root systems, but a wide range of root systems act near the optimum. A great loss of efficiency only occurs in the extreme cases (only young or only old roots). In all systems near the optimum root water uptake is impeded equally by abiotic and biotic factors in moist conditions, whereas abiotic factors become the limiting factor in dry conditions. The abiotic factors depend on the soil type and are either due to the water retention function or water flow towards individual roots. Small changes in the distribution of root resistance shift the impediments from radial to axial flow path within the root, but without much affecting overall energy export. This suggests that abiotic factors are a dominant control for efficient root water uptake, while morphology only has a comparatively smaller effect, as long as the root system contains a minimum mixture of uptake and transport roots.

  9. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases both the maximum force and corresponding displacement. Estimates of the maximum pullout forces for bundles of 100 roots with identical diameter distribution for different species range from less than 1 kN for barley (Hordeum vulgare) to almost 16 kN for pistachio (Pistacia lentiscus). The model explains why a commonly used assumption that all roots break simultaneously overpredicts the maximum pullout force by a factor of about 1.6-2. This ratio may exceed 3 for diameter distributions that have a large number of small roots like the exponential distribution.

  10. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-22

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  11. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Langensiepen, Matthias; Schnepf, Andrea; Hüging, Hubert; Vereecken, Harry

    2018-04-01

    How much water can be taken up by roots and how this depends on the root and water distributions in the root zone are important questions that need to be answered to describe water fluxes in the soil-plant-atmosphere system. Physically based root water uptake (RWU) models that relate RWU to transpiration, root density, and water potential distributions have been developed but used or tested far less. This study aims at evaluating the simulated RWU of winter wheat using the empirical Feddes-Jarvis (FJ) model and the physically based Couvreur (C) model for different soil water conditions and soil textures compared to sap flow measurements. Soil water content (SWC), water potential, and root development were monitored noninvasively at six soil depths in two rhizotron facilities that were constructed in two soil textures: stony vs. silty, with each of three water treatments: sheltered, rainfed, and irrigated. Soil and root parameters of the two models were derived from inverse modeling and simulated RWU was compared with sap flow measurements for validation. The different soil types and water treatments resulted in different crop biomass, root densities, and root distributions with depth. The two models simulated the lowest RWU in the sheltered plot of the stony soil where RWU was also lower than the potential RWU. In the silty soil, simulated RWU was equal to the potential uptake for all treatments. The variation of simulated RWU among the different plots agreed well with measured sap flow but the C model predicted the ratios of the transpiration fluxes in the two soil types slightly better than the FJ model. The root hydraulic parameters of the C model could be constrained by the field data but not the water stress parameters of the FJ model. This was attributed to differences in root densities between the different soils and treatments which are accounted for by the C model, whereas the FJ model only considers normalized root densities. The impact of differences in root density on RWU could be accounted for directly by the physically based RWU model but not by empirical models that use normalized root density functions.

  12. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis.

    PubMed

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-08-01

    Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties.

  13. Stress Induced in the Periodontal Ligament under Orthodontic Loading (Part I): A Finite Element Method Study Using Linear Analysis

    PubMed Central

    Hemanth, M; deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Orthodontic tooth movement is a complex procedure that occurs due to various biomechanical changes in the periodontium. Optimal orthodontic forces yield maximum tooth movement whereas if the forces fall beyond the optimal threshold it can cause deleterious effects. Among various types of tooth movements intrusion and lingual root torque are associated with causing root resoprtion, especially with the incisors. Therefore in this study, the stress patterns in the periodontal ligament (PDL) were evaluated with intrusion and lingual root torque using finite element method (FEM). Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using SOLIDWORKS modeling software. Stresses in the PDL were evaluated with intrusive and lingual root torque movements by a 3D FEM using ANSYS software using linear stress analysis. Results: It was observed that with the application of intrusive load compressive stresses were distributed at the apex whereas tensile stress was seen at the cervical margin. With the application of lingual root torque maximum compressive stress was distributed at the apex and tensile stress was distributed throughout the PDL. Conclusion: For intrusive and lingual root torque movements stress values over the PDL was within the range of optimal stress value as proposed by Lee, with a given force system by Proffit as optimum forces for orthodontic tooth movement using linear properties. PMID:26464555

  14. High Resolution Measurement of Rhizosphere Priming Effects and Temporal Variability of CO2 Fluxes under Zea Mays

    NASA Astrophysics Data System (ADS)

    Splettstößer, T.; Pausch, J.

    2016-12-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.

  15. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    PubMed

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  16. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    PubMed Central

    Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412

  17. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    USGS Publications Warehouse

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  18. Method and apparatus to image biological interactions in plants

    DOEpatents

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  19. Where are the roots of the Bethe Ansatz equations?

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2015-10-01

    Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem's polynomials.

  20. The Economics of Root Distributions of Terrestrial Biomes in Response to Elevated CO2

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hedin, L. O. O.

    2017-12-01

    Belowground root distributions of terrestrial biomes are central to understanding soil biogeochemical processes and land carbon sink. Yet models are thus far not able to predict root distributions across plant functional groups and major biomes, limiting our ability to predict the response of land systems to elevated CO2 concentration. Of particular concern is the apparent lack of stimulation of the aboveground carbon sink despite 30% increase of atmospheric CO2 over the past half-century, and despite the clear acceleration of the land carbon sink over the same period. This apparent discrepancy in land ecosystem response has led to the proposition that changes in belowground root dynamics might be responsible for the overlooked land sink. We here present a new modeling approach for predicting the response of root biomass and soil carbon storage to increased CO2. Our approach considers the first-principle mechanisms and tradeoffs by which plants and plant roots invest carbon to gain belowground resources, in collaboration with distinct root symbioses. We allow plants to locally compete for nutrients, with the ability to allocate biomass at different depths in the soil profile. We parameterized our model using an unprecedented global dataset of root traits, and validated our biome-level predictions with a recently updated global root biomass database. Our results support the idea that plants "dig deeper" when exposed to increased CO2, and we offer an economic-based mechanism for predicting the plant root response across soil conditions, plant functional groups and major biomes. Our model also recreates the observed responses across a range of free-air CO2 enrichment experiments, including a distinct response between plants associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Most broadly, our findings suggest that roots may be increasingly important in the land carbon sink, and call for a greater effort to quantify belowground responses to elevated atmospheric CO2.

  1. The Operator Shell: A means of privilege distribution under Unix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuman, M.; Christoph, G.

    1994-03-01

    The Operator Shell (Osh) is a setuid root, security enhanced, restricted shell for providing fine-grain distribution of system privileges for a wide range of usages and requirements. Osh offers a marked improvement over other Unix privilege distribution systems in its ability to specify access to both commands and files, auditing features, and familiar interface. This paper describes the design, features, security considerations, internals, and applications of the Operator Shell.

  2. Non-Invasive Methods to Characterize Soil-Plant Interactions at Different Scales

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Kemna, A.; Muench, M.; Oberdoerster, C.; Pohlmeier, A.; Vanderborght, J.; Vereecken, H.

    2006-05-01

    Root water uptake is a dynamic and non-linear process, which interacts with the soil natural variability and boundary conditions to generate heterogeneous spatial distributions of soil water. Soil-root fluxes are spatially variable due to heterogeneous gradients and hydraulic connections between soil and roots. While 1-D effective representation of the root water uptake has been successfully applied to predict transpiration and average water content profiles, finer spatial characterization of the water distribution may be needed when dealing with solute transport. Indeed, root water uptake affects the water velocity field, which has an effect on solute velocity and dispersion. Although this variability originates from small-scale processes, these may still play an important role at larger scales. Therefore, in addition to investigate the variability of the soil hydraulic properties, experimental and numerical tools for characterizing root water uptake (and its effects on soil water distribution) from the pore to the field scales are needed to predict in a proper way the solute transport. Obviously, non-invasive and modeling techniques which are helpful to achieve this objective will evolve with the scale of interest. At the pore scale, soil structure and root-soil interface phenomena have to be investigated to understand the interactions between soil and roots. Magnetic resonance imaging may help to monitor water gradients and water content changes around roots while spectral induced polarization techniques may be used to characterize the structure of the pore space. At the column scale, complete root architecture of small plants and water content depletion around roots can be imaged by magnetic resonance. At that scale, models should explicitly take into account the three-dimensional gradient dependency of the root water uptake, to be able to predict solute transport. At larger scales however, simplified models, which implicitly take into account the heterogeneous root water uptake along roots, should be preferred given the complexity of the system. At such scales, electrical resistance tomography or ground-penetrating radar can be used to map the water content changes and derive effective parameters for predicting solute transport.

  3. Analyzing Software Errors in Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  4. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  5. The role of root distribution in eco-hydrological modeling in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2010-12-01

    In semi arid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Niche separation, through rooting strategies, is one manner in which different species coexist. At present, land surface models prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. These models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings and therefore tend to underestimate the resilience of many of these ecosystems. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point scale simulations were carried out using two vertical root distribution schemes: (i) Static - a temporally invariant root distribution; and (ii) Dynamic - a temporally variable allocation of assimilated carbon at any depth within the root zone in order to minimize the soil moisture-induced stress on the vegetation. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semi-arid Walnut Gulch Experimental Watershed in Arizona. For the static root distribution scheme, a series of simulations were carried out varying the shape of the rooting profile. The optimal distribution for the simulation was defined as the root distribution with the maximum mean transpiration over a 200 year period. This optimal distribution was determined for 5 soil textures and using 2 plant functional types, and the results varied from case to case. The dynamic rooting simulations allow vegetation the freedom to adjust the allocation of assimilated carbon to different rooting depths in response to changes in stress caused by the redistribution and uptake of soil moisture. The results obtained from these experiments elucidate the strong link between plant functional type, soil texture and climate and highlight the potential errors in the modeling of hydrologic fluxes from imposing a static root profile.

  6. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different wetland plants, and these features had a close relationship to nutrient removal capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Measuring and modeling of a three-dimensional tracer transport in a planted soil column

    NASA Astrophysics Data System (ADS)

    Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.

    2013-12-01

    Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Schröder, N., M. Javaux, J. Vanderborght, B. Steffen, and H. Vereecken (2012), Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study, Vadose Zone Journal, 11(3). [3 ]Haber-Pohlmeier, S., Bechtold, M., Stapf, S., and Pohlmeier, A. (2010). Water Flow Monitored by Tracer Transport in Natural Porous Media Using Magnetic Resonance Imaging. Vadose Zone Journal (9),835-845. [4] Stingaciu, L. R., Schulz, H., Pohlmeier, A., Behnke, S., Zilken, H., Vereecken, H., and Javaux, M. (2013). In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Application to Water Uptake Modeling. Vadose Zone Journal.

  8. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    NASA Astrophysics Data System (ADS)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr < 10°), obliques (10° ≤ βr < 70°) and verticals (βr ≥ 70°), with βr,max = 90°. We assigned topological orders to the segments according to developmental (DSC) and functional segment classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and ls. FSC showed high r2 (> 0.95) for the number of segments and the total length. RAR values of tree B are distributed rather upslope (76.8 % of RARtot), compared to 44.5 % of RARtot for tree A. The average cr (0.15) of each segment of tree B was remarkably higher than of tree A (0.10), leading to the conclusion that the slope has a strong influence on cr itself. This is supported by comparing the distribution of cr for both trees, where tree B tends to produce a higher cr in upslope direction (68.7 % of total cr) than tree A (37.7 %). In contrast to our expectations, tree B shows generally a higher cr compared to tree A, despite lower subsurface biomass. The findings indicate that the distinct branching patterns of coarse roots might determine the distribution of the RAR and thus lead to a higher reinforcement potential of young Picea abies on slopes.

  9. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an empirical basis for the development of simple geomorphic transport laws that explicitly include vegetation.

  10. Advanced optical system for scanning-spot photorefractive keratectomy (PRK)

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo

    1999-06-01

    Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

  11. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

    NASA Astrophysics Data System (ADS)

    Chenlemuge, Tselmeg; Dulamsuren, Choimaa; Hertel, Dietrich; Schuldt, Bernhard; Leuschner, Christoph; Hauck, Markus

    2015-02-01

    At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (Kp) and empirical conductivity (Ks) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr-1), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr-1). Kp and Ks were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system.

  12. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  13. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  14. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    PubMed

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  15. Effect of Root Filling on Stress Distribution in Premolars with Endodontic-Periodontal Lesion: A Finite Elemental Analysis Study.

    PubMed

    Belli, Sema; Eraslan, Oğuz; Eskitascioglu, Gürcan

    2016-01-01

    Endodontic-periodontal (EP) lesions require both endodontic and periodontal therapies. Impermeable sealing of the root canal system after cleaning and shaping is essential for a successful endodontic treatment. However, complete healing of the hard and soft tissue lesions takes time, and diseased bone, periodontal ligament, and tooth fibrous joints are reported to have an increased failure risk for a given load. Considering that EP lesions may affect the biomechanics of teeth, this finite elemental analysis study aimed to test the effect of root fillings on stress distribution in premolars with EP lesions. Three finite elemental analysis models representing 3 different types of EP lesions (primary endodontic disease [PED], PED with secondary periodontic involvement, and true combined) were created. The root canals were assumed as nonfilled or filled with gutta-percha, gutta-percha/apical mineral trioxide aggregate (MTA) plug, and MTA-based sealer. Materials used were assumed to be homogenous and isotropic. A 300-N load was applied from the buccal cusp of the crown with a 135° angle. The Cosmoworks structural-analysis program (SolidWorks Corp, Waltham, MA) was used for analysis. Results were presented considering von Mises criteria. Stresses at the root apex increased with an increase in lesion dimensions. Root filling did not affect stress distribution in the PED model. An MTA plug or MTA-based sealer created more stress areas within the root compared with the others in the models representing PED with periodontic involvement and true combined lesions. Stresses at the apical end of the root increase with increases in lesion dimensions. MTA-based sealers or an MTA plug creates more stresses when there is periodontic involvement or a true combined lesion. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. The effect of iron plaque on lead translocation in soil-Carex cinerascens kukenth. system.

    PubMed

    Liu, Chunying; Gong, Xiaofeng; Chen, Chunli; Yang, Juyun; Xu, Sheng

    2016-01-01

    A pot experiment was conducted to investigate the effect of iron plaque on Pb uptake by and translocation in Carex cinerascens Kukenth. grown under open-air conditions. Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry, iron plaque was present as an amorphous coating on root surfaces with uneven distribution. The amount of iron plaque increased significantly with increasing Fe additions regardless of Pb additions. The presence of iron plaque on the root surface of Carex cinerascens Kukenth. increased the concentrations of Pb adsorbed by iron plaque. The Pb percentage in whole roots increased by 14.52% at 500 mg kg(-1) Fe treatment than at 0 mg kg(-1) Fe, and the distribution coefficient (DC) of Pb and translocation factor (TF) root increased with Fe additions, but translocation factor (TF) shoot decreased with Fe additions. The results suggested that iron plaque could promote the translocation of Pb from soil to roots to some extent, and it played a role to reduce heavy metals pollution of Poyang Lake wetland.

  17. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be significantly uncorrelated with the uniformity of the water applied at the surface. In both the cases, the size of lateral fluxes compared to the vertical ones throughout the rooting zone depends, besides the soil hydraulic properties, on the amount of water delivered to the soil. Larger water applications produce greater spreading, but in both the horizontal and vertical directions. Increased vertical spreading may be undesirable because water moving below the active root zone can result in wasted water, loss of nutrients, and groundwater pollution.

  18. [Distribution of fine root biomass of main planting tree species in Loess Plateau, China].

    PubMed

    Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai

    2014-07-01

    The distribution of fine roots of Pinus tabuliformis, Populus tomentosa, Prunus armeniaca, Robinia pseudoacacia, Hippophae rhamnoides, and Caragana korshinskii was investigated by using soil core method and the fine root was defined as root with diameter less than 2 mm. The soil moisture and soil properties were measured. The results showed that in the horizontal direction, the distribution of fine root biomass of P. tabuliformis presented a conic curve, and the fine root biomass of the other species expressed logarithm correlation. Radial roots developed, the fine root biomass were concentrated within the scope of the 2-3 times crown, indicating that trees extended their roots laterally to seek water farther from the tree. In the vertical direction, the fine root biomass decreased with the increasing soil depth. Fine root biomass had significant negative correlation with soil water content and bulk density, while significant positive correlation with organic matter and total N contents.

  19. The inflow of Cs-137 in soil with root litter and root exudates of Scots pine

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Olga; Popova, Evgenia

    2017-04-01

    In the model experiment on evaluation of Cs-137 inflow in the soil with litter of roots and woody plants root exudates on the example of soil and water cultures of Scots pine (Pinus sylvestris L.) was shown, that through 45 days after the deposit Cs-137 solution on pine needles (specific activity of solution was 3.718*106 Bk) of the radionuclide in all components of model systems has increased significantly: needles, small branches and trunk by Cs-137 surface contamination during the experiment; roots as a result of the internal distribution of the radionuclide in the plant; soil and soil solution due to the of receipt Cs-137 in the composition of root exudates and root litter. Over 99% of the total reserve of Cs-137 accumulated in the components of the soil and water systems, accounted for bodies subjected to external pollution (needles and small branches) and <0.5% - on the soil / soil solution, haven't been subjected to surface contamination. At the same contamination of soil and soil solution by Cs-137 in the model experiment more than a> 99.9% was due to root exudates

  20. [Effects of neighbor competition on growth, fine root morphology and distribution of Schima superba and Cunninghamia lanceolata in different nutrient environments].

    PubMed

    Yao, Jia Bao; Chu, Xiu Li; Zhou, Zhi Chun; Tong, Jian She; Wang, Hui; Yu, Jia Zhong

    2017-05-18

    Taking Schima superba and Cunninghamia lanceolata as test materials, a pot experiment was conducted to simulate the heterogeneous and homogeneous forest soil nutrient environments, and design three planting modes including single plant, two-strain pure plant and two-strain mixed ones to reason the promotion in mixed S. superba and C. lanceolata plantation and the competitive advantage of S. superba. Results showed that compared with the homogeneous nutrient environment, both S. superba and C. lanceolata had the higher seedling height and dry matter accumulation, when mixed in the heterogeneous nutrient environment, S. superba displayed the obviously competitive advantage, which related to its root plasticity. The fine root of S. superba mixed in each diameter class showed a lot of hyperplasia, and the root total length, surface area and volume of which were 80%-180% higher than that of C. lanceolata. S. superba took the advantage of the compensatory growth strategy of vertical direction in fine roots, namely, they still multiplied to gain greater competitive advantage in low nutrient patches, besides occupying eutrophic surface. The different soil colonization and niche differentiation in fine root of S. superba and C. lanceolata alleviated the strong competition for nutrients of the roots of the two species, and improved the mixed-plantation production. Pure plantation of S. superba harvested the lower yield, which due to the root self-recognition inhibited the growth of root system. Fine roots staggered and evenly distributed on the space might be a reason for stable structure of pure S. superba plantation. So, it was recommended that block surface layer soil preparation and fertilization are used to improve the soil nutrient distribution, and the mixed plantation is constructed to promote the growth of S. superba and C. lanceolata, at the same time, the stand density is regulated to promote tree growth for the pure artificial S. superba plantation which had already been built.

  1. MCNP Output Data Analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-06-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data. Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.

  2. Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen

    PubMed Central

    Song, Wenjing; Sun, Huwei; Li, Jiao; Gong, Xianpo; Huang, Shuangjie; Zhu, Xudong; Zhang, Yali; Xu, Guohua

    2013-01-01

    Background and Aims Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3−) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3− nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3− availability are not known. Methods Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3−, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. Key Results Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3− compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’. Conclusions The results indicate that higher NO3− responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’. PMID:24095838

  3. [Transportation and transformation of 14C-phenanthrene in closed chamber (nutrient solution-lava-plant-air) system].

    PubMed

    Jiang, X; Ou, Z; Ying, P; Yediler, A; Ketrrup, A

    2001-06-01

    The transportation and transformation of 14C-phenanthrene in a closed 'plant-lava-nutrient solution-air' chamber system was studied by using radioactivity technology. The results showed that in this closed chamber system, phenanthrene was degraded fast. The radioactivity of 14C left at 23d in the nutrient solution was only 25% of applied. At the end of experiment (46d), the distribution sequence of 14C activity in the components of closed chamber system was root (38.55%) > volatile organic compounds (VOCs, 17.68%) > lava (14.35%) > CO2 (11.42%) > stem (2%). 14C-activities in plant tissue were combined with the tissue, and existed in the forms of lava-bound(root 4.68%; stem and leaves 0.68%) and polar metabolites (root 23.14%; stem 0.78%).

  4. THERMINATOR: THERMal heavy-IoN generATOR

    NASA Astrophysics Data System (ADS)

    Kisiel, Adam; Tałuć, Tomasz; Broniowski, Wojciech; Florkowski, Wojciech

    2006-04-01

    THERMINATOR is a Monte Carlo event generator designed for studying of particle production in relativistic heavy-ion collisions performed at such experimental facilities as the SPS, RHIC, or LHC. The program implements thermal models of particle production with single freeze-out. It performs the following tasks: (1) generation of stable particles and unstable resonances at the chosen freeze-out hypersurface with the local phase-space density of particles given by the statistical distribution factors, (2) subsequent space-time evolution and decays of hadronic resonances in cascades, (3) calculation of the transverse-momentum spectra and numerous other observables related to the space-time evolution. The geometry of the freeze-out hypersurface and the collective velocity of expansion may be chosen from two successful models, the Cracow single-freeze-out model and the Blast-Wave model. All particles from the Particle Data Tables are used. The code is written in the object-oriented c++ language and complies to the standards of the ROOT environment. Program summaryProgram title:THERMINATOR Catalogue identifier:ADXL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland RAM required to execute with typical data:50 Mbytes Number of processors used:1 Computer(s) for which the program has been designed: PC, Pentium III, IV, or Athlon, 512 MB RAM not hardware dependent (any computer with the c++ compiler and the ROOT environment [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] Operating system(s) for which the program has been designed:Linux: Mandrake 9.0, Debian 3.0, SuSE 9.0, Red Hat FEDORA 3, etc., Windows XP with Cygwin ver. 1.5.13-1 and gcc ver. 3.3.3 (cygwin special)—not system dependent External routines/libraries used: ROOT ver. 4.02.00 Programming language:c++ Size of the package: (324 KB directory 40 KB compressed distribution archive), without the ROOT libraries (see http://root.cern.ch for details on the ROOT [R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389 (1997) 81, http://root.cern.ch] requirements). The output files created by the code need 1.1 GB for each 500 events. Distribution format: tar gzip file Number of lines in distributed program, including test data, etc.: 6534 Number of bytes in ditribution program, including test data, etc.:41 828 Nature of the physical problem: Statistical models have proved to be very useful in the description of soft physics in relativistic heavy-ion collisions [P. Braun-Munzinger, K. Redlich, J. Stachel, 2003, nucl-th/0304013. [2

  5. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    PubMed Central

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells. PMID:20860818

  6. Influence of nickel-titanium rotary systems with varying tapers on the biomechanical behaviour of maxillary first premolars under occlusal forces: a finite element analysis study.

    PubMed

    Askerbeyli Örs, S; Serper, A

    2018-05-01

    To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal root surface in two-rooted premolars. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Examining the Relationship Between Edaphic Variables and the Rooting System of Abies concolor in the southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Jackson, R. B.; Tumber-Davila, S. J.

    2017-12-01

    An increase in the frequency and severity of droughts has been associated with the changing climate. These events have the potential to alter the composition and biogeography of forests, as well as increase tree mortality related to climate-induced stress. Already, an increase in tree mortality has been observed throughout the US. The recent drought in California led to millions of tree mortalities in the southern Sierra Nevada alone. In order to assess the potential impacts of these events on forest systems, it is imperative to understand what factors contribute to tree mortality. As plants become water-stressed, they may invest carbon more heavily belowground to reach a bigger pool of water, but their ability to adapt may be limited by the characteristics of the soil. In the Southern Sierra Critical Zone Observatory, a high tree mortality zone, we have selected both dead and living trees to examine the factors that contribute to root zone variability and belowground biomass investment by individual plants. A series of 15 cores surrounding the tree were taken to collect root and soil samples. These were then used to compare belowground rooting distributions with soil characteristics (texture, water holding capacity, pH, electric conductivity). Abies concolor is heavily affected by drought-induced mortality, therefore the rooting systems of dead Abies concolor trees were examined to determine the relationship between their rooting systems and environmental conditions. Examining the relationship between soil characteristics and rooting systems of trees may shed light on the plasticity of rooting systems and how trees adapt based on the characteristics of its environment. A better understanding of the factors that contribute to tree mortality can improve our ability to predict how forest systems may be impacted by climate-induced stress. Key words: Root systems, soil characteristics, drought, adaptation, terrestrial carbon, forest ecology

  8. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature of plants was -12‰, enabling us to differentiate between root-derived C and native SOM-C respiration. We found that the relative abundance of fine, medium and coarse roots were significantly different among cultivars. Root systems of Alamo, Kanlow and Cave-in-Rock were characterized by a large abundance of coarse-, relative to fine roots, whereas Carthage, Forestburg and Blackwell had a large abundance of fine, relative to coarse roots. Fine roots had a 28% lower C:N ratio than medium and coarse roots. These differences led to different root decomposition rates. We conclude that root architecture should be taken into account when predicting root decomposition rates; enhanced understanding of the mechanisms of root decomposition will improve model predictions of C input to soil organic matter.

  9. Distribution of different surface modified carbon dots in pumpkin seedlings.

    PubMed

    Qian, Kun; Guo, Huiyuan; Chen, Guangcai; Ma, Chuanxin; Xing, Baoshan

    2018-05-22

    The distribution of surface modified carbon dots (CDs) in the pumpkin seedlings was studied by visualization techniques and their potential phytotoxicity was investigated at both the physiological and biochemical levels. The average size of carbon dots was approximately 4 nm. The fluorescent peaks of bared CDs, CD-PEI and CD-PAA were between 420 nm and 500 nm, indicating CDs could emit blue and green fluorescence. Fluorescent images showed that all three types of CDs could accumulate in the pumpkin roots and translocate to the shoots, although the distribution pattern of each CDs was obviously different. At the biochemical level, the elevated antioxidant enzymes in pumpkin roots suggest that all the CDs could potentially trigger the antioxidant defense systems in pumpkin seedlings. Additionally, such alteration was greater in the roots than in the shoots. Our study represents a new perspective on CD visualization in plant tissues and provide useful information for the potential toxicity of different types of CDs to terrestrial plants, which is of importance to agricultural application.

  10. Rhizosphere size

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Razavi, Bahar

    2017-04-01

    Estimation of the soil volume affected by roots - the rhizosphere - is crucial to assess the effects of plants on properties and processes in soils and dynamics of nutrients, water, microorganisms and soil organic matter. The challenges to assess the rhizosphere size are: 1) the continuum of properties between the root surface and root-free soil, 2) differences in the distributions of various properties (carbon, microorganisms and their activities, various nutrients, enzymes, etc.) along and across the roots, 3) temporal changes of properties and processes. Thus, to describe the rhizosphere size and root effects, a holistic approach is necessary. We collected literature and own data on the rhizosphere gradients of a broad range of physico-chemical and biological properties: pH, CO2, oxygen, redox potential, water uptake, various nutrients (C, N, P, K, Ca, Mg, Mn and Fe), organic compounds (glucose, carboxylic acids, amino acids), activities of enzymes of C, N, P and S cycles. The collected data were obtained based on the destructive approaches (thin layer slicing), rhizotron studies and in situ visualization techniques: optodes, zymography, sensitive gels, 14C and neutron imaging. The root effects were pronounced from less than 0.5 mm (nutrients with slow diffusion) up to more than 50 mm (for gases). However, the most common effects were between 1 - 10 mm. Sharp gradients (e.g. for P, carboxylic acids, enzyme activities) allowed to calculate clear rhizosphere boundaries and so, the soil volume affected by roots. The first analyses were done to assess the effects of soil texture and moisture as well as root system and age on these gradients. The most properties can be described by two curve types: exponential saturation and S curve, each with increasing and decreasing concentration profiles from the root surface. The gradient based distribution functions were calculated and used to extrapolate on the whole soil depending on the root density and rooting intensity. We conclude that despite the specific effects of plants and soil on the rhizosphere size, the most common distribution functions can be calculated for individual roots and extrapolated for the whole soil profile.

  11. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  12. Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples

    PubMed Central

    Lombi, Enzo; de Jonge, Martin D.; Donner, Erica; Kopittke, Peter M.; Howard, Daryl L.; Kirkham, Robin; Ryan, Chris G.; Paterson, David

    2011-01-01

    Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples. PMID:21674049

  13. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  14. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  15. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative estimates of tree root reinforcement for best management practice of protection forests.

  16. Labelling plants the Chernobyl way: A new approach for mapping rhizodeposition and biopore reuse

    NASA Astrophysics Data System (ADS)

    Banfield, Callum; Kuzyakov, Yakov

    2016-04-01

    A novel approach for mapping root distribution and rhizodeposition using 137Cs and 14C was applied. By immersing cut leaves into vials containing 137CsCl solution, the 137Cs label is taken up and partly released into the rhizosphere, where it strongly binds to soil particles, thus labelling the distribution of root channels in the long term. Reuse of root channels in crop rotations can be determined by labelling the first crop with 137Cs and the following crop with 14C. Imaging of the β- radiation with strongly differing energies differentiates active roots growing in existing root channels (14C + 137Cs activity) from roots growing in bulk soil (14C activity only). The feasibility of the approach was shown in a pot experiment with ten plants of two species, Cichorium intybus L., and Medicago sativa L. The same plants were each labelled with 100 kBq of 137CsCl and after one week with 500 kBq of 14CO2. 96 h later pots were cut horizontally at 6 cm depth. After the first 137Cs + 14C imaging of the cut surface, imaging was repeated with three layers of plastic film between the cut surface and the plate for complete shielding of 14C β- radiation to the background level, producing an image of the 137Cs distribution. Subtracting the second image from the first gave the 14C image. Both species allocated 18 - 22% of the 137Cs and about 30 - 40% of 14C activity below ground. Intensities far above the detection limit suggest that this approach is applicable to map the root system by 137Cs and to obtain root size distributions through image processing. The rhizosphere boundary was defined by the point at which rhizodeposited 14C activity declined to 5% of the activity of the root centre. Medicago showed 25% smaller rhizosphere extension than Cichorium, demonstrating that plant-specific rhizodeposition patterns can be distinguished. Our new approach is appropriate to visualise processes and hotspots on multiple scales: Heterogeneous rhizodeposition, as well as size and counts of roots and biopores formed by these in various soil depths can be determined. Finally, biopore reuse in crop rotations can be visualised.

  17. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  18. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.

    PubMed

    Sun, Feifei; Zhang, Wensheng; Hu, Haizhou; Li, Bao; Wang, Youning; Zhao, Yankun; Li, Kexue; Liu, Mengyu; Li, Xia

    2008-01-01

    Plant root architecture is highly plastic during development and can adapt to many environmental stresses. The proper distribution of roots within the soil under various conditions such as salinity, water deficit, and nutrient deficiency greatly affects plant survival. Salinity profoundly affects the root system architecture of Arabidopsis (Arabidopsis thaliana). However, despite the inhibitory effects of salinity on root length and the number of roots, very little is known concerning influence of salinity on root growth direction and the underlying mechanisms. Here we show that salt modulates root growth direction by reducing the gravity response. Exposure to salt stress causes rapid degradation of amyloplasts in root columella cells of Arabidopsis. The altered root growth direction in response to salt was found to be correlated with PIN-FORMED2 (PIN2) messenger RNA abundance and expression and localization of the protein. Furthermore, responsiveness to gravity of salt overly sensitive (sos) mutants is substantially reduced, indicating that salt-induced altered gravitropism of root growth is mediated by ion disequilibrium. Mutation of SOS genes also leads to reduced amyloplast degradation in root tip columella cells and the defects in PIN2 gene expression in response to salt stress. These results indicate that the SOS pathway may mediate the decrease of PIN2 messenger RNA in salinity-induced modification of gravitropic response in Arabidopsis roots. Our findings provide new insights into the development of a root system necessary for plant adaptation to high salinity and implicate an important role of the SOS signaling pathway in this process.

  19. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Huan; Zhang, Weiguo; Qian, Yu

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn inPhragmites australisroot system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils.Phragmites australissamples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and thatmore » other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  1. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2013-06-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. However, land surface models currently prescribe rooting profiles as a function of only the plant functional type of interest with no consideration for the soil texture or rainfall regime of the region being modeled. Additionally, these models do not incorporate the ability of vegetation to dynamically alter their rooting strategies in response to transient changes in environmental forcings or competition from other plant species and therefore tend to underestimate the resilience of these ecosystems. To address the simplicity of the current representation of roots in land surface models, a new dynamic rooting scheme was incorporated into the framework of the distributed ecohydrological model tRIBS+VEGGIE. The new scheme optimizes the allocation of carbon to the root zone to reduce the perceived stress of the vegetation, so that root profiles evolve based upon local climate and soil conditions. The ability of the new scheme to capture the complex dynamics of natural systems was evaluated by comparisons to hourly timescale energy flux, soil moisture, and vegetation growth observations from the Walnut Gulch Experimental Watershed, Arizona. Robust agreement was found between the model and observations, providing confidence that the improved model is able to capture the multidirectional interactions between climate, soil, and vegetation at this site.

  2. Perception of neighboring plants by rhizomes and roots: morphological manifestations of a clonal plant

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.; Caldwell, M.M.

    1997-01-01

    A previous study showed that clonal morphology of the rhizomatous grass Elymus lanceolatus ssp. lanceolatus (Scibner & J.G. Smith Gould) was influenced more by neighbouring root systems than by the local distribution of nutrients. In this study we determine whether individual rhizomes or roots of E. lanceolatus perceive neighbouring root systems and how this is manifested in morphological responses of E. lanceolatus clones. Elymus lanceolatus was grown in the same bin with Pseudoroegneria spicata (Pursh) A. Love or Agropyron desertorum (Fisch. ex Link) Schult. plants. Elymus lanceolatus was separated from its neighbours by different barriers. The barriers allowed either only E. lanceolatus roots; only a single E. lanceolatus primary rhizome; or both roots and rhizomes to contact the neighbour root system. When only a single E. lanceolatus primary rhizome with potentially developing branching rhizomes made contact with the neighbour, the clonal structure of E. lanceolatus was modified more with P. spicata as the neighbour than with A. desertorum. With root contact of E. lanceolatus alone there was a similar effect with the neighbouring plants, but there was a more marked inhibitory effect on E. lanceolatus clonal growth with P. spicata than with A. desertorum, compared with the treatment with only a single rhizome in contact with the neighbour. Root resource competition in the unconstrained treatment (roots and rhizomes) between neighbouring plant and E. lanceolatus was more apparent with A. desertorum than with P. spicata. This study is one of the first to document that rhizome and root contact of a clonal plant with its neighbours may induce different clonal responses depending on the species of neighbour.

  3. PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS

    EPA Science Inventory

    The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...

  4. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    PubMed

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  5. Random River Fluctuations Shape the Root Profile of Riparian Plants

    NASA Astrophysics Data System (ADS)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  6. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Treesearch

    Tristram C. Hales; Chelcy F. Miniat

    2017-01-01

    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...

  7. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show the potential of the method and its exciting outlook.

  8. Root Water Uptake and Tracer Transport in a Lupin Root System: Integration of Magnetic Resonance Images and the Numerical Model RSWMS

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Vanderborght, Jan; Haber-Pohlmeier, Sabina; Wienke, Sandra; Vereecken, Harry; Javaux, Mathieu

    2010-05-01

    Combination of experimental studies with detailed deterministic models help understand root water uptake processes. Recently, Javaux et al. developed the RSWMS model by integration of Doussańs root model into the well established SWMS code[1], which simulates water and solute transport in unsaturated soil [2, 3]. In order to confront RSWMS modeling results to experimental data, we used Magnetic Resonance Imaging (MRI) technique to monitor root water uptake in situ. Non-invasive 3-D imaging of root system architecture, water content distributions and tracer transport by MR were performed and compared with numerical model calculations. Two MRI experiments were performed and modeled: i) water uptake during drought stress and ii) transport of a locally injected tracer (Gd-DTPA) to the soil-root system driven by root water uptake. Firstly, the high resolution MRI image (0.23x0.23x0.5mm) of the root system was transferred into a continuous root system skeleton by a combination of thresholding, region-growing filtering and final manual 3D redrawing of the root strands. Secondly, the two experimental scenarios were simulated by RSWMS with a resolution of about 3mm. For scenario i) the numerical simulations could reproduce the general trend that is the strong water depletion from the top layer of the soil. However, the creation of depletion zones in the vicinity of the roots could not be simulated, due to a poor initial evaluation of the soil hydraulic properties, which equilibrates instantaneously larger differences in water content. The determination of unsaturated conductivities at low water content was needed to improve the model calculations. For scenario ii) simulations confirmed the solute transport towards the roots by advection. 1. Simunek, J., T. Vogel, and M.T. van Genuchten, The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. 1994, U.S. Salinity Laboratory, USDA, ARS: Riverside, California. 2. Javaux, M., et al., Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone J., 2008. 7(3): p. 1079-1088. 3. Schröder, T., et al., Effect of Local Soil Hydraulic Conductivity Drop Using a Three Dimensional Root Water Uptake Model. Vadose Zone J., 2008. 7(3): p. 1089-1098.

  9. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    PubMed

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  10. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    PubMed Central

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  11. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.

    PubMed

    Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G

    2014-09-01

    Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots <1 mm in diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.

    PubMed

    Kimura, Taro; Haga, Ken; Shimizu-Mitao, Yasushi; Takebayashi, Yumiko; Kasahara, Hiroyuki; Hayashi, Ken-Ichiro; Kakimoto, Tatsuo; Sakai, Tatsuya

    2018-04-01

    An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.

  13. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119

  14. Transgenic hairy roots. recent trends and applications.

    PubMed

    Giri, A; Narasu, M L

    2000-03-01

    Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic roots produced by A. rhizogenes infection is characterized by high growth rate and genetic stability. These genetically transformed root cultures can produce higher levels of secondary metabolites or amounts comparable to that of intact plants. Hairy root cultures offer promise for production of valuable secondary metabolites in many plants. The main constraint for commercial exploitation of hairy root cultures is their scaling up, as there is a need for developing a specially designed bioreactor that permits the growth of interconnected tissues unevenly distributed throughout the vessel. Rheological characteristics of heterogeneous system should also be taken into consideration during mass scale culturing of hairy roots. Development of bioreactor models for hairy root cultures is still a recent phenomenon. It is also necessary to develop computer-aided models for different parameters such as oxygen consumption and excretion of product to the medium. Further, transformed roots are able to regenerate genetically stable plants as transgenics or clones. This property of rapid growth and high plantlet regeneration frequency allows clonal propagation of elite plants. In addition, the altered phenotype of hairy root regenerants (hairy root syndrome) is useful in plant breeding programs with plants of ornamental interest. In vitro transformation and regeneration from hairy roots facilitates application of biotechnology to tree species. The ability to manipulate trees at a cellular and molecular level shows great potential for clonal propagation and genetic improvement. Transgenic root system offers tremendous potential for introducing additional genes along with the Ri T-DNA genes for alteration of metabolic pathways and production of useful metabolites or compounds of interest. This article discusses various applications and perspectives of hairy root cultures and the recent progress achieved with respect to transformation of plants using A. rhizogenes.

  15. Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.

    2015-12-01

    Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.

  16. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    Water uptake by plant roots is a complex mechanism controlled by biological and physical properties of the soil-plant-atmosphere system and affects a major component of the water cycle, transpiration. This uptake of water by plants is one of the major factors of plant development. Since water uptake occurs at the roots, root architecture and hydraulic properties both play a crucial role in plant productivity. A fundamental understanding of the main processes of water uptake will enable better breeding of drought resistant plants and the improvement of irrigation strategies. In this work we analyzed the differences of root water uptake between idealized genotypes of a plant using mathematical modelling The numerical simulations were performed by the R-SWMS software (Javaux et al., 2008). The model describes 3-D water movement in soil by solving Richard's equation with a sink term representing root uptake. Water flow within the root xylem network and between soil and root is modelled based on water pressure gradients and calculated according to Doussan's model. The sink term is calculated by integration of local uptakes within rooted representative elementary volumes of soil. The plant water demand is described by a boundary condition at the base of the shoot. We compare the water uptake efficiency of three types of root system architectures of a maize plant. Two are actual architectures from genotypes showing significant differences regarding the internodal distance, the root growth rate and the insertion angle of their primary roots. The third one is an ideotype according to Lynch of the maize plant designed to perform better in one dry environment. We generated with RootBox five repetitions of these three root systems with the same total root volume and simulated two drought scenarios at the flowering stage (lack of water at the top or at the bottom of the soil domain). We did these simulations for two distinct distributions of local conductivities of root segments based on literature values. This numerical experiment shows significantly different behaviors of the root systems in terms of dynamics of the water uptake, duration of the water stress or cumulative transpiration. The ranking of the maize architectures varied according to the considered drought scenario. The performance of a root system depends on the environment and on its hydraulic architecture suggesting that we always need to take the genotype-environment interaction into account for recommending breeding options. This study also shows that an ideotype must be built for one specific environment: the one we created experienced difficulties to transpire when placed in different conditions it has been designed for. By mathematical simulation we increased the understanding of the most important underlying processes governing water uptake in a root system.

  17. Distribution and Impacts of Annosus Root Disease in Forests of the Northern Rocky Mountains

    Treesearch

    Ralph E. Williams

    1989-01-01

    Annosus root disease is widely distributed in the northern Rocky Mountains. Stump infection often results in tree mortality occurring in progressively expanding root disease centers, in groups of various sizes, and as scattered individuals.

  18. Root structural and functional dynamics in terrestrial biosphere models--evaluation and recommendations.

    PubMed

    Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D

    2015-01-01

    There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.

  19. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O2, pH, and CO 2 Gradients in the Rhizosphere.

    PubMed

    Koop-Jakobsen, Ketil; Mueller, Peter; Meier, Robert J; Liebsch, Gregor; Jensen, Kai

    2018-01-01

    In many wetland plants, belowground transport of O 2 via aerenchyma tissue and subsequent O 2 loss across root surfaces generates small oxic root zones at depth in the rhizosphere with important consequences for carbon and nutrient cycling. This study demonstrates how roots of the intertidal salt-marsh plant Spartina anglica affect not only O 2 , but also pH and CO 2 dynamics, resulting in distinct gradients of O 2 , pH, and CO 2 in the rhizosphere. A novel planar optode system (VisiSens TD ® , PreSens GmbH) was used for taking high-resolution 2D-images of the O 2 , pH, and CO 2 distribution around roots during alternating light-dark cycles. Belowground sediment oxygenation was detected in the immediate vicinity of the roots, resulting in oxic root zones with a 1.7 mm radius from the root surface. CO 2 accumulated around the roots, reaching a concentration up to threefold higher than the background concentration, and generally affected a larger area within a radius of 12.6 mm from the root surface. This contributed to a lowering of pH by 0.6 units around the roots. The O 2 , pH, and CO 2 distribution was recorded on the same individual roots over diurnal light cycles in order to investigate the interlinkage between sediment oxygenation and CO 2 and pH patterns. In the rhizosphere, oxic root zones showed higher oxygen concentrations during illumination of the aboveground biomass. In darkness, intraspecific differences were observed, where some plants maintained oxic root zones in darkness, while others did not. However, the temporal variation in sediment oxygenation was not reflected in the temporal variations of pH and CO 2 around the roots, which were unaffected by changing light conditions at all times. This demonstrates that plant-mediated sediment oxygenation fueling microbial decomposition and chemical oxidation has limited impact on the dynamics of pH and CO 2 in S. anglica rhizospheres, which may in turn be controlled by other processes such as root respiration and root exudation.

  20. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  1. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar.

    PubMed

    Filpo-Perez, Carolina; Bramante, Clovis Monteiro; Villas-Boas, Marcelo Haas; Húngaro Duarte, Marco Antonio; Versiani, Marco Aurélio; Ordinola-Zapata, Ronald

    2015-02-01

    The aim of this study was to evaluate the morphologic aspects of the root canal anatomy of the distal root of a mandibular first molar using micro-computed tomographic analysis. One-hundred distal roots of mandibular first molars were scanned using a micro-computed tomographic device at an isotropic resolution of 19.6 μm. The percentage frequency distribution of the morphologic configuration of the root canal was performed according to the Vertucci classification system. Two-dimensional parameters (area, perimeter, roundness, aspect ratio, and major and minor diameters) and the cross-sectional shape of the root canal were analyzed in the apical third at every 1-mm interval from the main apical foramen in roots presenting Vertucci types I and II configurations (n = 79). Data were statistically compared using the Kruskal-Wallis and Dunn tests with a significance level set at 5%. Seventy-six percent of the distal roots had a single root canal. Two, three, and four canals were found in 13%, 8%, and 3% of the sample, respectively. In 13 specimens, the configuration of the root canal did not fit into Vertucci's classification. Overall, 2-dimensional parameter values significantly increased at the 3-mm level (P < .05). The prevalence of oval canals was higher at the 1-mm level and decreased at the 5-mm level in which long oval and flattened canals were more prevalent. The distal roots of the mandibular first molars showed a high prevalence of single root canals. The prevalence of long oval and flattened canals increased in the coronal direction. In 13% of the samples, canal configurations that were not included in Vertucci's configuration system were found. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Performance of statistical models to predict mental health and substance abuse cost.

    PubMed

    Montez-Rath, Maria; Christiansen, Cindy L; Ettner, Susan L; Loveland, Susan; Rosen, Amy K

    2006-10-26

    Providers use risk-adjustment systems to help manage healthcare costs. Typically, ordinary least squares (OLS) models on either untransformed or log-transformed cost are used. We examine the predictive ability of several statistical models, demonstrate how model choice depends on the goal for the predictive model, and examine whether building models on samples of the data affects model choice. Our sample consisted of 525,620 Veterans Health Administration patients with mental health (MH) or substance abuse (SA) diagnoses who incurred costs during fiscal year 1999. We tested two models on a transformation of cost: a Log Normal model and a Square-root Normal model, and three generalized linear models on untransformed cost, defined by distributional assumption and link function: Normal with identity link (OLS); Gamma with log link; and Gamma with square-root link. Risk-adjusters included age, sex, and 12 MH/SA categories. To determine the best model among the entire dataset, predictive ability was evaluated using root mean square error (RMSE), mean absolute prediction error (MAPE), and predictive ratios of predicted to observed cost (PR) among deciles of predicted cost, by comparing point estimates and 95% bias-corrected bootstrap confidence intervals. To study the effect of analyzing a random sample of the population on model choice, we re-computed these statistics using random samples beginning with 5,000 patients and ending with the entire sample. The Square-root Normal model had the lowest estimates of the RMSE and MAPE, with bootstrap confidence intervals that were always lower than those for the other models. The Gamma with square-root link was best as measured by the PRs. The choice of best model could vary if smaller samples were used and the Gamma with square-root link model had convergence problems with small samples. Models with square-root transformation or link fit the data best. This function (whether used as transformation or as a link) seems to help deal with the high comorbidity of this population by introducing a form of interaction. The Gamma distribution helps with the long tail of the distribution. However, the Normal distribution is suitable if the correct transformation of the outcome is used.

  3. Guidance Systems across Europe: Heritage, Change and the Art of Becoming

    ERIC Educational Resources Information Center

    Moreno da Fonseca, Pedro

    2015-01-01

    Guidance systems exist within learning, working and welfare cultures, which are upheld by prevailing institutions and stakeholders. Implementing a lifelong approach questions rooted codes and idiosyncrasies of the sectors across which guidance is distributed. To support individuals' careers, unlock their potential and increase their contribution…

  4. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    NASA Astrophysics Data System (ADS)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing season) were observed in absence of aboveground forest litter, with lower or no priming when the litter was present. Preliminary results show that soil microbial community is also significantly affected by ARES.

  5. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization

    Treesearch

    Mark Coleman

    2007-01-01

    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...

  6. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.

    PubMed

    Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D

    2014-11-01

    The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.

  7. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping

    PubMed Central

    Nagel, Kerstin A.; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-01-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. PMID:26089535

  8. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  9. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    PubMed Central

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  10. GPS-Based Excavation Encroachment Notification

    DOT National Transportation Integrated Search

    2011-10-31

    Excavation damage is the primary threat to the integrity of the natural gas distribution system. According to the Common Ground Alliance, the two primary root causes of excavation damage are failure to notify the one-call center and careless excavati...

  11. Photodynamic treatment of endodontic polymicrobial infection in vitro

    PubMed Central

    Fimple, Jacob Lee; Fontana, Carla Raquel; Foschi, Federico; Ruggiero, Karriann; Song, Xiaoqing; Pagonis, Tom C.; Tanner, Anne C. R.; Kent, Ralph; Doukas, Apostolos G.; Stashenko, Philip P.; Soukos, Nikolaos S.

    2008-01-01

    We investigated the photodynamic effects of methylene blue (MB) on multi-species root canal biofilms comprising Actinomyces israelii, Fusobacterium nucleatum subspecies nucleatum, Porphyromonas gingivalis and Prevotella intermedia in experimentally infected root canals of extracted human teeth in vitro. The four test microorganisms were detected in root canals using DNA probes. Scanning electron microscopy (SEM) showed the presence of biofilms in root canals prior to therapy. Root canal systems were incubated with MB (25 µg/ml) for 10 minutes followed by exposure to red light at 665 nm with an energy fluence of 30 J/cm2. Light was delivered from a diode laser via a 250 µm diameter polymethyl methacrylate optical fiber that uniformly distributed light at 360°. Photodynamic therapy (PDT) achieved up to 80% reduction of colony-forming unit counts. We conclude that PDT can be an effective adjunct to standard endodontic antimicrobial treatment when the PDT parameters are optimized. PMID:18498901

  12. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to rhizosphere (14Crhizosphere/14Croot) was double in plants grown under dry conditions (0.43 vs. 0.75 %). Plants grown in wet soils showed a faster root growth (1.4 cm d-1) compared to plants in dry soil (1 cm d-1). Compared to the results with neutron radiography, rhizosphere extension of 14C was generally higher and strongly depended on root type: it was 2 mm for main roots and 1 mm for lateral roots. This indicates that low molecular exudates diffuse further into the soil than mucilage. As for mucilage, concentration of 14C was higher in the rhizosphere of plants grown under dry conditions. This observation can be explained by: (a) higher allocation of 14C from roots to rhizosphere in dry soils, (b) a fast diffusion of exudates in wet soils, and (c) faster root growth in wet soils, which results in lower exudation per root length. In summary, the combination of neutron radiography and 14C imaging was successfully used to visualize and to quantify the distribution of mucilage and root exudates in the rhizosphere of plants grown in soil. The high concentration of root exudates in rhizosphere under dry conditions might be strategy of plants to increase their water and nutrient availability unfavorable conditions.

  13. Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida.

    PubMed

    Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A; McSorley, Robert; Stamps, Robert H; Crow, William T

    2017-09-01

    Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans . For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent.

  14. Vertical Distribution of Pasteuria penetrans Parasitizing Meloidogyne incognita on Pittosporum tobira in Florida

    PubMed Central

    Baidoo, Richard; Mengistu, Tesfamariam Mekete; Brito, Janete A.; McSorley, Robert; Stamps, Robert H.; Crow, William T.

    2017-01-01

    Pasteuria penetrans is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a Pittosporum tobira field where the grower had experienced a continuous decline in productivity caused by Meloidogyne incognita showed that the nematode was infected with Pasteuria penetrans. For effective control of the nematode, the bacterium and the host must coexist in the same root zone. The vertical distribution of Pasteuria penetrans and its relationship with the nematode host in the soil was investigated to identify (i) the vertical distribution of P. penetrans endospores in an irrigated P. tobira field and (ii) the relationship among P. penetrans endospore density, M. incognita J2 population density, and host plant root distribution over time. Soil bioassays revealed that endospore density was greater in the upper 18 cm of the top soil compared with the underlying depths. A correlation analysis showed that the endospore density was positively related to the J2 population density and host plant root distribution. Thus, the vertical distribution of P. penetrans was largely dependent on its nematode host which in turn was determined by the distribution of the host plant roots. The Pasteuria was predominant mostly in the upper layers of the soil where their nematode host and the plant host roots are abundant, a factor which may be a critical consideration when using P. penetrans as a nematode biological control agent. PMID:29062154

  15. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Treesearch

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  16. Processing and statistical analysis of soil-root images

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  17. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site.

    PubMed

    Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M

    2008-09-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.

  18. Root-shoot allometry of tropical forest trees determined in a large-scale aeroponic system.

    PubMed

    Eshel, Amram; Grünzweig, José M

    2013-07-01

    This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy-root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined. Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting. The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems. The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts.

  19. Root induced changes of effective 1D hydraulic properties in a soil column.

    PubMed

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  20. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. New nitrogen uptake strategy: specialized snow roots.

    PubMed

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  2. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range

    USGS Publications Warehouse

    Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.

    2003-01-01

    The influence of root reinforcement on shallow landsliding has been well established through mechanistic and empirical studies, yet few studies have examined how local vegetative patterns influence slope stability. Because root networks spread outward from trees, the species, size, and spacing of trees should influence the spatial distribution of root strength. We documented the distribution and characteristics of trees adjacent to 32 shallow landslides that occurred during 1996 in the Oregon Coast Range. Although broadly classified as a conifer-dominated forest, we observed sparse coniferous and abundant hardwood trees near landslide scars in an industrial forest (Mapleton) that experienced widespread burning in the 19th century. In industrial forests that were burned, selectively harvested, and not replanted (Elliott State Forest), swordfern was ubiquitous near landslides, and we observed similar numbers of live conifer and hardwood trees proximal to landslide scarps. We demonstrate that root strength quantified in landslide scarps and soil pits correlates with a geometry-based index of root network contribution derived from mapping the size, species, condition, and spacing of local trees, indicating that root strength can be predicted by mapping the distribution and characteristics of trees on potentially unstable slopes. In our study sites, landslides tend to occur in areas of reduced root strength, suggesting that to make site-specific predictions of landslide occurrence slope stability analyses must account for the diversity and distribution of vegetation in potentially unstable terrain.

  3. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels.

    PubMed

    Bustos, Dolores; Lascano, Ramiro; Villasuso, Ana Laura; Machado, Estela; Senn, María Eugenia; Córdoba, Alicia; Taleisnik, Edith

    2008-10-01

    Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.

  4. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  6. Effects of the duration and inorganic nitrogen composition of a nutrient-rich patch on soil exploration by the roots of Lolium perenne in a heterogeneous environment.

    PubMed

    Nakamura, Ryoji; Kachi, N; Suzuki, J-I

    2010-05-01

    We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.

  7. Comparison of MRI techniques and modelling with R-SWMS for determining solute distribution patterns and root water uptake of a white lupine plant (Lupinus Albus L.).

    NASA Astrophysics Data System (ADS)

    Koch, Axelle; Schröder, Natalie; Pohlmeier, Andreas; Garré, Sarah; Vanderborght, Jan; Javaux, Mathieu

    2017-04-01

    Measuring water extraction by plant would allow us to better understand root water uptake processes and how soil and plant properties affect them. Yet, direct measurement of root water uptake is still challenging and determining its distribution requires coupling experimentation and modelling. In this study, we investigated how the 3D monitoring of a tracer movement in a sand container with a lupine plant could inform us about root water uptake process. A sand column (10 cm height, 5 cm inner diameter) planted with an 18-day-old white lupine was subject to a tracer experiment with a chemically inert tracer (1 mmol/L Gd-DTPA2-) applied for 6 days. Then the tracer and water fluxes were stopped. The plume was monitored in 3-D for 7 days by Magnetic Resonance Imaging (Haber-Pohlmeier et al, unp). In addition the breakthrough curve at the outlet was also measured. We used a biophysical 3-D soil-plant model: R-SWMS (Javaux et al, 2008) to extract information from this experiment. First, we ran a virtual experiment to check the assumption that Gd concentration increase around roots is proportional to the extracted soil water during the same period. We also investigated whether this type of experiment helps discriminate different root hydraulic properties with a sensitivity analysis. Then, we compared the experimental and simulated Gd concentration patterns. A preliminary (qualitative) assessment showed that measured Gd distribution patterns were better represented by the model at day 7, where the main driver of the concentration distribution was root and not soil heterogeneity (which is not taken into account in the model). The main spatial and temporal features of the transport where adequately reproduced by the model in particular during the last day. The distribution of the tracer was shown to be sensitive to the root hydraulic properties. To conclude, information about root water uptake distributions and so about root hydraulic properties could be deduced from Gd concentration maps. Keywords: R-SWMS; Modelling; MRI; Root Water Uptake; Gadolinium

  8. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    PubMed

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Effect of Metal Artifacts on Detection of Vertical Root Fractures Using Two Cone Beam Computed Tomography Systems.

    PubMed

    Safi, Yaser; Aghdasi, Mohammad Mehdi; Ezoddini-Ardakani, Fatemeh; Beiraghi, Samira; Vasegh, Zahra

    2015-01-01

    Vertical root fracture (VRF) is common in endodontically treated teeth. Conventional and digital radiographies have limitations for detection of VRFs. Cone-beam computed tomography (CBCT) offers greater detection accuracy of VRFs in comparison with conventional radiography. This study compared the effects of metal artifacts on detection of VRFs by using two CBCT systems. Eighty extracted premolars were selected and sectioned at the level of the cemento enamel junction (CEJ). After preparation, root canals were filled with gutta-percha. Subsequently, two thirds of the root fillings were removed for post space preparation and a custom-made post was cemented into each canal. The teeth were randomly divided into two groups (n=40). In the test group, root fracture was created with Instron universal testing machine. The control teeth remained intact. CBCT scans of all teeth were obtained with either New Tom VGI or Soredex Scanora 3D. Three observers analyzed the images for detection of VRF. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for VRF detection and percentage of probable cases were calculated for each imaging system and compared using non-parametric tests considering the non-normal distribution of data. The inter-observer reproducibility was calculated using the weighted kappa coefficient. There were no statistically significant differences in sensitivity, specificity, PPV and NPV between the two CBCT systems. The effect of metal artifacts on VRF detection was not significantly different between the two CBCT systems.

  10. Pin1At regulates PIN1 polar localization and root gravitropism.

    PubMed

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-21

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.

  11. Pin1At regulates PIN1 polar localization and root gravitropism

    PubMed Central

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-01

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759

  12. Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1997-01-01

    In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.

  13. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    PubMed

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  14. Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils

    NASA Astrophysics Data System (ADS)

    Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.

    2017-11-01

    While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.

  15. Root distributions of Eurotia lanata in association with two species of agropyron on disturbed soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonham, C.D.; Mack, S.E.

    1990-12-01

    Root distributions of Eurotia lanata in association with Agropyron inerme and A. smithii on soils that were mechanically disturbed were studied. Root diagrams and measurements were made for plants in competitive pairs from soils representing two depths of soil disturbance (30 cm and 1 m) and control areas. Soil disturbance was observed to reduce significantly depth of root penetration and root concentration of E. lanata. Root depth, maximum lateral spread of roots, and zone of root concentration of E. lanata plants were greatest in pure stand pairs. Eurotia lanata associated with A. inerme had the smallest root concentration. The areamore » occupied by E. lanata roots was 59% greater in pure stands than when found adjacent to A. inerme. Agropyron inerme apparently used more available soil water in the top 20 cm of soil than did the shrub and resulted in reduced root growth for E. lanata. On the other hand, the asexual reproductive strategy of A. smithii, where roots and rhizomes were distributed both vertically and laterally, enables the grass species to minimize detrimental effects of its association with E. lanata. The results have important implications for selection of species combinations to reseed disturbed soils in semiarid or arid environments. In particular, attention should be given to use of species that have differing specializations as indicated by their growth and morphology.« less

  16. Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L.

    PubMed

    Liso, Rosalia; De Tullio, Mario C; Ciraci, Samantha; Balestrini, Raffaella; La Rocca, Nicoletta; Bruno, Leonardo; Chiappetta, Adriana; Bitonti, Maria Beatrice; Bonfante, Paola; Arrigoni, Oreste

    2004-12-01

    To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.

  17. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.

  18. Distribution of expansins in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.

  19. ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization

    NASA Astrophysics Data System (ADS)

    Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Canal, Ph.; Casadei, D.; Couet, O.; Fine, V.; Franco, L.; Ganis, G.; Gheata, A.; Maline, D. Gonzalez; Goto, M.; Iwaszkiewicz, J.; Kreshuk, A.; Segura, D. Marcos; Maunder, R.; Moneta, L.; Naumann, A.; Offermann, E.; Onuchin, V.; Panacek, S.; Rademakers, F.; Russo, P.; Tadel, M.

    2009-12-01

    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariate classification methods based on machine learning techniques are available via the TMVA package. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks — e.g. data mining in HEP — by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way. Program summaryProgram title: ROOT Catalogue identifier: AEFA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL No. of lines in distributed program, including test data, etc.: 3 044 581 No. of bytes in distributed program, including test data, etc.: 36 325 133 Distribution format: tar.gz Programming language: C++ Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC Operating system: GNU/Linux, Windows XP/Vista, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX Has the code been vectorized or parallelized?: Yes RAM:>55 Mbytes Classification: 4, 9, 11.9, 14 Nature of problem: Storage, analysis and visualization of scientific data Solution method: Object store, wide range of analysis algorithms and visualization methods Additional comments: For an up-to-date author list see: http://root.cern.ch/drupal/content/root-development-team and http://root.cern.ch/drupal/content/former-root-developers Running time: Depending on the data size and complexity of analysis algorithms References:http://root.cern.ch.

  20. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at square root of s = 7 TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Ceard, L; De Wolf, E A; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; Devroede, O; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Marage, P E; Vander Velde, C; Vanlaer, P; Wickens, J; Costantini, S; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Cabrera, A; Carrillo Montoya, C A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Fereos, R; Galanti, M; Mousa, J; Nicolaou, C; Papadakis, A; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Zinonos, Z; Mahmoud, M; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Kalinowski, A; Miné, P; Paganini, P; Sabes, D; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J-L; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Speck, J; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Roinishvili, V; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Actis, O; Ata, M; Bender, W; Biallass, P; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Parenti, A; Raspereza, A; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Stein, M; Tomaszewska, J; Volyanskyy, D; Wissing, C; Autermann, C; Draeger, J; Eckstein, D; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Buege, V; Cakir, A; Chwalek, T; Daeuwel, D; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Renz, M; Sabellek, A; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Horvath, D; Kapusi, A; Krajczar, K; Laszlo, A; Sikler, F; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Sharma, R; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Suggisetti, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Dimitrov, A; Fedele, F; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Castro, A; Cavallo, F R; Codispoti, G; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; Cerati, G B; De Guio, F; Di Matteo, L; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cimmino, A; De Cosa, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Noli, P; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bellato, M; Biasotto, M; Bisello, D; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Fanzago, F; Gasparini, F; Giubilato, P; Gresele, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Zumerle, G; Baesso, P; Berzano, U; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Santocchia, A; Servoli, L; Valdata, M; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Dagnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trocino, D; Vilela Pereira, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Son, D C; Kim, Zero; Kim, J Y; Song, S; Hong, B; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Choi, S; Choi, Y; Choi, Y K; Goh, J; Lee, J; Lee, S; Seo, H; Yu, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; De La Cruz Burelo, E; Lopez-Fernandez, R; Sánchez Hernández, A; Villaseñor-Cendejas, L M; Carrillo Moreno, S; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Allfrey, P; Krofcheck, D; Tam, J; Aumeyr, T; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Cwiok, M; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Mini, G; Musella, P; Nayak, A; Raposo, L; Ribeiro, P Q; Seixas, J; Silva, P; Soares, D; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Finger, M; Finger, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Bondar, N; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Obraztsov, S; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Dremin, I; Kirakosyan, M; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Datsko, K; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Maletic, D; Milosevic, J; Puzovic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Willmott, C; Albajar, C; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Baillon, P; Ball, A H; Barney, D; Beaudette, F; Bell, A J; Bellan, R; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Breuker, H; Brona, G; Bunkowski, K; Camporesi, T; Cano, E; Cattai, A; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Covarelli, R; Curé, B; Dahms, T; De Roeck, A; Elliott-Peisert, A; Funk, W; Gaddi, A; Gennai, S; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Henderson, C; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Lecoq, P; Leonidopoulos, C; Lourenço, C; Macpherson, A; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Racz, A; Rolandi, G; Rovelli, C; Rovere, M; Ryjov, V; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Tsirou, A; Veres, G I; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Caminada, L; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Meridiani, P; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M-C; Schinzel, D; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Weber, M; Wehrli, L; Weng, J; Amsler, C; Chiochia, V; De Visscher, S; Ivova Rikova, M; Millan Mejias, B; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, K H; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Liu, M H; Lu, Y J; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lin, S W; Lu, R-S; Shiu, J G; Tzeng, Y M; Ueno, K; Wang, C C; Wang, M; Wei, J T; Adiguzel, A; Ayhan, A; Bakirci, M N; Cerci, S; Demir, Z; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gökbulut, G; Güler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Kayis Topaksu, A; Nart, A; Onengüt, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sahin, O; Sengul, O; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bell, P; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Kreczko, L; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Teodorescu, L; Bose, T; Clough, A; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sulak, L; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Borgia, M A; Breedon, R; Calderon De La Barca Sanchez, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Erhan, S; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Muelmenstaedt, J; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Würthwein, F; Yagil, A; Barge, D; Blume, M; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Bornheim, A; Bunn, J; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Chatterjee, A; Das, S; Eggert, N; Fields, L J; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Riley, D; Ryd, A; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Demarteau, M; Eartly, D P; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; James, E; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Kilminster, B; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Limon, P; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; McCauley, T; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Popescu, S; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Lacroix, F; Shabalina, E; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Cankocak, K; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Chakaberia, I; Ivanov, A; Kaadze, K; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, D; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Mignerey, A; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Sumorok, K; Sung, K; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Zanetti, M; Cole, P; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Petyt, D; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Zennamo, J; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Reucroft, S; Swain, J; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Valls, N; Warchol, J; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatzerklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Potamianos, K; Shipsey, I; Silvers, D; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Morales, J; Padley, B P; Redjimi, R; Roberts, J; Betchart, B; Bodek, A; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Garcia-Bellido, A; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Velkovska, J; Arenton, M W; Balazs, M; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Dutta, S; Efron, J; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Lomidze, D; Loveless, R; Mohapatra, A; Polese, G; Reeder, D; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2010-07-09

    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at square root of s = 7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/dη|(|η|<0.5) = 5.78 ± 0.01(stat) ± 0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from square root of s = 0.9 to 7 TeV is [66.1 ± 1.0(stat) ± 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 ± 0.005(stat) ± 0.015(syst)  GeV/c. The results are compared with similar measurements at lower energies.

  1. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.

  2. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    USDA-ARS?s Scientific Manuscript database

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  3. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  4. The unseen iceberg: Plant roots in arctic tundra

    USGS Publications Warehouse

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  5. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality.

    PubMed

    Marasco, Ramona; Rolli, Eleonora; Fusi, Marco; Michoud, Grégoire; Daffonchio, Daniele

    2018-01-03

    The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.

  6. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    PubMed Central

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-01-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions. PMID:27350412

  7. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  8. Prevalence of Extra Roots in Permanent Mandibular First Molars in Iranian Population: A CBCT Analysis.

    PubMed

    Rahimi, Saeed; Mokhtari, Hadi; Ranjkesh, Bahram; Johari, Masoomeh; Frough Reyhani, Mohammad; Shahi, Shahriar; Seif Reyhani, Sina

    2017-01-01

    Having knowledge about the anatomy of root canal system is essential for success of endodontic treatment. The present study used cone-beam computed tomography (CBCT), to evaluate the prevalence of third root in mandibular first molars in a selected Iranian population. A total of 386 CBCT images from subjects referred to oral and maxillofacial radiology department of dental faculty of Tabriz University of Medical Sciences from 2011 to 2013 were selected and evaluated for this study and the cases with well-developed permanent mandibular first molars were included. The 3D images were reconstructed in axial cross sections and evaluated by two endodontists for the presence of the third extra lingual (radix entomolaris) or buccal (radix paramolaris) root. The chi-squared test was used to evaluate the relationship between gender and bilateral incidence of extra roots in mandibular first molars. The distribution of three-rooted mandibular first molars with an additional root was 3%, (3.53% in female and 2.50% in male patients). There was no significant relationship between gender and bilateral occurrence of three-rooted mandibular first molars. The occurrence of three-rooted mandibular first molars in Iranian population is not uncommon which should be taken into consideration by the dental practitioners during root canal treatment of these teeth.

  9. Prevalence of Three-Rooted Mandibular First Molars among Indians Using SCT

    PubMed Central

    Garg, Amit Kumar; Tewari, Rajendra Kumar; Agrawal, Neha

    2013-01-01

    Undetected extra roots or root canals are a major reason for failure of endodontic treatment. Failure to recognize an extra distolingual (DL) root in mandibular first molar may lead to incomplete debridement of the root canal system and eventually treatment failure. Therefore, it is crucial that atypical anatomy is identified before and during dental treatment. Spiral computed tomography (SCT) images can show 3D images, and therefore much detail can be used when traditional methods prevent adequate endodontic treatment. The overall incidence of DL roots on the mandibular first molars was 6.40% for all patients and 5.00% for all teeth, respectively. The occurrence of DL roots on the right side and on the left side showed a statistically significant difference. The bilateral incidence of symmetrical distribution of DL roots was 56.25%. The DL root canal orifice was separated from DB canal orifice by 2.79 ± 0.34 mm, from the MB canal orifice by 4.23 ± 0.81 mm, and from the ML canal orifice by 3.29 ± 0.52 mm. The high prevalence of the DL root in permanent mandibular first molars among the Indian population by using SCT and estimations of the interorifice distance of such teeth might be useful for successful endodontic treatments. PMID:23840212

  10. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  11. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model

    Treesearch

    Taehee Hwang; Lawrence E. Band; T. C. Hales; Chelcy F. Miniat; James M. Vose; Paul V. Bolstad; Brian Miles; Katie Price

    2015-01-01

    The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion at the forest landscape scale remains challenging. We...

  12. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones

    PubMed Central

    Isaac, Marney E; Anglaaere, Luke C N

    2013-01-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  13. Transpiration and root development of urban trees in structural soil stormwater reservoirs.

    PubMed

    Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E

    2009-10-01

    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  14. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.

    PubMed

    Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme

    2017-01-01

    In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.

  15. Resistance to uprooting of Alfalfa and Avena Sativa and related importance for flume experiments

    NASA Astrophysics Data System (ADS)

    Edmaier, K.; Crouzy, B.; Burlando, P.; Perona, P.

    2012-04-01

    Vegetation influences sediment dynamics by stabilizing the alluvial sediment with its root system. Thus, vegetation engineers the riparian ecosystem by contributing to the formation and stabilization of river bars and islands. The resistance to uprooting of young plants in non-cohesive sediment depends on the competition between flow induced drag and root growth timescales. The investigation of flow-sediment-plant interactions in situ is difficult since variables cannot be controlled and material hardly be collected. In order to investigate ecomorphological processes, laboratory experiments are essential and have gained importance in the last decade. To achieve a better understanding of the dependence of resistance to uprooting on the root system (length and structure) we conducted vertical uprooting experiments with Alfalfa and Avena Sativa which are both species that have been used in flume experiments on vegetation-flow interactions (e.g. Tal and Paola, 2010; Perona et al., in press). Seeds were seeded on quartz sand and vertically uprooted with constant velocity whereat the weight force required to uproot a seedling was measured. After uprooting, roots were scanned and analyzed and the correlation of root parameters with the uprooting work was studied. Total root length was found to be the best explanatory variable, in particular the uprooting work increases following a power law with increasing root length. The impact of other root parameters (main root length, root number, tortuosity) on the uprooting work was as well analyzed. Still, not all influencing root parameters could be captured, like the angle between roots or root hair distribution. Environmental conditions like grain size and saturation were also found to have an effect on the uprooting resistance of roots. So, lower saturated sediment results in a higher uprooting work. This work is a first step to better understand the energy regime for vegetation uprooting and its dependence on various biological and hydraulic variables. Future experiments using the same sediment and vegetation species will apply this knowledge to further investigate flow-vegetation-sediment interactions.

  16. Modeling and analysis of the vertical roots distribution in levees - a case study of the third Rhone correction

    NASA Astrophysics Data System (ADS)

    Gianetta, Ivan; Schwarz, Massimiliano; Glenz, Christian; Lammeranner, Walter

    2013-04-01

    In recent years the effects of roots on river banks and levees have been the subject of major discussions. The main issue about the presence of woody vegetation on levees is related to the possibility that roots increase internal erosion processes and the superimposed load of large trees compromise the integrity of these structures. However, ecologists and landscape managers argue that eliminating the natural vegetation from the riverbanks also means eliminating biotopes, strengthening anthropisation of the landscape, as well as limiting recreations areas. In the context of the third correction of the Rhone in Switzerland, the discussion on new levee geometries and the implementation of woody vegetation on them, lead to a detailed analysis of this issue for this specific case. The objective of this study was to describe quantitatively the processes and factors that influence the root distribution on levees and test modeling approaches for the simulation of vertical root distribution with laboratory and field data. An extension of an eco-hydrological analytic model that considers climatic and pedological condition for the quantification of vertical root distribution was validated with data provided by the University of Vienna (BOKU) of willows' roots (Salix purpurea) grown under controlled conditions. Furthermore, root distribution data of four transversal sections of a levee near Visp (canton Wallis, Switzerland) was used to validate the model. The positions of the levee's sections were chosen based on the species and dimensions of the woody vegetation. The dominant species present in the sections were birch (Betula pendula) and poplar (Populus nigra). For each section a grid of 50x50 cm was created to count and measure the roots. The results show that vertical distribution of root density under controlled growing conditions has an exponential form, decreasing with increasing soil depth, and can be well described by the eco-hydrological model. Vice versa, field data of vertical roots distribution show a non-exponential function and cannot fully be described by the model. A compacted layer of stones at about 2 m depth is considered as limiting factor for the rooting depth on the analyzed levee. The collected data and the knowledge gained from quantitative analysis represent the starting point for a discussion on new levee geometries and the development of new strategies for the implementation of woody vegetation on levees. A long term monitoring project for the analysis of the effectiveness of new implementation strategies of vegetation on levees, is considered an important prospective for future studies on this topic.

  17. [Distribution laws of 5 compounds in rhizome and root of Polygonum cuspidate].

    PubMed

    Liu, Yao-wut; Wang, Jun; Chu, Shan-shan; Cheng, Ming-en; Fang, Cheng-wu

    2015-12-01

    To understand the distribution and accumulation rules of polydatin, resveratrol, anthraglycoside B, emodin and physicion in different tissue structure of rhizome and root of Polygonum cospidatum, the content of 5 active compounds were analyzed simultaneously by HPLC, based on plant anatomy and histochemistry. The rhizome and root consist of different tissues, with an increased diameter, the proportions of the secondary xylem and phloem have increased. Resveratrol and polydatin mainly distributed in the pith, the secondary phloem and periderm of rhizome, and the secondary phloem and periderm of the root, while emodin and anthraglycoside B concentrated in the secondary structure and pith of rhizome mostly. In different thickness of the measured samples, the total contents of 5 compounds were correspondingly higher in thinner rhizome and root than those in the coarse ones.

  18. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping.

    PubMed

    Nagel, Kerstin A; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-09-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Distribution of root exudates and mucilage in the rhizosphere: combining 14C imaging with neutron radiography

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Carminati, Andrea; Kuzyakov, Yakov

    2015-04-01

    Water and nutrients will be the major factors limiting food production in future. Plant roots employ various mechanisms to increase the access to limited soil resources. Low molecular weight organic substances released by roots into the rhizosphere increase nutrient availability by interactions with microorganisms, while mucilage improves water availability under low moisture conditions. Though composition and quality of these substances have intensively been investigated, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging depending on drought stress. Plants were grown in rhizotrons well suited for neutron radiography and 14C imaging. Plants were exposed to various soil water contents experiencing different levels of drought stress. The water content in the rhizosphere was imaged during several drying/wetting cycles by neutron radiography. The radiographs taken a few hours after irrigation showed a wet region around the root tips showing the allocation and distribution of mucilage. The increased water content in the rhizosphere of the young root segments was related to mucilage concentrations by parameterization described in Kroener et al. (2014). In parallel 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) showed distribution of rhizodeposits including mucilage. Three days after setting the water content, plants were labeled in 14CO2 atmosphere. Two days later 14C distribution in soil was imaged by placing a phosphor-imaging plate on the rhizobox. To quantify rhizodeposition, 14C activity on the image was related to the absolute 14C activity in the soil and root after destructive sampling. By comparing the amounts of mucilage (neutron radiography) with the amount of total root derived C (14C imaging), we were able to differentiate between mucilage and root exudates. We found that mucilage and 14C concentrations were higher around the young root segments. Mucilage concentration was particularly high in the most apical 3-5 cm of the roots. Drought stress increased 14C exudation relative to C fixation and led to higher mucilage concentrations around roots. However, it remains unclear, whether the lower mucilage concentration around roots grown at higher soil moisture was caused by the faster diffusion of mucilage in wet soils. Therefore, a second experiment was focused on diffusion of mucilage in soil at varying water contents. The diffusion of mucilage in soil was not very sensitive to soil water content. We conclude that mucilage release was higher for plants exposed to drought stress. In summary, the combination of neutron radiography and 14C imaging can successfully be used to visualize and to quantify the distribution of mucilage and root exudates in the rhizosphere of plants grown in soil. References Kroener, E., Zarebanadkouki, M., Kaestner, A., & Carmintati, A. (2014). Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resources Research, 37. Pausch, J., & Kuzyakov, Y. (2011). Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. Journal of Plant Nutrition and Soil Science, 174(1), 12-19.

  20. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem carbon use efficiency. Improved measurements of roots and their distribution throughout the soil profile will advance our understanding of water and nutrient acquisition by trees and provide important benchmarks for models of biogeochemical cycling in tropical ecosystems and their responses to elevated atmospheric CO2.

  1. A Review of Transformer Aging and Control Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gourisetti, Sri Nikhil Gup; Kirkham, Harold; Sivaraman, Deepak

    Transformer aging is an important challenge in power system. Distribution transformers themselves are minimally controllable, but smart meters provide excellent, new insights into electrical loads, which insights can be used to understand and mitigate transformer aging. The nature of transformer loads is changing with the integration of distributed energy resources (DERs) and electric vehicles (EVs). This paper first reviews factors that influence the aging of distribution transformers, including root causes of transformer failure. Existing and proposed load control methods are then discussed. A distribution model is introduced to help evaluate potential control methods.

  2. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  3. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  4. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.

    PubMed

    Nielsen, L B; Finster, K; Welsh, D T; Donelly, A; Herbert, R A; de Wit, R; Lomstein, B A

    2001-01-01

    Sulphate reduction rates (SRR) and nitrogen fixation rates (NFR) associated with isolated roots, rhizomes and sediment from the rhizosphere of the marine macrophytes Zostera noltii and Spartina maritima, and the presence and distribution of Bacteria on the roots and rhizomes, were investigated. Between 1% and 3% of the surface area of the roots and rhizomes of both macrophytes were colonized by Bacteria. Bacteria on the surfaces of S. maritima roots and rhizomes were evenly distributed, while the distribution of Bacteria on Z. noltii roots and rhizomes was patchy. Root- and rhizome-associated SRR and NFR were always higher than rates in the bulk sediment. In particular, nitrogen fixation associated with the roots and rhizomes was 41-650-fold higher than in the bulk sediment. Despite the fact that sulphate reduction was elevated on roots and rhizomes compared with bulk sediment, the contribution of plant-associated sulphate reduction to overall sulphate reduction was small (< or =11%). In contrast, nitrogen fixation associated with the roots and rhizomes accounted for 31% and 91% of the nitrogen fixed in the rhizosphere of Z. noltii and S. maritima respectively. In addition, plant-associated nitrogen fixation could supply 37-1,613% of the nitrogen needed by the sulphate-reducing community. Sucrose stimulated nitrogen fixation and sulphate reduction significantly in the root and rhizome compartments of both macrophytes, but not in the bulk sediment.

  5. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    PubMed Central

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  6. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer

    NASA Technical Reports Server (NTRS)

    Nelson, A. J.; Evans, M. L.

    1986-01-01

    A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.

  7. The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    PubMed Central

    Huusgaard, Randi S.; Vismann, Bent; Kühl, Michael; Macnaugton, Martin; Colmander, Veronica; Rouse, Greg W.; Glover, Adrian G.; Dahlgren, Thomas; Worsaae, Katrine

    2012-01-01

    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts. PMID:22558289

  8. Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

    Treesearch

    Kurt H. Johnsen; Chris A. Maier; Lance W. Kress

    2005-01-01

    In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of midrotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol-1 atmospheric CO2...

  9. Histomicrobiologic aspects of the root canal system and periapical lesions in dogs' teeth after rotary instrumentation and intracanal dressing with Ca(OH)2 pastes.

    PubMed

    Soares, Janir Alves; Leonardo, Mário Roberto; da Silva, Léa Assed Bezerra; Tanomaru Filho, Mário; Ito, Izabel Yoko

    2006-10-01

    The purpose of this study was to evaluate the distribution of microorganisms in the root canal system (RCS) and periapical lesions of dogs' teeth after rotary instrumentation and placement of different calcium hydroxide [Ca(OH)2]-based intracanal dressings. Chronic periapical lesions were experimentally induced in 80 premolar roots of four dogs. Instrumentation was undertaken using the ProFile rotary system and irrigation with 5.25% sodium hypochlorite. The following Ca(OH)2-based pastes were applied for 21 days: group 1 - Calen (n=18); group 2 - Calen+CPMC (n=20); group 3 - Ca(OH)2 p.a. + anaesthetic solution (n=16) and group 4 - Ca(OH)2 p.a.+ 2% chlorhexidine digluconate (n=18). Eight root canals without endodontic treatment constituted the control group. Histological sections were obtained and stained with Brown & Brenn staining technique to evaluate the presence of microorganisms in the main root canal, ramifications of the apical delta and secondary canals, apical cementoplasts, dentinal tubules, areas of cemental resorption and periapical lesions. The results were analyzed statistically by the Mann-Whitney U test (p<0.05). The control group showed the highest prevalence of microorganisms in all sites evaluated. Gram-positive cocci, bacilli and filaments were the most frequent morphotypes. Similar microbial distribution patterns in the RCS and areas of cementum resorption were observed in all groups (p>0.05). The percentage of RCS sites containing microorganisms in groups 1, 2, 3, 4 and control were: 67.6%, 62.5%, 78.2%, 62.0% and 87.6%, respectively. In conclusion, the histomicrobiological analysis showed that the rotary instrumentation and the different calcium hydroxide pastes employed did not effectively eliminate the infection from the RCS and periapical lesions. However, several bacteria seen in the histological sections were probably dead or were inactivated by the biomechanical preparation and calcium hydroxide-based intracanal dressing.

  10. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    PubMed Central

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P < 0.05) in ProTaper and K3XF groups when compared to LSX group. Canal transportation was significantly more (P < 0.05) in ProTaper group when compared to K3XF and LSX groups. There was no significant difference (P > 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  11. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil.

    PubMed

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin; Yang, Junxing

    2017-02-01

    Intercropping technology provides income for owners of contaminated soil without increasing environmental risk. Therefore, intercropping of arsenic (As) hyperaccumulator Pteris vittata L. with economic crops is now widely utilized in slightly or moderately As-contaminated farmlands. However, the mechanisms for As mobilization and absorption within the intercropping system are still unclear. To clarify As mobilization and absorption within an intercropping system, portable X-ray fluorescence spectrometry and sequential extraction were utilized to detect the spatial distribution and speciation of As in an intercropped system of P. vittata and cash crop mulberry (Morus alba L.). Compared with the P. vittata monoculture, P. vittata intercropping had higher As concentration, which may have been caused by the efficient exploitation of a greater As source in soil. Compared with the M. alba monoculture, M. alba intercropping had lower As concentration, which may have been caused by the As depletion by P. vittata roots. Spatial distribution of As in the soil indicated a "valley" around the P. vittata roots in both monocultured and intercropped systems, implying that As was depleted around the P. vittata roots. Continuous As extraction confirmed that both P. vittata monoculture and P. vittata and M. alba intercropping can efficiently control the risk of As soil contamination. Moreover, the properties of M. alba leaves were further studied. Mulberry leaves in the intercropping system satisfied the national feed standards. Therefore, intercropping presents a safe utilization mode for As-contaminated soil and can increase the income from silkworm-rearing M. alba leaves, without extra environmental risk. Copyright © 2016. Published by Elsevier B.V.

  12. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    DOE PAGES

    Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...

    2017-03-30

    Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less

  13. The unseen iceberg: plant roots in arctic tundra.

    PubMed

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions. No claim to original US Government works New Phytologist © 2014 New Phytologist Trust.

  14. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.

    Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less

  15. A Physically-Based and Distributed Tool for Modeling the Hydrological and Mechanical Processes of Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Noto, L. V.; Dialynas, Y. G.; Caracciolo, D.; Bras, R. L.

    2015-12-01

    This work presents the capabilities of a model, i.e. the tRIBS-VEGGIE-Landslide, in two different versions, i.e. developed within a probabilistic framework and coupled with a root cohesion module. The probabilistic model treats geotechnical and soil retention curve parameters as random variables across the basin and estimates theoretical probability distributions of slope stability and the associated "factor of safety" commonly used to describe the occurrence of shallow landslides. The derived distributions are used to obtain the spatio-temporal dynamics of probability of failure, conditioned on soil moisture dynamics at each watershed location. The framework has been tested in the Luquillo Experimental Forest (Puerto Rico) where shallow landslides are common. In particular, the methodology was used to evaluate how the spatial and temporal patterns of precipitation, whose variability is significant over the basin, affect the distribution of probability of failure. Another version of the model accounts for the additional cohesion exerted by vegetation roots. The approach is to use the Fiber Bundle Model (FBM) framework that allows for the evaluation of the root strength as a function of the stress-strain relationships of bundles of fibers. The model requires the knowledge of the root architecture to evaluate the additional reinforcement from each root diameter class. The root architecture is represented with a branching topology model based on Leonardo's rule. The methodology has been tested on a simple case study to explore the role of both hydrological and mechanical root effects. Results demonstrate that the effects of root water uptake can at times be more significant than the mechanical reinforcement; and that the additional resistance provided by roots depends heavily on the vegetation root structure and length.

  16. Assimilation, Distribution, and Root Exudation of 14C by Ponderosa Pine Seedlings under Induced Water Stress 1

    PubMed Central

    Reid, C. P. Patrick

    1974-01-01

    The effect of specific levels of induced water stress on the root exudation of 14C from 9-month-old and 12-month-old ponderosa pine (Pinus ponderosa Laws.) seedlings was examined. Polyethylene glycol (PEG-4000) was used to decrease root solution water potentials by 0, −1.9, −2.6, −5.5, −9.6 and −11.9 bars in either aerated 0.25X Hoagland's nutrient solution or aerated distilled water. Assimilation of 14CO2 by plants under stress and subsequent translocation of 14C label to the roots were both inhibited by a decrease in substrate water potential. Six days after 14CO2 introduction essentially no 14C was detected in the roots of plants maintained at solution potentials of −5.5 bars or below. In subsequent studies 14CO2 was introduced 4 days prior to induction of stress. This allowed sufficient time for distribution of 14C label throughout the root system. Root exudation of 14C-labeled sugars, amino acids, and organic acids from plants in nutrient solution showed an increase from 0 to −1.9 bars, a decline from −1.9 to about −5.5 bars, and then an increase again from −5.5 to −11.9 bars. As substrate potential decreased, sugars as a percentage of total exudate increased, organic acids decreased and amino acids showed a slight decrease. Marked changes in percentages occurred between 0 and −2.6 bars. The exudation of sugars, amino acids, and organic acids from plants in distilled water showed similar trends in response to water stress as those in nutrient solution, but the quantity of total 14C exuded was greater. Images PMID:16658835

  17. Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.

    PubMed

    Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes

    2015-06-01

    The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    NASA Astrophysics Data System (ADS)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  19. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure

    PubMed Central

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J. Peter W.; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H′) of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots. PMID:23719585

  20. Distribution of electrolytes in cells of the tomato root elongation zone during a gravitropic response

    NASA Astrophysics Data System (ADS)

    Klymchuk, Dmytro

    It is known that gravitropic response of etiolated seedlings is accompanied with asymmetrical distribution of auxins. The higher amount of auxins in the tissues of the lower sides of gravistimulated organs induces cell elongation in shoots and inhibits cell elongation in roots. In spite on the progress in understanding of the auxin-mediated effects on plant growth and development, there is no a complete conception concerning of gravitropic response mechanism. This investigation aims to determine whether the growth response of tomato seedlings on reorientation to the horizontal induces alterations in distribution of electrolytes in cells of the main root elongation zone, the site where induction of the curvature takes place. Tomato (Lycopersicon esculentum, Rio Grande) seedlings were grown on agar surface in 10 cm Petri dishes. The gravitropic response of seedlings was evaluated by the angle of gravitropic curvature after the roots were reoriented 90° from the vertical. Root segments of several mm basipetal to the root tip were fixed in liquid nitrogen, freeze-substituted with Lowicril K11M at -35° C. Sections 100 and 1000 nm thick were cut using LKB Ultrotome V, collected by dry method and analyzed in the 6060 LA SEM at accelerating voltage 15 kV. Using different modes of X-ray microanalysis (X-ray map, - line and -point analysis), distribution of the physiologically relevant ions (Na, P, K, Ca) in cells of surface layers of the upper and lower root sides were investigated. The peculiarities in localization of the electrolytes in different subcellular compartments as well as distribution in the direction between upper and lower sides of the root curvature are discussed.

  1. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.; Fondren, W. M.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.

  2. Theory of the control of structures by low authority controllers

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.

    1978-01-01

    The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.

  3. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system.

    PubMed

    Forkel, Philipp; Reuter, Sven; Sprenker, Frederike; Achtnich, Andrea; Herbst, Elmar; Imhoff, Andreas; Petersen, Wolf

    2015-01-01

    Posterior lateral meniscus root tears (PLMRTs) affect the intra-articular pressure distribution in the lateral compartment of the knee. The biomechanical consequences of these injuries are significantly influenced by the integrity of the meniscofemoral ligaments (MFLs). A newly introduced arthroscopic classification system for PLMRTs that takes MFL integrity into account has not yet been clinically applied but may be useful in selecting the optimal method of PLMRT repair. Prospective ACL reconstruction data were collected. Concomitant injuries of the lateral meniscus posterior horn were classified according to their shape and MFL status. The classifications were: type 1, avulsion of the root; type 2, radial tear of the lateral meniscus posterior horn close to the root with an intact MFL; and type 3, complete detachment of the posterior meniscus horn. Between January 2011 and May 2012, 228 consecutive ACL reconstructions were included. Lateral and medial meniscus tears were identified in 38.2% (n = 87) and 44.7% (n = 102), respectively. Of the 87 lateral meniscus tears, 32 cases had PLMRTs; the overall prevalence of PLMRTs was 14% (n = 32). Two medial meniscus root tears were detected. All PLMRTs were classified according to the classification system described above, and the fixation procedure was adapted to the type of meniscus tear. The PLMRT tear is a common injury among patients undergoing ACL repair and can be arthroscopically classified into three different types. Medial meniscus root tears are rare in association with ACL tears. The PLMRT classification presented here may help to estimate the injury's impact on the lateral compartment and to identify the optimal treatment. These tears should not be overlooked, and the treatment strategy should be chosen with respect to the type of root tear. IV.

  4. Simulation of the evolution of root water foraging strategies in dry and shallow soils.

    PubMed

    Renton, Michael; Poot, Pieter

    2014-09-01

    The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model. A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally--the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies.

  5. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees

    PubMed Central

    Chen, Weile; Koide, Roger T.; Adams, Thomas S.; DeForest, Jared L.; Cheng, Lei; Eissenstat, David M.

    2016-01-01

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich “hotspots” can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986

  6. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    PubMed

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  7. Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species

    PubMed Central

    Pagès, Loïc

    2014-01-01

    Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886

  8. Prevalence of Extra Roots in Permanent Mandibular First Molars in Iranian Population: A CBCT Analysis

    PubMed Central

    Rahimi, Saeed; Mokhtari, Hadi; Ranjkesh, Bahram; Johari, Masoomeh; Frough Reyhani, Mohammad; Shahi, Shahriar; Seif Reyhani, Sina

    2017-01-01

    Introduction: Having knowledge about the anatomy of root canal system is essential for success of endodontic treatment. The present study used cone-beam computed tomography (CBCT), to evaluate the prevalence of third root in mandibular first molars in a selected Iranian population. Methods and Materials: A total of 386 CBCT images from subjects referred to oral and maxillofacial radiology department of dental faculty of Tabriz University of Medical Sciences from 2011 to 2013 were selected and evaluated for this study and the cases with well-developed permanent mandibular first molars were included. The 3D images were reconstructed in axial cross sections and evaluated by two endodontists for the presence of the third extra lingual (radix entomolaris) or buccal (radix paramolaris) root. The chi-squared test was used to evaluate the relationship between gender and bilateral incidence of extra roots in mandibular first molars. Results: The distribution of three-rooted mandibular first molars with an additional root was 3%, (3.53% in female and 2.50% in male patients). There was no significant relationship between gender and bilateral occurrence of three-rooted mandibular first molars. Conclusion: The occurrence of three-rooted mandibular first molars in Iranian population is not uncommon which should be taken into consideration by the dental practitioners during root canal treatment of these teeth. PMID:28179928

  9. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE PAGES

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; ...

    2016-12-23

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  10. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. But, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, tomore » explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. Additionally, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. These results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.« less

  11. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].

    PubMed

    Jiang, Xia; Chen, Wei-li; Xu, Chun-xiang; Zhu, Hong-hui; Yao, Qing

    2015-04-01

    To explore the influences of arbuscular mycorrhizal fungi (AMF) and P level on plant root system architecture, tomato seedlings were inoculated with AMF strain Rhizophagus irregularis BGC JX04B under two P levels, and the influences of AMF and P level on lateral root (LR) formation of tomato seedlings were studied. Results indicated that the promoting effect of AMF on plant biomass was not evident, but significantly decreased the root to shoot ratio of plants. AMF significantly increased the primary root length but decreased the 1st order LR length and interacted with the mycorrhizal colonization period. AMF significantly lowered the 2nd-3rd order LR number and the ratio of 2nd order LR number to 1st order LR number, but did not significantly affect the 1st-2nd order LR density. High P level (50 mg x kg(-1) P) significantly promoted the plant growth and decreased the root to shoot ratio of plants. It had no significant effect on the primary root length and the 1st order root length, but significantly enhanced the 1st-3rd order LR number and the ratio of 2nd order LR number to P order LR number, increased the 1st-2nd order LR density. It suggested that AMF and P level did not share a common mechanism to influence the LR formation of tomato plants. The influence of high P level may depend on its promoting effects on nutrient uptake and plant growth, while the influence of AMF is more complex. Furthermore, the interaction between AMF and mycorrhizal colonization period implies the possible involvement of carbohydrate distribution (sugar signaling) in the regulation of root system architecture by AMF.

  12. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  13. Effect of tree roots on shallow-seated landslides

    Treesearch

    Kazutoki Abe Abe; Robert R. Ziemer

    1991-01-01

    Forest vegetation, especially tree roots, helps stabilize hillslopes by reinforcing soil shear strength. To evaluate the effect of tree roots on slope stability, information about the amount of roots and their strength should be known. A simulation model for the root distribution of Cryptomeria japonica was proposed where the number of roots in each 0.5-cm diameter...

  14. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Klug, Benjamin; Specht, André; Horst, Walter J.

    2011-01-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10–20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842

  15. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way, we were able to simulate root growth and root water uptake in soil with macropores. The model was parametrized using experimental results of studies by Hirth et al. (2005) and Stirzaker et al. (1996). It proved to be capable of reproducing observed root growth responses to structured soil both at the single root and the plant root system scale. This new approach enables us to investigate how plant roots use macropores to gain access to water and nutrient reservoirs in deeper, highly dense soil layers. Acknowledgements: Funding by German Research Foundation within the Research Unit 888 is gratefully acknowledged. The James Hutton Institute receives funding from the Scottish Government.

  16. Distribution of fine roots of ponderosa pine and Douglas-fir in a central Idaho forest

    Treesearch

    Gabriel Dumm; Lauren Fins; Russell T. Graham; Theresa B. Jain

    2008-01-01

    This study describes soil horizon depth and fine root distribution in cores collected at two distances from the boles of Douglas-fir and ponderosa pine trees at a study site in a central Idaho forest. Concentration and content of fine roots extracted from soil cores were compared among species, soil horizons, tree size, and distance from bole. Approximately 80% of...

  17. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  18. Plant and Root Growth Responses to Heterogeneous Supplies of Soil Water in Two Coastal Shrubs of California.

    NASA Astrophysics Data System (ADS)

    Cole, S.; Mahall, B. E.

    2007-05-01

    Much effort has been focused on identifying plant and root growth responses to heterogeneous supplies of soil nutrients. However, in many circumstances, soil water may limit plant growth and it too can have a patchy distribution. In our research we asked: 1) What is the ecological significance of soil moisture heterogeneity to plant growth in a California coastal dune habitat? 2) How does growth of whole plants and roots respond to soil moisture heterogeneity? and 3) Can roots of these species sense and grow towards moisture-rich areas (hydrotropism) in a natural medium? To address these questions: we conducted comparative field studies of water relations and growth of Artemisia californica and Eriogonum parvifolium; we performed a growth rate study of roots and plants in experimental pots with either patchy or homogeneous distributions of soil water; and we analyzed individual root growth in sand-filled observation chambers in response to moisture-rich patches and resultant soil water gradients. In the field, correlations between daily photosynthetic rates, active leaf display and predawn xylem pressure potentials (ΨPD) indicated that access to water limited growth in A. californica and E. parvifolium. These species, common in habit and habitat, differed in their ability to access water with E. parvifolium having overall higher ΨPD than A. californica (repeated measures ANOVA, P < 0.01). Our growth rate study revealed that patchy supplies of water did not reduce the relative growth rate or average size of E. parvifolium (two-tailed t-tests, P > 0.25). It appears that modified partitioning of growth both at the whole plant and root system level permitted E. parvifolium to maintain growth in patchy soil water conditions. We found that E. parvifolium increased allocation to roots and proliferated in moisture-rich patches in the patchy soil water treatment. Root length density and the proportion of root mass present in the patch was 20- to >100-fold greater in and near the moisture-rich patch than in a comparable but drier soil location (one-tailed matched pairs t-tests, P ≤ 0.05). While root hydrotropism could be a means by which plants are able to locate moisture-rich patches, from our chamber studies we found no compelling evidence for hydrotropic root behavior in seedlings of these two dune shrubs and suggest that roots instead may encounter patches of soil water serendipitously.

  19. [Expressional change of nitric oxide synthases in dorsal root ganglia of cats after selective dorsal rhizotomy].

    PubMed

    Qin, Hua-li; Zhou, Xue; Zhang, Wei; Chen, Si-xiu

    2004-01-01

    To examine the expressional change of nitric oxide synthase (NOS) in the injured dorsal root ganglia (DRG) and the ipsilateral adjacent uninjured DRG after selective dorsal rhizotomy. Immunochemical ABC method was used to detect the distribution of immunoreaction complex of NOS isoforms--nNOS and eNOS, and quantitative analysis was conducted to get the number of nNOS-immunoreactivity (nNOS-IR) neurons in normal DRG, dorsal rhizotomized DRG and spared DRG from adult cats on the 6th day after operation. This operating model was made by rhizotomizing unilateral L1-L5 dorsal roots and leaving L6 as a spared root. nNOS-immunoreactants were mainly distributed in the small-sized neurons in the DRG of cat. The percentage of nNOS-expressing small-sized neurons increased in the deafferentated L5 DRG (29.74%) when compared with the contralateral DRG (19.35%), and it also increased in the spared DRG (24.22%), compared with the contralateral DRG (18.61%). eNOS-IR was not observed in the DRG of adult cats. nNOS/NO up-regulated in DRG neurons is involved in a wide variety of biological functions under physiological and lesion-induced pathophysiological conditions in nerve system.

  20. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora

    NASA Astrophysics Data System (ADS)

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-01

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  1. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Römpp, Andreas; Spengler, Bernhard

    2016-10-31

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) at 10 μm pixel size was performed to unravel the spatio-chemical distribution of major secondary metabolites in the root of Paeonia lactiflora. The spatial distributions of two major classes of bioactive components, gallotannins and monoterpene glucosides, were investigated and visualized at the cellular level in tissue sections of P. lactiflora roots. Accordingly, other primary and secondary metabolites were imaged, including amino acids, carbohydrates, lipids and monoterpenes, indicating the capability of untargeted localization of metabolites by using high-resolution MSI platform. The employed AP-SMALDI MSI system provides significant technological advancement in the visualization of individual molecular species at the cellular level. In contrast to previous histochemical studies of tannins using unspecific staining reagents, individual gallotannin species were accurately localized and unequivocally discriminated from other phenolic components in the root tissues. High-quality ion images were obtained, providing significant clues for understanding the biosynthetic pathway of gallotannins and monoterpene glucosides and possibly helping to decipher the role of tannins in xylem cells differentiation and in the defence mechanisms of plants, as well as to investigate the interrelationship between tannins and lignins.

  2. Measurements of pH and redox potential distributions in TNT-contaminated plant-soil systems using microelectrode techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, H.; Zhang, T.C.

    1997-12-31

    The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less

  3. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Three-dimensional visualization and quantification of water content in the rhizosphere.

    PubMed

    Moradi, Ahmad B; Carminati, Andrea; Vetterlein, Doris; Vontobel, Peter; Lehmann, Eberhard; Weller, Ulrich; Hopmans, Jan W; Vogel, Hans-Jörg; Oswald, Sascha E

    2011-11-01

    • Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. • Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. • We clearly observed increasing soil water contents (θ) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. • Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of θ towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Responses of seminal wheat seedling roots to soil water deficits.

    PubMed

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Root growth and spatial distribution characteristics for seedlings raised in substrate and transplanted cotton

    PubMed Central

    Han, Yingchun; Li, Yabing; Wang, Guoping; Feng, Lu; Yang, Beifang; Fan, Zhengyi; Lei, Yaping; Du, Wenli; Mao, Shuchun

    2017-01-01

    In this study, transplanting cotton seedlings grown in artificial substrate is considered due to recent increased interest in cotton planting labor saving approaches. The nursery methods used for growing cotton seedlings affect root growth. However, the underlying functional responses of root growth to variations in cotton seedling transplanting methods are poorly understood. We assessed the responses of cotton (Gossypium hirsutum L.) roots to different planting methods by conducting cotton field experiments in 2012 and 2013. A one-factor random block design was used with three replications and three different cotton planting patterns (substrate seedling transplanted cotton (SSTC), soil-cube seedling transplanted cotton (ScSTC) and directly sown cotton (DSC). The distributions and variances of the root area density (RAD) and root length density (RLD) at different cotton growing stages and several yield components were determined. Overall, the following results were observed: 1) The RAD and RLD were greatest near the plants (a horizontal distance of 0 cm) but were lower at W20 and W40 cm in the absence of film mulching than at E20 and E40 cm with film mulching. 2) The roots were confined to shallow depths (20–40 cm), and the root depths of SSTC and DSC were greater than the root depths of ScSTC. 3) Strong root growth was observed in the SSTC at the cotton flowering and boll setting stages. In addition, early onset root growth occurred in the ScSTC, and vigorous root growth occurred throughout all cotton growth stages in DSC. 4) The SSTC plants had more lateral roots with higher root biomass (RB) than the ScSTC, which resulted in higher cotton yields. However, the early onset root growth in the ScSTC resulted in greater pre-frost seed cotton (PFSC) yields. These results can be used to infer how cotton roots are distributed in soils and capture nutrients. PMID:29272298

  7. [Response of fine roots to soil nutrient spatial heterogeneity].

    PubMed

    Wang, Qingcheng; Cheng, Yunhuan

    2004-06-01

    The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics such as fine root diameter, branch angle, length, and spatial architecture of root system. Physiological and mycorrhizal plasticity can add some influence on the morphological plasticity to some extent, but they are less studied. Roots located in different patches can quickly regulate their nutrient uptake kinetics within different nutrient patches, and increase overall nutrient uptake. Physiological response may, to certain extent, reduce morphological response, and is meaningful for plant growth on soils with frequently changing spatial and temporal heterogeneity. Mycorrhizal plasticity has been least studied so far. Some researches revealed that mycorrhiza, rather than fine root, proliferated in enriched patches. But, it is not the case with other studies. The proliferation of mycorrhiza within enriched patches is more profitable in term of carbon invest. The effect of fine root proliferation on nutrient uptake is complex, depending on ion mobility and whether or not neighboring plant exists. The influence of root plasticity on the growth of plants is species specific. Some species (sensitive species) gain growth benefit, while others don't. The ability of an individual plant to response to heterogeneous resources has significant effect on its competitive ability and its fate within the community, and eventually shapes the composition and structure of the community.

  8. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    PubMed

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  9. DR5 as a reporter system to study auxin response in Populus.

    PubMed

    Chen, Yiru; Yordanov, Yordan S; Ma, Cathleen; Strauss, Steven; Busov, Victor B

    2013-03-01

    KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.

  10. Rival Theories of Newsreading in the Electronic Newspaper Arena.

    ERIC Educational Resources Information Center

    Dozier, David M.

    Emerging videotex news services--systems for distributing textual information on television screens that permit direct competition with pulp newspapers--are presently rooted in a limited theory of newsreading. The first of two rival theories of newsreading applicable to electronic newspapers is "uses and gratifications" research--the…

  11. Proto-Algic III: Pronouns.

    ERIC Educational Resources Information Center

    Proulx, Paul

    An analysis of pronouns in Proto-Algic, the ancestor of Proto-Algonquian and other languages, revealed that the Proto-Algic demonstrative roots and locatives had three inflectional endings, referring to spatial or temporal distributions of entities, which evolve into the gender systems of Yurok and Algonquian. Proto-Algic had two discourse…

  12. Field performance of Quercus bicolor established as repeatedly air-root-pruned container and bareroot planting stock

    Treesearch

    J.W." Jerry" Van Sambeek; Larry D. Godsey; William D. Walter; Harold E. Garrett; John P. Dwyer

    2016-01-01

    Benefits of repeated air-root-pruning of seedlings when stepping up to progressively larger containers include excellent lateral root distribution immediately below the root collar and an exceptionally fibrous root ball. To evaluate long-term field performance of repeatedly air-root-pruned container stock, three plantings of swamp white oak (Quercus bicolor...

  13. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    PubMed Central

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity. PMID:28303148

  15. Different Water Use Strategies of Juvenile and Adult Caragana intermedia Plantations in the Gonghe Basin, Tibet Plateau

    PubMed Central

    Jia, Zhiqing; Zhu, Yajuan; Liu, Liying

    2012-01-01

    Background In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation. Methodology/Principal Findings Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations. Conclusions The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE. PMID:23029303

  16. Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems

    PubMed Central

    Mao, Zhun; Saint-André, Laurent; Bourrier, Franck; Stokes, Alexia; Cordonnier, Thomas

    2015-01-01

    Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape. Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition. Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data. Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems. PMID:26173892

  17. Effect of linear alkyl benzene sulfonates (LAS) on the fate of phenanthrene in a model ecosystem (water-lava-plant-air).

    PubMed

    Jiang, Xia; Jin, Xiang-can; Yan, Chang-zhou; Yediler, Ayfer; Ou, Zi-qing; Kettrup, Antonius

    2004-01-01

    Advanced closed chamber system was used to study the fate of phenanthrene (3-rings PAHs) in the presence of linear alkylbenzene sulphonates (LAS). The results showed mineralization and metabolism of phenanthrene are fast in the "culture solution-lava-plant-air" model ecological system. The distribution proportions of applied 14C-activity in this simulative ecological system were 41%-45%, 14% to 10% and 1% in plant, lava and culture solution respectively, and 18% to 29%, 11% to 8% recovered in the forms of VOCs and CO2. Main parts of the applied 14C-activity exist in two forms, one is polar metabolites (25%) which mainly distribute in the root (23%), the other is unextractable part (23%) which have been constructed into plant root (8.98%), shoot (0.53%) or bonded to lava (13.2%). The main metabolites of phenanthrene were polar compounds (25% of applied 14C-activity), and small portion of 14C-activity was identified as non-polar metabolites (6% of applied 14C-activity) and apparent phenanthrene (1.91% of applied 14C-activity). Phenanthrene and its metabolites can be taken up through plant roots and translocated to plant shoots. The presence of LAS significantly increased the the concentration of 14C-activity in the plant and production of VOCs, at the same time it decreased the phenanthrene level in the plant and the production of CO2 at the concentration of 200 mg/L.

  18. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system.

    PubMed

    Chen, Ping; Du, Qing; Liu, Xiaoming; Zhou, Li; Hussain, Sajad; Lei, Lu; Song, Chun; Wang, Xiaochun; Liu, Weiguo; Yang, Feng; Shu, Kai; Liu, Jiang; Du, Junbo; Yang, Wenyu; Yong, Taiwen

    2017-01-01

    The blind pursuit of high yields via increased fertilizer inputs increases the environmental costs. Relay intercropping has advantages for yield, but a strategy for N management is urgently required to decrease N inputs without yield loss in maize-soybean relay intercropping systems (IMS). Experiments were conducted with three levels of N and three planting patterns, and dry matter accumulation, nitrogen uptake, nitrogen use efficiency (NUE), competition ratio (CR), system productivity index (SPI), land equivalent ratio (LER), and crop root distribution were investigated. Our results showed that the CR of soybean was greater than 1, and that the change in root distribution in space and time resulted in an interspecific facilitation in IMS. The maximum yield of maize under monoculture maize (MM) occurred with conventional nitrogen (CN), whereas under IMS, the maximum yield occurred with reduced nitrogen (RN). The yield of monoculture soybean (MS) and of soybean in IMS both reached a maximum under RN. The LER of IMS varied from 1.85 to 2.36, and the SPI peaked under RN. Additionally, the NUE of IMS increased by 103.7% under RN compared with that under CN. In conclusion, the separation of the root ecological niche contributed to a positive interspecific facilitation, which increased the land productivity. Thus, maize-soybean relay intercropping with reduced N input provides a very useful approach to increase land productivity and avert environmental pollution.

  19. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  20. Rooting depth distribution and nitrogen acquisition using 15N tracer, Barrow, Alaska, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleen Iversen

    Permafrost thaw and degradation may lead to altered thickness of the active soil layer and a changing distribution of plant-available nutrients throughout the soil, but little is known about the nutrient acquisition strategies of dominant tundra plant species. We conducted an 15N isotope tracer experiment to assess the vertical distribution of nutrient acquisition among three dominant species representing important plant functional types (PFTs) on the Barrow Environmental Observatory (BEO) in Barrow, Alaska. We found that vertical patterns of root distribution and nutrient acquisition varied among plant species, and that root density may not entirely explain patterns of nutrient acquisition formore » all species.« less

  1. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient

    PubMed Central

    Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph

    2018-01-01

    Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778

  2. A DRBEM for steady infiltration from periodic semi-circular channels with two different types of roots distribution

    NASA Astrophysics Data System (ADS)

    Solekhudin, Imam; Sumardi

    2017-05-01

    In this study, problems involving steady Infiltration from periodic semicircular channels with root-water uptake function are considered. These problems are governed by Richards equation. This equation can be studied more conveniently by transforming the equation into a modified Helmholtz equation. In these problems, two different types of root-water uptake are considered. A dual reciprocity boundary element method (DRBEM) with a predictor-corrector scheme is used to solve the modified Helmholtz equation numerically. Using the solution obtained, numerical values of suction potential and root-water uptake function can be computed. In addition, amount of water absorbed by the different plant roots distribution can also be computed and compared.

  3. Improved Root Normal Size Distributions for Liquid Atomization

    DTIC Science & Technology

    2015-11-01

    Jackson, Primary Breakup of Round Aerated- Liquid Jets in Supersonic Crossflows, Atomization and Sprays, 16(6), 657-672, 2006 H. C. Simmons, The...Breakup in Liquid - Gas Mixing Layers, Atomization and Sprays, 1, 421-440, 1991 P.-K. Wu, L.-K. Tseng, and G. M. Faeth, Primary Breakup in Gas / Liquid ...Improved Root Normal Size Distributions for Liquid Atomization Distribution Statement A. Approved for public release; distribution is unlimited

  4. Characterization of essential oil distribution in the root cross-section of Valeriana officinalis L. s.l. by using histological imaging techniques.

    PubMed

    Penzkofer, Michael; Baron, Andrea; Naumann, Annette; Krähmer, Andrea; Schulz, Hartwig; Heuberger, Heidi

    2018-01-01

    The essential oil is an important compound of the root and rhizome of medicinally used valerian ( Valeriana officinalis L. s.l.), with a stated minimum content in the European pharmacopoeia. The essential oil is located in droplets, of which the position and distribution in the total root cross-section of different valerian varieties, root thicknesses and root horizons are determined in this study using an adapted fluorescence-microscopy and automatic imaging analysis method. The study was initiated by the following facts:A probable negative correlation between essential oil content and root thickness in selected single plants (elites), observed during the breeding of coarsely rooted valerian with high oil content.Higher essential oil content after careful hand-harvest and processing of the roots. In preliminary tests, the existence of oil containing droplets in the outer and inner regions of the valerian roots was confirmed by histological techniques and light-microscopy, as well as Fourier-transform infrared spectroscopy. Based on this, fluorescence-microscopy followed by image analysis of entire root cross-sections, showed that a large number of oil droplets (on average 43% of total oil droplets) are located close to the root surface. The remaining oil droplets are located in the inner regions (parenchyma) and showed varying density gradients from the inner to the outer regions depending on genotype, root thickness and harvesting depth. Fluorescence-microscopy is suitable to evaluate prevalence and distribution of essential oil droplets of valerian in entire root cross-sections. The oil droplet density gradient varies among genotypes. Genotypes with a linear rather than an exponential increase of oil droplet density from the inner to the outer parenchyma can be chosen for better stability during post-harvest processing. The negative correlation of essential oil content and root thickness as observed in our breeding material can be counteracted through a selection towards generally high oil droplet density levels, and large oil droplet sizes independent of root thickness.

  5. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence

    PubMed Central

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177

  6. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  7. Distribution and longevity of Pratylenchus penetrans in the red raspberry production system

    USDA-ARS?s Scientific Manuscript database

    One of the major production constraints on the production of red raspberries in the Pacific Northwest is the presence of the root lesion nematode Pratylenchus penetrans. Current management of this nematode relies heavily on pre-plant soil fumigation, however regulations have made the practice more d...

  8. Different Phylogenetic and Environmental Controls of First-order Root Morphological and Chemical Traits

    NASA Astrophysics Data System (ADS)

    Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.

    2017-12-01

    Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast with individual species-level trait, community-aggregated root traits could be used to improve our ability to predict how the distribution of vegetation will change in response to a changing climate.

  9. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.

    PubMed

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M

    2014-04-08

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  11. The Roots of Plantation Cottonwood: Their Characteristics and Properties

    Treesearch

    John K. Francis

    1985-01-01

    The root biomass and its distribution and the growth rate of roots of pulpwood-size cottonwood (Popolus deltoides) in plantations were estimated by excavation and sampling. About 27 percent of the total biomass was in root tissue. Equations for predicting stump-taproot dry weight from d.b.h. and top dry weight were derived. Lateral roots in two...

  12. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data

    NASA Astrophysics Data System (ADS)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; Yin, Yunhe; Kumar, Jitendra; Ma, Chun; Xu, Xiaofeng

    2017-09-01

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. We compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62). However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S-10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1-0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.

  13. Predictive Anomaly Management for Resilient Virtualized Computing Infrastructures

    DTIC Science & Technology

    2015-05-27

    PREC: Practical Root Exploit Containment for Android Devices, ACM Conference on Data and Application Security and Privacy (CODASPY) . 03-MAR-14...05-OCT-11, . : , Hiep Nguyen, Yongmin Tan, Xiaohui Gu. Propagation-aware Anomaly Localization for Cloud Hosted Distributed Applications , ACM...Workshop on Managing Large-Scale Systems via the Analysis of System Logs and the Application of Machine Learning Techniques (SLAML) in conjunction with SOSP

  14. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  15. Six-Year Nitrogen-Water Interaction Shifts the Frequency Distribution and Size Inequality of the First-Order Roots of Fraxinus mandschurica in a Mixed Mature Pinus koraiensis Forest.

    PubMed

    Wang, Cunguo; Geng, Zhenzhen; Chen, Zhao; Li, Jiandong; Guo, Wei; Zhao, Tian-Hong; Cao, Ying; Shen, Si; Jin, Daming; Li, Mai-He

    2017-01-01

    The variation in fine root traits in terms of size inequality at the individual root level can be identified as a strategy for adapting to the drastic changes in soil water and nutrient availabilities. The Gini and Lorenz asymmetry coefficients have been applied to describe the overall degree of size inequality, which, however, are neglected when conventional statistical means are calculated. Here, we used the Gini coefficient, Lorenz asymmetry coefficient and statistical mean in an investigation of Fraxinus mandschurica roots in a mixed mature Pinus koraiensis forest on Changbai Mountain, China. We analyzed 967 individual roots to determine the responses of length, diameter and area of the first-order roots and of branching intensity to 6 years of nitrogen addition (N), rainfall reduction (W) and their combination (NW). We found that first-order roots had a significantly greater average length and area but had smaller Gini coefficients in NW plots compared to in control plots (CK). Furthermore, the relationship between first-order root length and branching intensity was negative in CK, N, and W plots but positive in NW plots. The Lorenz asymmetry coefficient was >1 for the first-order root diameter in NW and W plots as well as for branching intensity in N plots. The bimodal frequency distribution of the first-order root length in NW plots differed clearly from the unimodal one in CK, N, and W plots. These results demonstrate that not only the mean but also the variation and the distribution mode of the first-order roots of F. mandschurica respond to soil nitrogen and water availability. The changes in size inequality of the first-order root traits suggest that Gini and Lorenz asymmetry coefficients can serve as informative parameters in ecological investigations of roots to improve our ability to predict how trees will respond to a changing climate at the individual root level.

  16. Six-Year Nitrogen–Water Interaction Shifts the Frequency Distribution and Size Inequality of the First-Order Roots of Fraxinus mandschurica in a Mixed Mature Pinus koraiensis Forest

    PubMed Central

    Wang, Cunguo; Geng, Zhenzhen; Chen, Zhao; Li, Jiandong; Guo, Wei; Zhao, Tian-Hong; Cao, Ying; Shen, Si; Jin, Daming; Li, Mai-He

    2017-01-01

    The variation in fine root traits in terms of size inequality at the individual root level can be identified as a strategy for adapting to the drastic changes in soil water and nutrient availabilities. The Gini and Lorenz asymmetry coefficients have been applied to describe the overall degree of size inequality, which, however, are neglected when conventional statistical means are calculated. Here, we used the Gini coefficient, Lorenz asymmetry coefficient and statistical mean in an investigation of Fraxinus mandschurica roots in a mixed mature Pinus koraiensis forest on Changbai Mountain, China. We analyzed 967 individual roots to determine the responses of length, diameter and area of the first-order roots and of branching intensity to 6 years of nitrogen addition (N), rainfall reduction (W) and their combination (NW). We found that first-order roots had a significantly greater average length and area but had smaller Gini coefficients in NW plots compared to in control plots (CK). Furthermore, the relationship between first-order root length and branching intensity was negative in CK, N, and W plots but positive in NW plots. The Lorenz asymmetry coefficient was >1 for the first-order root diameter in NW and W plots as well as for branching intensity in N plots. The bimodal frequency distribution of the first-order root length in NW plots differed clearly from the unimodal one in CK, N, and W plots. These results demonstrate that not only the mean but also the variation and the distribution mode of the first-order roots of F. mandschurica respond to soil nitrogen and water availability. The changes in size inequality of the first-order root traits suggest that Gini and Lorenz asymmetry coefficients can serve as informative parameters in ecological investigations of roots to improve our ability to predict how trees will respond to a changing climate at the individual root level. PMID:29018474

  17. Inositol 1,4,5-trisphosphate distribution in Lycopersicon esculentum Mill seedlings cultivated "in vitro" under different conditions.

    PubMed

    Placentini, M P; Ricci, D; Fraternale, D; Piatti, E; Manunta, A; Accorsi, A

    1997-04-01

    Measurements of inositol 1,4,5-trisphosphate (Ins1,4,5-P3) in cotyledons, epicotyls and roots of tomato seedlings grown "in vitro" either in the light or in the dark indicated that higher concentrations of this signal-transducing molecule are contained in hypogeous vs. epigeous tissues. The same was observed in induced cotyledon explants grown in the light in the presence of growth regulators. Data concerning phosphatidylinositol metabolism in seedling roots are also reported. Taken together, our results may be helpful in understanding the role of the polyphosphoinositide signal system in plants.

  18. Hydrologic control on the root growth of Salix cuttings at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Bau', Valentina; Calliari, Baptiste; Perona, Paolo

    2017-04-01

    Riparian plant roots contribute to the ecosystem functioning and, to a certain extent, also directly affect fluvial morphodynamics, e.g. by influencing sediment transport via mechanical stabilization and trapping. There is much both scientific and engineering interest in understanding the complex interactions among riparian vegetation and river processes. For example, to investigate plant resilience to uprooting by flow, one should quantify the probability that riparian plants may be uprooted during specific flooding event. Laboratory flume experiments are of some help to this regard, but are often limited to use grass (e.g., Avena and Medicago sativa) as vegetation replicate with a number of limitations due to fundamental scaling problems. Hence, the use of small-scale real plants grown undisturbed in the actual sediment and within a reasonable time frame would be particularly helpful to obtain more realistic flume experiments. The aim of this work is to develop and tune an experimental technique to control the growth of the root vertical density distribution of small-scale Salix cuttings of different sizes and lengths. This is obtained by controlling the position of the saturated water table in the sedimentary bed according to the sediment size distribution and the cutting length. Measurements in the rhizosphere are performed by scanning and analysing the whole below-ground biomass by means of the root analysis software WinRhizo, from which root morphology statistics and the empirical vertical density distribution are obtained. The model of Tron et al. (2015) for the vertical density distribution of the below-ground biomass is used to show that experimental conditions that allow to develop the desired root density distribution can be fairly well predicted. This augments enormously the flexibility and the applicability of the proposed methodology in view of using such plants for novel flow erosion experiments. Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F., and L. Ridolfi (2015). The signature of randomness in riparian plant root distributions. Geophys. Res. Letts., 42, 7098-7106

  19. Abscisic acid, xanthoxin and violaxanthin in the caps of gravistimulated maize roots

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Arroyave, N. J.; Sun, P. S.

    1985-01-01

    The occurrence and distribution of abscisic acid (ABA), xanthoxin (Xa) and the carotenoid violaxanthin (Va) were investigated in root tips of maize (Zea mays L. cv. Merit). In roots grown in the dark, Va and ABA were present in relatively high amounts in the root cap and in low amounts in the adjacent terminal 1.5 mm of the root. Xanthoxin was present in equal concentrations in both regions. In roots exposed to light, the ABA distribution was reversed, with relatively low levels in the root cap and high levels in the adjacent 1.5-mm segment. Light also caused a decrease in Va in both regions of the root and an increase in Xa, especially in the cap. In the maize cultivar used for this work, light is necessary for gravitropic curving. This response occurs within the same time frame as the light-induced ABA redistribution as well as the changes in the levels of Va and Xa. These data are consistent with a role for ABA in root gravitropism and support the proposal that Xa may arise from the turnover of Va.

  20. Shaping Ability of Single-file Systems with Different Movements: A Micro-computed Tomographic Study.

    PubMed

    Santa-Rosa, Joedy; de Sousa-Neto, Manoel Damião; Versiani, Marco Aurelio; Nevares, Giselle; Xavier, Felipe; Romeiro, Kaline; Cassimiro, Marcely; Leoni, Graziela Bianchi; de Menezes, Rebeca Ferraz; Albuquerque, Diana

    2016-01-01

    This study aimed to perform a rigorous sample standardization and also evaluate the preparation of mesiobuccal (MB) root canals of maxillary molars with severe curvatures using two single-file engine-driven systems (WaveOne with reciprocating motion and OneShape with rotary movement), using micro-computed tomography (micro-CT). Ten MB roots with single canals were included, uniformly distributed into two groups (n=5). The samples were prepared with a WaveOne or OneShape files. The shaping ability and amount of canal transportation were assessed by a comparison of the pre- and post-instrumentation micro-CT scans. The Kolmogorov-Smirnov and t-tests were used for statistical analysis. The level of significance was set at 0.05. Instrumentation of canals increased their surface area and volume. Canal transportation occurred in coronal, middle and apical thirds and no statistical difference was observed between the two systems (P>0.05). In apical third, significant differences were found between groups in canal roundness (in 3 mm level) and perimeter (in 3 and 4 mm levels) (P<0.05). The WaveOne and One Shape single-file systems were able to shape curved root canals, producing minor changes in the canal curvature.

  1. Acetylcholine and lobster sensory neurones

    PubMed Central

    Barker, David L.; Herbert, Edward; Hildebrand, John G.; Kravitz, Edward A.

    1972-01-01

    Experiments are presented in support of the hypothesis that acetylcholine functions as a sensory transmitter in the lobster nervous system. 1. Several different peripheral sensory structures incorporate radioactive choline into acetylcholine. The preparation most enriched in sensory as opposed to other nervous elements (the antennular sense organs of the distal outer flagellum) does not incorporate significant amounts of glutamate, tyrosine or tryptophan into any of the other major transmitter candidates. 2. There is a parallel between the distribution of the enzyme choline acetyltransferase and the proportion of sensory fibres in nervous tissue from many parts of the lobster nervous system. 3. Isolated sensory axons contain at least 500 times as much choline acetyltransferase per cm of axon as do efferent excitatory and inhibitory fibres. 4. Abdominal ganglia and root stumps show a decline in the rate of incorporation of choline into acetylcholine 2 to 8 weeks after severing the first and second roots bilaterally (leaving the connectives and third roots intact). Extracts of the root stumps exhibit a significantly lower level of choline acetyltransferase 2 weeks after this operation. 5. Curare and atropine partially block an identified sensory synapse in the lobster abdominal ganglion. ImagesText-fig. 4Text-fig. 5Plate 1 PMID:4343316

  2. Root resorption of maxillary incisors retracted with and without skeletal anchorage.

    PubMed

    Barros, Sérgio Estelita; Janson, Guilherme; Chiqueto, Kelly; Baldo, Vitor Oliveira; Baldo, Taiana Oliveira

    2017-02-01

    Our objective was to compare root resorption degree of the maxillary central incisors retracted with and without skeletal anchorage. This nonrandomized historical control study included 37 patients requiring maximum anterior retraction and treated with extraction of 2 maxillary premolars. Group 1 consisted of 22 patients (11 male, 11 female) in whom anterior retraction was performed without skeletal anchorage, and group 2 included 15 patients (3 male, 12 female) treated with skeletally anchored anterior retraction. Periapical radiographs were used to evaluate root resorption degree by a scoring system. The groups were compared regarding the resorption score and resorption degree distribution with the Mann-Whitney U test, chi-square test, and Z test on proportions. There was no statistically significant intergroup difference regarding root resorption, but the number of patients with severe and extreme root resorption degrees was significantly greater in group 2. Although the root resorption degree of the skeletal anchorage group was not significantly different from the group without skeletal anchorage, the number of patients with severe to extreme resorption in the first group was significantly greater. Therefore, careful clinical monitoring of skeletally anchored anterior retraction is needed, especially when there are known root resorption predisposing factors. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  4. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.

    PubMed

    Sarabia, Lenin D; Boughton, Berin A; Rupasinghe, Thusitha; van de Meene, Allison M L; Callahan, Damien L; Hill, Camilla B; Roessner, Ute

    2018-01-01

    Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na + and decreases of K + content. Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.

  5. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures.

    PubMed

    Ossareh, A; Rosentritt, M; Kishen, A

    2018-01-01

    The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test ( P < 0.05). Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group ( P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group ( P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups ( R 2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF.

  6. Root cold hardiness and native distribution of subalpine conifers

    Treesearch

    Mark D. Coleman; Thomas M. Hinckley; Geoffrey McNaughton; Barbara A. Smit

    1992-01-01

    Root and needle cold hardiness were compared in seedlings of subalpine conifers to determine if differences existed among species originating from either cold continental climates or mild maritime climates. Abies amabilis (Dougl.) Carr. and Tsuga mertensiana (Bong.) Carr. are exclusively distributed in maritime environments,...

  7. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities

    PubMed Central

    Vaculík, Marek; Konlechner, Cornelia; Langer, Ingrid; Adlassnig, Wolfram; Puschenreiter, Markus; Lux, Alexander; Hauser, Marie-Theres

    2012-01-01

    The understanding of the influence of toxic elements on root anatomy and element distribution is still limited. This study describes anatomical responses, metal accumulation and element distribution of rooted cuttings of Salix caprea after exposure to Cd and/or Zn. Differences in the development of apoplastic barriers and tissue organization in roots between two distinct S. caprea isolates with divergent Cd uptake and accumulation capacities in leaves might reflect an adaptive predisposition based on different natural origins. Energy-dispersive X-ray spectroscopy (EDX) revealed that Cd and Zn interfered with the distribution of elements in a tissue- and isolate-specific manner. Zinc, Ca, Mg, Na and Si were enriched in the peripheral bark, K and S in the phloem and Cd in both vascular tissues. Si levels were lower in the superior Cd translocator. Since the cuttings originated from stocks isolated from polluted and unpolluted sites we probably uncovered different strategies against toxic elements. PMID:22325439

  8. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation

    PubMed Central

    Rodrigues, Clarissa Teles; de Oliveira-Santos, Christiano; Bernardineli, Norberti; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Minotti-Bonfante, Paloma Gagliardi; Ordinola-Zapata, Ronald

    2016-01-01

    ABSTRACT The knowledge of the internal anatomy of three-rooted mandibular molars may help clinicians to diagnose and plan the root canal treatment in order to provide adequate therapy when this variation is present. Objectives: To determine the prevalence of three-rooted mandibular molars in a Brazilian population using cone beam computed tomography (CBCT) and to analyze the anatomy of mandibular first molars with three roots through micro-CT. Material and Methods: CBCT images of 116 patients were reviewed to determine the prevalence of three-rooted first mandibular molars in a Brazilian subpopulation. Furthermore, with the use of micro-CT, 55 extracted three-rooted mandibular first molars were scanned and reconstructed to assess root length, distance between canal orifices, apical diameter, Vertucci's classification, presence of apical delta, number of foramina and furcations, lateral and accessory canals. The distance between the orifice on the pulp chamber floor and the beginning of the curvature and the angle of canal curvature were analyzed in the distolingual root. Data were compared using the Kruskal-Wallis test (α=0.05). Results: The prevalence of three-rooted mandibular first molars was of 2.58%. Mesial roots showed complex distribution of the root canal system in comparison to the distal roots. The median of major diameters of mesiobuccal, mesiolingual and single mesial canals were: 0.34, 0.41 and 0.60 mm, respectively. The higher values of major diameters were found in the distobuccal canals (0.56 mm) and the lower diameters in the distolingual canals (0.29 mm). The lowest orifice distance was found between the mesial canals (MB-ML) and the highest distance between the distal root canals (DB-DL). Almost all distal roots had one root canal and one apical foramen with few accessory canals. Conclusions: Distolingual root generally has short length, severe curvature and a single root canal with low apical diameter. PMID:27812625

  10. Root-Crown Relations of Young Sugar Maple and Yellow Birch

    Treesearch

    Carl H. Tubbs

    1977-01-01

    Young forest-grown sugar maple and yellow birch (1 to 6 inches d.b.h.) crowns were mapped and roots excavated. Crown dimensions were compared. Sugar maple roots usually terminated within a few feet of the crown perimeter. Yellow birch roots frequently terminated well outside crown perimeters and roots of birch were more irregularly distributed than those of maple....

  11. Annual fire and mowing alter biomass, depth distribution, and C and N content of roots in soil in tallgrass prairie

    Treesearch

    D.J. Kitchen; J.M. Blair; M.A. Callaham

    2009-01-01

    Management practices, such as fire andmowing, can affect the distribution and quality of roots and soil C and N in grasslands. We examined long-term (13 years) effects of annual fire and mowing on fine (<2 mm) roots and soil C and N content in a native tallgrass prairie at Konza Prairie Biological Station in northeastern Kansas, USA. Using 90 cm deep soil cores...

  12. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  13. Spatial colonization of microbial cells on the rhizoplane.

    NASA Astrophysics Data System (ADS)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as other features of the root (e.g. root cell walls). For all the images analysed, we found that microbial cell distributions were not distributed randomly and strongly associated to root cell walls. The spatial organization of root cell walls could be used to simulate microbial cell distribution that have similar spatial properties compared to the microscopic data. Root cell walls thus appear as a strong determinant for microbial cell colonization of the rhizoplane.

  14. Release of picloram from leafy spurge (Euphorbia esula L. ) roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, M.V.

    1988-01-01

    Picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) exudation from leafy spurge (Euphorbia esula L.) roots following foliar application was determined with field trials examining the effects of plant growth stage, picloram rate, and time interval after treatment and with laboratory studies examining the effects of picloram rate, picloram plus 2,4-D, and root temperature. Release of /sup 14/C from leafy spurge roots in the laboratory was not affected by picloram rates from <0.005 to 0.28 kg/ha or by combining picloram at 0.14 kg/ha plus 2,4-D up to 1.12 kg/ha. No consistent effect was detected for increasing root temperatures from 14 to 32 C. The temperaturemore » coefficient (Q/sub 10/) for picloram release was 1.3 +/- 0.8. Most /sup 14/C exudates from leafy spurge roots co-chromatographed with /sup 14/C-picloram suggesting that picloram is exuded as the parent acid or a rapidly hydrolyzed metabolite. Most picloram release occurred from the upper 5 cm of the root system. /sup 14/C distribution in leafy spurge suggests symplastic movement. Only about 28% of the applied picloram was absorbed, 75% remained in the leaves and stems of the plants. Over 60% of the /sup 14/C that entered the plant roots was released to the nutrient solution.« less

  15. MCNP output data analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-12-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Reasons for new version: For applications involving the Associate Particle Technique, a large number of gamma rays are produced by the fast neutrons interactions. To study the energy spectra, it is useful to identify the gamma-ray energy peaks in a straightforward way. Therefore, the possibility to show gamma rays corresponding to specific reactions has been added in MODAR. Summary of revisions: It is possible to use a gamma ray database to better identify in the energy spectra gamma ray peaks with their first and second escapes. Histograms can be scaled by the number of source particle to evaluate the number of counts that is expected without statistical uncertainties. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two dimensional data. Running time: The CPU time needed to smear a two dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.

  16. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana.

    PubMed

    Zhou, Chuifan; Huang, Meiying; Li, Ying; Luo, Jiewen; Cai, Li Ping

    2016-11-01

    The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.

  17. An in vitro evaluation of various irrigation techniques for the removal of double antibiotic paste from root canal surfaces

    PubMed Central

    GOKTURK, Hakan; OZKOCAK, Ismail; BUYUKGEBİZ, Fevzi; DEMİR, Osman

    2016-01-01

    ABSTRACT Objective The aim of this study was to investigate the effectiveness of conventional syringe irrigations, passive ultrasonic irrigation (PUI), Vibringe, CanalBrush, XP-endo Finisher, and laser-activated irrigation (LAI) systems in removing double antibiotic paste (DAP) from root canals. Material and Methods One hundred five extracted single-rooted teeth were instrumented. The roots were split longitudinally. Three standard grooves were created and covered with DAP. The roots were distributed into seven groups: Group 1, beveled needle irrigation; Group 2, double side-vented needle irrigation; Group 3, CanalBrush; Group 4, XP-endo Finisher; Group 5, Vibringe; Group 6, PUI; Group 7, LAI. The amount of remaining DAP was scored under a stereomicroscope. Results Group 4, Group 6, and Group 7 removed significantly more DAP than the other protocols in the coronal region. Group 7 was more efficient in the middle region; however, no significant difference was found between Group 7 and Group 6. No differences were found between groups in the apical region either, except for the comparisons between groups 7 and 2, and groups 2 and 3. Conclusions None of the investigated protocols were able to completely remove the DAP from the grooves. The Vibringe and XP-endo Finisher systems showed results similar to those of conventional needle irrigation. PMID:28076461

  18. Cleaning capacity of octenidine as root canal irrigant: A scanning electron microscopy study.

    PubMed

    Coaguila-Llerena, Hernán; Stefanini da Silva, Virgínia; Tanomaru-Filho, Mario; Guerreiro Tanomaru, Juliane Maria; Faria, Gisele

    2018-06-01

    The aim of this study was to assess the cleaning capacity of the octenidine hydrochloride (OCT) used as root canal irrigant by scanning electron microscopy (SEM) analysis. Sixty human unirradicular extracted teeth were randomly distributed in 6 groups (n = 10) according to irrigant solutions which were used during root canal preparation: G1, 0.1% OCT; G2, 2% chlorhexidine (CHX); G3, 2.5% sodium hypochlorite (NaOCl); G4, OCT + 17% ethylenediaminetetraacetic acid (EDTA); G5, 2.5% NaOCl + 17% EDTA and G6, distilled water. All specimens were instrumented with ProTaper system up to F4. Teeth were sectioned and prepared for SEM. The smear layer was evaluated using a 5-score system and the data were analyzed by Kruskal-Wallis and Dunn (α = 0.05). In all root canal thirds there was no significant difference between OCT, CHX, NaOCl, and water groups (p > .05), and these groups showed higher smear layer values than NaOCl + EDTA and OCT + EDTA groups (p < .05). There was no significant difference between NaOCl + EDTA and OCT + EDTA groups (p > .05). It was concluded that OCT used as a single root canal irrigant presented poor cleaning capacity and could be used in association with a final irrigation with EDTA to obtain smear layer removal. © 2018 Wiley Periodicals, Inc.

  19. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes.

    PubMed

    Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P

    2007-06-01

    Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.

  1. Modeling hydrological controls on vegetation distribution across topography in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Riley, W. J.; Grant, R. F.; Salmon, V. G.; Iversen, C. M.; Biraud, S.; Breen, A. L.

    2017-12-01

    Observed changes in vegetation affect carbon and nutrient cycles in diverse landscapes of northern ecosystems. These changes can be affected by topography and landscape hydrology. We applied a coupled transect version of the ecosystem model ecosys in a landscape underlain by impermeable permafrost at Kougarok, Alaska to examine hydrological controls on watershed-scale vegetation distributions. Our preliminary results indicate strong relationships between vegetation distribution and soil physical and hydraulic properties that control water, nutrients, and energy flows across the hillslope. Modeled differences in aboveground biomass across the Kougarok hillslope had a good agreement (R2 0.80) with preliminary biomass measurements from the NGEE-Arctic project in summer 2016. Low soil water content from shallower soil depth and lateral flow of water and nutrients in the upper slope position of the hillslope resulted in water stress and low N mineralization for plants with deeper roots. The middle slope position had intermediate soil moisture from deeper soil and higher N mineralization that favoured fast-growing and deep-rooted plants. The gentle slope and deeper soil in the lower slope position resulted in saturated soil, thus reduced O2 for microbes, hence favouring plants with higher root porosity. Earth system models that do not account for the underlying mechanisms of surface and sub-surface flows of water, nutrients, and energy may not predict these types of dynamics in Arctic ecosystems.

  2. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth.

    PubMed

    Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.

  3. Lolium pereene L. root systems are a collection of Gaussian curve shaped meso diameter class length distributions

    USDA-ARS?s Scientific Manuscript database

    The world wide need for increased production of food requires a combination of increasing land (usually marginal) turned to agriculture or increased productivity and sustainability of crops on existing agricultural land. Grasses make up an important part of the food directly consumed by humans and ...

  4. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    NASA Astrophysics Data System (ADS)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  5. Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis).

    PubMed

    Duman, Fatih; Cicek, Mehmet; Sezen, Goksal

    2007-08-01

    In this study, two aquatic macrophytes Phragmites australis and Schoenoplectus lacustris and corresponding sediment samples were collected every three months from Lake Sapanca (Turkey) and analysed for their heavy-metal contents (Pb, Cr, Cu, Mn, Ni, Zn and Cd). Accumulation factor ratios of plant parts were calculated for all metals, and the two species were compared in terms of accumulation properties. The highest concentrations were measured in the root systems while relatively low concentrations were found in the rhizome and above-ground parts of the plants. The accumulation ratios of root for P. australis were usually higher than the ratios for S. lacustris. While the accumulation ratios of root were higher in winter than in the other seasons for P. australis, for S. lacustris the highest accumulation ratios were found in the autumn. Both plant species were found to be root accumulators of Pb, Cu, Mn, Ni, Zn and Cd.

  6. Zearalenone Uptake and Biotransformation in Micropropagated Triticum durum Desf. Plants: A Xenobolomic Approach.

    PubMed

    Rolli, Enrico; Righetti, Laura; Galaverna, Gianni; Suman, Michele; Dall'Asta, Chiara; Bruni, Renato

    2018-02-14

    A model was set up to elucidate the uptake, translocation, and metabolic fate of zearalenone (ZEN) in durum wheat. After treatment with ZEN, roots and shoots were profiled with LC-HRMS. A comprehensive description of in planta ZEN biotransformation and a biotechnological evaluation of the model were obtained. Up to 200 μg ZEN were removed by each plantlet after 14 days. Most ZEN and its masked forms were retained in roots, while minimal amounts were detected in leaves. Sixty-two chromatographic peaks were obtained, resulting in 7 putative phase I and 18 putative phase II metabolites. ZEN16Glc and ZEN14Glc were most abundant in roots, sulfo-conjugates and zearalenol derivatives were unable to gain systemic distribution, while distinct isomers of malonyl conjugates were found in leaves and roots. This study underlines the potential ZEN occurrence in plants without an ongoing Fusarium infection. Micropropagation may represent a tool to investigate the interplay between mycotoxins and wheat.

  7. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.

    PubMed

    Uga, Yusaku; Okuno, Kazutoshi; Yano, Masahiro

    2011-05-01

    Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.

  8. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  9. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  10. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In situ Rice Roots

    EPA Science Inventory

    The speciation and distribution of cobalt (Co) in soils is poorly understood. This study was conducted using X-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble Co(II) aging, submergence-dried cycling, and the presence of in vivo rice roots on the...

  12. Simulation of the evolution of root water foraging strategies in dry and shallow soils

    PubMed Central

    Renton, Michael; Poot, Pieter

    2014-01-01

    Background and Aims The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional–structural root growth model. Methods A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally – the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. Key Results The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Conclusions Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies. PMID:24651371

  13. Mercury Retention and Accumulation by Plants at the Abandoned New Idria Mine Site - a Preliminary micro-XRF and micro-XRD Study

    NASA Astrophysics Data System (ADS)

    Siebner, H.; Webb, S. M.; Brown, G. E.

    2008-12-01

    Due to its high toxicity and increasing levels in ecosystems, Hg pollution has become a serious global problem. A lot of research has been conducted with regard to Hg biogeochemical cycles in aquatic systems. Much less is known about terrestrial Hg-cycles in general and in plants specifically. Plants play an important role in these cycles; they are known to be an important sink for both atmospheric and soil Hg, the vegetative cover significantly influences soil erosion and migration of contaminants into aquatic systems. However, the processes involved in the interactions of Hg with plants and plants products are poorly studied. Information concerning the interaction of Hg in plants at the molecular level is sparse. The present study is intended to provide new information on Hg retention, translocation, and accumulation in plants associated with mercury mine wastes in central California. We present here preliminary results of Hg distribution in root and leave samples, taken from different plant species, which have adapted to the hostile environment at the New Idria site. Samples were taken at two locations that differ in water acidity and flooding regime. The distribution of Hg appears to be affected by plant species, growing conditions, and development stage. Micro-XRF images of root sections show that Hg is mainly associated with Fe plaque at the outer surfaces and epidermis, but is distributed differently in roots of the two plants. Micro-XRD showed evidence for mineralogical changes in the plaque through the sections. Mercury in leaves was found to be highly diffuse in its distribution, and is not associated with Fe-rich particles attached to the outer surface of the leaf. This finding implies that Hg is assimilated in the leaf tissue. Further examination of Fe plaque characteristics and associated Hg, as well as Hg speciation in the different organs of these plants, is being conducted in our lab.

  14. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    PubMed

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  15. Carbon cycling in fine roots of several mature forests: results using either locally-derived or bomb-derived radiocarbon enrichment

    NASA Astrophysics Data System (ADS)

    Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Dawson, T. E.; Trumbore, S. E.; Joslin, J. D.; Majdi, H.; Hanson, P. J.; Swanston, C.

    2008-12-01

    This work seeks to improve our ability to quantify C cycling rates in fine roots of trees in mature deciduous and coniferous forests. We use two different types of atmospheric 14CO2 enrichment to trace the time elapsed since C in plant tissues was fixed from the atmosphere by photosynthesis. The first uses a local enrichment of 14CO2 which occurred in early summer 1999, at the Oak Ridge Reservation, Tennessee. The second, employed at three different sites, uses the global enrichment in background atmospheric 14CO2 caused by thermonuclear weapons testing (bomb-14C). In both cases we employ a new model (Radix1.0) to track C and 14C fluxes through fine root populations. Radix simulates two live-root populations (the longer-lived one having structural and non-structural C components), two dead-root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. Our results show that: (1) New fine-root growth contains a lot of stored C (~55%) but it is young in age (0.7 y). (2) The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models should take stored reserves into account, particularly for pulse labeling studies and fast-cycling roots (< 1 y). (3) Radiocarbon values show a stronger correlation with position on the root branch system than they do with diameter or depth in the soil profile. (4) Live fine root dynamics are well described by a short-lived and a long-lived population, with mean turnover times <1 y and ~12 y, respectively. (5) Dead root decomposition is best modeled with (at least) two pools, with moderate (~2 y) and slow (~10 y) decomposition turnover times. (6) Root respiration has a large effect on fine root biomass and isotopic composition, and should be included in ecosystem C and isotope models. (7) It is important to distinguish structural from non-structural components in the long-lived root pool. Otherwise the 14C signature of root respiration is significantly different than atmospheric. We conclude that realistic quantification of C flows through fine roots requires a model with a level of complexity similar to Radix. Moreover, future root research efforts should seek to sample and sort roots by position on the root branch system rather than by diameter size class and improve estimates of root respiration within fine root populations.

  16. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    USGS Publications Warehouse

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  17. Effect of Passive Ultrasonic Irrigation on Enterococcus faecalis from Root Canals: An Ex Vivo Study.

    PubMed

    Guerreiro-Tanomaru, Juliane Maria; Chávez-Andrade, Gisselle Moraima; de Faria-Júnior, Norberto Batista; Watanabe, Evandro; Tanomaru-Filho, Mário

    2015-01-01

    Endodontic irrigation aims to clean and disinfect the root canal system. Passive ultrasonic irrigation (PUI) is based on the use of an ultrasound-activated instrument into the root canal filled with irrigant. The aim of this study was to evaluate, ex vivo, the effectiveness of PUI in eliminating Enterococcus faecalis from root canals. Seventy-five extracted human single-root teeth were used. After root canal preparation, specimens were inoculated with E. faecalis and incubated at 37 °C for 21 days. Specimens were distributed into five groups (n=15), according to the irrigation method: PUI + saline solution (PUI/SS); PUI + 1% NaOCl (PUI/NaOCl); conventional needle irrigation (CNI) + saline solution (CNI/SS); CNI + 1% NaOCl (CNI/NaOCl); No irrigation (control). Microbiological samples were collected at three time points: initial (21 days after inoculation), post-irrigation (immediately after irrigation), and final (7 days after irrigation). Data were obtained in CFU mL-1 and subjected to analysis by ANOVA and Tukey's tests at 5% significance level. The post-irrigation samples did not demonstrate statistical difference between PUI/SS and CNI/SS nor between PUI/NaOCl and CNI/NaOCl (p>0.05), but PUI/NaOCl and CNI/NaOCl had lower CFU mL-1 number than the other groups (p>0.05). Statistically significant difference was observed between the initial and post-irrigation samples and between the post-irrigation and final samples (p<0.05) in all groups, except in the control. The final samples of all groups presented bacterial counts similar to the initial samples. PUI or CNI with 1% NaOCl contribute to disinfection, but are unable to eradicate E. faecalis from the root canal system.

  18. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  19. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE PAGES

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...

    2017-09-09

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  20. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.

    PubMed

    Stout, S C; Porterfield, D M; Briarty, L G; Kuang, A; Musgrave, M E

    2001-03-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  1. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    NASA Technical Reports Server (NTRS)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  2. Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula

    PubMed Central

    Venturas, Martin; Fernández, Victoria; Nadal, Paloma; Guzmán, Paula; Lucena, Juan J.; Gil, Luis

    2014-01-01

    The calcifuge and calcicole character of wild plants has been related to nutrient availability shortages, including iron (Fe)-deficiency. Surprisingly, just a few studies examined the relation between root Fe uptake and plant distribution in different soil types. We assessed the root Fe acquisition efficiency of two Ulmus species with calcareous (Ulmus minor) and siliceous (U. laevis) soil distribution patterns in the Iberian Peninsula. Seedlings of both elm species were grown hydroponically with different Fe concentrations during 6 weeks. Plant physiological responses to Fe-limiting conditions were evaluated as were the ferric reductase activity and proton (H+) extrusion capacity of the roots. Iron deprived elm seedlings of both species were stunted and suffered severe Fe-chlorosis symptoms. After Fe re-supply leaf chlorophyll concentrations rose according to species-dependent patterns. While U. minor leaves and seedlings re-greened evenly, U. laevis did so along the nerves of new growing leaves. U. minor had a higher root ferric reductase activity and H+-extrusion capability than U. laevis and maintained a better nutrient balance when grown under Fe-limiting conditions. The two elm species were found to have different Fe acquisition efficiencies which may be related to their natural distribution in calcareous and siliceous soils of the Iberian Peninsula. PMID:24723927

  3. Spatial distribution of grape root borer (Lepidoptera: Sesiidae) infestations in Virginia vineyards and implications for sampling.

    PubMed

    Rijal, J P; Brewster, C C; Bergh, J C

    2014-06-01

    Grape root borer, Vitacea polistiformis (Harris) (Lepidoptera: Sesiidae) is a potentially destructive pest of grape vines, Vitis spp. in the eastern United States. After feeding on grape roots for ≍2 yr in Virginia, larvae pupate beneath the soil surface around the vine base. Adults emerge during July and August, leaving empty pupal exuviae on or protruding from the soil. Weekly collections of pupal exuviae from an ≍1-m-diameter weed-free zone around the base of a grid of sample vines in Virginia vineyards were conducted in July and August, 2008-2012, and their distribution was characterized using both nonspatial (dispersion) and spatial techniques. Taylor's power law showed a significant aggregation of pupal exuviae, based on data from 19 vineyard blocks. Combined use of geostatistical and Spatial Analysis by Distance IndicEs methods indicated evidence of an aggregated pupal exuviae distribution pattern in seven of the nine blocks used for those analyses. Grape root borer pupal exuviae exhibited spatial dependency within a mean distance of 8.8 m, based on the range values of best-fitted variograms. Interpolated and clustering index-based infestation distribution maps were developed to show the spatial pattern of the insect within the vineyard blocks. The temporal distribution of pupal exuviae showed that the majority of moths emerged during the 3-wk period spanning the third week of July and the first week of August. The spatial distribution of grape root borer pupal exuviae was used in combination with temporal moth emergence patterns to develop a quantitative and efficient sampling scheme to assess infestations.

  4. Kinetin increases chromium absorption, modulates its distribution, and changes the activity of catalase and ascorbate peroxidase in Mexican Palo Verde

    PubMed Central

    Zhao, Yong; Peralta-Videa, Jose R.; Lopez-Moreno, Martha L.; Ren, Minghua; Saupe, Geoffrey; Gardea-Torresdey, Jorge L

    2015-01-01

    This report shows, for the first time, the effectiveness of the phytohormone kinetin (KN) in increasing Cr translocation from roots to stems in Mexican Palo Verde. Fifteen-day-old seedlings, germinated in soil spiked with Cr(III) and (VI) at 60 and 10 mg kg−1, respectively, were watered every other day for 30 days with a KN solution at 250 μM. Samples were analyzed for catalase (CAT) and ascorbate peroxidase (APOX) activities, Cr concentration, and Cr distribution in tissues. Results showed that KN reduced CAT but increased APOX in the roots of Cr(VI)-treated plants. In the leaves, KN reduced both CAT and APOX in Cr(III) but not in Cr(VI)-treated plants. However, KN increased total Cr concentration in roots, stems, and leaves by 45%, 103%, and 72%, respectively, compared to Cr(III) alone. For Cr(VI), KN increased Cr concentrations in roots, stems, and leaves, respectively, by 53%, 129%, and 168%, compared to Cr(VI) alone. The electron probe microanalyzer results showed that Cr was mainly located at the cortex section in the root, and Cr distribution was essentially homogenous in stems. However, proven through X-ray images, Cr(VI)-treated roots and stems had more Cr accumulation than Cr(III) counterparts. KN increased the Cr translocation from roots to stems. PMID:21174467

  5. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Wang, Tianqi; Zheng, Fengxia; Ma, Lingyu; Li, Jingyuan

    2016-03-01

    The toxic effects of ionic liquids (ILs) have attracted increasing attention in recent years. However, the knowledge about the toxic effects of ILs on tropism in organisms remains quite limited. In this study, the effects of 1-hexyl-3-methylimidazolium bromide [C6mim]Br on root gravitropism were evaluated using Arabidopsis seedlings. Our results showed that the root growth and gravity response were significantly inhibited with increasing IL concentration. [C6mim]Br treatment affected the amount and distribution pattern of amyloplasts in root cap compared with controls. The auxin distribution marked with DR5rev::VENUS was altered in IL-treated seedlings. The signal intensity and gene expression of auxin efflux carriers PIN2 and PIN3 were obviously decreased by IL stress. Moreover, as consequences in response to gravity stimulus, the asymmetric DR5 signals in control root apex were impaired by IL treatment. The predominant PIN2 signals along the lower flank of root and PIN3 polarization in columella cells were also significantly reduced in seedlings exposed to IL. Our results suggest that the ionic liquid [C6mim]Br affects the amount and distribution of amyloplasts and disturbs the deployment of PIN2 and PIN3, thus impairing auxin flows in response to gravity stimulus and causing deficient root gravitropism in Arabidopsis seedlings. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distributed-observer-based cooperative control for synchronization of linear discrete-time multi-agent systems.

    PubMed

    Liang, Hongjing; Zhang, Huaguang; Wang, Zhanshan

    2015-11-01

    This paper considers output synchronization of discrete-time multi-agent systems with directed communication topologies. The directed communication graph contains a spanning tree and the exosystem as its root. Distributed observer-based consensus protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is presented to construct the observer-based protocols. In light of the discrete-time algebraic Riccati equation and internal model principle, synchronization problem is completed. At last, numerical simulation is provided to verify the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Distribution of G concurrence of random pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol

    2006-12-15

    The average entanglement of random pure states of an NxN composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant, we characterize the probability distribution P(D). Similar results are obtained for the rescaled Nth root of the determinant, called the G concurrence. We show that in the limit N{yields}{infinity} this quantity becomes concentrated at a single point G{sub *}=1/e. The position of the concentration point changes if one consider an arbitrary NxK bipartite system, in the joint limit N,K{yields}{infinity}, with K/N fixed.

  8. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    NASA Astrophysics Data System (ADS)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed. Reference Lobet G, Hachez C, Chaumont F, Javaux M, Draye X. Root water uptake and water flow in the soil-root domain. In: Eshel A and Beeckman T, editors. Plant Roots. The Hidden Half. Boca Raton (US):CRC Press,2013. p. 24-1 - 24-13.

  9. ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization

    NASA Astrophysics Data System (ADS)

    Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Canal, Ph.; Casadei, D.; Couet, O.; Fine, V.; Franco, L.; Ganis, G.; Gheata, A.; Maline, D. Gonzalez; Goto, M.; Iwaszkiewicz, J.; Kreshuk, A.; Segura, D. Marcos; Maunder, R.; Moneta, L.; Naumann, A.; Offermann, E.; Onuchin, V.; Panacek, S.; Rademakers, F.; Russo, P.; Tadel, M.

    2011-06-01

    A new stable version ("production version") v5.28.00 of ROOT [1] has been published [2]. It features several major improvements in many areas, most noteworthy data storage performance as well as statistics and graphics features. Some of these improvements have already been predicted in the original publication Antcheva et al. (2009) [3]. This version will be maintained for at least 6 months; new minor revisions ("patch releases") will be published [4] to solve problems reported with this version. New version program summaryProgram title: ROOT Catalogue identifier: AEFA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser Public License v.2.1 No. of lines in distributed program, including test data, etc.: 2 934 693 No. of bytes in distributed program, including test data, etc.: 1009 Distribution format: tar.gz Programming language: C++ Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC Operating system: GNU/Linux, Windows XP/Vista/7, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX Has the code been vectorized or parallelized?: Yes RAM: > 55 Mbytes Classification: 4, 9, 11.9, 14 Catalogue identifier of previous version: AEFA_v1_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 2499 Does the new version supersede the previous version?: Yes Nature of problem: Storage, analysis and visualization of scientific data Solution method: Object store, wide range of analysis algorithms and visualization methods Reasons for new version: Added features and corrections of deficiencies Summary of revisions: The release notes at http://root.cern.ch/root/v528/Version528.news.html give a module-oriented overview of the changes in v5.28.00. Highlights include File format Reading of TTrees has been improved dramatically with respect to CPU time (30%) and notably with respect to disk space. Histograms A new TEfficiency class has been provided to handle the calculation of efficiencies and their uncertainties, TH2Poly for polygon-shaped bins (e.g. maps), TKDE for kernel density estimation, and TSVDUnfold for singular value decomposition. Graphics Kerning is now supported in TLatex, PostScript and PDF; a table of contents can be added to PDF files. A new font provides italic symbols. A TPad containing GL can be stored in a binary (i.e. non-vector) image file; add support for full-scene anti-aliasing. Usability enhancements to EVE. Math New interfaces for generating random number according to a given distribution, goodness of fit tests of unbinned data, binning multidimensional data, and several advanced statistical functions were added. RooFit Introduction of HistFactory; major additions to RooStats. TMVA Updated to version 4.1.0, adding e.g. the support for simultaneous classification of multiple output classes for several multivariate methods. PROOF Many new features, adding to PROOF's usability, plus improvements and fixes. PyROOT Support of Python 3 has been added. Tutorials Several new tutorials were provided for above new features (notably RooStats). A detailed list of all the changes is available at http://root.cern.ch/root/htmldoc/examples/V5. Additional comments: For an up-to-date author list see: http://root.cern.ch/drupal/content/root-development-team and http://root.cern.ch/drupal/content/former-root-developers. The distribution file for this program is over 30 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Depending on the data size and complexity of analysis algorithms. References: id="pr0100" view="all">http://root.cern.ch. http://root.cern.ch/drupal/content/production-version-528. I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo, M. Tadel, ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499. http://root.cern.ch/drupal/content/root-version-v5-28-00-patch-release-notes.

  10. Roles of Woody Root-Associated Fungi in Forest Ecosystem Processes: Recent Advances in Fungal Identification

    Treesearch

    Jill A. Hoff; Ned B. Klopfenstein; Jonalea R. Tonn; Geral I. McDonald; Paul J. Zambino; Jack D. Rogers; Tobin L. Peever; Lori M. Carris

    2004-01-01

    Interactions between fungi and woody roots may be critical factors that influence diverse forest ecosystems processes, such as wood decay (nutrient recycling); root diseases and their biological control; and endophytic, epiphytic, and mycorrhizal symbioses. However, few studies have characterized the diversity and the spatial and temporal distribution of woody root-...

  11. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    PubMed

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE PAGES

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    2018-01-09

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  13. Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weile; Koide, Roger T.; Eissenstat, David M.

    1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less

  14. The distribution of dry matter growth between shoot and roots in loblolly pine

    Treesearch

    F. Thomas Ledig; F. Herbert Bormann; Karl F. Wenger

    1970-01-01

    The allometric relationship, log (y) = a + k•log (x)-where x is one plant organ (e g., dry weight of roots) and y is another (e.g., dry weight of shoot)-was used to study the relative distribution of growth within loblolly pine seedlings. The relative...

  15. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    NASA Astrophysics Data System (ADS)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    The Western Ghats of Kerala, India is prone to shallow landslides and consequent debris flows. An earlier study (Kuriakose et al., DOI:10.1002/esp.1794) with limited data had already demonstrated the possible effects of vegetation on slope hydrology and stability. Spatially distributed root cohesion is one of the most important data necessary to assess the effects of anthropogenic disturbances on the probability of shallow landslide initiation, results of which are reported in sessions GM6.1 and HS13.13/NH3.16. Thus it is necessary to the know the upper limits of reinforcement that the roots are able to provide and its spatial and vertical distribution in such an anthropogenically intervened terrain. Root tensile strength and root pull out tests were conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) Gambooge (Garcinia gummi-gutta), 8) Coffee (Coffea Arabica) and 9) Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested had a length of 15 cm. Root pull out tests were conducted in the field. Root tensile strength vs root diameter, root pull out strength vs diameter, root diameter vs root depth and root count vs root depth relationships were derived. Root cohesion was computed for nine most dominant plants in the region using the perpendicular root model of Wu et al. (1979) modified by Schimidt et al. (2001). A soil depth map was derived using regression kriging as suggested by Kuriakose et al., (doi:10.1016/j.catena.2009.05.005) and used along with the land use map of 2008 to distribute the computed root tensile strength both vertically and spatially. Root cohesion varies significantly with the type of land use and the depth of soil. The computation showed that a maximum root reinforcement of 40 kPa was available in the first 30 cm of soil while exponentially decreased with depth to just about 3 kPa at 3 m depth. Mixed crops land use unit had the maximum root cohesion while fallow land, degraded forest and young rubber plantation had the lowest root reinforcement. These are the upper limits of root reinforcement that the vegetation can provide. When the soil is saturated, the bond between soil and roots reduces and thus the applicable root reinforcement is limited by the root pullout strength. Root reinforcement estimated from pullout strength vs diameter relationships was significantly lower than those estimated from tensile strength vs diameter relationships.

  16. Distributions of Characteristic Roots in Multivariate Analysis

    DTIC Science & Technology

    1976-07-01

    stiidied by various authors, have been briefly discussed. Such distributional ies of four test criteria and a few less important ones which are...functions h. -nots have further been discussed in view of the power comparisons made in co. ion wich tests of three multivariate hypotheses. In addition...one- sample case has also been considered in terms of distributional aspects of the ch. roots and criteria for tests of two hypotheses on the

  17. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Hasenstein, K. H.; Evans, M. L.

    1991-01-01

    We used a video digitizer system to measure surface extension and curvature in gravistimulated primary roots of maize (Zea mays L.). Downward curvature began about 25 +/- 7 min after gravistimulation and resulted from a combination of enhanced growth along the upper surface and reduced growth along the lower surface relative to growth in vertically oriented controls. The roots curved at a rate of 1.4 +/- 0.5 degrees min-1 but the pattern of curvature varied somewhat. In about 35% of the samples the roots curved steadily downward and the rate of curvature slowed as the root neared 90 degrees. A final angle of about 90 degrees was reached 110 +/- 35 min after the start of gravistimulation. In about 65% of the samples there was a period of backward curvature (partial reversal of curvature) during the response. In some cases (about 15% of those showing a period of reverse bending) this period of backward curvature occurred before the root reached 90 degrees. Following transient backward curvature, downward curvature resumed and the root approached a final angle of about 90 degrees. In about 65% of the roots showing a period of reverse curvature, the roots curved steadily past the vertical, reaching maximum curvature about 205 +/- 65 min after gravistimulation. The direction of curvature then reversed back toward the vertical. After one or two oscillations about the vertical the roots obtained a vertical orientation and the distribution of growth within the root tip became the same as that prior to gravistimulation. The period of transient backward curvature coincided with and was evidently caused by enhancement of growth along the concave and inhibition of growth along the convex side of the curve, a pattern opposite to that prevailing in the earlier stages of downward curvature. There were periods during the gravitropic response when the normally unimodal growth-rate distribution within the elongation zone became bimodal with two peaks of rapid elongation separated by a region of reduced elongation rate. This occurred at different times on the convex and concave sides of the graviresponding root. During the period of steady downward curvature the elongation zone along the convex side extended farther toward the tip than in the vertical control. During the period of reduced rate of curvature, the zone of elongation extended farther toward the tip along the concave side of the root. The data show that the gravitropic response pattern varies with time and involves changes in localized elongation rates as well as changes in the length and position of the elongation zone. Models of root gravitropic curvature based on simple unimodal inhibition of growth along the lower side cannot account for these complex growth patterns.

  18. The kinetics of root gravitropism: dual motors and sensors

    NASA Technical Reports Server (NTRS)

    Wolverton, Chris; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The Cholodny-Went theory of tropisms has served as a framework for investigation of root gravitropism for nearly three quarters of a century. Recent investigations using modern techniques have generated findings consistent with the classical theory, including confirmation of asymmetrical distribution of polar auxin transport carriers, molecular evidence for auxin asymmetry following gravistimulation, and generation of auxin response mutants with predictable lesions in gravitropism. Other results indicate that the classical model is inadequate to account for key features of root gravitropism. Initiation of curvature, for example, occurs outside the region of most rapid elongation and is driven by differential acceleration rather than differential inhibition of elongation. The evidence indicates that there are two motors driving root gravitropism, one of which appears not to be auxin regulated. We have recently developed technology that is capable of maintaining a constant angle of gravistimulation at any selected target region of a root while continuously monitoring growth and curvature kinetics. This review elaborates on the advantages of this new technology for analyzing gravitropism and describes applications of the technology that reveal (1) the existence of at least two phases to gravitropic motor output, even under conditions of constant stimulus input and (2) the existence of gravity sensing outside of the root cap. We propose a revised model of root gravitropism including dual sensors and dual motors interacting to accomplish root gravitropism, with only one of the systems linked to the classical Cholodny-Went theory.

  19. The kinetics of root gravitropism: dual motors and sensors.

    PubMed

    Wolverton, Chris; Ishikawa, Hideo; Evans, Michael L

    2002-06-01

    The Cholodny-Went theory of tropisms has served as a framework for investigation of root gravitropism for nearly three quarters of a century. Recent investigations using modern techniques have generated findings consistent with the classical theory, including confirmation of asymmetrical distribution of polar auxin transport carriers, molecular evidence for auxin asymmetry following gravistimulation, and generation of auxin response mutants with predictable lesions in gravitropism. Other results indicate that the classical model is inadequate to account for key features of root gravitropism. Initiation of curvature, for example, occurs outside the region of most rapid elongation and is driven by differential acceleration rather than differential inhibition of elongation. The evidence indicates that there are two motors driving root gravitropism, one of which appears not to be auxin regulated. We have recently developed technology that is capable of maintaining a constant angle of gravistimulation at any selected target region of a root while continuously monitoring growth and curvature kinetics. This review elaborates on the advantages of this new technology for analyzing gravitropism and describes applications of the technology that reveal (1) the existence of at least two phases to gravitropic motor output, even under conditions of constant stimulus input and (2) the existence of gravity sensing outside of the root cap. We propose a revised model of root gravitropism including dual sensors and dual motors interacting to accomplish root gravitropism, with only one of the systems linked to the classical Cholodny-Went theory.

  20. Effects of elevated atmospheric CO2 and N fertilization on bahiagrass root distribution

    USDA-ARS?s Scientific Manuscript database

    The effects of elevated atmospheric CO2 on pasture systems remain understudied in the Southeastern US. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was established in 2005 using open top field chambers on a Blanton loamy sand (loamy siliceous, thermic, Grossarenic...

  1. Soil zymography - A novel technique for mapping enzyme activity in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Spohn, Marie

    2014-05-01

    The effect plant roots on microbial activity in soil at the millimeter scale is poorly understood. One reason for this is that spatially explicit methods for the study of microbial activity in soil are limited. Here we present a quantitative in situ technique for mapping the distribution of exoenzymes in soil along with some results about the effects of roots on exoenzyme activity in soil. In the first study we showed that both acid and alkaline phosphatase activity were up to 5.4-times larger in the rhizosphere of Lupinus albus than in the bulk soil. While acid phosphatase activity (produced by roots and microorganisms) was closely associated with roots, alkaline phosphatase activity (produced only by microorganisms) was more widely distributed, leading to a 2.5-times larger area of activity of alkaline than of acid phosphatase. These results indicate a spatial differentiation of different ecophysiological groups of organic phosphorus mineralizing organisms in the rhizosphere which might alleviate a potential competition for phosphorus between them. In a second study cellulase, chitinase and phosphatase activities were analyzed in the presence of living Lupinus polyphyllus roots and dead/dying roots (in the same soils 10, 20 and 30 days after cutting the L. polyphyllus shoots). The activity of all three enzymes was 9.0 to 13.9-times higher at the living roots compared to the bulk soil. Microhotspots of cellulase, chitinase and phosphatase activity in the soil were found up to 60 mm away from the living roots. 10 days after shoot cutting, the areas of high activities of cellulase and phosphatase activity were extend up to 55 mm away from the next root, while the extension of the area of chitinase activity did not change significantly. At the root, cellulase and chitinase activity increased first at the root tips after shoot cutting and showed maximal activity 20 days after shoot cutting. The number and activity of microhotspots of chitinase activity was maximal 10 days after shoot cutting and decreased thereafter. In conclusion, the study showed that fresh root detritus stimulates enzyme activities much stronger than living roots, probably because of the high pulse input of C and N from dying roots compared to slow continuous release of rhizodeposits. Taken together, soil zymography is a very promising novel technique to gain insights the effects of roots on the spatial and temporal dynamic of exoenzyme activity in soil. References Spohn, M., Carminati, A., Kuzyakov, Y. (2013). Zymography - A novel in situ method for mapping distribution of enzyme activity in soil. Soil Biology and Biochemistry 58, 275-280. Spohn, M., Kuzyakov, Y. (2013): Distribution of microbial- and root- derived phosphatase activities in the rhizosphere depending on P availability and C allocation - Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry 67, 106-113. Spohn, M., Kuzyakov, Y. (accepted): Spatial and temporal dynamics of hotspots of enzyme activity as affected by living and dead roots - A soil zymography analysis. Plant and Soil

  2. Comparative Evaluation of Stress developed on Rotary Retreatment Instruments during Retrieval of Gutta-percha.

    PubMed

    Sihivahanan, Dhanasekaran; Reddy, T Vinay Kumar; Thomas, Anchu Rachel; Senthilnathan, Natarajan; Sivakumar, Murali; Shivanna, Sushmita

    2017-06-01

    The aim of the study is to compare the maximum stress distribution on the rotary retreatment instruments within the root canal at cervical, middle, and the apical one-third during retreatment of gutta-percha. A human mandibular premolar was scanned, and three-dimensional geometry of the root was reconstructed using finite element analysis (FEA) software package (ANSYS). The basic model was kept unchanged; tooth models were created using the same dimensions and divided into two groups as follows: Group I: ProTaper Universal retreatment system and group II: Mtwo rotary retreatment system. The stress distribution on the surface and within the retreatment files was analyzed numerically in the FEA package (ANSYS). The FEA analysis revealed that the retreatment instruments received the greatest stress in the cervical third, followed by the apical third and the middle third. The stress generated on the ProTaper Universal retreatment system was less when compared with the Mtwo retreatment files. The study concludes that the retreatment instruments undergo higher stress in the cervical third region, and further in vivo and in vitro studies are necessary to evaluate the relationship between instrument designs, stress distribution, residual stresses after use, and the torsional fracture of the retreatment instrument. The stress developed on the rotary retreatment instruments during retrieval of gutta-percha makes the instrument to get separated. There is no instrument system, i.e., suitable for all clinical situations and it is important to understand how the structural characteristics could influence the magnitude of stresses on the instrument to prevent its fracture in use.

  3. Protist-facilitated transport of soil bacteria in an artificial soil micromodel

    NASA Astrophysics Data System (ADS)

    Rubinstein, R. L.; Cousens, V.; Gage, D. J.; Shor, L. M.

    2013-12-01

    Soil bacteria within the rhizosphere benefit plants by protecting roots from pathogens, producing growth factors, and improving nutrient availability. These effects can greatly improve overall plant health and increase crop yield, but as roots grow out from the tips they quickly outpace their bacterial partners. Some soil bacteria are motile and can chemotact towards root tips, but bacterial mobility in unsaturated soils is limited to interconnected hydrated pores. Mobility is further reduced by the tendency of soil bacteria to form biofilms. The introduction of protists to the rhizosphere has been shown to benefit plants, purportedly by selective grazing on harmful bacteria or release of nutrients otherwise sequestered in bacteria. We propose that an additional benefit to the presence of protists is the facilitated transport of beneficial bacteria along root systems. Using microfluidic devices designed to imitate narrow, fluid-filled channels in soil, we have shown that the distribution of bacteria through micro-channels is accelerated in the presence of protists. Furthermore, we have observed that even with predation effects, the bacteria remain viable and continue to reproduce for the duration of our experiments. These results expand upon our understanding of complex bio-physical interactions in the rhizosphere system, and may have important implications for agricultural practices.

  4. CANNULATION STRATEGY FOR AORTIC ARCH RECONSTRUCTION USING DEEP HYPOTHERMIC CIRCULATORY ARREST

    PubMed Central

    de Zéicourt, Diane; Jung, Philsub; Horner, Marc; Pekkan, Kerem; Kanter, Kirk R.; Yoganathan, Ajit P.

    2013-01-01

    Background Aortic arch reconstruction in neonates is commonly performed using deep hypothermic circulatory arrest. However, concerns have arisen regarding potential adverse neurologic outcomes from this complex procedure, raising questions as to best arterial cannulation approach for cerebral perfusion and effective systemic hypothermia. In this study, we use computational fluid dynamics to investigate the impact of different cannulation strategies in neonates. Methods Using a realistic hypoplastic neonatal aorta template as the base geometry, four different cannulation options were investigated: 1) right innominate artery, 2) innominate root, 3) patent ductus arteriosus (PDA), or 4) both innominate root and PDA. Performance was evaluated based on the numerically predicted cerebral and systemic flow distributions compared with physiological perfusion under neonatal conditions. Results The four cannulation strategies were associated with different local hemodynamics, but this did not translate into any significant effect on the measured flow distributions. The largest difference only represented 0.8% of the cardiac output and was measured in the innominate artery, which received 23.2% of the cardiac output in Option 3 vs. 24% in Option 4. PA snaring benefited all systemic vessels uniformly. Conclusion Due to the very high vascular resistances in neonates, flow distribution to the different vascular beds was dictated by the downstream vascular resistances rather than the cannulation strategy, allowing the surgical team to choose their method of preference. However, patients with aortic coarctation warrant further investigation and will most likely benefit from a two cannulae approach (Option 4). PMID:22608717

  5. Root canal penetration of a sodium hypochlorite mixture using sonic or ultrasonic activation.

    PubMed

    Sáinz-Pardo, Marta; Estevez, Roberto; Pablo, Óliver Valencia de; Rossi-Fedele, Giampiero; Cisneros, Rafael

    2014-01-01

    The purpose of this ex vivo study was to determine, in "open" and "closed" systems, whether the design has an influence on the penetration length of sodium hypochlorite mixed with a radiopaque contrast medium, measured in millimeters, when delivered using positive pressure (PP) and using sonic (SI) or passive ultrasonic (PUI) activation. Sixty single-rooted teeth were divided into two groups: open and closed systems (n=30). Root canal shaping was performed to a working length of 17 mm. The samples were divided into three sub-groups (n=10) according to irrigant delivery and activation: PP, and SI or PUI activation. By using radiographs, penetration length was measured, and vapor lock was assessed. For the closed group, the penetration distance means were: PP 15.715 (±0.898) mm, SI 16.299 (±0.738) mm and PUI 16.813 (±0.465) mm, with vapor lock occurring in 53.3% of the specimens. In the open group, penetration to 17 mm occurred in 97.6% of the samples, and no vapor lock occurred. Irrigant penetration and distribution evaluation using open and closed systems provide significantly different results. For closed systems, PUI is the most effective in delivering the irrigant to working length, followed by SI.

  6. Evaluation of Apache Hadoop for parallel data analysis with ROOT

    NASA Astrophysics Data System (ADS)

    Lehrack, S.; Duckeck, G.; Ebke, J.

    2014-06-01

    The Apache Hadoop software is a Java based framework for distributed processing of large data sets across clusters of computers, using the Hadoop file system (HDFS) for data storage and backup and MapReduce as a processing platform. Hadoop is primarily designed for processing large textual data sets which can be processed in arbitrary chunks, and must be adapted to the use case of processing binary data files which cannot be split automatically. However, Hadoop offers attractive features in terms of fault tolerance, task supervision and control, multi-user functionality and job management. For this reason, we evaluated Apache Hadoop as an alternative approach to PROOF for ROOT data analysis. Two alternatives in distributing analysis data were discussed: either the data was stored in HDFS and processed with MapReduce, or the data was accessed via a standard Grid storage system (dCache Tier-2) and MapReduce was used only as execution back-end. The focus in the measurements were on the one hand to safely store analysis data on HDFS with reasonable data rates and on the other hand to process data fast and reliably with MapReduce. In the evaluation of the HDFS, read/write data rates from local Hadoop cluster have been measured and compared to standard data rates from the local NFS installation. In the evaluation of MapReduce, realistic ROOT analyses have been used and event rates have been compared to PROOF.

  7. Evaluation of the Spatiotemporal Dynamics of Oxytetracycline and Its Control Effect Against Citrus Huanglongbing via Trunk Injection.

    PubMed

    Hu, Jiahuai; Wang, Nian

    2016-12-01

    Citrus huanglongbing (HLB) or greening is a devastating bacterial disease that has destroyed millions of trees and is associated with phloem-residing 'Candidatus Liberibacter asiaticus' (Las) in Florida. In this study, we evaluated the spatiotemporal dynamics of oxytetracycline in planta and its control effect against HLB via trunk injection. Las-infected 'Hamlin' sweet orange trees on 'Swingle' citrumelo rootstock at the early stage of decline were treated with oxytetracycline hydrochloride (OTC) using trunk injection with varying number of injection ports. Spatiotemporal distribution of OTC and dynamics of Las populations were monitored by high-performance liquid chromatography method and qPCR assay, respectively. Uniform distribution of OTC throughout tree canopies and root system was achieved 2 days postinjection. High levels of OTC (>850 µg/kg) were maintained in leaf and root for at least 1 month and moderate OTC (>500 µg/kg) persisted for more than 9 months. Reduction of Las populations in root system and leaves of OTC-treated trees were over 95% and 99% (i.e., 1.76 and 2.19 log reduction) between 2 and 28 days postinjection. Conditions of trees receiving OTC treatment were improved, fruit yield was increased, and juice acidity was lowered than water-injected control even though their differences were not statistically significant during the test period. Our study demonstrated that trunk injection of OTC could be used as an effective measure for integrated management of citrus HLB.

  8. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake.

    PubMed

    Ge, Jing; Lu, Mengxiao; Wang, Donglan; Zhang, Zhiyong; Liu, Xianjin; Yu, Xiangyang

    2016-02-01

    Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply.

    PubMed

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.

  10. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    PubMed Central

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060

  11. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.

  12. Lateral root development in the maize (Zea mays) lateral rootless1 mutant

    PubMed Central

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-01-01

    Background and Aims The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Methods Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. Key Results The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. Conclusions The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired. PMID:23456690

  13. Lateral root development in the maize (Zea mays) lateral rootless1 mutant.

    PubMed

    Husakova, Eva; Hochholdinger, Frank; Soukup, Ales

    2013-07-01

    The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions. Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data. The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase. The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.

  14. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.).

    PubMed

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76-98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44-1.56%) or transported to the shoot (1.28-14.24%). A large proportion of Pb (74.11-99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb-phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08-80.40%) and taproot skin (46.22-77.94%), while the leaves and roots had 28.36-39.37% and 27.35-46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb-phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops.

  15. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures

    PubMed Central

    Ossareh, A.; Rosentritt, M.; Kishen, A.

    2018-01-01

    Introduction: The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. Materials and Methods: The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test (P < 0.05). Results: Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group (P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group (P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups (R2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. Conclusions: The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF. PMID:29899632

  16. STRIDE: Species Tree Root Inference from Gene Duplication Events.

    PubMed

    Emms, David M; Kelly, Steven

    2017-12-01

    The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

    PubMed

    Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential.

  18. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling results using coupled partial differential equations of transport in soils and roots along with that for nutrient dynamics. We study the feedbkack of HR on the dynamics of water and nitrogen cycling in the soil and how these dynamics influence root water and nitrogen uptake and consequently carbon assimilation by the canopy. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. We consider single-species (Ponderosa Pine) and multi-species (overstory Ponderosa Pine and understory shrubs) interaction. When single species is considered, the near surface soil-moisture available from HR during dry summer season is an important source of evaporation and contributes significantly to the total ET flux. However, when multi-species interactions are taken into account, the soil-water from the HR becomes an important source of transpiration from the understory. The results also show that passive plant nitrogen uptake is higher when HR is present and it is critical for sustaining expected rates of carbon assimilation.

  19. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies

    Treesearch

    Tianxiang Luo; Sandra Brown; Yude Pan; Peili Shi; Hua Ouyang; Zhenliang Yu; Huazhong Zhu

    2005-01-01

    Much uncertainty in estimating root biomass density (RBD, root mass per unit area) of all roots regionally exists because of methodological difficulties and little knowledge about the effects of biotic and abiotic factors on the magnitude and distribution pattern of RBD. In this study, we collected field data of RBD from 22 sites along the Tibetan Alpine Vegetation...

  20. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest.

    PubMed

    Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B

    2018-03-01

    Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.

  1. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    PubMed

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  2. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  3. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    NASA Astrophysics Data System (ADS)

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in shallower layers, where their effect on plant growth was temporarily most pronounced. At final harvest (21 DAS) however, effects of nitrification inhibitors on plant height were visible only in deeper layers. Furthermore, the statistically significant interaction between the factors time x layer depths x nitrification inhibitors underlined the dynamic influence of nitrification inhibitors on plant growth over time and across rooting depths. This study offers insights into optimizing nutrient uptake and plant productivity by (re-) using residues from the biogas industry. It is among the first to monitor and try to explain the dynamics of nitrification inhibitors on root system architecture over time. A modified N-fertilization application scheme might also serve as a promising tool in optimizing phytoremediation and phytomining techniques through predictably altering root structure in fertilized layers. References: Nagel, K. A. ; Putz, A. ; Gilmer, F. ; Heinz, K. ; Fischbach, A. ; Pfeifer, J. ; Faget, M. ; Blossfeld, S. ; Ernst, M. ; Dimaki, C. ; Kastenholz, B. ; Kleinert, A.-K. ; Galinski, A. ; Scharr, H. ; Fiorani, F. ; Schurr, U. (2012): GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
Functional plant biology 39(11), 891-904.

  4. Generalized Lotka—Volterra systems connected with simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.

    2015-06-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.

  5. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat

    PubMed Central

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-01-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. PMID:26880749

  6. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  7. GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems

    DOE PAGES

    Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less

  8. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Treesearch

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  9. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots

    PubMed Central

    Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2018-01-01

    In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818

  10. Photodynamic therapy for endodontic disinfection.

    PubMed

    Soukos, Nikolaos S; Chen, Peter Shih-Yao; Morris, Jason T; Ruggiero, Karriann; Abernethy, Abraham D; Som, Sovanda; Foschi, Federico; Doucette, Stephanie; Bammann, Lili Luschke; Fontana, Carla Raquel; Doukas, Apostolos G; Stashenko, Philip P

    2006-10-01

    The aims of this study were to investigate the effects of photodynamic therapy (PDT) on endodontic pathogens in planktonic phase as well as on Enterococcus faecalis biofilms in experimentally infected root canals of extracted teeth. Strains of microorganisms were sensitized with methylene blue (25 microg/ml) for 5 minutes followed by exposure to red light of 665 nm with an energy fluence of 30 J/cm2. Methylene blue fully eliminated all bacterial species with the exception of E. faecalis (53% killing). The same concentration of methylene blue in combination with red light (222 J/cm2) was able to eliminate 97% of E. faecalis biofilm bacteria in root canals using an optical fiber with multiple cylindrical diffusers that uniformly distributed light at 360 degrees. We conclude that PDT may be developed as an adjunctive procedure to kill residual bacteria in the root canal system after standard endodontic treatment.

  11. Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).

    PubMed

    Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I

    2012-10-01

    Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation

    USGS Publications Warehouse

    Page, B.D.; Bullen, T.D.; Mitchell, M.J.

    2008-01-01

    The calcium (Ca) isotope system is potentially of great use for understanding biogeochemical processes at multiple scales in forest ecosystems, yet remains largely unexplored for this purpose. In order to further our understanding of Ca behavior in forests, we examined two nearly adjacent hardwood-dominated catchments with differing soil Ca concentrations, developed from crystalline bedrock, to determine the variability of 44Ca/ 40Ca ratios (expressed as ??44Ca) within soil and vegetation pools. For both sugar maple and American beech, the Ca isotope compositions of the measured roots and calculated bulk trees were considerably lighter than those of soil pools at these sites, suggesting that the trees were able to preferentially take up light Ca at the root-soil interface. The Ca isotope compositions of three of four root samples were among the lightest values yet reported for terrestrial materials (??44Ca ???-3.95???). Our results further indicate that Ca isotopes were fractionated along the transpiration streams of both tree species with roots having the least ??44Ca values and leaf litter the greatest. An approximately 2??? difference in ??44Ca values between roots and leaf litter of both tree species suggests a persistent fractionation mechanism along the transpiration stream, likely related to Ca binding in wood tissue coupled with internal ion exchange. Finally, our data indicate that differing tree species demand for Ca and soil Ca concentrations together may influence Ca isotope distribution within the trees. Inter-catchment differences in Ca isotope distributions in soils and trees were minor, indicating that the results of our study may have broad transferability to studies of forest ecosystems in catchments developed on crystalline substrates elsewhere. ?? 2008 Springer Science+Business Media B.V.

  13. Distribution of 'Candidatus Liberibacter asiaticus' Above and Below Ground in Texas Citrus.

    PubMed

    Louzada, Eliezer S; Vazquez, Omar Ed; Braswell, W Evan; Yanev, George; Devanaboina, Madhavi; Kunta, Madhurababu

    2016-07-01

    Detection of 'Candidatus Liberibacter asiaticus' represents one of the most difficult, yet critical, steps of controlling Huanglongbing disease. Efficient detection relies on understanding the underlying distribution of bacteria within trees. To that end, we studied the distribution of 'Ca. L. asiaticus' in leaves of 'Rio Red' grapefruit trees and in roots of 'Valencia' sweet orange trees grafted onto sour orange rootstock. We performed two sets of leaf collection on grapefruit trees; the first a selective sampling targeting symptomatic leaves and their neighbors and the second a systematic collection disregarding symptomology. From uprooted orange trees, we exhaustively sampled fibrous roots. In this study, the presence of 'Ca. L. asiaticus' was detected in leaves using real-time polymerase chain reaction (PCR) targeting the 16S ribosomal gene and in roots using the rpIJ/rpIL ribosomal protein genes and was confirmed with conventional PCR and sequencing of the rpIJ/rpIL gene in both tissues. Among randomly collected leaves, 'Ca. L. asiaticus' was distributed in a patchy fashion. Detection of 'Ca. L. asiaticus' varied with leaf symptomology with symptomatic leaves showing the highest frequency (74%) followed by their neighboring asymptomatic leaves (30%), while randomly distributed asymptomatic leaves had the lowest frequency (20%). Among symptomatic leaves, we found statistically significant differences in mean number of bacterial cells with respect to both increasing distance of the leaf from the trunk and cardinal direction. The titer of 'Ca. L. asiaticus' cells was significantly greater on the north side of trees than on the south and west sides. Moreover, these directions showed different spatial distributions of 'Ca. L. asiaticus' with higher titers near the trunk on the south and west sides as opposed to further from the trunk on the north side. Similarly, we found spatial variation in 'Ca. L. asiaticus' distribution among root samples. 'Ca. L. asiaticus' was detected more frequently and bacterial abundances were higher among horizontally growing roots just under the soil surface (96%) than among deeper vertically growing roots (78%). Bacterial abundance declined slightly with distance from the trunk. These results point to paths of research that will likely prove useful to combating this devastating disease.

  14. Distribution of rain height over subtropical region: Durban, South Africa for satellite communication systems

    NASA Astrophysics Data System (ADS)

    Olurotimi, E. O.; Sokoya, O.; Ojo, J. S.; Owolawi, P. A.

    2018-03-01

    Rain height is one of the significant parameters for prediction of rain attenuation for Earth-space telecommunication links, especially those operating at frequencies above 10 GHz. This study examines Three-parameter Dagum distribution of the rain height over Durban, South Africa. 5-year data were used to study the monthly, seasonal, and annual variations using the parameters estimated by the maximum likelihood of the distribution. The performance estimation of the distribution was determined using the statistical goodness of fit. Three-parameter Dagum distribution shows an appropriate distribution for the modeling of rain height over Durban with the Root Mean Square Error of 0.26. Also, the shape and scale parameters for the distribution show a wide variation. The probability exceedance of time for 0.01% indicates the high probability of rain attenuation at higher frequencies.

  15. Reactive Oxygen Species Tune Root Tropic Responses1[OPEN

    PubMed Central

    Krieger, Gat

    2016-01-01

    The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism. PMID:27535793

  16. Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0

    NASA Astrophysics Data System (ADS)

    Lundberg, J.; Conrad, J.; Rolke, W.; Lopez, A.

    2010-03-01

    A C++ class was written for the calculation of frequentist confidence intervals using the profile likelihood method. Seven combinations of Binomial, Gaussian, Poissonian and Binomial uncertainties are implemented. The package provides routines for the calculation of upper and lower limits, sensitivity and related properties. It also supports hypothesis tests which take uncertainties into account. It can be used in compiled C++ code, in Python or interactively via the ROOT analysis framework. Program summaryProgram title: TRolke version 2.0 Catalogue identifier: AEFT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 3431 No. of bytes in distributed program, including test data, etc.: 21 789 Distribution format: tar.gz Programming language: ISO C++. Computer: Unix, GNU/Linux, Mac. Operating system: Linux 2.6 (Scientific Linux 4 and 5, Ubuntu 8.10), Darwin 9.0 (Mac-OS X 10.5.8). RAM:˜20 MB Classification: 14.13. External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: The problem is to calculate a frequentist confidence interval on the parameter of a Poisson process with statistical or systematic uncertainties in signal efficiency or background. Solution method: Profile likelihood method, Analytical Running time:<10 seconds per extracted limit.

  17. Diversity of root-knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes?

    PubMed

    Aït Hamza, Mohamed; Ali, Nadine; Tavoillot, Johannes; Fossati-Gaschignard, Odile; Boubaker, Hassan; El Mousadik, Abdelhamid; Mateille, Thierry

    2017-12-19

    Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to characterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone suggests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unfit local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. Olive nurseries in Morocco are not able to guarantee the safety of rooted plants. As a result, olive production systems are exposed to strong RKN invasion risks. Consequently, the use of healthy substrates in nurseries may prevent plant-parasitic nematode induction in orchards.

  18. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  19. Modeling vegetation rooting strategies on a hillslope

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2011-12-01

    The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.

  20. Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis.

    PubMed

    Kučerová, Danica; Kollárová, Karin; Zelko, Ivan; Vatehová, Zuzana; Lišková, Desana

    2014-04-15

    Our study focused on the mediatory role of galactoglucomannan oligosaccharides (GGMOs) in plant protection against cadmium stress, examined mainly on the primary root growth of Arabidopsis thaliana. The application of GGMOs diminished the negative effect of cadmium on root length, root growth dynamics and also on photosynthetic pigment content. We tested the hypothesis that the effect of GGMOs is associated with decreased cadmium accumulation or its modified distribution. Cadmium distribution was observed chronologically from the first day of plant culture and depended on the duration of cadmium treatment. First, cadmium was stored in the root and hypocotyl and later transported by xylem to the leaves and stored there in trichomes. The protective effect of GGMOs was not based on modified cadmium distribution or its decreased accumulation. In cadmium and GGMOs+cadmium-treated plants, the formation of suberin lamellae was shifted closer to the root apex compared to the control and GGMOs. No significant changes between cadmium and GGMOs+cadmium variants in suberin lamellae development corresponded with any differences in cadmium uptake. GGMOs also stimulated Arabidopsis root growth under non-stress conditions. In this case, suberin lamellae were developed more distantly from the root apex in comparison with the control. Faster solute and water transport could explain the faster plant growth induced by GGMOs. Our results suggest that, in cadmium-stressed plants, GGMOs' protective action is associated with the response at the metabolic level. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Root parasites of southern forests

    Treesearch

    Lytton J. Musselman; William F. Mann

    1978-01-01

    The five families of root parasites of the South are discussed relative to selection of hosts, ecology, and potential for damage to commercial species. An identification key to all genera of root parasites is included. Plants and flowers of 29 species are illustrated and their distribution in the South mapped.

  3. The distribution and abundance of Sphaeroma terebrans, a wood-boring isopod of red mangrove (Rhizophora mangle) habitat within Tampa Bay

    USGS Publications Warehouse

    Brooks, R.A.; Bell, S.S.

    2005-01-01

    This study was conducted to determine the distribution, abundance, and demography of a wood boring isopod, Sphaeroma terebrans Bate, 1866, within the prop roots of the red mangrove, Rhizophora mangle L., in eight sites within Tampa Bay, Florida. Sphaeroma terebrans in Tampa Bay displayed reproductive activity year-round and bay-wide synchrony in their density pattern. On average approximately 60% (range: 25%-86%) of the intertidal aerial roots surveyed were occupied by S. terebrans. Although infestation levels by S. terebrans in Tampa Bay were similar to that of more tropical regions, the distribution of S. terebrans was not continuous throughout the study sites. A substantially higher occurrence and density of S. terebrans was found in the northern compared to more southern study sites within the Bay. Additionally, some seemingly suitable areas of the bay (i.e., Pinellas Point, Skyway, Fort Desoto) were actually unoccupied on some dates. Although sites differed in the frequency with which roots were attacked, the density of burrows and isopods in an occupied root was similar, with most attacked roots containing 3-5 burrows. The results of a transplantation experiment indicated that neither abiotic factors nor substrate quality limit the burrowing capabilities or survival of adult S. terebrans in the areas where they are absent. Instead, dispersal limitation, linked with differential juvenile survival, most likely controls isopod distribution and abundance within Tampa Bay.

  4. [Effect of silicon on translocation and morphology distribution of lead in soil-tobacco system].

    PubMed

    Yan, Yi-Hua; Zheng, Zi-Cheng; Li, Ting-Xuan; Zhang, Xi-Zhou; Wang, Yong

    2014-10-01

    Taking tobacco as test material, a pot experiment was conducted to study the effect of silicon on translocation of lead (Pb) form soil to tobacco in order to explore effective measures for reducing Pb concentration in tobacco leaf. The results showed that silicon application promoted the transformation of exchangeable Pb into Fe-Mn oxide-bound Pb in non-rhizospheric soil, and into Fe-Mn oxide-bound Pb and residual Pb in rhizospheric soil, which decreased the availability and mobility of Pb in the soil. Silicon application significantly reduced the Pb uptake of tobacco, with the content of Pb being decreased by 6.5% to 44.0% in tobacco, and 3.1% to 60.4% in leaf. Silicon application promoted the transformation of ethanol-extractable, H2O-extractable Pb and NaCl-extractable Pb into HCl-extractable Pb and residual Pb in root, stem and leaf of tobacco, which reduced the toxicity and mobility of Pb in tobacco. Silicon restricted the transportation of Pb from soil to tobacco leaf by reducing the mobility index of Pb from soil to root and the mobility index of Pb from root to stem in soil-tobacco system. Meanwhile, the mobility index of Pb from stem to leaf in soil-tobacco system showed a rising-and-falling trend with the increase of Pb application. Silicon inhibited the Pb migration from soil to tobacco leaf by reducing availability of Pb, mitigating toxicity of Pb to tobacco, and changing the distribution of Pb forms in tobacco, consequently reducing Pb concentration of tobacco leaf. These results demonstrated silicon application could be effective in reducing translocation of Pb from soil to tobacco.

  5. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations.

    PubMed

    Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A

    2017-03-01

    The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Gene tree rooting methods give distributions that mimic the coalescent process.

    PubMed

    Tian, Yuan; Kubatko, Laura S

    2014-01-01

    Multi-locus phylogenetic inference is commonly carried out via models that incorporate the coalescent process to model the possibility that incomplete lineage sorting leads to incongruence between gene trees and the species tree. An interesting question that arises in this context is whether data "fit" the coalescent model. Previous work (Rosenfeld et al., 2012) has suggested that rooting of gene trees may account for variation in empirical data that has been previously attributed to the coalescent process. We examine this possibility using simulated data. We show that, in the case of four taxa, the distribution of gene trees observed from rooting estimated gene trees with either the molecular clock or with outgroup rooting can be closely matched by the distribution predicted by the coalescent model with specific choices of species tree branch lengths. We apply commonly-used coalescent-based methods of species tree inference to assess their performance in these situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Expected distributions of root-mean-square positional deviations in proteins.

    PubMed

    Pitera, Jed W

    2014-06-19

    The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.

  8. Phytotransformation of TNT and distribution of metabolic products in Myriophyllum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderford, M.; Hughes, J.

    Recent investigations indicate that 2,4,6-trinitrotoluene (TNT) disappears from solution in the presence of aquatic macrophytes. Studies using (U) {sup 14}C TNT were conducted to monitor the fate of TNT and its transformation products in Myriophyllum aquaticum. Plants were exposed to TNT solution for several days and destructively sampled at the end of that time. Data for live plants were compared with those for heat killed controls and axenic Myriophyllum systems. Distribution of radiolabel was analyzed in the root, stem and leaf tissue of Myriophyllum directly by incineration of plant tissue and capture of {sup 14}CO{sub 2}. Tissues were also extractedmore » with methanol and subjected to scintillation analysis. Plant extracts were examined by HPLC for TNT and its known reduction products. A complete mass balance analysis was performed for the system. Significant differences in distribution of {sup 14}C were noted between the live and killed plants. For live plants, the majority of {sup 14}C associated with the plant was sequestered in the roots and was largely unextractable. Extracts of stem and leaf were lower in total {sup 14}C content, but the radiolabel was more extractable from these tissues. In the extracted fractions, TNT and monoamino transformation products were detected, but not in stoichiometric quantities. Investigations are currently underway to identify the extractable products of plant associated TNT transformation.« less

  9. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Study of Solid State Drives performance in PROOF distributed analysis system

    NASA Astrophysics Data System (ADS)

    Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.

    2010-04-01

    Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.

  11. A diagnostic guide for Fusarium Root Rot of pea

    USDA-ARS?s Scientific Manuscript database

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  12. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  13. Seasonal dynamics of ectomycorrhizal fungus assemblages on oak seedlings in the southeastern Appalachian Mountains

    Treesearch

    John F. Walker; Orson K. Jr. Miller; Jonathan L. Horton

    2008-01-01

    The potential for seasonal dynamics in ectomycorrhizal (EM) fungal assemblages has important implications for the ecology of both the host trees and the fungal associates. We compared EM fungus distributions on root systems of out-planted oak seedlings at two sites in mixed southeastern Appalachian Mountain forests at the Coweeta Hydrologic Laboratory in North Carolina...

  14. [Adaptive adjustment of rhizome and root system on morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged condition].

    PubMed

    Liu, Yu-fang; Chen, Shuang-lin; Li Ying-chun; Guo, Zi-wu; Li, Ying-chun; Yang, Qing-ping

    2015-12-01

    The research was to approach the growth strategy of rhizome and roots based on the morphology, biomass and nutrient in Phyllostachys rivalis under long-term waterlogged conditions, and provided a theoretical basis for its application for vegetation restoration in wetland and water-level fluctuation belts. The morphological characteristics, physiological and biochemical indexes of annual bamboo rhizome and roots were investigated with an experiment using individually potted P. rivalis which was treated by artificial water-logging for 3, 6, and 12 months. Accordingly the morphological characteristics, biomass allocation, nutrient absorption and balance in rhizome and roots of P. rivalis were analyzed. The results showed that there was no obvious impact of long-term water-logging on the length and diameter of rhizomes, diameter of roots in P. rivalis. The morphological characteristics of rhizome had been less affected generally under water-logging for 3 months. And less rhizomes were submerged, while the growth of roots was inhibited to some extent. Furthermore, with waterlogging time extended, submerged roots and rhizomes grew abundantly, and the roots and rhizomes in soil were promoted. Moreover for ratios of rhizome biomass in soil and water, there were no obvious variations, the same for the root biomass in soil to total biomass. The ratio of root biomass in water to total biomass and the ratio of root biomass in water to root biomass in soil both increased significantly. The results indicated that P. rivalis could adapt to waterlogged conditions gradually through growth regulation and reasonable biomass distribution. However, the activity of rhizome roots in soil decreased and the nutrient absorption was inhibited by long-term water-logging, although it had no effect on stoichiometric ratios of root nutrient in soil. The activity of rhizome root in water increased and the stoichiometric ratios adjusted adaptively to waterlogged conditions, the ratio of N/P increased, while N/K and P/K decreased, which implied that roots in water absorbed oxygen and nutrients could help P. rivalis adapt to long-term waterlogged environment effectively.

  15. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    NASA Astrophysics Data System (ADS)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months. We irrigated the poplars with modified Hoagland's solution that contained no B. We imaged the roots in the soil every 3rd week using neutron radiography (NR) at the Paul-Scherrer Institute. Living roots can be visualised in soil by NR because of their higher water content compared to the surrounding soil. At the end of the growing period, the Al containers were opened and the soil surface was scanned by a standard office scanner. The soil in the containers was divided into nine equal portions representing different depths and spiked or un-spiked regions in soil profile. We separated roots and soil as well as the aerial parts (stems and leaves). We obtained data on root morphological parameters like root length and root density by evaluating scans of the washed root samples with an image evaluation software. All soil and plant samples were dried, weighed and analyzed for B and mineral nutrients using ICP-OES. Plant vitality parameters like water use, growth and number of living leaves did not show any reaction to the treatments. The oldest poplar leaves from poplars in the B-spiked treatments showed signs of light to serious necrosis. From the neutron radiographs it was apparent that poplar roots reached the walls of the Al- containers during the experiment. Primary roots grew at first strongly in lengths in horizontal as well as in vertical direction and only after this lateral root growth was visible. Although the filling and packing of the containers was done with great care to establish an ideally homogeneous soil profile settlement occurred in some containers resulting in gaps in the profile. However, roots growth did not seem to be deranged since roots simply crossed these gaps and continued growth in the adjacent soil patch. The complete results will be available at the time of the conference.

  16. Sodium and Potassium Fluxes and Compartmentation in Roots of Atriplex and Oat 1

    PubMed Central

    Mills, David; Robinson, Kenneth; Hodges, Thomas K.

    1985-01-01

    K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions. Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+. Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole. PMID:16664273

  17. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat.

    PubMed

    Mills, D; Robinson, K; Hodges, T K

    1985-07-01

    K(+) and Na(+) fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K(+) with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.Increasing ambient Na(+) concentrations from 0 to 50 millimolar altered K(+), in Atriplex, as follows: slightly decreased the cytoplasmic content (Q(c)), the vacuolar content (Q(v)), and the plasma membrane influx and efflux. Xylem transport for K(+) decreased by 63% in Atriplex. For oat roots, similar increases in Na(+) altered K(+) parameters as follows: plasma membrane influx and efflux decreased by about 80%. Q(c) decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Q(v) for K(+). Increasing ambient Na(+) resulted in higher (3 to 5-fold) Na(+) fluxes across the plasma membrane and in Q(c) of both species. In Atriplex, Na(+) fluxes across the tonoplast and Q(v) increased as external Na(+) was increased. In oat, however, no significant change was observed in Na(+) flux across the tonoplast or in Q(v) as external Na(+) was increased. In oat roots, Na(+) reduced K(+) uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na(+) levels, the influx transport system at the plasma membrane of both species preferred K(+) over Na(+).Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K(+) occurred across the plasma membrane, and passive movement of K(+) occurred across the tonoplast in both species. Na(+), in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na(+) was passively distributed between the free space, cytoplasm, and vacuole.

  18. Can differences in root responses to soil drying and compaction explain differences in performance of trees growing on landfill sites?

    PubMed

    Liang, Jiansheng; Zhang, Jianhua; Chan, Gilbert Y. S.; Wong, M. H.

    1999-07-01

    Two tropical woody species, Acacia confusa Merrill and Litsea glutinosa (Lour.) C.B. Robinson, were grown under controlled conditions in PVC pipes filled with John Innes No. 2 soil. To investigate root distribution, physiological characteristics and hydraulic conductivity, four soil treatments were imposed-well-watered and noncompacted (control), well-watered and compacted; unwatered and noncompacted, and unwatered and compacted. In L. glutinosa, rooting depth and root elongation were severely restricted when soil bulk density increased from around 1.12 to 1.62 g cm(-3), whereas soil compaction had little effect on these parameters in A. confusa. As soil drying progressed, root water potential and osmotic potential declined more slowly in L. glutinosa than in A. confusa. Both the soil drying and compaction treatments significantly stimulated the accumulation of root abscisic acid (ABA) in both species. Soil drying damaged the root cell membrane of A. confusa, but had little influence on the root cell membrane of L. glutinosa. Soil drying had a greater effect on root hydraulic conductivity (L(p)) in L. glutinosa than in A. confusa, whereas the effect of soil compaction on L(p) was less in L. glutinosa than in A. confusa. Soil drying enhanced the effects of soil compaction on root L(p). We conclude that soil drying and compaction have large species-specific effects on the distribution, growth and physiology of roots. The relationships of these root properties to the species' ability to tolerate unfavorable soil conditions were examined.

  19. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China

    NASA Astrophysics Data System (ADS)

    Ye, Chao; Guo, Zhonglu; Li, Zhaoxia; Cai, Chongfa

    2017-05-01

    Herbaceous species, especially their roots, are believed to have an important role in enhancing soil strength and protecting soil against erosion. This study evaluated the effects of root distribution characteristics on soil shear resistance and soil detachment rates, correlations among root mechanical properties, root chemical composition and root parameters, and whether the Wu-Waldron model can accurately estimate soil reinforcement by roots. Bahiagrass (Paspalum notatum) was planted in planter boxes by overlapping four rectangle frames (0.4 × 0.1 × 0.1 m). A series of laboratory tests of direct shear strength and soil detachment were conducted on two soils that were derived from granite and shale with different soil depths and sowing densities. The results indicated that soil aggregate stability was positively correlated with root characteristics. Over 70% of the total measured root parameters were distributed in the upper 20 cm of the soil, and they decreased with increasing soil depth and decreasing sowing density. The tensile properties (root tensile strength and root tensile force) were significantly correlated with root diameter. The contents of root main chemical compositions were significantly correlated with root diameter while hemicellulose showed no obvious trend with root diameter (P = 0.12). Root tensile strength and root tensile force were also significantly correlated with the contents of these four compositions, except hemicellulose. The relative soil detachment demonstrated a significant negative correlation with root parameters with sowing densities from 5 to 30 g m- 2, and it remained at a relatively low value when the sowing density was > 20 g m- 2. The soil detachment rate, erodibility factor and critical flow shear stress were well correlated with the root area ratio, sowing density, and soil depth. The Wu-Waldron model was found to be inappropriate for these soils, as it overestimated additional soil shear strength due to roots by 152-366% in the upper 20 cm, and 11-48% in deeper soil layers. This study demonstrated that the root area ratio was a more suitable root characteristic parameter that contributes to soil reinforcement.

  20. Software Management for the NOνAExperiment

    NASA Astrophysics Data System (ADS)

    Davies, G. S.; Davies, J. P.; C Group; Rebel, B.; Sachdev, K.; Zirnstein, J.

    2015-12-01

    The NOvAsoftware (NOνASoft) is written in C++, and built on the Fermilab Computing Division's art framework that uses ROOT analysis software. NOνASoftmakes use of more than 50 external software packages, is developed by more than 50 developers and is used by more than 100 physicists from over 30 universities and laboratories in 3 continents. The software builds are handled by Fermilab's custom version of Software Release Tools (SRT), a UNIX based software management system for large, collaborative projects that is used by several experiments at Fermilab. The system provides software version control with SVN configured in a client-server mode and is based on the code originally developed by the BaBar collaboration. In this paper, we present efforts towards distributing the NOvA software via the CernVM File System distributed file system. We will also describe our recent work to use a CMake build system and Jenkins, the open source continuous integration system, for NOνASoft.

  1. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting

    PubMed Central

    Xu, Dongyang; Miao, Jiahang; Yumoto, Emi; Yokota, Takao; Asahina, Masashi; Watahiki, Masaaki

    2017-01-01

    Abstract Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number. PMID:29016906

  2. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  3. In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil.

    PubMed

    Mohney, Brian K; Matz, Tricia; Lamoreaux, Jessica; Wilcox, David S; Gimsing, Anne Louise; Mayer, Philipp; Weidenhamer, Jeffrey D

    2009-11-01

    The difficulties of monitoring allelochemical concentrations in soil and their dynamics over time have been a major barrier to testing hypotheses of allelopathic effects. Here, we evaluate three diffusive sampling strategies that employ polydimethylsiloxane (PDMS) sorbents to map the spatial distribution and temporal dynamics of root-exuded thiophenes from the African marigold, Tagetes erecta. Solid phase root zone extraction (SPRE) probes constructed by inserting stainless steel wire into PDMS tubing were used to monitor thiophene concentrations at various depths beneath marigolds growing in PVC pipes. PDMS sheets were used to map the distribution of thiophenes beneath marigolds grown in thin glass boxes. Concentrations of the two major marigold thiophenes measured by these two methods were extremely variable in both space and time. Dissection and analysis of roots indicated that distribution of thiophenes in marigold roots also was quite variable. A third approach used 1 m lengths of PDMS microtubing placed in marigold soil for repeated sampling of soil without disturbance of the roots. The two ends of the tubing remained out of the soil so that solvent could be washed through the tubing to collect samples for HPLC analysis. Unlike the other two methods, initial experiments with this approach show more uniformity of response, and suggest that soil concentrations of marigold thiophenes are affected greatly even by minimal disturbance of the soil. Silicone tube microextraction gave a linear response for alpha-terthienyl when maintained in soils spiked with 0-10 ppm of this thiophene. This method, which is experimentally simple and uses inexpensive materials, should be broadly applicable to the measurement of non-polar root exudates, and thus provides a means to test hypotheses about the role of root exudates in plant-plant and other interactions.

  4. Effect of foliar treatments on distribution of /sup 14/C-glyphosate in Convolvulus arvensis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate (N-(phosphonomethyl)glycine) used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D((2,4-dichlorophenoxy) acetic acid) or 1.68 kg/ha of glyphosate.more » Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and /sup 14/C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on /sup 14/C-glyphosate translocation. After /sup 14/C-glyphosate was applied, intact plants had about twice as much /sup 14/C in distal root sections as in proximal or middle root sections. Decapitated plants had more /sup 14/C in proximal and middle root sections than in distal sections, and about twice as much /sup 14/C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants.« less

  5. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    • Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. • Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. • Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. • Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  6. Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.

    2017-10-01

    With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.

  7. A model framework to represent plant-physiology and rhizosphere processes in soil profile simulation models

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.

    2013-12-01

    Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation of plant transpiration by root-zone produced plant hormones, and (iv) the impact of salt accumulation at the soil-root interface on root water uptake. We further propose a framework how this process knowledge could be implemented in root zone simulation models that do not resolve small scale processes.

  8. Documentation of Computer Program INFIL3.0 - A Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone

    USGS Publications Warehouse

    ,

    2008-01-01

    This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that illustrates application of the code to a field setting. Brief descriptions of the main program routine and of each of the modules and subroutines of the INFIL3.0 code, as well as definitions of the variables used in each subroutine, are provided in an appendix.

  9. Effect of root canal treatment procedures with a novel rotary nickel titanium instrument (TRUShape) on stress in mandibular molars: a comparative finite element analysis.

    PubMed

    Bonessio, Noemi; Arias, Ana; Lomiento, Guiseppe; Peters, Ove A

    2017-01-01

    The aim of this study was to investigate and compare, via finite element analysis (FEA), the effects of endodontic access and canal preparation on stress distribution under functional loading of a mandibular molar treated with novel (TRUShape) and conventional (Vortex) rotary root canal preparation instruments. Identical plastic mandibular molars with natural anatomy had all 4 canals shaped with either TRUShape or a conventional rotary, Vortex (#20 and #30, both by Dentsply Tulsa Dental). Finite element analysis was used to evaluate stress distribution in untreated and treated models. Micro-computed tomography (MCT) of the extracted teeth shaped in vitro was used to inform the FEA model regarding the geometry of root canals and external surfaces. Modeling the intact periodontal support and cancellous/cortical bone was based on anatomical data. Profiles of average and maximum von Mises stresses in dentin of the four treated conditions under functional loading were compared to the untreated model. This comparison was performed for each tooth model with and without root canal obturation and composite restoration. On average, the dentin sections with the most changes after preparation were located in the access cavity, with average stress increase up to +5.7, +8.5, +8.9, and +10.2 % for the TRUShape #20, Vortex #20, TRUShape #30 and Vortex #30, respectively, relative to the untreated model. Within the root canal system, the average stress differences were smaller than <5 % with lower values for TRUShape preparation. A reduction of the average stress in the access cavity was observed as an effect of the composite restoration, while about the same von Mises stress' profiles were found into the root canal. In this finite element analysis, preparation of the access cavity resulted in increased von Mises stresses under functional occlusal load. The limited (up to 0.7 %) retained radicular dentin in the TRUShape versus the Vortex cavity proved effective in reducing masticatory stresses. The bonded restoration modeled in this study only partially counterbalance the combined effects of access cavity and root canal preparation.

  10. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  11. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  12. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    NASA Astrophysics Data System (ADS)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces. These models were combined to a global optimization algorithm to obtain parameters that best fit the observed soil-plant-atmosphere water dynamics. Eventually, relations between root system conductance and growth as well as water access strategies were quantitatively analyzed.

  13. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  14. A Novel Dark-Inducible Protein, LeDI-2, and Its Involvement in Root-Specific Secondary Metabolism in Lithospermum erythrorhizon1

    PubMed Central

    Yazaki, Kazufumi; Matsuoka, Hideaki; Shimomura, Koichiro; Bechthold, Andreas; Sato, Fumihiko

    2001-01-01

    Lithospermum erythrorhizon produces red naphthoquinone pigments that are shikonin derivatives. They are accumulated exclusively in the roots of this plant. The biosynthesis of shikonin is strongly inhibited by light, even though other environmental conditions are optimized. Thus, L. erythrorhizon dark-inducible genes (LeDIs) were isolated to investigate the regulatory mechanism of shikonin biosynthesis. LeDI-2, showing the strict dark-specific expression, was further characterized by use of cell suspension cultures and hairy root cultures as model systems. Its mRNA accumulation showed a similar pattern with that of shikonin. In the intact plants LeDI-2 expression was observed solely in the root, and the longitudinal distribution of its mRNA was also in accordance to that of shikonin. LeDI-2 encoded a very hydrophobic polypeptide of 114 amino acids that shared significant similarities with some root-specific polypeptides such as ZRP3 (maize) and RcC3 (rice). Reduction of LeDI-2 expression by its antisense DNA in hairy roots of L. erythrorhizon decreased the shikonin accumulation, whereas other biosynthetic enzymes, e.g. p-hydroxybenzoic acid:geranyltransferase, which catalyzed a critical biosynthetic step, showed similar activity as the wild-type clone. This is the first report of the gene that is involved in production of secondary metabolites without affecting biosynthetic enzyme activities. PMID:11299363

  15. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Krajcarová, L; Novotný, K; Kummerová, M; Dubová, J; Gloser, V; Kaiser, J

    2017-10-01

    The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO 4 or AgNO 3 solutions with a concentration of 10µmoll -1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll -1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag + ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    PubMed

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.

  17. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation1[OPEN

    PubMed Central

    Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank

    2015-01-01

    Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256

  18. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems

    PubMed Central

    2013-01-01

    This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns. PMID:23286457

  20. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems.

    PubMed

    Lobet, Guillaume; Draye, Xavier

    2013-01-04

    : This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns.

  1. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  2. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    Slope erosion and shallow slope instabilities are the major factors of soil losses in cultivated steep terrains. These phenomena also cause loss of organic matter and plants nutrients, together with the partial or total destruction of the structures, such as the row tillage pattern of the vineyards, which allow for the plants cultivation. Vegetation has long been used as an effective tool to decrease the susceptibility of a slope to erosion and to shallow landslides. In particular, the scientific research focused on the role played by the plant roots, because the belowground biomass has the major control on the potential development of soil erosion and of shallow failures. Instead, a comprehensive study that analyzes the effects of the roots of agricultural plants on both soil erosion and slope instability has not been carried out yet. This aspect should be fundamental where sloped terrains are cultivated with plants of great economical relevance, as grapevine. To contribute to fill this gap, in this study the features of root density in the soil profile have been analyzed in slopes cultivated with vineyards, located on a sample hilly area of Oltrepò Pavese (northern Italy). In this area, the viticulture is the most important branch of the local economy. Moreover, several events of rainfall-induced slope erosion and shallow landslides have occurred in this area in the last 6 years, causing several economical damages linked to the destruction of the vineyards and the loss of high productivity soils. Grapevine root distribution have been measured in different test-site slopes, representative of the main geological, geomorphological, pedological, landslides distribution, agricultural features, in order to identify particular patterns on root density that can influence the development of slope instabilities. Roots have been sampled in each test-site for characterizing their strength, in terms of the relation between root diameter and root force at rupture. Root density and root strength have been combined in a physical model (Fiber Bundle Model), for the assessment of the trends of the root reinforcement in soil. The results of this study have contributed to identify root distribution behaviours, in different agricultural and environmental conditions, that have not been enough to guarantee slope stability or that can promote an increase of it. This can furnish important indications for a better identification of slopes more susceptible to slope instabilities and for improving land planning.

  3. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  4. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  5. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  6. Stress distributions in internal resorption cavities restored with different materials at different root levels: A finite element analysis study.

    PubMed

    Aslan, Tuğrul; Üstün, Yakup; Esim, Emir

    2018-04-15

    The aim of this study was to evaluate the stresses within simulated roots with internal resorption cavities at the apical, middle and coronal root levels, after obturation with gutta-percha and/or MTA utilising finite element analysis (FEA). Mandibular premolar teeth with internal resorption cavities at different root levels were modelled. Models were restored with gutta-percha and/or MTA. An oblique force of 300 N was applied and stress evaluations were carried out. In the MTA-filled resorption models, the stresses were distributed more homogeneously than the gutta-percha filled models, and the stress concentrations were lower in the remaining dentinal tissues. If the whole root is considered, the fully gutta-percha-filled models generated the highest stress values. Differences between the fully MTA-filled models and hybrid techniques were present only in the apical resorption models. Both the MTA and combination of MTA and gutta-percha can be suggested for use in clinical practice, in cases of internal root resorption cavity obturation. © 2018 Australian Society of Endodontology Inc.

  7. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Escapes from herbivory in relation to the structure of mangrove island macroalgal communities.

    PubMed

    Taylor, Phillip R; Littler, Mark M; Littler, Diane S

    1986-07-01

    Some shallow habitats that surround mangrove islands exhibit abruptly discontinuous macrophyte boundaries; in other regions, plant distributional patterns are less defined. Where distinct boundaries do occur, fleshy algae predominate on the roots of the red mangrove, Rhizophora mangle, which do not contact the bottom sediments ("hanging roots"), while calcifying algae dominate on the substratum-penetrating roots and banks (=embedded-root habitat) surrounding the mangrove thickets. Considerable natural-history and floristic information reveals that the fleshy hanging-root species are not specialists, for that type of habitat. Experimental transplants showed that on banks and embedded roots where there typically are abundant macroherbivores (particularly sea urchins), most fleshy algae are eliminated.The dominants of the hanging-root habitat (e.g, Acanthophora spicifera, Spyridia filamentosa, Caulerpa racemosa var. Occidentalis) are 6-20 times more susceptible to herbivores than the dominants of the embedded-root habitat (e.g., Halimeda opuntia f. triloba, H. monile). Consequently, we suggest the former are relegated to the spatial refugia from herbivores (=non-coexistence escapes) provided by the hanging roots. Factors associated with these palatability differences include higher average calorific values (6.5 times) of the fleshy hanging-root dominants, greater proportions of organic content (2.6 times) and the general absence of calcification. The dominants of the embedded-root habitat show reduced edibility as a probable consequence of low calorific values, heavy calcification and potential herbivore-detering secondary metabolites. Correlative evidence and preliminary experimental results tentatively indicate that, in the absence of macroherbivores, the hanging-root dominants, which exhibit production rates 4.7 times greater than the dominants of the embedded-root habitat, are better competitors for space.We suggest that variations in herbivory are responsible, in part, for maintaining greater algal diversity in mangrove systems. At a study site with abundant sea urchins, five algal species were found only in the embedded-root habitat three species were confined to the hanging roots, while three others occurred in both. At an urchin-free site, no macrophytes were found only on embedded-root substrata, while one (in trace amounts) was found only on hanging-root habitat and eight occurred in both. We predict that in the absence of herbivores, the species assemblage characteristic of the hanging-roots would exclude many of the dominants from the embedded-root habitat.

  9. Impact of nursery management practices on heritability estimates and frequency distributions of first-order lateral roots of loblolly pine.

    Treesearch

    Paul P. Kormanik; H.D. Muse; S.J Sung

    1991-01-01

    Frequency distribution and heritability of first-order later root (FOLR) numbers in 1-0 seedlings were followed for 5 years for 115 different half-sib seedlots from the Georgia Forestry Commission's Arrowhead and Baldwin Seed Orchards. In 1986 and 1987, seedlings were permitted unrestricted growth under management conditions similar to those practiced in most...

  10. A Virtual Upgrade Validation Method for Software-Reliant Systems

    DTIC Science & Technology

    2012-06-01

    3.4 Root Cause Areas of System-Level Faults 11 3.4.1 End-to-End Flow of Data Streams 11 3.4.2 Distributed Communicating State Machines 13 3.4.3...FlyByWire/FlyByWire_english.pdf (Accessed on November 11 , 2011.) [Apple 2005] Apple Support Communities , jazzman40. iTunes Crashes When Ripping...Strategies 39 7.1 Application Pattern Modeling Strategies 39 7.1.1 Control Loops 39 7.1.2 State Transition Communication 42 7.1.3 Sensor/Signal Fusion

  11. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  12. Reduction of structural loads using maneuver load control on the Advanced Fighter Technology Integration (AFTI)/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Thornton, Stephen V.

    1993-01-01

    A transonic fighter-bomber aircraft, having a swept supercritical wing with smooth variable-camber flaps was fitted with a maneuver load control (MLC) system that implements a technique to reduce the inboard bending moments in the wing by shifting the spanwise load distribution inboard as load factor increases. The technique modifies the spanwise camber distribution by automatically commanding flap position as a function of flap position, true airspeed, Mach number, dynamic pressure, normal acceleration, and wing sweep position. Flight test structural loads data were obtained for loads in both the wing box and the wing root. Data from uniformly deflected flaps were compared with data from flaps in the MLC configuration where the outboard segment of three flap segments was deflected downward less than the two inboard segments. The changes in the shear loads in the forward wing spar and at the roots of the stabilators also are presented. The camber control system automatically reconfigures the flaps through varied flight conditions. Configurations having both moderate and full trailing-edge flap deflection were tested. Flight test data were collected at Mach numbers of 0.6, 0.7, 0.8, and 0.9 and dynamic pressures of 300, 450, 600, and 800 lb/sq ft. The Reynolds numbers for these flight conditions ranged from 26 x 10(exp 6) to 54 x 10(exp 6) at the mean aerodynamic chord. Load factor increases of up to 1.0 g achieved with no increase in wing root bending moment with the MLC flap configuration.

  13. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.

    PubMed

    Tang, Wenli; Dang, Fei; Evans, Douglas; Zhong, Huan; Xiao, Lin

    2017-02-01

    Selenium (Se) has recently been demonstrated to reduce inorganic mercury (IHg) accumulation in rice plants, while its mechanism is far from clear. Here, we aimed at exploring the potential effects of Se application routes (soil or foliar application with Se), speciation (selenite and selenate), and doses on IHg-Se antagonistic interactions in soil-rice systems. Results of our pot experiments indicated that soil application but not foliar application could evidently reduce tissue IHg concentrations (root: 0-48%, straw: 15-58%, and brown rice: 26-74%), although both application routes resulted in comparable Se accumulation in aboveground tissues. Meanwhile, IHg distribution in root generally increased with amended Se doses in soil, suggesting antagonistic interactions between IHg and Se in root. These results provided initial evidence that IHg-Se interactions in the rhizosphere (i.e., soil or rice root), instead of those in the aboveground tissues, could probably be more responsible for the reduced IHg bioaccumulation following Se application. Furthermore, Se dose rather than Se speciation was found to be more important in controlling IHg accumulation in rice. Our findings regarding the importance of IHg-Se interactions in the rhizosphere, together with the systematic investigation of key factors affecting IHg-Se antagonism and IHg bioaccumulation, advance our understanding of Hg dynamics in soil-rice systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modeling the hydrological and mechanical effect of roots on shallow landslides

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Caracciolo, D.; Noto, L. V.; Preti, F.; Bras, R. L.

    2016-11-01

    This study proposes a new methodology for estimating the additional shear strength (or cohesion) exerted by vegetation roots on slope stability analysis within a coupled hydrological-stability model. The mechanical root cohesion is estimated within a Fiber Bundle Model framework that allows for the evaluation of the root strength as a function of stress-strain relationships of populations of fibers. The use of such model requires the knowledge of the root architecture. A branching topology model based on Leonardo's rule is developed, providing an estimation of the amount of roots and the distribution of diameters with depth. The proposed methodology has been implemented into an existing distributed hydrological-stability model able to simulate the dynamics of factor of safety as a function of soil moisture dynamics. The model also accounts for the hydrological effects of vegetation, which reduces soil water content via root water uptake, thus increasing the stability. The entire methodology has been tested in a synthetic hillslope with two configurations of vegetation type, i.e., trees and shrubs, which have been compared to a configuration without vegetation. The vegetation has been characterized using roots data of two mediterranean plant species. The results demonstrate the capabilities of the topological model in accurately reproducing the observed root structure of the analyzed species. For the environmental setting modeled, the effects of root uptake might be more significant than the mechanical reinforcement; the additional resistance depends strictly on the vegetation root depth. Finally, for the simulated climatic environment, landslides are seasonal, in agreement with past observations.

  15. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth

    PubMed Central

    Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard

    2015-01-01

    For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922

  16. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)

    PubMed Central

    Wang, Yan; Shen, Hong; Xu, Liang; Zhu, Xianwen; Li, Chao; Zhang, Wei; Xie, Yang; Gong, Yiqin; Liu, Liwang

    2015-01-01

    Lead (Pb), a ubiquitous but highly toxic heavy metal (HM), is harmful to human health through various pathways including by ingestion of contaminated vegetables. Radish is a worldwide root vegetable crop with significant health and nutritional benefits. However, little is known about Pb translocation and distribution within radish plants after its uptake by the roots. In this study, Pb stress was induced using Pb(NO3)2 in hydroponic culture, aiming to characterize the transport, ultrastructural localization, and distribution of chemical forms of Pb in different tissues of radish. The results showed that the majority of Pb (85.76–98.72%) was retained in underground organs including lateral roots, root heads and taproot skins, while a small proportion of Pb was absorbed by root flesh (0.44–1.56%) or transported to the shoot (1.28–14.24%). A large proportion of Pb (74.11–99.30%) was integrated with undissolved Pb oxalate, protein and pectates forming Pb–phosphate complexes. Moreover, a low-Pb-accumulating line of radish showed a higher proportion of Pb in water-soluble form compared with a high-Pb-accumulating line. Subcellular distribution analysis showed that a large proportion of Pb was bound to cell wall fraction in lateral roots (71.08–80.40%) and taproot skin (46.22–77.94%), while the leaves and roots had 28.36–39.37% and 27.35–46.51% of Pb stored in the soluble fraction, respectively. Furthermore, transmission electron microscopy (TEM) revealed Pb precipitates in intercellular space, cell wall, plasma lemma and vacuoles. Fractionation results also showed the accumulation of Pb on the cell wall, intercellular space and vacuole, and low uptake of undissolved Pb oxalate, protein, pectates and Pb–phosphate complexes, which might be due to low transport efficiency and Pb tolerance of radish. These findings would provide insight into molecular mechanism of Pb uptake and translocation in radish and facilitate development of low-Pb-content cultivars in root vegetable crops. PMID:26005445

  17. Differential Responses of Soybean and Sorghum Growth, Nitrogen Uptake, and Microbial Metabolism in the Rhizosphere to Cattle Manure Application: A Rhizobox Study.

    PubMed

    Chu, Qingnan; Sha, Zhimin; Nakamura, Takuji; Oka, Norikuni; Osaki, Mitsuru; Watanabe, Toshihiro

    2016-11-02

    In this study, we determined the capacity of soybean (Glycine max L. Merr. cv. Hoyoharuka) and sorghum (Sorghum bicolor L. Moench. cv. Hybrid Sorgo) to utilize different forms of nitrogen (N) in a rhizobox system. Seedlings were grown for 35 days without N or with 130 mg N kg -1 soil as ammonium sulfate or farmyard cattle manure. The soil fractions at different distances from the root were sliced millimeter by millimeter in the rhizobox system. We assessed the distribution of different forms of N and microbial metabolism in different soil fractions in the rhizosphere. There are no treatment-dependent changes in biomass production in the roots and shoots of soybeans, however, the ammonium and manure treatment yielded 1.30 and 1.40 times higher shoot biomass of sorghum than the control. Moreover, the depletion of inorganic N and total amino acids (TAA) in the rhizosphere was largely undetectable at various distances from the soybean roots regardless of the treatments employed. The addition of ammonium sulfate resulted in a decrease in the nitrate concentration gradient as the distance decreased from the sorghum roots. The addition of manure to the soil increased the N content in the sorghum shoots, 1.57 times higher than the control; this increase was negatively correlated with the concentrations of TAA in the soil of the root compartment. In addition, the application of manure simultaneously induced TAA depletion (i.e., the TAA concentration in root compartment was 1.48 times higher than that in bulk soil) and greater microbial activity and diversity in the sorghum rhizosphere, where higher microbial consumption of asparagine, glutamic acid, and phenylalanine were also observed near the roots. Our results are first to present the evidence that sorghum may possess a high capacity for taking up amino acids as a consequence of organic matter application, and microbial metabolism.

  18. Quantifying the contribution of root systems to community and individual drought resilience in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; Oliveira, R. S.; Brum, M., Jr.; Saleska, S. R.; Bisht, G.; Prohaska, N.; Taylor, T.; Oliveira Junior, R. C.; Restrepo-Coupe, N.

    2017-12-01

    The increased intensity and severity of droughts within the Amazon Basin region has emphasized the question of vulnerability and resilience of tropical forests to water limitation. During the recent 2015-2016 drought caused by the anomalous El Nino episode, we monitored a large, diverse sample of trees within the Tapajos National Forest, Brazil, in the footprint of the K67 eddy covariance tower. The observed trees exhibited differential responses in terms of stem water potential and sap flow among species: their regulation of ecophysiological strategies varied from very conservative (`isohydric') behavior, to much less restrained, atmosphere-controlled (`anisohydric') type of response. While much attention has been paid to forest canopies, it remains unclear how the regulation of individual tree root system and root spatial interactions contribute to the emergent individual behavior and the ecosystem-scale characterization of drought resilience. Given the inherent difficulty in monitoring below-ground phenomena, physically-based models are valuable for examining different strategies and properties to reduce the uncertainty of characterization. We use a modified version of the highly parallel DOE PFLOTRAN model to simulate the three-dimensional variably saturated flows and root water uptake for over one thousand individuals within a two-hectare area. Root morphology and intrinsic hydraulic properties are assigned based on statistical distributions developed for tropical trees, which account for the broad spectrum of hydraulic strategies in biodiverse environments. The results demonstrate the dynamic nature of active zone of root water uptake based on local soil water potential gradients. The degree of the corresponding shifts in uptake and root collar potential depend not only on assigned hydraulic properties but also on spatial orientation and size relative to community members. This response highlights the importance of not only tree individual hydraulic traits, but also dynamic spatial interactions in assessing forest drought resilience.

  19. Root production method system

    Treesearch

    Wayne Lovelace

    2002-01-01

    The RPM system (Root Production Method) is a multistep production system of container tree production that places primary emphasis on the root system because the root system ultimately determines the tree's survival and performance in its outplanted environment. This particular container production system has been developed to facilitate volume production, in a...

  20. Photoacoustic imaging of teeth for dentine imaging and enamel characterization

    NASA Astrophysics Data System (ADS)

    Periyasamy, Vijitha; Rangaraj, Mani; Pramanik, Manojit

    2018-02-01

    Early detection of dental caries, cracks and lesions is needed to prevent complicated root canal treatment and tooth extraction procedures. Resolution of clinically used x-ray imaging is low, hence optical imaging techniques such as optical coherence tomography, fluorescence imaging, and Raman imaging are widely experimented for imaging dental structures. Photoacoustic effect is used in photon induced photoacoustic streaming technique to debride the root canal. In this study, the extracted teeth were imaged using photoacoustic tomography system at 1064 nm. The degradation of enamel and dentine is an indicator of onset of dental caries. Photoacoustic microscopy (PAM) was used to study the tooth enamel. Images were acquired using acoustic resolution PAM system. This was done to identify microscopic cracks and dental lesion at different anatomical sites (crown and cementum). The PAM tooth profile is an indicator of calcium distribution which is essential for demineralization studies.

  1. Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.

    1999-01-01

    In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.

  2. THERMINATOR 2: THERMal heavy Io N gener ATOR 2

    NASA Astrophysics Data System (ADS)

    Chojnacki, Mikołaj; Kisiel, Adam; Florkowski, Wojciech; Broniowski, Wojciech

    2012-03-01

    We present an extended version of THERMINATOR, a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The package is written in C++ and uses the CERN ROOT data-analysis environment. The largely increased functionality of the code contains the following main features: 1) The possibility of input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1-dimensional profiles, in particular those generated externally with various hydrodynamic codes. 2) The hypersurfaces may have variable thermal parameters, which allow studies departing significantly from the mid-rapidity region where the baryon chemical potential becomes large. 3) We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au + Au data at √{s}=200 GeV for various centralities, as well as those anticipated for the LHC Pb + Pb collisions at √{s}=5.5 TeV. 4) A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of the pion-pion femtoscopic correlations which are an important source of information concerning the size and expansion of the system. 5) We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p-spectra, the elliptic flow coefficients, and the HBT correlation radii. Program summaryProgram title:THERMINATOR 2 Catalogue identifier: ADXL_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXL_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 423 444 No. of bytes in distributed program, including test data, etc.: 2 854 602 Distribution format: tar.gz Programming language:C++ with the CERN ROOT libraries, BASH shell Computer: Any with a C++ compiler and the CERN ROOT environment, ver. 5.26 or later, tested with Intel Core2 Duo CPU E8400 @ 3 GHz, 4 GB RAM Operating system: Linux Ubuntu 10.10 x64 (gcc 4.4.5) ROOT 5.26 Linux Ubuntu 11.04 x64 (gcc Ubuntu/Linaro 4.5.2-8ubuntu4) ROOT 5.30/00 (compiled from source) Linux CentOS 5.2 (gcc Red Hat 4.1.2-42) ROOT 5.30/00 (compiled from source) Mac OS X 10.6.8 (i686-apple-darwin10-g++-4.2.1) ROOT 5.30/00 (for Mac OS X 10.6 x86-64 with gcc 4.2.1) cygwin-1.7.9-1 (gcc gcc4-g++-4.3.4-4) ROOT 5.30/00 (for cygwin gcc 4.3) RAM: 30 MB therm2 events 150 MB therm2 femto Classification: 11.2 Catalogue identifier of previous version: ADXL_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 669 External routines: CERN ROOT ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: Particle production via statistical hadronization in relativistic heavy-ion collisions. Solution method: Monte Carlo simulation, analyzed with ROOT. Reasons for new version: The increased functionality of the code contains the following important features. The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1-dimensional profiles, in particular those generated externally with the various popular hydrodynamic codes. The hypersurfaces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au + Au and the LHC Pb+Pb data. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations. Summary of revisions: THERMINATOR 2 incorporates major revisions to encompass the enhanced functionality. Classes: The Integrator class has been expanded and a new subgroup of classes defined. Model and abstract class: These classes are responsible for the physical models of the freeze-out process. The functionality and readability of the code has been substantially increased by implementing each freeze-out model in a different class. The Hypersurface class was added to handle the input form hydrodynamic codes. The hydro input is passed to the program as a lattice of the freeze-out hypersurface. That information is stored in the .xml files. Input: THERMINATOR 2 programs are now controlled by *. ini type files. The programs parameters and the freeze-out model parameters are now in separate ini files. Output: The event files generated by the therm2_events program are not backward compatible with the previous version. The event*. root file structure was expanded with two new TTree structures. From the particle entry it is possible to back-trace the whole cascade. Event text output is now optional. The ROOT macros produce the *. eps figures with physics results, e.g. the pT-spectra, the elliptic-flow coefficient, rapidity distributions, etc. The THERMINATOR HBT package creates the ROOT files femto*. root ( therm2_femto) and hbtfit*. root ( therm2_hbtfit). Directory structure: The directory structure has been reorganized. Source code resides in the build directory. The freeze-out model input files, event files, ROOT macros are stored separately. The THERMINATOR 2 system, after installation, is able to run on a cluster. Scripts: The package contains a few BASH scripts helpful when running e.g. on a cluster the whole system can be executed via a single script. Additional comments: Typical data file size: default configuration. 45 MB/500 events; 35 MB/correlation file (one k bin); 45 kB/fit file (projections and fits). Running time: Default configuration at 3 GHz. primordial multiplicities 70 min (calculated only once per case); 8 min/500 events; 10 min - draw all figures; 25 min/one k bin in the HBT analysis with 5000 events.

  3. One way. Or another? Iron uptake in plants.

    PubMed

    Tsai, Huei-Hsuan; Schmidt, Wolfgang

    2017-04-01

    Iron (Fe) and phosphorus (P), the latter taken up by plants as phosphate (Pi), are two essential nutrients that determine species distribution and often limit crop yield as a result of their low availability in most soils. Pi-deficient plants improve the interception of Pi by increasing the density of root hairs, thereby expanding the volume of soil to be explored. The increase in root-hair frequency results mainly from attenuated primary root growth, a process that was shown to be dependent on the availability of external Fe. Recent data support a hypothesis in which cell elongation during Pi starvation is tuned by depositing Fe in the apoplast of cortical cells in the root elongation zone. Uptake of Fe under Pi starvation appears to proceed via an alternative, as yet unidentified, route that bypasses the default Fe transporter. Fe deposits acquired through this noncanonical Fe-uptake pathway compromises cell-to-cell communication that is critical for proper morphogenesis of epidermal cells and leads to shorter cells and higher root-hair density. An auxiliary Fe-uptake system might not only be crucial for recalibrating cell elongation in Pi-deficient plants but may also have general importance for growth on Pi- or Fe-poor soils by balancing the Pi and Fe supply. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. P$sup 32$-TESTS FOR INVESTIGATING THE COMPETITION BETWEEN TREE ROOTS AND REGROWTH IN SOUTHERN TAIGA FORESTS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V.G.

    1962-09-21

    Introduction of radioactive materials into soil nutrients represents an excellent tool for determining utilization of the nutrient and its ultimate distribution between the various components of the phytocaenosis; therefore P/sup 32/labeled solutions were used for clarifying the competition between the roots of mature birch, Betulla verrucosa, and fir, Picea excelsa, seedlings. The test area contained 30to 35-year-old trees at a density of about 7 to 8 thousand trees per bectare. During the summer of 1960 fir seedlings were planted in areas removed from the influence of the birch roots and near the trees without interfering with interaction between the 2more » systems; at the latter location the soil contained 730 to 1100 g/m/sup 2/ of roots. In July 1961 10 mg/liter P solution, labeled with P/sup 32/ was introduced into the soil; the original activity of the solution was 65 mu c/liter. Results indicated that competition by the birch roots strongly inhibits the P/sup 32/ uptake by the 2-year-old seedlings; the radioactivity of the fir needles planted in isolated areas was 5 to 8 times higher than that in seedlings planted near the mature trees. (TTT)« less

  5. GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport.

    PubMed

    Moriwaki, Teppei; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2014-02-01

    Plant roots exhibit tropisms in response to gravity, unilateral light and moisture gradients. During gravitropism, an auxin gradient is established by PIN auxin transporters, leading to asymmetric growth. GNOM, a guanine nucleotide exchange factor of ARF GTPase (ARF-GEF), regulates PIN localization by regulating subcellular trafficking of PINs. Therefore, GNOM is important for gravitropism. We previously isolated mizu-kussei2 (miz2), which lacks hydrotropic responses; MIZ2 is allelic to GNOM. Since PIN proteins are not required for root hydrotropism in Arabidopsis, the role of GNOM in root hydrotropism should differ from that in gravitropism. To examine this possibility, we conducted genetic analysis of gnom(miz2) and gnom trans-heterozygotes. The mutant gnom(miz2), which lacks hydrotropic responses, was partially recovered by gnom(emb30-1), which lacks GEF activity, but not by gnom(B4049), which lacks heterotypic domain interactions. Furthermore, the phototropic response of gnom trans-heterozygotes differed from that of the pin2 mutant allele eir1-1. Moreover, defects in the polarities of PIN2 and auxin distribution in a severe gnom mutant were recovered by gnom(miz2). Therefore, an unknown GNOM-mediated vesicle trafficking system may mediate root hydrotropism and phototropism independently of PIN trafficking. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L.

    PubMed Central

    Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping

    2017-01-01

    The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534

  7. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching. PMID:22553131

  8. A Functional Trait Approach for Evaluation of Agroforestry Species Adaptation Potentiel to Changing Climate

    NASA Astrophysics Data System (ADS)

    Munson, A. D.; Marone, D.; Olivier, A.

    2017-12-01

    Traditional agroforestry systems have been used for generations in the Sahel region of Africa to assure local food security. However, an understanding of the functional ecology of these systems is lacking, which would contribute to assessing both the provision of current ecological services, and the potential for adaptation to global change. We have studied five native tree and shrub species across a transect of different soil types in the semi-arid zone of the Niayes region of Senegal, to document changes in above and belowground traits in response to soil and land use change. Root traits in particular influence access to limiting resources such as water and nutrients. We studied fine root depth distribution and specific root length (SRL) with soil depth of Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Faidherbia albida, Neocarya macrophylla, on three different soil textures for three systems (fallow, parkland and rangeland), in order to understand potential exploitation of soil resources and potential contribution of roots to soil carbon stocks at different depths. The maximum root biomass of four of the species (Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Neocarya macrophylla) occurred in the 40-60 cm layer, where the two evergreen species (A. raddiana, N. macrophylla) developed the most biomass. Root biomass decreased for all species except F. albida, after 60 cm depth. The Mimosaceae species (A. raddiana, F. albida) developed the most root biomass within the 100 cm sampling depth. The maximum fine root biomass was found in fallow lands and clay soils. For all species, the highest SRL was observed during the hot dry season, in sandy or sandy loam soil. The SRL was lowest in the rainy season on clay soil. Evergreens had higher SRL than deciduous species, regardless of soil texture and growing season conditions. Parkland and rangelands exhibited higher SRL than fallow land, most likely due to higher soil fertility. Differences between evergreen and deciduous SRL relied on adaptive strategies that seem to be conditioned by season, soil and land use. We also examined intraspecific variability of above and belowground traits to assess plasticity in response to environment. Evergreen species showed more variability in response to soil and to seasonal changes in temperature and moisture.

  9. Bioactivity, cytocompatibility and thermal properties of experimental Bioglass-reinforced composites as potential root-canal filling materials.

    PubMed

    Alhashimi, Raghad Abdulrazzaq; Mannocci, Francesco; Sauro, Salvatore

    2017-05-01

    To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (p<0.05). Bioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.

    PubMed

    Yang, Meng; Zhang, Yuanyuan; Zhang, Lejing; Hu, Jintao; Zhang, Xing; Lu, Kai; Dong, Huaxia; Wang, Dujun; Zhao, Fang-Jie; Huang, Chao-Feng; Lian, Xingming

    2014-09-01

    Manganese (Mn) is an essential micronutrient for plants playing an important role in many physiological functions. OsNRAMP5 is a major transporter responsible for Mn and cadmium uptake in rice, but whether it is involved in the root-to-shoot translocation and distribution of these metals is unknown. In this work, OsNRAMP5 was found to be highly expressed in hulls. It was also expressed in leaves but the expression level decreased with leaf age. High-magnification observations revealed that OsNRAMP5 was enriched in the vascular bundles of roots and shoots especially in the parenchyma cells surrounding the xylem. The osnramp5 mutant accumulated significantly less Mn in shoots than the wild-type plants even at high levels of Mn supply. Furthermore, a high supply of Mn could compensate for the loss in the root uptake ability in the mutant, but not in the root-to-shoot translocation of Mn, suggesting that the absence of OsNRAMP5 reduces the transport of Mn from roots to shoots. The results suggest that OsNRAMP5 plays an important role in the translocation and distribution of Mn in rice plants in addition to its role in Mn uptake. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics.

    PubMed

    Lyubenova, Lyudmila; Pongrac, Paula; Vogel-Mikuš, Katarina; Mezek, Gašper Kukec; Vavpetič, Primož; Grlj, Nataša; Regvar, Marjana; Pelicon, Primož; Schröder, Peter

    2013-03-15

    Understanding the uptake, accumulation and distribution of toxic elements in plants is crucial to the design of effective phytoremediation strategies, especially in the case of complex multi-element pollution. Using micro-proton induced X-ray emission, the spatial distribution of Na, Mg, Al, Si, P, S, Cl, K, Ca, Mn, Fe, Zn, As, Br, Rb, Sr, Cd and Pb have been quantitatively resolved in roots and rhizomes of an obligate wetland plant species, Typha latifolia, treated with a mixture of 100 μM each of As, Cd and Pb, together. The highest concentrations of As, Cd and Pb were found in the roots of the T. latifolia, with tissue-specific distributions. The As was detected in the root rhizodermis, and in the rhizome the majority of the As was within the vascular tissues, which indicates the high mobility of As within T. latifolia. The Cd was detected in the root exodermis, and in the vascular bundle and epidermis of the rhizome. The highest Pb concentrations were detected in the root rhizodermis and exodermis, and in the epidermis of the rhizome. These data represent an essential step in the resolution of fundamental questions in plant ionomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions

    PubMed Central

    Valenzuela-Estrada, Luis R.; Richards, James H.; Diaz, Andres; Eissensat, David M.

    2009-01-01

    Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. ‘Bluecrop’ (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about –1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species. PMID:19188275

  13. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions.

    PubMed

    Valenzuela-Estrada, Luis R; Richards, James H; Diaz, Andres; Eissensat, David M

    2009-01-01

    Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. 'Bluecrop' (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about -1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species.

  14. Research and Development of Collaborative Environments for Command and Control

    DTIC Science & Technology

    2011-05-01

    at any state of building. The viewer tool presents the designed model with 360-degree perspective views even after regeneration of the design, which...and it shows the following prompt. GUM > APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...11 First initialize the microSD card by typing GUM > mmcinit Then erase the old Linux kernel and the root file system on the flash memory

  15. The Decline of Austrocedrus Forests in Patagonia (Mal del Ciprés): Another Phytophthora-Caused Forest Disease

    Treesearch

    Alina Greslebin; Everett Hansen

    2009-01-01

    Austrocedrus chilensis, an indigenous Cupressaceae of the Patagonian Andes forests, is suffering a disease that has been called "Mal del Ciprés" (MDC). This disease was first reported more than 50 years ago but, in spite of many studies, its causes remained unclear until recently. The disease begins in the root system, the distribution...

  16. Strategy for Intelligence, Surveillance, and Reconnaissance

    DTIC Science & Technology

    2013-02-14

    Marine Corps School of Advanced Warfighting. He was the commander of the 13th Intelligence Squadron (Distributed Ground System – 2) and served in the...military campaigns and major operations. The root cause of these difficulties is adherence to a centralized, Cold War collection management doctrine...current collection management doctrine creates for implementing ISR strategy. It will then propose an alternative framework for ISR strategy using a

  17. RGLite, an interface between ROOT and gLite—proof on the grid

    NASA Astrophysics Data System (ADS)

    Malzacher, P.; Manafov, A.; Schwarz, K.

    2008-07-01

    Using the gLitePROOF package it is possible to perform PROOF-based distributed data analysis on the gLite Grid. The LHC experiments managed to run globally distributed Monte Carlo productions on the Grid, now the development of tools for data analysis is in the foreground. To grant access interfaces must be provided. The ROOT/PROOF framework is used as a starting point. Using abstract ROOT classes (TGrid, ...) interfaces can be implemented, via which Grid access from ROOT can be accomplished. A concrete implementation exists for the ALICE Grid environment AliEn. Within the D-Grid project an interface to the common Grid middleware of all LHC experiments, gLite, has been created. Therefore it is possible to query Grid File Catalogues from ROOT for the location of the data to be analysed. Grid jobs can be submitted into a gLite based Grid. The status of the jobs can be asked for, and their results can be obtained.

  18. Potential use of edible crops in the phytoremediation of endosulfan residues in soil.

    PubMed

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2016-04-01

    Endosulfan is a persistent and toxic organochlorine pesticide of banned or restricted use in several countries. It has been found in soil, water, and air and is bioaccumulated and magnified in ecosystems. Phytoremediation is a technology that promises effective and inexpensive cleanup of contaminated hazardous sites. The potential use of tomato, sunflower, soybean and alfalfa species to remove endosulfan from soil was investigated. All species were seeded and grown in endosulfan-spiked soils (8000 ng g(-1) dry weight) for 15 and 60 days. The phytoremediation potential was evaluated by studying the endosulfan levels and distribution in the soil-plant system, including the evaluation of soil dehydrogenase activity and toxic effects on plants. Plant endosulfan uptake leads to lower insecticide levels in the rhizosphere with regards to bulk soil or near root soil at 15 days of growth. Furthermore, plant growth-induced physical-chemical changes in soil were evidenced by differences in soil dehydrogenase activity and endosulfan metabolism. Sunflower showed differences in the uptake and distribution of endosulfan with regard to the other species, with a distribution pesticide pattern of aerial tissues > roots at 15 days of growth. Moreover, at 60 days, sunflower presented the highest pesticide levels in roots and leaves along with the highest phytoextraction capacity. Lipid peroxidation levels correlated positively with endosulfan accumulation, reflecting the negative effect of this insecticide on plant tissues. Considering biomass production and accumulation potential, in conjunction with the reduction of soil pesticide levels, sunflower plants seem to be the best phytoremediation candidate for endosulfan residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato.

    PubMed

    Van Oosten, Michael J; Silletti, Silvia; Guida, Gianpiero; Cirillo, Valerio; Di Stasio, Emilio; Carillo, Petronia; Woodrow, Pasqualina; Maggio, Albino; Raimondi, Giampaolo

    2017-01-01

    Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K + :Na + ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.

  20. Effect of silicon fertilizers on cadmium in rice (Oryza sativa) tissue at tillering stage.

    PubMed

    Ji, Xionghui; Liu, Saihua; Juan, Huang; Bocharnikova, Elena A; Matichenkov, Vladimir V

    2017-04-01

    Silicon has been found to enhance the plants' tolerance to heavy metal stress. In a field study, the effect of different types of Si-rich soil amendments (slag, ground slag, and diatomaceous earth) and fertilizers (activated slag, ground activated slag, and commercial Si fertilizer) on the distribution of soluble and insoluble forms of Cd in the rice plant organs grown on long-term cultivated paddy soil contaminated with Cd (central part of Hunan Province, China) was investigated. The soluble Si and Cd were tested in the apoplast and symplast of the roots, stems, and leaves of rice at a tillering stage. The Si-rich materials increased rice biomass by up to 15.5% and reduced the total leaf Cd by 8.5 to 21.9%. Commercial Si fertilizer was the most effective. Three main locations of the most active Si-Cd interactions were distinguished in the soil-plant system: soil, where monosilicic acid affords adsorption and fixation of the bioavailable Cd and root apoplast and apoplast above roots, where monosilicic acid can precipitate Cd. The transport of Cd to stems and leaves and the mobility of Cd in the soil depend on the content of monosilicic acid in the system.

Top