Science.gov

Sample records for root ultraviolet b-sensing

  1. Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots.

    PubMed

    Wang, Cong Hui; Zheng, Li Ping; Tian, Hao; Wang, Jian Wen

    2016-06-01

    Tanshinones are major bioactive diterpenoids of Salvia miltiorrhiza roots used for the treatment of cardiocerebral diseases. To develop effective elicitation and bioprocess strategies for the enhanced production of tanshinones, ultraviolet-B (UV-B) irradiation and methyl jasmonate (MeJA) elicitation were applied alone or in combination respectively in S. miltiorrhiza hairy root cultures. Our results showed 40-min UV-B irradiation at 40μW/cm(2) stimulated tanshinone production without any suppression of root growth, suggesting a new effective elicitor to S. miltiorrhiza hairy root cultures for tanshinone production. Moreover, the combined treatment of UV-B irradiation and MeJA exhibited synergistic effects on the expression levels of 3-hydroxy-3-methylglutaryl-CoA reductase (SmHMGR) and geranylgeranyl diphosphate synthase (SmGGPPS) genes in the tanshinone biosynthetic pathway. When hairy roots of 18-day-old cultures were exposed to the combined elicitation for 9days, the maximum production of tanshinone reached to 28.21mg/L, a 4.9-fold increase over the control. The combined elicitation of UV-B and MeJA was firstly used to stimulate the production of biologically important secondary metabolites in hairy root cultures.

  2. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  3. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  4. Oxidative potential of ultraviolet-A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on Allium cepa roots.

    PubMed

    Koce, Jasna Dolenc; Drobne, Damjana; Klančnik, Katja; Makovec, Darko; Novak, Sara; Hočevar, Matej

    2014-04-01

    The effect of ultraviolet-A irradiated or nonirradiated suspensions of agglomerates of titanium dioxide (TiO(2)) or silicon dioxide (SiO(2)) nanoparticles on roots of the onion (Allium cepa) has been studied. The reactive potential of TiO(2) nanoparticles, which have photocatalytic potential, and the nonphotocatalytic SiO(2) nanoparticles with the same size of agglomerates was compared. The authors measured the activity of antioxidant enzymes glutathione reductase, ascorbate peroxidase, guaiacol peroxidase, and catalase as well as lipid peroxidation to assess the oxidative stress in exposed A. cepa roots. A wide range of concentrations of nanoparticles was tested (0.1-1000 µg/mL). The sizes of agglomerates ranged in both cases from 300 nm to 600 nm, and the exposure time was 24 h. Adsorption of SiO(2) nanoparticles on the root surface was minimal but became significant when roots were exposed to TiO(2) agglomerates. No significant biological effects were observed even at high exposure concentrations of SiO(2) and TiO(2) nanoparticles individually. Plants appear to be protected against nanoparticles by the cell wall, which shields the cell membrane from direct contact with the nanoparticles. The authors discuss the need to supplement conventional phytotoxicity and stress end points with measures of plant physiological state when evaluating the safety of nanoparticles.

  5. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: An ultraviolet spectrophotometric analysis

    PubMed Central

    Sinkar, Roshan Chandrakant; Patil, Sanjay S; Jogad, Nitin P; Gade, Vandana J

    2015-01-01

    Aim: To evaluate the sealing ability of ProRooT MTA, RetroMTA, and Biodentine as furcation repair materials using dye extraction leakage method. Materials and Methods: Thirty-five mandibular molars were randomly divided into four groups according to the material used for perforation repair. Group I — ProRoot MTA (10 samples), Group II — RetroMTA (10 samples), Group III — Biodentine (10 samples), and Group IV (Control) — left unrepaired (5 samples). All samples were subjected to orthograde and retrograde Methylene blue dye challenge followed by dye extraction with concentration 65% nitric acid. Samples were then analyzed using ultraviolet-visible spectrophotometer using 550 nm wave lengths. Statistical Analysis: One-way analysis of variance, Tukey-Kramer multiple comparisons test. Results: Biodentine showed least dye absorbance while RetroMTA showed highest dye absorbance values when compared with other repair materials. Conclusion: Within the limitations of this study, it was observed that Biodentine showed better sealing ability when compared with other root repair materials. PMID:26752836

  6. Ultraviolet Waves

    ERIC Educational Resources Information Center

    Molde, Trevor

    1973-01-01

    Outlines the discovery and nature of ultraviolet light, discusses some applications for these wavelengths, and describes a number of experiments with ultraviolet radiation suitable for secondary school science classes. (JR)

  7. Ultraviolet filters.

    PubMed

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  8. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  9. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth

    NASA Astrophysics Data System (ADS)

    Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja

    2016-09-01

    Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

  10. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth

    NASA Astrophysics Data System (ADS)

    Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja

    2016-12-01

    Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

  11. Magnetic tunnel junctions for magnetic field sensor by using CoFeB sensing layer capped with MgO film

    NASA Astrophysics Data System (ADS)

    Takenaga, Takashi; Tsuzaki, Yosuke; Yoshida, Chikako; Yamazaki, Yuichi; Hatada, Akiyoshi; Nakabayashi, Masaaki; Iba, Yoshihisa; Takahashi, Atsushi; Noshiro, Hideyuki; Tsunoda, Koji; Aoki, Masaki; Furukawa, Taisuke; Fukumoto, Hiroshi; Sugii, Toshihiro

    2014-05-01

    We evaluated MgO-based magnetic tunnel junctions (MTJs) for magnetic field sensors with spin-valve-type structures in the CoFeB sensing layer capped by an MgO film in order to obtain both top and bottom interfaces of MgO/CoFeB exhibiting interfacial perpendicular magnetic anisotropy (PMA). Hysteresis of the CoFeB sensing layer in these MTJs annealed at 275 °C was suppressed at a thickness of the sensing layer below 1.2 nm by interfacial PMA. We confirmed that the CoFeB sensing layers capped with MgO suppress the thickness dependences of both the magnetoresistance ratio and the magnetic behaviors of the CoFeB sensing layer more than that of the MTJ with a Ta capping layer. MgO-based MTJs with MgO capping layers can improve the controllability of the characteristics for magnetic field sensors.

  12. Determination of ginsenoside content in Panax ginseng C.A. Meyer and Panax quinquefolius L. root materials and finished products by high-performance liquid chromatography with ultraviolet absorbance detection: interlaboratory study.

    PubMed

    Brown, Paula N; Yu, Ronan; Cain, T; Huie, G; Jin, C D; Kababick, J N; Leong, G; LeVanseler, K; Lunetta, S; Ma, Y C; Reif, K; Schaneberg, B; Shevchuk, C; Smith, R; Sullivan, D; Wijewickreme, N; Windust, A

    2013-01-01

    An interlaboratory study was conducted on an HPLC method with UV absorbance detection, previously validated using AOAC single-laboratory validation guidelines, for the determination of the six major ginsenosides (Rg1, Re, Rb1, Rc, Rb2, and Rd) in Panax ginseng C.A. Meyer and Panax quinquefolius L. root materials, extracts, and finished products. Fourteen participating laboratories analyzed five test materials (P. ginseng whole root, P. ginseng powdered extract, P. quinquefolius whole root, P. quinquefolius powdered extract, and P. ginseng powdered extract spiked in a matrix blank) as blind duplicates, and two test materials (P. ginseng powdered whole root tablet and P. quinquefolius powdered extract hard-filled capsule) as single samples. Due to the variability of the ginsenosides (low level concentration of Rb2 in P. quinquefolius raw materials and in P. ginseng spiked matrix blanks, and the possibility of incomplete hydrolysis of the finished products during processing), it was deemed more applicable to analyze total ginsenosides rather than individual ones. Outliers were evaluated and omitted using the Cochran's test and single and double Grubbs' tests. The reproducibility RSD (RSD(R)) for the blind duplicate samples ranged from 4.38 to 5.39%, with reproducibility Horwitz Ratio (HorRat(R)) values ranging from 1.5 to 1.9. For the single replicate samples, the data sets were evaluated solely by their repeatability HorRat (HorRat(r)), which were 2.9 and 3.5 for the capsule and tablet samples, respectively. Based on these results, the method is recommended for AOAC Official First Action for the determination of total ginsenosides in P. ginseng and P. quinquefolius root materials and powdered extracts.

  13. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  14. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  15. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  16. Magnetic tunnel junctions for magnetic field sensor by using CoFeB sensing layer capped with MgO film

    SciTech Connect

    Takenaga, Takashi Tsuzaki, Yosuke; Yoshida, Chikako; Yamazaki, Yuichi; Hatada, Akiyoshi; Nakabayashi, Masaaki; Iba, Yoshihisa; Takahashi, Atsushi; Noshiro, Hideyuki; Tsunoda, Koji; Aoki, Masaki; Furukawa, Taisuke; Fukumoto, Hiroshi; Sugii, Toshihiro

    2014-05-07

    We evaluated MgO-based magnetic tunnel junctions (MTJs) for magnetic field sensors with spin-valve-type structures in the CoFeB sensing layer capped by an MgO film in order to obtain both top and bottom interfaces of MgO/CoFeB exhibiting interfacial perpendicular magnetic anisotropy (PMA). Hysteresis of the CoFeB sensing layer in these MTJs annealed at 275 °C was suppressed at a thickness of the sensing layer below 1.2 nm by interfacial PMA. We confirmed that the CoFeB sensing layers capped with MgO suppress the thickness dependences of both the magnetoresistance ratio and the magnetic behaviors of the CoFeB sensing layer more than that of the MTJ with a Ta capping layer. MgO-based MTJs with MgO capping layers can improve the controllability of the characteristics for magnetic field sensors.

  17. Ultraviolet Mars Reveals Cloud Formation

    NASA Video Gallery

    Images from MAVEN's Imaging UltraViolet Spectrograph were used to make this movie of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in fal...

  18. Ultraviolet reflective coating

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1974-01-01

    Composition consists of dispersion of barium sulphate in aqueous solution of water-soluble inorganic binder. Binder is selected from group consisting of alkali metal sulphates. Coating exhibits high reflectance of ultraviolet light to wavelengths of approximately 200.0 nm, which compares favorably with high reflectance of virgin barium sulphate power.

  19. Ultraviolet radiation changes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.; Frederick, John E.; Ilyas, Mohammad; Filyushkin, V.; Wahner, Andreas; Stamnes, K.; Muthusubramanian, P.; Blumthaler, M.; Roy, Colin E.; Madronich, Sasha

    1991-01-01

    A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment.

  20. Development of ultraviolet lasers

    NASA Technical Reports Server (NTRS)

    Walters, G. K.

    1974-01-01

    The pulsed electron accelerator selected for use in the development of ultraviolet laser capability suitable for use in photoexcitation and photoionization studies of the upper atmosphere is reported. Performance figures, installation specifications, and total cost of the equipment are briefly shown, and plans for further studies are outlined.

  1. Psoriasis and ultraviolet radiation

    SciTech Connect

    Farber, E.M.; Nall, L. )

    1993-09-01

    Prevention and detection screening programs as a public health service in curtailing the ever-increasing incidence of all forms of skin cancer are reviewed. The effect of solar and artificial ultraviolet radiation on the general population and persons with psoriasis is examined. 54 refs.

  2. International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report is the November 6, 1996 - October 9, 1997, IUE Final Report for the International Ultraviolet Explorer Final Archive contract. The ultimate objective of this contract is the completion of the archival reprocessing of all IUE data obtained at GSFC between 1978 and 1995.

  3. Mask-induced best-focus shifts in deep ultraviolet and extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Erdmann, Andreas; Evanschitzky, Peter; Neumann, Jens Timo; Gräupner, Paul

    2016-04-01

    The mask plays a significant role as an active optical element in lithography, for both deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography. Mask-induced and feature-dependent shifts of the best-focus position and other aberration-like effects were reported both for DUV immersion and for EUV lithography. We employ rigorous computation of light diffraction from lithographic masks in combination with aerial image simulation to study the root causes of these effects and their dependencies from mask and optical system parameters. Special emphasis is put on the comparison of transmission masks for DUV lithography and reflective masks for EUV lithography, respectively. Several strategies to compensate the mask-induced phase effects are discussed.

  4. Far ultraviolet instrument technology

    NASA Astrophysics Data System (ADS)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  5. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  6. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  7. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  8. Ultraviolet Background Radiation (Preprint)

    DTIC Science & Technology

    1991-03-01

    5.4 Apollo-Soyuz 3 5 5.5 Evidence for Scattering From Dust ? 3 8 5.6 More Evidence For Scattering From Dust ? 4 0 5.7 More Observations 4 2...Emission from cold interstellar dust . This has been observed by IRAS as the 100 u.m cosmic cirrus (64). The existence of such dust at moderate and... DUST 4 6 CONCLUSIONS 4 7 6.1 Spectral Structure in the Diffuse 4 7 Ultraviolet Background 6.2 Is There Light Scattered From Dust ? 4 7 6.3

  9. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  10. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  11. Investigation of ultraviolet interstellar extinction

    NASA Technical Reports Server (NTRS)

    Payne, C.; Haramundanis, K. L.

    1973-01-01

    Results concerning interstellar extinction in the ultraviolet are reported. These results were initially obtained by using data from main-sequence stars and were extended to include supergiants and emission stars. The principal finding of the analysis of ultraviolet extinction is not only that it is wavelength dependent, but that if changes with galactic longitude in the U3 passband (lambda sub eff = 1621 A); it does not change significantly in the U2 passband (lambda sub eff = 2308 A). Where data are available in the U4 passband (lambda sub eff = 1537 A), they confirm the rapid rise of extinction in the ultraviolet found by other investigators. However, in all cases, emission stars must be used with great caution. It is important to realize that while extinction continues to rise toward shorter wavelengths in the ultraviolet, including the shortest ultraviolet wavelengths measured (1100 A), it no longer plays an important role in the X-ray region (50 A).

  12. Mars ultraviolet simulation facility.

    PubMed

    Zill, L P; Mack, R; DeVincenzi, D L

    1979-12-01

    A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0 degrees C during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.

  13. Ultraviolet laser excitation source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1980-01-01

    A new intense ultraviolet light source has been developed from an array of hypocycloidal pinch (HCP) devices. The basic unit of the array is constructed with three disk electrodes and is capable of producing dense plasmas at temperatures up to 10,000,000 K. Very high input power levels to the array are possible without significantly shortening its useful life, in strong contrast with conventional xenon flashlamps. The new light source, when operated with Ar and Xe gas mixtures at high pressures (approximately 5 x 10 to the 4th Pa), produced a light output of over 100 MW in the near-UV spectral range and successfully pumped an iodine photodissociation laser at 1.315 microns. A xenon recombination laser at 2.027 microns was also pumped in the HCP array.

  14. Ultraviolet observations of comets

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Houck, T. E.; Lillie, C. F.

    1972-01-01

    The first observations of a comet in the vacuum ultraviolet were obtained on January 14, 1970, when OAO-2 recorded the spectrum of the bright comet Tago-Sato-Kosaka (1969g). The observations revealed, among other things, the predicted extensive hydrogen Lyman alpha halo. OAO-2 continued to collect spectrophotometric measurements of this comet throughout January of that year; a photograph of the nucleus in Lyman alpha revealed finer scale structures. In February of 1970, the bright comet Bennet (1969i) became favorable for space observations. On the basis of the OAO discovery, OGO-V made several measurements of comet Bennet with low spatial resolution photometers. Comet Enke was detected by OGO in January of 1971 at a large heliocentric distance from its Lyman alpha emission.

  15. Ultraviolet radiation effects

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    Solar ultraviolet testing was not developed which will provide highly accelerated (20 to 50X) exposures that correlate to flight test data. Additional studies are required to develop an exposure methodology which will assure that accelerated testing can be used for qualification of materials and coatings for long duration space flight. Some conclusions are listed: Solar UV radiation is present in all orbital environments; Solar UV does not change in flux with orbital altitude; UV radiation can degrade most coatings and polymeric films; Laboratory UV simulation methodology is needed for accelerated testing to 20 UV solar constants; Simulation of extreme UV (below 200 nm) is needed to evaluate requirements for EUV in solar simulation.

  16. Pectins, ROS homeostasis and UV-B responses in plant roots.

    PubMed

    Yokawa, Ken; Baluška, František

    2015-04-01

    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis.

  17. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  18. Rhodium nanoparticles for ultraviolet plasmonics.

    PubMed

    Watson, Anne M; Zhang, Xiao; Alcaraz de la Osa, Rodrigo; Marcos Sanz, Juan; González, Francisco; Moreno, Fernando; Finkelstein, Gleb; Liu, Jie; Everitt, Henry O

    2015-02-11

    The nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.

  19. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  20. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  1. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is...

  2. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is...

  3. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is...

  4. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is...

  5. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is...

  6. Ultraviolet fluorescence monitor

    SciTech Connect

    Hargis, P.J. Jr.; Preppernau, B.L.; Aragon, B.P.

    1997-05-01

    A multispectral ultraviolet (UV) fluorescence imaging fluorometer and a pulsed molecular beam laser fluorometer were developed to detect volatile organic compounds of interest in environmental monitoring and drug interdiction applications. The UV fluorescence imaging fluorometer is a relatively simple instrument which uses multiple excitation wavelengths to measure the excitation/emission matrix for irradiated samples. Detection limits in the high part-per-million to low part-per-million range were measured for a number of volatile organic vapors in the atmosphere. Detection limits in the low part-per-million range were obtained using cryogenic cooling to pre-concentrate unknown samples before introducing them into the imaging fluorometer. A multivariate analysis algorithm was developed to analyze the excitation/emission matrix and used to determine the relative concentrations of species in computer synthesized mixtures containing up to five organic compounds. Analysis results demonstrated the utility of multispectral UV fluorescence in analytical measurements. A transportable UV fluorescence imaging fluorometer was used in two field tests. Field test results demonstrated that detection limits in the part-per-billion range were needed to reliably identify volatile organic compounds in realistic field test measurements. The molecular beam laser fluorometer, a more complex instrument with detection limits in the part-per-billion to part-per-trillion range, was therefore developed to satisfy detection sensitivity requirements for field test measurements. High-resolution spectroscopic measurements made with the molecular beam laser fluorometer demonstrated its utility in identifying volatile organic compounds in the atmosphere.

  7. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  8. Ultraviolet studies of Cepheids

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    We discuss whether with new evolutionary tracks we still have a problem fitting the Cepheids and their evolved companions on the appropriate evolutionary tracks. We find that with the Bertelli et al. tracks with convective overshoot by one pressure scale height the problem is essentially removed, though somewhat more mixing would give a better fit. By using the results of recent nonlinear hydrodynamic calculations, we find that we also have no problem matching the observed pulsation periods of the Cepheids with those expected from their new evolutionary masses, provided that Cepheids with periods less than 9 days are overtone pulsators. We investigate possible mass loss of Cepheids from UV studies of the companion spectrum of S Mus and from the ultraviolet spectra of the long period Cepheid l Carinae. For S Mus with a period of 9.6 days we derive an upper limit for the mass loss of M less than 10(exp -9) solar mass, if a standard velocity law is assumed for the wind. For l Carinae with a period of 35.5 days we find a probable mass loss of M is approximately 10(exp -5+/-2) solar mass.

  9. Light, Including Ultraviolet

    PubMed Central

    Maverakis, Emanual; Miyamura, Yoshinori; Bowen, Michael P.; Correa, Genevieve; Ono, Yoko; Goodarzi, Heidi

    2009-01-01

    Ultraviolet (UV) light is intricately linked to the functional status of the cutaneous immune system. In susceptible individuals, UV radiation can ignite pathogenic inflammatory pathways leading to allergy or autoimmunity. In others, this same UV radiation can be used as a phototherapy to suppress pathogenic cutaneous immune responses. These vastly different properties are a direct result of UV light’s ability to ionize molecules in the skin and thereby chemically alter them. Sometimes these UV-induced chemical reactions are essential, the formation of pre-vitamin D3 from 7-dehydrocholesterol, for example. In other instances they can be potentially detrimental. UV radiation can ionize a cell’s DNA causing adjacent pyrimidine bases to chemically bond to each other. To prevent malignant transformation, a cell may respond to this UV-induced DNA damage by undergoing apoptosis. Although this pathway prevents skin cancer it also has the potential of inducing or exacerbating autoreactive immune responses by exposing the cell’s nuclear antigens. Ultaviolet-induced chemical reactions can activate the immune system by a variety of other mechanisms as well. In response to UV irradiation keratinocytes secrete cytokines and chemokines, which activate and recruit leukocytes to the skin. In some individuals UV-induced chemical reactions can synthesize novel antigens resulting in a photoallergy. Alternatively, photosensitizing molecules can damage cells by initiating sunburn-like phototoxic reactions. Herein we review all types of UV-induced skin reactions, especially those involving the immune system. PMID:20018479

  10. Higgs ultraviolet softening

    NASA Astrophysics Data System (ADS)

    Brivio, I.; Éboli, O. J. P.; Gavela, M. B.; Gonzalez-García, M. C.; Merlo, L.; Rigolin, S.

    2014-12-01

    We analyze the leading effective operators which induce a quartic momentum dependence in the Higgs propagator, for a linear and for a non-linear realization of electroweak symmetry breaking. Their specific study is relevant for the understanding of the ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the Lagrangian coupling by: i) a "ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via the equations of motion. The two paths are shown to lead to the same effective Lagrangian at first order in the operator coefficients. It follows a modification of the Higgs potential and of the fermionic couplings in the linear realization, while in the non-linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in addition. Finally, all LHC Higgs and other data presently available are used to constrain the operator coefficients; the future impact of pp → 4 leptons data via off-shell Higgs exchange and of vector boson fusion data is considered as well. For completeness, a summary of pure-gauge and gauge-Higgs signals exclusive to non-linear dynamics at leading-order is included.

  11. Ultraviolet radiation and cyanobacteria.

    PubMed

    Rastogi, Rajesh Prasad; Sinha, Rajeshwar P; Moh, Sang Hyun; Lee, Taek Kyun; Kottuparambil, Sreejith; Kim, Youn-Jung; Rhee, Jae-Sung; Choi, Eun-Mi; Brown, Murray T; Häder, Donat-Peter; Han, Taejun

    2014-12-01

    Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed.

  12. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    AWARD NUMBER: W81XWH-12-C-0043 TITLE: Ultraviolet Communication for Medical Applications PRINCIPAL INVESTIGATOR Jeff Guy Directed Energy , Inc...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet (UV...non-line-of-sight (NLOS) optical communication data links operating in the solar blind region (200–280 nm). The intended application is covert

  13. Ultraviolet investigations for lunar missions

    USGS Publications Warehouse

    Hemphill, William R.; Fischer, William A.; Dornbach, J.E.; Narin, Francis

    1966-01-01

    Preliminary field tests of an active ultraviolet imaging system have shown that it is possible to produce linages of the terrain from distances as great as 75 feet by means of reflected ultraviolet light at wavelengths longer than 3300 A. Minerals that luminesce when exposed to ultraviolet energy have been detected from distances as great as 200 feet. With appropriate design modifications, it may be possible to utilize a similar system in detecting luminescing minerals from greater distances. Also, with a similar system and appropriate auxiliary equipment such as image intensifiers, it may be possible to discriminate between naturally occurring materials on the basis of reflected ultraviolet energy at wavelengths shorter than 3000 A. In this part of the spectrum image contrast for some rock types may exceed that from visible light. Information from these and related ultraviolet spectralanalysis studies may be useful in evaluating data obtained from passive ultraviolet systems in lunar orbit as well as from active systems on the lunar surface.

  14. Modelling ultraviolet threats

    NASA Astrophysics Data System (ADS)

    James, I.

    2016-10-01

    Electro-optically (EO) guided surface to air missiles (SAM) have developed to use Ultraviolet (UV) wavebands supplementary to the more common Infrared (IR) wavebands. Missiles such as the US Stinger have been around for some time but are not considered a proliferation risk. The Chinese FN-16 and Russian SA-29 (Verba) are considered a much higher proliferation risk. As a result, models of the missile seekers must be developed to understand the characteristics of the seeker and the potential performance enhancement that are included. Therefore, the purpose of this paper is to introduce the steps that have been taken to characterise and model these missiles. It begins by outlining some of the characteristics of the threats, the key elements of a UV scene, the potential choice of waveband for a detector, the initial modelling work to represent the UV detector of the missile and presents initial results. The modelling shows that the UV detection range of a typical aircraft is dependent on both the size of the aircraft and its reflectivity. However, the strength of this correlation is less than expected. As a result, further work is required to model more seeker types and to investigate what is causing the weak correlations found in these initial investigations. In addition, there needs to be further study of the sensitivities of the model to other variables, such as the modelled detectivity of the detector and the signal to noise ratio assumed. Overall, the outcome of this work will be to provide specifications for aircraft size and reflectivity that limit the effectiveness of the UV channels.

  15. Far Ultraviolet Astronomy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    The Far Ultraviolet Spectroscopic Explorer (FUSE) is studying a wide range of astronomical problems in the 905-1187 Angstrom wavelength region through the use of high resolution spectroscopy. The FUSE bandpass forms a nearly optimal complement to the spectral coverage provided by the Hubble Space Telescope (HST), which extends down to approximately 1170 Angstroms. The photoionization threshold of atomic hydrogen (911 Angstroms) sets a natural short-wavelength limit for the FUV. FUSE was launched in June 1999 from Cape Canaveral, Florida, on a Delta II rocket into a 768 km circular orbit. Scientific observations started later that year. This spectral region is extremely rich in spectral diagnostics of astrophysical gases over a wide range of temperatures (100 K to over 10 million K). Important strong spectral lines in this wavelength range include those of neutral hydrogen, deuterium, nitrogen, oxygen, and argon (H I, D I, N I, O I, and Ar I), molecular hydrogen (H2), five-times ionized oxygen (O VI), and several ionization states of sulfur (S III - S VI). These elements are essential for understanding the origin and evolution of the chemical elements, the formation of stars and our Solar System, and the structure of galaxies, including our Milky Way. FUSE is one of NASA's Explorer missions and a cooperative project of NASA and the space agencies of Canada and France. These missions are smaller, more scientifically focused missions than the larger observatories, like Hubble and Chandra. FUSE was designed, built and operated for NASA by the Department of Physics and Astronomy at Johns Hopkins University. Hundreds of astronomers world-wide are using FUSE for a wide range of scientific research. Some of the important scientific discoveries from the first two years of the mission are described.

  16. Future Directions in Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  17. Harmful effects of ultraviolet radiation

    SciTech Connect

    Not Available

    1989-07-21

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children.

  18. Ultraviolet-radiation-curable paints

    SciTech Connect

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  19. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  20. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  1. Ultraviolet, visible, and infrared rays

    NASA Technical Reports Server (NTRS)

    Taylor, J. H.; Letavet, A. A.

    1975-01-01

    Sources of infrared, visible and ultraviolet radiation are discussed, and important associated biological and psychophysiological effects are described. The problem of protection from excessively high or low levels of radiant energy in these spectral regions is considered and optimal levels are suggested.

  2. Ultraviolet and Light Absorption Spectrometry.

    ERIC Educational Resources Information Center

    Hargis, L. G.; Howell, J. A.

    1984-01-01

    Reviews developments in ultraviolet and light absorption spectrometry from December 1981 through November 1983, focusing on the chemistry involved in developing suitable reagents, absorbing systems, and methods of determination, and on physical aspects of the procedures. Includes lists of spectrophotometric methods for metals, non-metals, and…

  3. A vacuum ultraviolet spectrophotometric system

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Keffer, Charles E.; Zukic, Muamer

    1993-01-01

    The development of a vacuum ultraviolet spectrophotometric system for measuring transmittance and reflectance at variable angles is presented. Using various detectors and sources, the spectrophotometric system has been used for wavelengths from 80 nm to 300 nm with optical components up to 80 mm in diameter. The capability exists to make measurements through the visible range.

  4. Indirect Ultraviolet-Reactivation of Phage λ

    PubMed Central

    George, Jacqueline; Devoret, Raymond; Radman, Miroslav

    1974-01-01

    When an F- recipient Escherichia coli K12 bacterium receives Hfr or F-lac+ DNA from an ultraviolet-irradiated donor, its capacity to promote DNA repair and mutagenesis of ultraviolet-damaged phage λ is substantially increased. We call this phenomenon indirect ultraviolet-reactivation, since its features are essentially the same as those of ultraviolet-reactivation; this repair process occurs in pyrimidine dimer excision-deficient strains and produces clear plaque mutations of the restored phage. Moreover, this process is similar to indirect ultraviolet-induction of prophage λ, since it is promoted by conjugation. However, contrarily to indirect induction, it is produced by Hfr donors and occurs in recipients restricting the incoming ultraviolet-damaged donor DNA. The occurrence of indirect ultraviolet-reactivation provides evidence for the existence in E. coli of an inducible error-prone mechanism for the repair of DNA. PMID:4589889

  5. Ultraviolet photofragmentation of biomolecular ions

    PubMed Central

    Reilly, James P.

    2009-01-01

    Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized. PMID:19241462

  6. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  7. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  8. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  9. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  10. Ultraviolet, optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Wampler, E. J.

    1982-11-01

    The principal scientific currents in ultraviolet, optical, and infrared astronomy are discussed, with detailed descriptions of the major recommendations of the Panel on Ultraviolet, Optical and Infrared Astronomy of the National Academy of Sciences' Astronomy Survey Committee. The task of this panel was to survey progress and capabilities and to set priorities for new instrumentation in those branches of astronomy devoted to collecting and analyzing the information carried by cosmic photons with wavelengths between about 100 angstroms and 1 mm. It is pointed out that the best astronomical site in the U.S., the 14,000-foot-high summit of Mauna Kea, Hawaii, now has more square meters of telescope aperture operated by French, Canadian, and English groups than by U.S. groups. The panel named two instruments as major components of the programs for the 1980s. These are the Space Telescope and the Shuttle Infrared Telescope Facility.

  11. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  12. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  13. Ultraviolet-Resistant Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  14. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  15. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  16. Rooting gene trees without outgroups: EP rooting.

    PubMed

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  17. Far ultraviolet astronomy using the FAUST telescope

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1981-01-01

    The Far Ultraviolet Space Telescope (FAUST) a compact, wide field-of-view, far ultraviolet instrument designed for astronomical observations of extended and point sources is discussed. The design and application of the instrument are described. The prime objective is to observe faint astronomical sources with sensitivities higher than previously available. Scientific programs will include: (1) a search for ultraviolet stars which are predicted to exist at the stage of evolution prior to the final death of a star; (2) observations of galaxies and quasars; and (3) joint programs with other Spacelab 1 experiments. The secondary objective is to verify the suitability of the Spacelab as a platform for far ultraviolet astronomy: data will be provided on the ultraviolet background levels due to astronomical, terrestrial, and spacecraft generated sources; the levels of contaminants which affect ultraviolet instruments; and the capability of the Orbiter for stable pointing at celestial sources for useful periods of time.

  18. Ultraviolet light and hyperpigmentation in healing wounds

    SciTech Connect

    Wiemer, D.R.; Spira, M.

    1983-10-01

    The concept of permanent hyperpigmentation in wounds following ultraviolet light exposure during the postoperative period has found a place in plastic surgical literature but has not been documented. This study evaluates the effect of ultraviolet light on healing wounds in paraplegics. It failed to confirm permanent alteration in pigmentation response to ultraviolet exposure and suggests that other factors are of greater importance in the development of hyperpigmentation in the healing wound.

  19. Polymerizable ultraviolet stabilizers for outdoor use

    NASA Technical Reports Server (NTRS)

    Vogl, O.

    1982-01-01

    Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.

  20. Ultraviolet Radiation and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R.

    2003-01-01

    Ultraviolet radiation from the sun produces ozone in the stratosphere and it participates in the destruction of ozone. Absorption of solar ultraviolet radiation by ozone is the primary heating mechanism leading to the maximum in temperature at the stratopause. Variations of solar ultraviolet radiation on both the 27-day solar rotation period and the 11-year solar cycle affect ozone by several mechanisms. The temperature and ozone in the upper stratosphere respond to solar uv variations as a coupled system. An increase in uv leads to an increase in the production of ozone through the photolysis of molecular oxygen. An increase in uv leads to an increase in temperature through the heating by ozone photolysis. The increase in temperature leads to a partially-offsetting decrease in ozone through temperature-dependent reaction rate coefficients. The ozone variation modulates the heating by ozone photolysis. The increase in ozone at solar maximum enhances the uv heating. The processes are understood and supported by long-term data sets. Variation in the upper stratospheric temperatures will lead to a change in the behavior of waves propagating upward from the troposphere. Changes in the pattern of wave dissipation will lead to acceleration or deceleration of the mean flow and changes in the residual or transport circulation. This mechanism could lead to the propagation of the solar cycle uv variation from the upper stratosphere downward to the lower stratosphere. This process is not well-understood and has been the subject of an increasing number of model studies. I will review the data analyses for solar cycle and their comparison to model results.

  1. Combined ultraviolet studies of astronomical sources

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Sonderblom, D. R.

    1985-01-01

    Ultraviolet studies of various astronomical entities are reported. Among the specific phenomena examined were supernova remnants, dwarf novae, red giant stars, stellar winds, binary stars, and galaxies.

  2. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.; Gloria, H. R.; Goldsberry, R. E.; Reinisch, R. F.

    1972-01-01

    Copolymers, produced from aromatic substituted aromatic azine-siloxane compositions, are thermally stable, solar ultraviolet light non-degradable by wavelengths shorter than those reaching earth surface.

  3. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  4. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  5. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  6. Ultraviolet Spectra of Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Roush, Ted

    1996-07-01

    The ultraviolet reflectance spectra of the icy satellites ofUranus are largely unknown. We propose to use the HubbleSpace Telescope Faint Object Spectrograph in order to obtainthe first high S/N UV spectra of Ariel, Titania, and Oberon.Because of our innovative targeting approach, we have alsobeen able to include Umbriel in our observational plans.These satellites sample almost the full range of UV albedosand UV/VIS colors exhibited by the large Uranian satellites.The spectral resolution and range will overlap with earth-based telescopic and spacecraft observations of these objectsallowing for comparisons of the UV data with existing visualand near-infrared spectra of these objects. These comparisonswill ultimately provide greater constraints on the relativelylow albedo spectrally neutral non-ice component on the Uraniansatellites. The existance of UV spectral features due tospecies such as O_3, H_2O_2 or carbon-rich macromolecules(e.g. polycyclic aromatic hydrocarbons) can provide evidencefor modification of the surfaces via plasma or meteoriticbombardment, alteration by high-energy ultraviolet radiation,or accretion of particles from nearby sources such asplanetary rings or dust bands.

  7. The International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1990-01-01

    The International Ultraviolet Explorer (IUE) was launched into a geosynchronous orbit on 26 January 1978. It is equipped with a 45-cm mirror and spectrographs operating in the far-ultraviolet (1150-2000 A) and the midultraviolet (1900-3200 A) wavelength regions. In a low-dispersion mode, the spectral resolution is some 6-7 A. In a high-dispersion echelle mode, the resolution is about 0.1 Aat the shortest wavelength and about 0.3 A at the longest. It is a collaborative program among NASA, ESA, and the British SERC. The IUE is operated in real time 16 hours a day from NASA Goddard Space Flight Center near Washington, D.C. and 8 hours daily from ESA's Villafranca groundstation near Madrid, Spain. By the end of 1989, 1870 papers, using IUE observations, have been published in referred journals. During the same period, over 1700 different astronomers from all over the world used the IUE for their research.

  8. Ultraviolet light and ocular diseases.

    PubMed

    Yam, Jason C S; Kwok, Alvin K H

    2014-04-01

    The objective of this study is to review the association between ultraviolet (UV) light and ocular diseases. The data are sourced from the literature search of Medline up to Nov 2012, and the extracted data from original articles, review papers, and book chapters were reviewed. There is a strong evidence that ultraviolet radiation (UVR) exposure is associated with the formation of eyelid malignancies [basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)], photokeratitis, climatic droplet keratopathy (CDK), pterygium, and cortical cataract. However, the evidence of the association between UV exposure and development of pinguecula, nuclear and posterior subcapsular cataract, ocular surface squamous neoplasia (OSSN), and ocular melanoma remained limited. There is insufficient evidence to determine whether age-related macular degeneration (AMD) is related to UV exposure. It is now suggested that AMD is probably related to visible radiation especially blue light, rather than UV exposure. From the results, it was concluded that eyelid malignancies (BCC and SCC), photokeratitis, CDK, pterygium, and cortical cataract are strongly associated with UVR exposure. Evidence of the association between UV exposure and development of pinguecula, nuclear and posterior subcapsular cataract, OSSN, and ocular melanoma remained limited. There is insufficient evidence to determine whether AMD is related to UV exposure. Simple behaviural changes, appropriate clothing, wearing hats, and UV blocking spectacles, sunglasses or contact lens are effective measures for UV protection.

  9. Transmitting and reflecting diffuser. [using ultraviolet grade fused silica coatings

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1977-01-01

    An ultraviolet grade fused silica substrate is coated with vaporized fused silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  10. Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.

    PubMed

    Telford, William G

    2015-12-01

    Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes.

  11. Pen Ink as an Ultraviolet Dosimeter

    ERIC Educational Resources Information Center

    Downs, Nathan; Turner, Joanna; Parisi, Alfio; Spence, Jenny

    2008-01-01

    A technique for using highlighter ink as an ultraviolet dosimeter has been developed for use by secondary school students. The technique requires the students to measure the percentage of colour fading in ink drawn onto strips of paper that have been exposed to sunlight, which can be calibrated to measurements of the ultraviolet irradiance using…

  12. Clear Film Protects Against Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Yavrouian, A.

    1983-01-01

    Acrylic film contains screeing agent filtering ultraviolet radiation up to 380 nanometers in wavelength but passes other components of Sunlight. Film used to protect such materials as rubber and plastics degraded by ultraviolet light. Used as protective cover on outdoor sheets or pipes made of such materials as polyethylene or polypropylene and on solar cells.

  13. Ultraviolet Echelle spectropolarimeter for the ARAGO mission.

    NASA Astrophysics Data System (ADS)

    Perea Abarca, B.; Gómez de Castro, A. I.; Marcos-Arenal, P.

    2017-03-01

    In this contribution, we describe an efficient instrument designed for mid resolution (25.000) spectropolarimetric observations in the ultraviolet wavelength range (119-320 nm). Spectropolarimetry in the ultraviolet range introduces challenging constraints in the image quality of the echellé design that are addressed via the introduction special optical elements.

  14. Ultraviolet light-an FDA approved technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultraviolet Light (254 nm) is a U.S. Food and Drug Administration approved nonthermal intervention technology that can be used for decontamination of food and food contact surfaces. Ultraviolet light is a green technology that leaves no chemical residues. Results from our laboratory indicate that ex...

  15. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  16. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  17. The Ultraviolet Albedo of Ganymede

    NASA Astrophysics Data System (ADS)

    McGrath, Melissa; Hendrix, A.

    2013-10-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede’s stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede’s UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values. References Carlson, R. and 39 co-authors, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit, Science, 274, 385-388, 1996. Eviatar, A., D. F. Strobel, B. C. Wolven, P. D. Feldman, M. A. McGrath, and D. J. Williams, Excitation of the Ganymede ultraviolet aurora, Astrophys. J, 555, 1013-1019, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven, HST/STIS imaging of ultraviolet aurora on Ganymede, Astrophys. J, 535, 1085-1090, 2000. McGrath M. A., Lellouch E., Strobel D. F., Feldman P. D., Johnson R. E., Satellite Atmospheres, Chapter 19 in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. Dowling, W. McKinnon, Cambridge University Press, 2004. McGrath M. A., Jia, Xianzhe; Retherford, Kurt; Feldman, Paul D.; Strobel, Darrell F.; Saur, Joachim, Aurora on Ganymede, J. Geophys. Res., doi: 10.1002/jgra.50122, 2013. Saur, J., S. Duling, S., L. Roth, P. D. Feldman, D. F. Strobel, K. D. Retherford, M. A. McGrath, A. Wennmacher, American Geophysical Union, Fall Meeting

  18. Detection of latent fingerprints by ultraviolet spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2013-12-01

    Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.

  19. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family…

  20. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  1. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  2. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  3. Global Ultraviolet Imager (GUVI) investigation

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.

    1995-01-01

    This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.

  4. International ultraviolet explorer observatory operations

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This volume contains the Final Report for the International Ultraviolet Explorer (IUE) Observatory Operations contract, NAS5-28787. The report summarizes the activities of the IUE Observatory over the 13-month period from November 1985 through November 1986 and is arranged in sections according to the functions specified in the Statement of Work (SOW) of the contract. In order to preserve numerical correspondence between the technical SOW elements specified by the contract and the sections of this report, project management activities (SOW element 0.0.) are reported here in Section 7, following the reports of technical SOW elements 1.0 through 6.0. Routine activities have been summarized briefly whenever possible; statistical compilations, reports, and more lengthy supplementary material are contained in the Appendices.

  5. The Ultraviolet Albedo of Ganymede

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa; Hendrix, Amanda

    2013-01-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede's stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede's UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values.

  6. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  7. The ultraviolet astronomy mission: Columbus

    NASA Technical Reports Server (NTRS)

    Wilson, R.

    1984-01-01

    An ultraviolet astronomy mission (Columbus) is described. It exploits the spectral region between 900 and 1200A, which is extremely rich in containing the Lyman lines of hydrogen and deuterium and the Lyman band of their molecules, together with the resonance lines of many important ions. High resolving power and high sensitivity provide a unique capability for studying the brightest members of neighboring galaxies, the HeI and HeII absorption systems in quasars out to a red shift of 2, and the halos of intervening galaxies. Complementary focal plane instruments are planned in order to allow observations to longer (2000A) and shorter (100A) wavelengths. This wide coverage embraces the resonance lines of all the cosmically abundant elements and a wide range of temperature zones up to 100 million K.

  8. Ultraviolet spectroscopy of cometary comae

    NASA Technical Reports Server (NTRS)

    Feldman, Paul D.

    1991-01-01

    During the past decade, vacuum ultraviolet spectra of over 30 comets have been obtained with the IUE satellite observatory. With few exceptions, the spectra of these comets appear to be similar, with OH and H produced by the photodissociation of water being the dominant species and emissions of C, O, S, CS and CO2(+) usually present. Although signs of variabiity of many kinds in comet spectra appear, the evidence from the UV observations suggests that all comets have the same basic chemical composition and that observed differences are due to evolution and ageing processes. During the 1985-86 apparition of Comet Halley, spectra were also obtained by other spacecraft and by sounding rocket instruments, including a long-slit imaging spectrograph.

  9. Ultraviolet spectrometer observations of uranus.

    PubMed

    Broadfoot, A L; Herbert, F; Holberg, J B; Hunten, D M; Kumar, S; Sandel, B R; Shemansky, D E; Smith, G R; Yelle, R V; Strobel, D F; Moos, H W; Donahue, T M; Atreya, S K; Bertaux, J L; Blamont, J E; McConnell, J C; Dessler, A J; Linick, S; Springer, R

    1986-07-04

    Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 10(29) per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 10(20) per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x10(11) watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10(-7) at a vertical column abundance of molecular hydrogen of 10(23) per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.

  10. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  11. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  12. Ultraviolet colour opponency in the turtle retina.

    PubMed

    Ventura, D F; Zana, Y; de Souza, J M; DeVoe, R D

    2001-07-01

    We have examined the functional architecture of the turtle Pseudemys scripta elegans retina with respect to colour processing, extending spectral stimulation into the ultraviolet, which has not been studied previously in the inner retina. We addressed two questions. (i) Is it possible to deduce the ultraviolet cone spectral sensitivity function through horizontal cell responses? (ii) Is there evidence for tetrachromatic neural mechanisms, i.e. UV/S response opponency? Using a constant response methodology we have isolated the ultraviolet cone input into the S/LM horizontal cell type and described it in fine detail. Monophasic (luminosity), biphasic L/M (red-green) and triphasic S/LM (yellow-blue) horizontal cells responded strongly to ultraviolet light. The blue-adapted spectral sensitivity function of a S/LM cell peaked in the ultraviolet and could be fitted to a porphyropsin cone template with a peak at 372 nm. In the inner retina eight different combinations of spectral opponency were found in the centre of the receptive field of ganglion cells. Among amacrine cells the only types found were UVSM-L+ and its reverse. One amacrine and four ganglion cells were also opponent in the receptive field surround. UV/S opponency, seen in three different types of ganglion cell, provides a neural basis for discrimination of ultraviolet colours. In conclusion, the results strongly suggest that there is an ultraviolet channel and a neural basis for tetrachromacy in the turtle retina.

  13. Root hydrotropism: an update.

    PubMed

    Cassab, Gladys I; Eapen, Delfeena; Campos, María Eugenia

    2013-01-01

    While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.

  14. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  15. Ultraviolet phototherapy and photochemotherapy of acne vulgaris.

    PubMed

    Mills, O H; Kligman, A M

    1978-02-01

    The therapeutic value of various ultraviolet treatments was assessed in patients with moderately severe papulopustular acne. The results did not verify the common belief that ultraviolet radiation is highly beneficial. In no instance was the comedo count appreciably reduced. Modest improvement was observed with sunburn rays (UV-B) and slightly more with the combination of long ultraviolet radiation (UV-A) and UV-B. UV-A alone had the least effect. Photosensitization with coal tar and UV-A greatly aggravated acne and was notably comedogenic. Photosensitization with methoxsalen (8-methoxypsoralen) applied topically was neither harmful nor helpful.

  16. World Space Observatory Ultraviolet mission: status 2016

    NASA Astrophysics Data System (ADS)

    Sachkov, Mikhail; Shustov, Boris; Gómez de Castro, Ana Inés.

    2016-07-01

    The WSO-UV (World Space Observatory - Ultraviolet) project is intended to built and operate an international space observatory designed for observations in the UV (115 - 310 nm) range, where some of the most important astrophysical processes can be efficiently studied. It is the solution to the problem of future access to UV spectroscopy. Dedicated to spectroscopic and imaging observations of the ultraviolet sky, the World Space Observatory - Ultraviolet mission is a Russian-Spanish collaboration with potential Mexican minor contribution. This paper provides a summary on the project, its status and the major outcomes since the last SPIE meeting.

  17. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment.

    PubMed

    Noonan, Frances P; Zaidi, M Raza; Wolnicka-Glubisz, Agnieszka; Anver, Miriam R; Bahn, Jesse; Wielgus, Albert; Cadet, Jean; Douki, Thierry; Mouret, Stephane; Tucker, Margaret A; Popratiloff, Anastas; Merlino, Glenn; De Fabo, Edward C

    2012-06-06

    Malignant melanoma of the skin (CMM) is associated with ultraviolet radiation exposure, but the mechanisms and even the wavelengths responsible are unclear. Here we use a mammalian model to investigate melanoma formed in response to precise spectrally defined ultraviolet wavelengths and biologically relevant doses. We show that melanoma induction by ultraviolet A (320-400 nm) requires the presence of melanin pigment and is associated with oxidative DNA damage within melanocytes. In contrast, ultraviolet B radiation (280-320 nm) initiates melanoma in a pigment-independent manner associated with direct ultraviolet B DNA damage. Thus, we identified two ultraviolet wavelength-dependent pathways for the induction of CMM and describe an unexpected and significant role for melanin within the melanocyte in melanomagenesis.

  18. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  19. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  20. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  1. Root lattices and quasicrystals

    NASA Astrophysics Data System (ADS)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  2. Solar ultraviolet radiation in a changing climate

    NASA Astrophysics Data System (ADS)

    Williamson, Craig E.; Zepp, Richard G.; Lucas, Robyn M.; Madronich, Sasha; Austin, Amy T.; Ballaré, Carlos L.; Norval, Mary; Sulzberger, Barbara; Bais, Alkiviadis F.; McKenzie, Richard L.; Robinson, Sharon A.; Häder, Donat-P.; Paul, Nigel D.; Bornman, Janet F.

    2014-06-01

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.

  3. Ultraviolet Variability of B[e] Stars

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Krtičková, I.

    2017-02-01

    Hot stars emit most of their light in the ultraviolet. Therefore, the visual domain in which the variability is mostly studied traces just a small part of the spectral energy distribution. To overcome this, we searched archival data of the IUE satellite for the ultraviolet spectra of B[e] stars. We studied each star individually and identified the differences between the variability in the near and far ultraviolet domains. Although the data are typically very sparse, we detected the variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including the light absorption by the dust clouds and the disk, pulsations, and eclipses in the case of binaries. The ultraviolet domain is the key to understanding the variability of B[e] stars.

  4. Understanding the Ultraviolet Flux from Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.

    2016-01-01

    The conversion of observed magnitudes into flux densities for the creation of spectral energy distributions or integrating bolometric fluxes depends on the spectral shape of the source and the characteristics of the filters. Such details are often neglected, though the effects can be significant. We demonstrate the complexities of conversion as they relate to ultraviolet observations of supernovae, though the principles have broader application. These complexities include spectral model testing, the meaning of effective wavelengths, the endpoints of integration, and extinction corrections. Using data from the Swift Optical Ultraviolet Supernova Archive (SOUSA) we will present integrated luminosity curves from example supernovae of all types. We will also show the unprecedented ultraviolet luminosity of ASASSN-15lh/SN2015L. The creation of ultraviolet/optical spectral energy distributions is helpful in predicting the observed brightness and detectability of these supernovae at higher redshifts with optical telescopes such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  5. Synthetic Ultraviolet Spectroscopic Indices in Stars

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Rodríguez-Merino, L. H.; Bertone, E.; Buzzoni, A.; Bressan, A.

    2007-12-01

    We present a progress report on the calculation of ultraviolet spectroscopic indices by using the UVBLUE library of synthetic spectra. The ensemble of indices are aimed at complementing empirical databases for the study of stellar populations. The definitions for the set of indices are mainly those empirically built upon data collected with the International Ultraviolet Explorer (IUE). Because the far-ultraviolet (far-UV) and mid-ultraviolet (mid-UV) are sensitive to quite dissimilar stellar populations, they are presented separately. We provide a few examples on the effects of the leading atmospheric parameters on index values. This analysis is, to our knowledge, the first based upon high resolution synthetic spectra and we envisage important applications on the study of stellar aggregates at UV wavelengths.

  6. Astronomy and the Extreme Ultraviolet Explorer satellite.

    PubMed

    Bowyer, S

    1994-01-07

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  7. Astronomy and the Extreme Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Bowyer, S.

    1994-01-01

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  8. Improving Performance in Planetary Ultraviolet Spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, M. W.; Gladstone, G. R.; Retherford, K. D.

    2016-10-01

    Four planetary ultraviolet spectrographs by SwRI have successfully operated on different planetary missions. Two more will operate aboard the JUICE and Europa missions with advancements to allow operations in the Jovian environment.

  9. Near Ultraviolet Spectrograph for Cubesats

    NASA Astrophysics Data System (ADS)

    Aickara Gopinathan, Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Kaippacheri, Nirmal; Safonova, Margarita; Murthy, Jayant

    2017-01-01

    We have designed a near ultraviolet (200 - 400 nm) spectrograph to fit into a 2U CubeSat and planned for flight in mid-2017 with a scientific goal of obtaining NUV spectra of bright sources (< 6th magnitude) with a spectral resolution of 10 Å. The aggressive timeline drives the design to include only off-the-shelf items to minimize procurement delays and cost. Our baseline optical design consists of a collecting mirror with a 70 mm diameter which reflects light onto a concave reflection grating with a spacing of 1200 lines per mm. The grating focuses the light onto a linear array back-thinned FFT CCD with a pixel size of 14-μm × 14-μm.We will present the design of the payload and the choices forced on us by the restrictive CubeSat environment and the short lead times. This payload is a part of our program to build payloads that will address limited scientific goals but making full use of the opportunities that are arising for CubeSat class missions.

  10. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1993-01-01

    This report describes research activities related to the Infrared Astronomical Satellite (IRAS) sky survey. About 745 luminous stars were examined for the presence of interstellar dust heated by a nearby star. The 'cirrus' discovered by IRAS is thermal radiation from interstellar dust at moderate and high galactic latitudes. The IRAS locates the dust which must (at some level) scatter ultraviolet starlight, although it was expected that thermal emission would be found around virtually every star, most stars shown no detectable emission. And the emission found is not uniform. It is not that the star is embedded in 'an interstellar medium', but rather what is found are discrete clouds that are heated by starlight. An exception is the dearth of clouds near the very hottest stars, implying that the very hottest stars play an active role with respect to destroying or substantially modifying the dust clouds over time. The other possibility is simply that the hottest stars are located in regions lacking in dust, which is counter-intuitive. A bibliography of related journal articles is attached.

  11. [Ultraviolet: a regulator of immunity].

    PubMed

    Komura, Kazuhiro

    2008-06-01

    Humans establish acquired immune systems during the growth, which can sufficiently eliminate pathogen avoiding immune responses to self, such as allergy and autoimmunity. An imbalance of the acquired immune system leads up to immune-mediated disorders. Ultraviolet (UV) exposure helps to establish the normal peripheral tolerance to contact allergen avoiding excessive immune responses. By contrast, UV develops kinds of autoimmune diseases on rare occasions, suggesting that abnormality in the process of UV-induced peripheral tolerance may induce these diseases. To elucidate the mechanism of UV-induced tolerance is possible to provide a new approach for the management of immune diseases. In the current review, focus is on the suggested players of UV-induced tolerance, blocking mechanisms on the elicitation phase of contact hypersensitivity, and the association between UV and autoimmunity. The major impact in basic immunology in this area is the discovery of cell surface marker of regulatory T cells. Therefore, we first discuss about the association of regulatory/suppressor T cells with UV-induced tolerance. Since the elicitation phase depends on cellular influx into the inflammatory sites, which is tightly regulated by adhesion molecules, we also focused on the role of adhesion molecules. Finally, this paper also includes statistical findings concerning the association between UV-radiation and the prevalence of a myositis specific autoantibody. Thus, UV is one of the nice regulators of an immune network and the knowledge of UV-mediated immune regulation will be translated into new therapeutic strategies to human immune-mediated disorders.

  12. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  13. Ultraviolet Light and Skin Cancer in Athletes

    PubMed Central

    Harrison, Shannon C.; Bergfeld, Wilma F.

    2009-01-01

    The incidence of melanoma and nonmelanoma skin cancers is increasing worldwide. Ultraviolet light exposure is the most important risk factor for cutaneous melanoma and nonmelanoma skin cancers. Nonmelanoma skin cancer includes basal cell carcinoma and squamous cell carcinoma. Constitutive skin color and genetic factors, as well as immunological factors, play a role in the development of skin cancer. Ultraviolet light also causes sunburn and photoaging damage to the skin. PMID:23015891

  14. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  15. Dynamic properties of ultraviolet-exposed polyurea

    NASA Astrophysics Data System (ADS)

    Youssef, George; Whitten, Ian

    2016-11-01

    Polyurea is used in military and civilian applications, where exposure to the sun in long durations is imminent. Extended exposure to ultraviolet radiation from the sun can deteriorate its mechanical performance to suboptimal levels. This study reports on the dynamic mechanical properties of polyurea as a function of ultraviolet radiation exposure duration. Six sets of samples were continuously exposed to ultraviolet radiation for different durations up to 18 weeks. Control samples were also tested that did not receive ultraviolet exposure. The dynamic properties were measured using a dynamic mechanical analyzer. Exposed samples exhibited significant color changes from transparent yellow to opaque tan after 18 weeks of exposure. Changes of color were observed as early as 3 weeks of exposure. The dynamic properties showed an initial increase in the dynamic modulus after 3 weeks of exposure, with no further significant change in the stiffness thereafter. The ultraviolet exposure had a significant impact at relatively short loading times or low temperature, for example, up to 6 decades of time. As loading time increases or polyurea operates at high temperature, the effect of ultraviolet exposure and temperature on the performance become highly coupled.

  16. Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize

    PubMed Central

    Wu, Qian; Pagès, Loïc; Wu, Jie

    2016-01-01

    Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490

  17. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  18. How roots respond to gravity.

    PubMed

    Evans, M L; Moore, R; Hasenstein, K H

    1986-12-01

    Current knowledge about the mechanisms of plant root response to gravity is reviewed. The roles of the columella region and amyloplasts in the root cap are examined. Results of experiments related to gravistimulation in corn roots with and without root caps are explained. The role of auxin, abscisic acid, and calcium also are examined.

  19. Modeling Ultraviolet Emissions Near Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2000-01-01

    In this report, we describe work awarded to Science Applications International Corporation, for the period 6/l/99 to 5/31/00. During this time period, we have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the role this interaction plays in producing ultraviolet (UV) emissions from neutral oxygen and sulfur. Io, the innermost of Jupiter's Galilean satellites, plays a unique role in the jovian magnetosphere. Neutral material that escapes from Io is ionized to form the lo torus, a dense, heavy-ion plasma that corotates with Jupiter and interacts with Io. Io supplies not only the torus, but is a major source of plasma for the entire magnetosphere. Ionization and charge-exchange of neutrals near lo strongly influences the plasma interaction, and Io's neutral atmosphere plays an important role in the generation of currents that couple Io to Jupiter. There have been no in situ measurements of the neutral density near Io, but remote observations of neutrals near lo have been performed for many years. Recent observations from the Hubble Space Telescope (HST) have shown detailed structure in UV emissions from neutral species near Io. Electron-impact of the neutrals by the Io torus plasma is the primary mechanism responsible for exciting these emissions. Previously, we have modeled the Io plasma environment using three-dimensional magnetohydrodynamic (MHD) simulations, and we have shown that the interaction between Io and the plasma torus plays an important role in producing the morphology of the observed emissions. In the past year, we have extended these studies to use both UV observations and Galileo particle and field measurements to investigate the Io interaction.

  20. Ultraviolet resources over Northern Eurasia.

    PubMed

    Chubarova, Natalia; Zhdanova, Yekaterina

    2013-10-05

    We propose a new climatology of UV resources over Northern Eurasia, which includes the assessments of both detrimental (erythema) and positive (vitamin D synthesis) effects of ultraviolet radiation on human health. The UV resources are defined by using several classes and subclasses - UV deficiency, UV optimum, and UV excess - for 6 different skin types. To better quantifying the vitamin D irradiance threshold we accounted for an open body fraction S as a function of effective air temperature. The spatial and temporal distribution of UV resources was estimated by radiative transfer (RT) modeling (8 stream DISORT RT code) with 1×1° grid and monthly resolution. For this purpose special datasets of main input geophysical parameters (total ozone content, aerosol characteristics, surface UV albedo, UV cloud modification factor) have been created over the territory of Northern Eurasia. The new approaches were used to retrieve aerosol parameters and cloud modification factor in the UV spectral region. As a result, the UV resources were obtained for clear-sky and mean cloudy conditions for different skin types. We show that the distribution of UV deficiency, UV optimum and UV excess is regulated by various geophysical parameters (mainly, total ozone, cloudiness and open body fraction) and can significantly deviate from latitudinal dependence. We also show that the UV optimum conditions can be simultaneously observed for people with different skin types (for example, for 4-5 skin types at the same time in spring over Western Europe). These UV optimum conditions for different skin types occupy a much larger territory over Europe than that over Asia.

  1. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    NASA Technical Reports Server (NTRS)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  2. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  3. Nerve root replantation.

    PubMed

    Carlstedt, Thomas

    2009-01-01

    Traumatic avulsion of nerve roots from the spinal cord is a devastating event that usually occurs in the brachial plexus of young adults following motor vehicle or sports accidents or in newborn children during difficult childbirth. A strategy to restore motor function in the affected arm by reimplanting into the spinal cord the avulsed ventral roots or autologous nerve grafts connected distally to the avulsed roots has been developed. Surgical outcome is good and useful recovery in shoulder and proximal arm muscles occurs. Pain is alleviated with motor recovery but sensory improvement is poor when only motor conduits have been reconstructed. In experimental studies, restoration of sensory connections with general improvement in the outcome from this surgery is pursued.

  4. Ultraviolet spectroscopy of the extended solar corona

    NASA Astrophysics Data System (ADS)

    Kohl, John L.; Noci, Giancarlo; Cranmer, Steven R.; Raymond, John C.

    2006-04-01

    The first observations of ultraviolet spectral line profiles and intensities from the extended solar corona (i.e., more than 1.5 solar radii from Sun-center) were obtained on 13 April 1979 when a rocket-borne ultraviolet coronagraph spectrometer of the Harvard-Smithsonian Center for Astrophysics made direct measurements of proton kinetic temperatures, and obtained upper limits on outflow velocities in a quiet coronal region and a polar coronal hole. Following those observations, ultraviolet coronagraphic spectroscopy has expanded to include observations of over 60 spectral lines in coronal holes, streamers, coronal jets, and solar flare/coronal mass ejection (CME) events. Spectroscopic diagnostic techniques have been developed to determine proton, electron and ion kinetic temperatures and velocity distributions, proton and ion bulk flow speeds and chemical abundances. The observations have been made during three sounding rocket flights, four Shuttle deployed and retrieved Spartan 201 flights, and the Solar and Heliospheric Observatory (SOHO) mission. Ultraviolet spectroscopy of the extended solar corona has led to fundamentally new views of the acceleration regions of the solar wind and CMEs. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO revealed surprisingly large temperatures, outflow speeds, and velocity distribution anisotropies in coronal holes, especially for minor ions. Those measurements have guided theorists to discard some candidate physical processes of solar wind acceleration and to increase and expand investigations of ion cyclotron resonance and related processes. Analyses of UVCS observations of CME plasma properties and the evolution of CMEs have provided the following: temperatures, inflow velocities and derived values of resistivity and reconnection rates in CME current sheets, compression ratios and extremely high ion temperatures behind CME shocks, and three dimensional flow velocities and magnetic field chirality in

  5. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  6. Ultraviolet radiation therapy and UVR dose models.

    PubMed

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  7. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  8. Far ultraviolet excitation processes in comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.

    1976-01-01

    Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).

  9. Rocket observations of the diffuse ultraviolet background

    NASA Technical Reports Server (NTRS)

    Jakobsen, P.; Bowyer, S.; Kimble, R.; Jelinsky, P.; Grewing, M.; Kraemer, G.; Wulf-Mathies, C.

    1984-01-01

    The objective of the experiment reported here was to obtain additional information on the absolute intensity level and spatial variation of the diffuse ultraviolet background and thereby gain insight into the origin of this radiation. The experiment used three ultraviolet sensitive photometers placed in the focal plane of a 95-cm, f/2.8 normal incidence telescope flown on board an Aries sounding rocket. The measured intensities clearly refute the hypothesis of an isotropic background, the intensities of the high galactic latitude being definitely lower than the intensities seen at intermediate latitudes. Moreover, the count rates in all three channels along the slow scan exhibit local enhancements as well as an overall trend. In general, the spatial variations exhibited by the data correlate with the line of sight of neutral hydrogen column density as determined from 21-cm radio observations. This fact demonstrates that there is a galactic component to the diffuse ultraviolet radiation field.

  10. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  11. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1981-11-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  12. Occupational Skin Hazards From Ultraviolet (UV) Exposures

    NASA Astrophysics Data System (ADS)

    Urbach, F.; Wolbarsht, M. L.

    1980-10-01

    The various types of UV effects on the skin are classified according to the part of the spectrum and their beneficial or deleterious nature. Some hazardous ultraviolet sources used in industrial processes are described, and examples of photoallergy, phototoxicity, and photosensitization resulting from UV exposures are given. The incidence of skin cancer as a function of geographical location and exposure to sunlight is discussed in relation to natural and artificial exposures to long and short wavelength UV, especially in connection with tanning booths. The conclusion is reached that there is enough ultraviolet in a normal environment to propose a hazard, and additional ultraviolet exposure from industrial or consumer sources is not necessary, and should be eliminated wherever possible.

  13. Photoresist composition for extreme ultraviolet lithography

    SciTech Connect

    Felter, T.E.; Kubiak, G.D.

    1999-11-23

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4--0.05 {mu}m using projection lithography and extreme ultraviolet (EUV) radiation is disclosed. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  14. Grass Roots Project Evaluation.

    ERIC Educational Resources Information Center

    Wick, John W.

    Some aspects of a grass roots evaluation training program are presented. The program consists of two elements: (1) a series of 11 slide/tape individualized self-paced units, and (2) a six-week summer program. Three points of view on this program are: (1) University graduate programs in quantitative areas are usually consumed by specialists; (2)…

  15. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3)…

  16. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  17. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  18. The Roots Of Alienation

    ERIC Educational Resources Information Center

    Bronfenbrenner, Urie

    1973-01-01

    Alienation in our society takes several forms--withdrawal, hostility, or efforts to reform. The author traces the roots of alienation to our neglect of many of the needs of children, particularly their need for interaction with adults. Among his many recommendations are: modified work schedules to permit more time with children and systems for…

  19. Modelling and Display of the Ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  20. Pluto's Far Ultraviolet Spectrum and Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Schindhelm, E.; Kammer, J.; Gladstone, R.; Greathouse, T. K.; Parker, J. W.; Strobel, D. F.; Summers, M. E.; Versteeg, M. H.; Ennico Smith, K.; Hinson, D. P.; Linscott, I.; Olkin, C.; Parker, A. H.; Retherford, K. D.; Singer, K. N.; Tsang, C.; Tyler, G. L.; Weaver, H. A., Jr.; Woods, W. W.; Young, L. A.; Stern, A.

    2015-12-01

    The Alice far ultraviolet spectrograph on the New Horizons spacecraft is the second in a family of six instruments in flight on, or under development for, NASA and ESA missions. Here, we present initial results from the Alice observations of Pluto during the historic flyby. Pluto's far ultraviolet spectrum is dominated by sunlight reflected from the surface with absorption by atmospehric constituents. We tentatively identify C2H2 and C2H4 in Pluto's atmosphere. We also present evidence for weak airglow emissions.

  1. Far and extreme ultraviolet astronomy with ORFEUS

    NASA Technical Reports Server (NTRS)

    Kraemer, G.; Barnstedt, J.; Eberhard, N.; Grewing, M.; Gringel, W.; Haas, C.; Kaelble, A.; Kappelmann, N.; Petrik, J.; Appenzeller, I.

    1990-01-01

    ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) is a 1 m normal incidence telescope for spectroscopic investigations of cosmic sources in the far and extreme ultraviolet spectral range. The instrument will be integrated into the freeflyer platform ASTRO-SPAS. ORFEUS-SPAS is scheduled with STS ENDEAVOUR in September 1992. We describe the telescope with its two spectrometer and their capabilities i.e., spectral range, resolution and overall sensitivity. The main classes of objects to be observed with the instrument are discussed and two examples of simulated spectra for the white dwarf HZ43 and an O9-star in LMC are shown.

  2. Lunar Ultraviolet Telescope Experiment (LUTE) overview

    NASA Astrophysics Data System (ADS)

    McBrayer, R. O.; Frazier, J.; Nein, M.

    1993-09-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-m aperture telescope for imaging the stellar ultraviolet spectrum from the lunar surface. The aspects of Lute's educational value and the information it can provide on designing for the long-term exposure to the lunar environment are important considerations. This paper briefly summarizes the status of the phase A study by the Marshall Space Flight Center's (MSFC) LUTE Task Team. The primary focus will be a discussion of the merits of LUTE as a small and relatively inexpensive project that benefits a wide spectrum of interests and could be operating on the lunar surface by the turn of the century.

  3. Defect-tolerant extreme ultraviolet nanoscale printing.

    PubMed

    Urbanski, L; Isoyan, A; Stein, A; Rocca, J J; Menoni, C S; Marconi, M C

    2012-09-01

    We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations.

  4. Ultraviolet colors of old LMC clusters

    NASA Technical Reports Server (NTRS)

    Cowley, A. P.; Hartwick, F. D. A.

    1992-01-01

    New ultraviolet spectra for five red LMC globular clusters have been obtained with IUE. These have been supplemented with archival spectra for eleven old LMC clusters. These data strengthen and extend the UV-color versus age relation for clusters older than about 10 exp 9 yr, but do not offer much precision in age determination, presumably because the ultraviolet colors of the oldest clusters depend strongly on the horizontal-branch morphology. Comparison of LMC data with UV colors for the brightest M31 clusters suggests their ages might be only a few gigayears.

  5. ESA innovation rescues Ultraviolet Observatory

    NASA Astrophysics Data System (ADS)

    1995-10-01

    Astrophysicist Freeman J. Dyson from the Institute for Advanced Studies in Princeton characterizes IUE as "A little half-meter mirror sitting in the sky, unnoticed by the public, pouring out results". By use of the IUE satellite, astronomers obtain access to the ultraviolet radiation of celestial bodies in unique ways not available by any other means, neither from the ground nor by any other spacecraft currently in orbit. IUE serves a wide community of astronomers all over Europe, the United States and many other parts of the world. It allows the acquisition of critical data for fundamental studies of comets and their evaporation when they approach the Sun, of the mechanisms driving the stellar winds which make many stars lose a significant fraction of their mass (before they die slowly as White Dwarfs or in sudden Supernova explosions), as well as in the search to understand the ways in which black holes possibly power the violent nuclei of Active galaxies. One year ago the project was threatened with termination and serious concern was expressed by astronomers about the potential loss of IUE's capabilities, as a result of NASA not continuing to operate the spacecraft. Under the leadership of ESA, the three Agencies involved in the operations of IUE (ESA, NASA and the United Kingdom's Particle Physics and Astronomy Research Council, PPARC), reviewed the operations agreements of the Project. A minor investment allowing the implementation of modern management and engineering techniques as well as a complete revision of the communication infrastructure of the project and continuous improvements in efficiency in the ESA management, also taking advantage of today's technologies, both in computing and communications, have made it possible to continue IUE operations within the financial means available, with ESA taking up most of NASA's share in the operations. According to Dr. Willem Wamsteker, ESA's Dutch IUE Project Scientist, "it was a extremely interesting

  6. Increasing the response of PIN photodiodes to the ultraviolet

    NASA Technical Reports Server (NTRS)

    Burrous, C. N.; Whiting, E. E.

    1972-01-01

    Solid state device uses sapphire windows and avoids coatings which absorb ultraviolet radiation and ultimately alter detector geometry. Ultimate solution for ultraviolet response is geometry with maximum peripheral area and horizontal field structure to draw out photon induced current carriers.

  7. View of Gemini 11 experiment S-13 Ultraviolet Astronomical Camera

    NASA Technical Reports Server (NTRS)

    1966-01-01

    View of Gemini 11 experiment S-13 Ultraviolet Astronomical Camera before flight. Its object was to obtain data on ultraviolet radiation of hot stars and to develop and evaluate basic techniques for photography of celestial objects from manned spacecraft.

  8. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  9. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  10. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  11. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet air purifier is a device intended for medical purposes that is used to destroy bacteria in the air by...

  12. The Lunar Phase Curve in the Near Ultraviolet

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.

    2002-01-01

    We present the ultraviolet phase curve of the Moon at two wavelengths, 215 and 237 nm, as measured by the Ultraviolet Spectrometer on board the Student Nitric Oxide Explorer. Additional information is contained in the original extended abstract.

  13. Advances in root reinforcement experiments

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  14. Angles of multivariable root loci

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1982-01-01

    A generalized eigenvalue problem is demonstrated to be useful for computing the multivariable root locus, particularly when obtaining the arrival angles to finite transmission zeros. The multivariable root loci are found for a linear, time-invariant output feedback problem. The problem is then employed to compute a closed-loop eigenstructure. The method of computing angles on the root locus is demonstrated, and the method is extended to a multivariable optimal root locus.

  15. Biological effects of ultraviolet irradiation on bees

    SciTech Connect

    Es`kov, E.K.

    1995-09-01

    The influence of natural solar and artificial ultraviolet irradiation on developing bees was studied. Lethal exposures to irradiation at different stages of development were determined. The influence of irradiation on the variability of the morphometric features of bees was revealed. 5 refs., 1 fig.

  16. High-intensity source of extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Paresce, E.; Kumar, S.; Bowyer, S.

    1972-01-01

    High intensity ultraviolet radiation source was developed which is suitable for emission below 500 A. Source, useful for 100 to 1000 A range, is simple and inexpensive to construct, easy to operate, and very stable. Because of sufficiently intense output spectrum, source can be used with monochromator at wavelengths as low as 160 A.

  17. Comet Kohoutek - Ultraviolet images and spectrograms

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.; Prinz, D. K.; Meier, R. R.

    1974-01-01

    Emissions of atomic oxygen (1304 A), atomic carbon (1657 A), and atomic hydrogen (1216 A) from Comet Kohoutek were observed with ultraviolet cameras carried on a sounding rocket on Jan. 8, 1974. Analysis of the Lyman alpha halo at 1216 A gave an atomic hydrogen production rate of 4.5 x 10 to the 29th atoms per second.

  18. Combined ultraviolet studies of astronomical sources

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Dupree, A. K.; Elvis, M.; Huchra, J. P.; Kenyon, S.; Raymond, J. C.

    1986-01-01

    Topics addressed include: Cygnus Loop; P Cygni profiles in dwarf novae; YY Gem; nova shells; HZ Herculis; activity cycles in cluster giants; Alpha Ori; metal deficient giant stars; ultraviolet spectra of symbiotic stars detected by the Very Large Array; time variability in symbiotic stars; blue galaxies; and quasistellar objects with X-ray spectra.

  19. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  20. Ultraviolet Emission from Rocket Motor Plumes

    DTIC Science & Technology

    1994-06-01

    who..t’ "-. bsorption band is centred near 255 nm Ozone concentrations vary with location and show regular htne-,oral variations over diurnal and...34Flame Spectroscopy " (John Wiley and Sons, New York, 1965) 25. Yates, G. J., Wilke, M.. King. N and Lumpkn. A. "Ultraviolet imaging of hydrogen

  1. Photodiode-Based, Passive Ultraviolet Dosimeters

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Gray, Perry

    2004-01-01

    Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.

  2. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  3. Comet kohoutek: ultraviolet images and spectrograms.

    PubMed

    Opal, C B; Carruthers, G R; Prinz, D K; Meier, R R

    1974-08-23

    Emissions of atomic oxygen (1304 angstroms), atomic carbon (1657 angstroms), and atomic hydrogen (1216 angstroms) from Comet Kohoutek were observed with ultraviolet cameras carried on a sounding rocket on 8 January 1974. Analysis of the Lyman alpha halo at 1216 angstroms gave an atomic hydrogen production rate of 4.5 x 10(29) atoms per second.

  4. Ultraviolet Light: Some Considerations for Vision Stimulation.

    ERIC Educational Resources Information Center

    Knowlton, Marie

    1986-01-01

    The article examines evidence of visual impairment caused by excessive amounts of ultraviolet (UV) light. Among considerations when using a source of UV light for vision stimulation are the position of the child and teacher, use of window glass filters or protective glasses, and careful recordkeeping of all UV stimulation. (Author/JW)[

  5. Ultraviolet Viewing with a Television Camera.

    ERIC Educational Resources Information Center

    Eisner, Thomas; And Others

    1988-01-01

    Reports on a portable video color camera that is fully suited for seeing ultraviolet images and offers some expanded viewing possibilities. Discusses the basic technique, specialized viewing, and the instructional value of this system of viewing reflectance patterns of flowers and insects that are invisible to the unaided eye. (CW)

  6. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  7. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  8. Solar ultraviolet radiation in a changing climate

    EPA Science Inventory

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  9. Enhancement of comedogenic substances by ultraviolet radiation.

    PubMed

    Mills, O H; Porte, M; Kligman, A M

    1978-02-01

    Ultraviolet radiation enhanced the capacity of human sebum, sulphur, cocoa butter, squalene, and coal tar to produce comedones in the external ear canals of rabbits. An enhancement of the comedogenicity of coal tar and squalene was similarly demonstrated in man. We conjecture that in occasional patients sunbathing may aggravate acne by augmenting the comedogenicity of sebum.

  10. Ultraviolet imaging and spectroscopy of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Gerard, Jean-Claude

    1994-01-01

    The main scientific results of the participation of the Institute of Astrophysics (Belgium) in the NASA's Pioneer Venus mission are reported on. The data were obtained with the Pioneer Orbiter's Ultraviolet Spectrometer (POUVS). The instrument provided a morphological study of the nitric oxide ultraviolet night glow. Information concerning the altitude of the airglow emitting layer was also collected and used to constrain models of turbulent transport on the night side of the planet. Models of the odd nitrogen thermospheric chemistry and transport were developed to analyze the observations and derive the properties of the global circulation of Venus' upper atmosphere. Images of the Jovian ultraviolet aurora were obtained. The morphology and the time variations of the HI Ly-alpha and H2 Lyman and Werner bands were acquired at different longitudes. The observed distribution was compared with the results of the spectrometric observations made with the Voyager and the International Ultraviolet Explorer missions. Images concerning the Io surface albedo and Saturn's disk and ring's reflectivity were also obtained.

  11. Ultraviolet Stellar Astronomy - Skylab Experiment S019

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This chart provides information about Skylab's Ultraviolet (UV) Stellar Astronomy experiment (SO19), a scientific airlock-based facility/experiment that would study UV spectra of early-type stars and galaxies. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  12. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  13. Some Thoughts on Teaching about Ultraviolet Radiation

    ERIC Educational Resources Information Center

    Thumm, Walter

    1975-01-01

    Describes the major obstacles in the study of ultraviolet radiation (UV). Presents the beneficial aspects of UV such as vitamin O production, sterilization, clinical treatment of diseases and wounds, and the marking of patients for radiotherapy. Warns of the dangers of UV exposure such as skin cancer and early aging. (GS)

  14. The difficulty of ultraviolet emssion from supernovae

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable.

  15. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  16. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  17. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  18. Nurturing the Roots of Literacy.

    ERIC Educational Resources Information Center

    Blass, Rosanne J.

    Reflecting the work of Yetta Goodman on child language development, this paper examines Goodman's five "roots of literacy" and offers suggestions on classroom techniques for nurturing these roots. The first half of the paper explains how Goodman identified the roots of literacy and describes each of them, including (1) print awareness in…

  19. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  20. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet activator for polymerization. 872.6070... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6070 Ultraviolet activator for polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that...

  1. 40 CFR 1065.272 - Nondispersive ultraviolet analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Nondispersive ultraviolet analyzer. 1065.272 Section 1065.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Nondispersive ultraviolet analyzer. (a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer...

  2. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet activator for polymerization. 872.6070... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6070 Ultraviolet activator for polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that...

  3. 40 CFR 1065.272 - Nondispersive ultraviolet analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Nondispersive ultraviolet analyzer. 1065.272 Section 1065.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Nondispersive ultraviolet analyzer. (a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer...

  4. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet activator for polymerization. 872.6070... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6070 Ultraviolet activator for polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that...

  5. 40 CFR 1065.272 - Nondispersive ultraviolet analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Nondispersive ultraviolet analyzer. 1065.272 Section 1065.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Nondispersive ultraviolet analyzer. (a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer...

  6. 40 CFR 1065.272 - Nondispersive ultraviolet analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Nondispersive ultraviolet analyzer. 1065.272 Section 1065.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Nondispersive ultraviolet analyzer. (a) Application. You may use a nondispersive ultraviolet (NDUV) analyzer...

  7. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet air purifier. 880.6500 Section... (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6500 Medical ultraviolet air purifier. (a) Identification. A medical ultraviolet...

  8. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  9. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  10. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  11. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water...

  12. Summary of the Workshop on Ultraviolet Cosmic Background Radiation

    NASA Technical Reports Server (NTRS)

    Henry, R. C.

    1981-01-01

    The relationship of the ultraviolet background radiation to the X-ray background is shown. The ultraviolet background, which is four orders of magnitude brighter than the x-ray background, is much less well determined. The relationship of the ultraviolet background to the EUV background and an excellent summary of the discordant ultraviolet observations at high galactic latitudes are given. A picture of the universe from the point of view of those who study ultraviolet background radiation, with emphasis on the various sources of noise that can affect the measurements is presented. The altitudes of various observing platforms are also indicated.

  13. SR-71 Ship #1 - Ultraviolet Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in

  14. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  15. Rooting an Android Device

    DTIC Science & Technology

    2015-09-01

    this feature on an Android device, go to “Settings” and then “About Phone ” or “About tablet”. Find “Build Number”, then tab on the “Build Number” 7...flag, which should not affect phone operation. Ensure that the phone or tablet is on and active while the rooting process is underway, and monitor...the Android device and host computer for progress of the script to determine whether the installation succeeded or failed. Do not unplug the phone

  16. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  17. Seeing Core-Collapse Supernovae in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Brown, Peter

    Core-collapse supernovae are the catastrophic deaths of massive stars. Ultraviolet observations are needed to understand the energy of the explosion through the study of the bolometric light curves. Early-time ultraviolet observations constrain the size of the progenitor. Ultraviolet spectra can break the degeneracies between temperature/ionization, reddening, and metallicity which hinder our understanding of ultraviolet photometry. Optical observations of high-redshift supernovae probe rest-frame ultraviolet wavelengths, requiring space-based observations of nearby supernovae against which to compare. Ultraviolet observations of core-collapse supernovae can also help distinguish them from type Ia supernovae, enabling cleaner photometric type Ia supernova samples for cosmological measurements. The Ultraviolet/Optical Telescope (UVOT) on the Swift satellite has observed over two hundred core-collapse supernovae in the ultraviolet, including sixty-nine ultraviolet grism spectra of twenty core-collapse SNe. Additional ultraviolet spectra have been obtained by the International Ultraviolet Explorer, Hubble Space Telescope, and Galaxy Evolution Explorer. We propose a project to reduce the Swift grism spectra and combine with the other ultraviolet and groundbased optical/NIR spectra to create time-series bolometric spectra. We will use these bolometric spectra to better understand temperature, reddening, and metallicity and create bolometric light curves of these core collapse SNe. We will also use early time ultraviolet photometry and spectroscopy to constrain the progenitors of core collapse SNe. The ultraviolet observations fill a critical niche in our understanding of core collapse supernovae, and this program will enhance the scientific use of this important dataset from multiple space missions. Beyond core-collapse supernovae, the templates will allow studies of the dust properties around the progenitor systems (including the wavelength dependence of the extinction

  18. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  19. Morphometric analysis of root shape.

    PubMed

    Grabov, A; Ashley, M K; Rigas, S; Hatzopoulos, P; Dolan, L; Vicente-Agullo, F

    2005-02-01

    Alterations in the root shape in plant mutants indicate defects in hormonal signalling, transport and cytoskeleton function. To quantify the root shape, we introduced novel parameters designated vertical growth index (VGI) and horizontal growth index (HGI). VGI was defined as a ratio between the root tip ordinate and the root length. HGI was the ratio between the root tip abscissa and the root length. To assess the applicability of VGI and HGI for quantification of root shape, we analysed root development in agravitropic Arabidopsis mutants. Statistical analysis indicated that VGI is a sensitive morphometric parameter enabling detection of weak gravitropic defects. VGI dynamics were qualitatively similar in auxin-transport mutants aux1, pin2 and trh1, but different in the auxin-signalling mutant axr2. Analysis of VGI and HGI of roots grown on tilted plates showed that the trh1 mutation affected downstream cellular responses rather than perception of the gravitropic stimulus. All these tests indicate that the VGI and HGI analysis is a versatile and sensitive method for the study of root morphology.

  20. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  1. Ultraviolet Halos around Spiral Galaxies. I. Morphology

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N.

    2016-12-01

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 106-107 M ⊙ of dust within 2-10 kpc of the disk, whose properties may change with height in starburst galaxies.

  2. Ultraviolet spectroscopy of planetary nebulae: Cosmological implications

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1990-01-01

    Optical spectrophotometry of PW Vulpeculae (Nova Vul 1984 no. 1) is combined with ultraviolet data to estimate electron temperatures, densities, and abundances in the ejecta of this slow classical nova. The reddening, distance, and evolution of the ultraviolet spectrum are also discussed. Abundances are nearly solar, with the exception of Nitrogen, which is substantially higher. Although Neon has been reported to be enhanced in several novae, it does not seem to be the case for PW Vul. Photoionization model calculations are presented of the ejecta that give a reasonable match of the observed emission spectrum. A strong featureless continuum shows that very hot, presumably shock heated, gas plays a major role in determining the energetics of this nova. Emission from this hot gas is responsible for the ionization of the nebular gas. A calculation of the masses of both the hot coronal gas and the cooler nebular gas shows that the former may account for most of the mass of the ejecta.

  3. The Stellar Extreme-Ultraviolet Radiation Field

    NASA Astrophysics Data System (ADS)

    Vallerga, John

    1998-04-01

    The local extreme ultraviolet (EUV) radiation field from stellar sources has been determined by combining the EUV spectra of 54 stars, taken with the spectrometers aboard the Extreme Ultraviolet Explorer satellite. The resultant spectrum over the range 70-730 Å is estimated to be 95% complete above 400 Å and 90% complete above 200 Å. The flux contributed by two B stars and three hot white dwarfs dominate the spectrum except at the shortest wavelengths, where an assortment of EUV source types contribute. The high electron densities measured toward nearby stars can be accounted for by photoionization from this radiation field, but the spectrum is too soft to explain the overionization of helium with respect to hydrogen recently measure in the Local Cloud.

  4. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  5. Contact lens disinfection by ultraviolet light

    SciTech Connect

    Dolman, P.J.; Dobrogowski, M.J. )

    1989-12-15

    A 253.7-nm ultraviolet light with an intensity of 1,100 microW/cm2 was tested for its germicidal activity against contact lenses and storage solutions contaminated with various corneal pathogens. The exposure time necessary to reduce a concentration of organisms from 10(6)/ml to less than 10/ml was 30 seconds for Staphylococcus aureus, 60 seconds for Pseudomonas aeruginosa, and 84 seconds for Candida albicans. The time necessary to sterilize a suspension of 10(4)/ml Acanthamoeba polyphaga was less than three minutes with this technique. Four brands of soft contact lenses were exposed to ultraviolet light for over eight hours without changing their appearance, comfort, or refraction.

  6. Lunar Ultraviolet Telescope Experiment (LUTE), phase A

    NASA Technical Reports Server (NTRS)

    Mcbrayer, Robert O.

    1994-01-01

    The Lunar Ultraviolet Telescope Experiment (LUTE) is a 1-meter telescope for imaging from the lunar surface the ultraviolet spectrum between 1,000 and 3,500 angstroms. There have been several endorsements of the scientific value of a LUTE. In addition to the scientific value of LUTE, its educational value and the information it can provide on the design of operating hardware for long-term exposure in the lunar environment are important considerations. This report provides the results of the LUTE phase A activity begun at the George C. Marshall Space Flight Center in early 1992. It describes the objective of LUTE (science, engineering, and education), a feasible reference design concept that has evolved, and the subsystem trades that were accomplished during the phase A.

  7. The Special Sensor Ultraviolet Limb Imager instruments

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Coker, C.; Stephan, A. W.; Chua, D. H.

    2017-02-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) instruments are ultraviolet limb scanning sensors flying on the United States Air Force Defense Meteorological Satellite Program Block 5D-3 satellites. The SSULIs cover the 800-1700 Å wavelength range at 18 Å spectral resolution. This wavelength range contains spectral signatures of all the dominant neutral and ionized species in the thermosphere and F region ionosphere. The instruments view ahead of the spacecraft and operate as limb imagers covering the 100-750 km altitude range at 10-15 km resolution with a 90 s scan cadence. We describe these instruments and summarize their calibration and on-orbit performance. Day-to-day variability of the nighttime ionosphere at low latitudes and longer-term variability of the global mean exospheric temperature are highlighted.

  8. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  9. Ultraviolet observations of solar fine structure.

    PubMed

    Dere, K P; Bartoe, J D; Brueckner, G E; Cook, J W; Socker, D G

    1987-11-27

    The High Resolution Telescope and Spectrograph was flown on the Spacelab-2 shuttle mission to perform extended observations of the solar chromosphere and transition zone at high spatial and temporal resolution. Ultraviolet spectroheliograms show the temporal development of macrospicules at the solar limb. The C IV transition zone emission is produced in discrete emission elements that must be composed of exceedingly fine (less than 70 kilometers) subresolution structures.

  10. Z-DNA: vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC)-poly(dG-dC) forms a left-handed double-helical structure that has been termed Z-DNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions. In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) down to 180 nm under conditions in which the 230- to 300-nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the B and Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) is 3 M C/sub 2/O/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of doublehelical DNA structures.

  11. Z-DNA Vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC).poly(dG-dC) forms a left-handed double-helical structure that has been termed ZDNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions (Pohl, F.M. and Jovin, T.M. (1972) J. Mol. Biol. 67, 675-696). In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low-salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) down to 180 nm under conditions in which the 230 to 300 nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the Band Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) in 3 M Cs/sub 2/SO/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of double-helical DNA structures.

  12. The Copernicus ultraviolet spectral atlas Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1977-01-01

    An ultraviolet spectral atlas was presented for the B0 V star, Tau Scorpii. It was scanned from 949 to 1560 A by the Princeton spectrometer aboard the Copernicus satellite. From 949 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths, the resolution was 0.1 A. The atlas was presented in both tables and graphs.

  13. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  14. Cloud effects on middle ultraviolet global radiation

    NASA Technical Reports Server (NTRS)

    Borkowski, J.; Chai, A.-T.; Mo, T.; Green, A. E. O.

    1977-01-01

    An Eppley radiometer and a Robertson-Berger sunburn meter are employed along with an all-sky camera setup to study cloud effects on middle ultraviolet global radiation at the ground level. Semiempirical equations to allow for cloud effects presented in previous work are compared with the experimental data. The study suggests a means of defining eigenvectors of cloud patterns and correlating them with the radiation at the ground level.

  15. Extreme ultraviolet photodissociative excitation of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1974-01-01

    Photodissociation processes in molecular oxygen occurring in the wavelength range from 500 to 900 A, investigated through observations of the resulting atomic fluorescence radiation, are reported. The dispersed radiation from a continuous light source was used to excite the gas, and the resulting fluorescence radiation was observed in the ultraviolet and infrared. The results obtained are compared with the dissociation cross sections derived by Matsunaga and Watanabe (1967).

  16. Large-Area Vacuum Ultraviolet Sensors

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2012-01-01

    Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

  17. ANS ultraviolet observations of dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, C. R.; Wu, C.-C.

    1983-03-01

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) are presented. The UV light curves are consistent with those in the visual region. When compared to standard stars, all three dwarf Cepheids exhibit flux deficiencies at the shortest observed wavelengths. The most extreme deficiencies appear for SX Phe; these may be related to the other properties previously noted for this star, including low metallicity, high space motion, and low luminosity.

  18. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  19. Perennial roots to immortality.

    PubMed

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation.

  20. Is N=8 Supergravity Ultraviolet Finite?

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Roiban, Radu

    2006-11-15

    Conventional wisdom holds that no four-dimensional gravity field theory can be ultraviolet finite. This understanding is based mainly on power counting. Recent studies confirm that one-loop N = 8 supergravity amplitudes satisfy the so-called 'no-triangle hypothesis', which states that triangle and bubble integrals cancel from these amplitudes. A consequence of this hypothesis is that for any number of external legs, at one loop N = 8 supergravity and N = 4 super-Yang-Mills have identical superficial degrees of ultraviolet behavior in D dimensions. We describe how the unitarity method allows us to promote these one-loop cancellations to higher loops, suggesting that previous power counts were too conservative. We discuss higher-loop evidence suggesting that N = 8 supergravity has the same degree of divergence as N = 4 super-Yang-Mills theory and is ultraviolet finite in four dimensions. We comment on calculations needed to reinforce this proposal, which are feasible using the unitarity method.

  1. Photoprotection of human skin beyond ultraviolet radiation.

    PubMed

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy.

  2. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  3. Maximum-rank root subsystems of hyperbolic root systems

    SciTech Connect

    Tumarkin, P V

    2004-02-28

    A Kac-Moody algebra is said to be hyperbolic if it corresponds to a generalized Cartan matrix of hyperbolic type. Root subsystems of root systems of algebras of this kind are studied. The main result of the paper is the classification of the maximum-rank regular hyperbolic subalgebras of hyperbolic Kac-Moody algebras.

  4. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements.

  5. Lumbosacral nerve root avulsion.

    PubMed

    Chin, C H; Chew, K C

    1997-01-01

    Lumbosacral nerve root avulsion is a rare clinical entity. Since the first description in 1955, only 35 cases have been reported. It is often associated with pelvic fractures and may be missed in the initial clinical examination as these patients usually present with multiple injuries. We present three such cases with clinical and radiological findings. These patients were involved in road traffic accidents. Two had fractures of the sacroiliac joint with diastasis of the symphysis pubis (Tile type C 1.2) and one had fractures of the public rami (Tile type B 2.1). All three had various degrees of sensory and motor deficit of the lower limbs. Lumbar myelogram shows characteristic pseudomeningoceles in the affected lumboscral region. Magnetic resonance (MR) imaging provides an additional non-invasive modality to diagnose this condition.

  6. Ultraviolet and extreme ultraviolet spectroscopy of the solar corona at the Naval Research Laboratory.

    PubMed

    Moses, J D; Ko, Y-K; Laming, J M; Provornikova, E A; Strachan, L; Beltran, S Tun

    2015-11-01

    We review the history of ultraviolet and extreme ultraviolet spectroscopy with a specific focus on such activities at the Naval Research Laboratory and on studies of the extended solar corona and solar-wind source regions. We describe the problem of forecasting solar energetic particle events and discuss an observational technique designed to solve this problem by detecting supra-thermal seed particles as extended wings on spectral lines. Such seed particles are believed to be a necessary prerequisite for particle acceleration by heliospheric shock waves driven by a coronal mass ejection.

  7. New roots for agriculture: exploiting the root phenome.

    PubMed

    Lynch, Jonathan P; Brown, Kathleen M

    2012-06-05

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.

  8. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  9. Osmolarity and root canal antiseptics.

    PubMed

    Rossi-Fedele, G; Guastalli, A R

    2014-04-01

    Antiseptics used in endodontics for disinfection purposes include root canal dressings and irrigants. Osmotic shock is known to cause the alteration of microbial cell viability and might have a role in the mechanism of action of root canal antiseptics. The aim of this review was to determine the role of osmolarity on the performance of antiseptics in root canal treatment. A literature search using the Medline electronic database was conducted up to 30 May 2013 using the following search terms and combinations: 'osmolarity AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmolality AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmotic AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; osmosis AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm; sodium chloride AND root canal or endodontic or antiseptic or irrigation or irrigant or medication or dressing or biofilm'. Publications were included if the effects of osmolarity on the clinical performance of antiseptics in root canal treatment were stated, if preparations with different osmolarities values were compared and if they were published in English. A hand search of articles published online, 'in press' and 'early view', and in the reference list of the included papers was carried out following the same criteria. A total of 3274 publications were identified using the database, and three were included in the review. The evidence available in endodontics suggests a possible role for hyperosmotic root canal medicaments as disinfectants, and that there is no influence of osmolarity on the tissue dissolution capacity of sodium hypochlorite. There are insufficient data to obtain a sound conclusion regarding the role of hypo-osmosis in root canal disinfection, or osmosis in any further desirable

  10. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  11. [Decoloring and spectral properties analysis of innoxious ultraviolet absorbents].

    PubMed

    Fang, Yi-Wen; Ni, Wen-Xiu; Huang, Chong; Xue, Liang; Yu, Lin

    2006-07-01

    The ultraviolet absorbent extracted from mango leaves, was discolored by some decoloring agent. Then the spectral properties of the discolored ultraviolet absorbents were analyzed. The discolored method of ultraviolet absorbent was studied by comparing one with the others. The results showed that the discoloring effect was satisfactory by using active carbon, H2O2, citric acid, and oxalic acid as decoloring agent. Specially, when oxalic acid was used as decoloring agent, the color of the production was slight, the rate of production was high, and the absorption effect of ultraviolet ray was well. When the concentration of the ultraviolet absorbent solution is 0.5% (w/w), the ultraviolet ray transmission was smaller than 0.3% in 200-370 nm, and it increased slightly from 370 nm. There was a maximum value at 400 nm, approaching 12%.

  12. Abnormal lymphocyte response to ultraviolet radiation in multiple skin cancer

    SciTech Connect

    Munch-Petersen, B.; Frentz, G.; Squire, B.; Wallevik, K.; Horn, C.C.; Reymann, F.; Faber, M. )

    1985-06-01

    The lymphocyte response to ultraviolet radiation (254 nm) was investigated by two different methods in 29 unselected patients with multiple epidermal cancer. The ultraviolet-induced DNA synthesis was determined as the increase in incorporation of (/sup 3/H)thymidine in irradiated cells compared with non-irradiated cells after incubation for 2 h. The ultraviolet tolerance was measured as the ultraviolet dose necessary for 50% reduction in phytohemagglutinin-stimulated lymphocyte proliferation. Patients with both squamous cell differentiated tumours and basal cell carcinomas had very high ultraviolet-induced DNA synthesis values. The ultraviolet tolerance in patient lymphocytes was considerably lower than in control lymphocytes with the lowest values occurring in patients with clinical sun intolerance. These investigations may be of predictive value in skin carcinogenesis.

  13. Five-color band ultraviolet photometry of fourteen close binaries

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Mccluskey, G. E.; Wu, C.-C.

    1981-01-01

    Photometric observations obtained with the Astronomical Netherlands Satellite in five ultraviolet wavelength regions for 14 close binaries are presented. Strong excess far-ultraviolet flux is detected in four objects. The binaries TT Hya, RX Cas, and SX Cas exhibit a pronounced excess of far-ultraviolet flux, which is thought to be the result of mass transfer phenomena in these systems. Observations of the binary R Ara show very peculair variations; its far ultraviolet flux at 1550 A brightened by 0.4 mag between phases 0.7 and 0.8, while its near ultraviolet flux at 3300 A decreased by 0.5 mag over this same half-day interval. The A0 II-III component in the system RZ Sct is seen to dominate the ultraviolet spectrum.

  14. Gut and Root Microbiota Commonalities

    PubMed Central

    Ramírez-Puebla, Shamayim T.; Servín-Garcidueñas, Luis E.; Jiménez-Marín, Berenice; Bolaños, Luis M.; Rosenblueth, Mónica; Martínez, Julio; Rogel, Marco Antonio; Ormeño-Orrillo, Ernesto

    2013-01-01

    Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends. PMID:23104406

  15. The root as a drill

    PubMed Central

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-01-01

    Plant roots forage the soil for water and nutrients and overcome the soil’s physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1–2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants. PMID:22415043

  16. Light-Sensing in Roots

    PubMed Central

    Rabenold, Jessica J; Liscum, Emmanuel

    2007-01-01

    Light gradients in the soil have largely been overlooked in understanding plant responses to the environment. However, roots contain photoreceptors that may receive ambient light through the soil or piped light through the vascular cylinder. In recent experiments we demonstrated linkages between phototropin-1 photoreceptor production, root growth efficiency, and drought tolerance, suggesting that root plasticity in response to light signals contributes to the ecological niche of A. thaliana. However, the availability of light cues in natural soil environments is poorly understood, raising questions about the relevance of light-mediated root growth for fitness in nature. Additionally, photoreceptor expression is characterized by pleiotropy so unique functions cannot be clearly ascribed to root vs. shoot sensory mechanisms. These considerations show that challenges exist for resolving the contribution of light-sensing by roots to plant adaptation. We suggest that blue-light sensing in roots of A. thaliana provides a model system for addressing these challenges. By calibrating blue light gradients in soils of diverse A. thaliana habitats and comparing fitness of phot1 mutant and wild-type controls when grown in presence or absence of soil light cues, it should be possible to elucidate the ecological significance of light-mediated plasticity in roots. PMID:19704750

  17. Theon's Ladder for Any Root

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Wright, Marcus; Orchard, Michael

    2005-01-01

    Theon's ladder is an ancient algorithm for calculating rational approximations for the square root of 2. It features two columns of integers (called a ladder), in which the ratio of the two numbers in each row is an approximation to the square root of 2. It is remarkable for its simplicity. This algorithm can easily be generalized to find rational…

  18. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  19. The Hopkins Ultraviolet Telescope: The Final Archive

    NASA Technical Reports Server (NTRS)

    Dixon, William V.; Blair, William P.; Kruk, Jeffrey W.; Romelfanger, Mary L.

    2013-01-01

    The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (Delta)lambda equals 3 A) far-ultraviolet (820-1850 Å) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resulting spectra were originally archived in a nonstandard format that lacked important descriptive metadata. To increase their utility, we have modified the original datareduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the Far Ultraviolet Spectroscopic Explorer calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quicklook plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this article, we document the improved data-processing steps applied to the data and show examples of the new data products.

  20. Mexoryl: a review of an ultraviolet a filter.

    PubMed

    D'Souza, Gehaan; Evans, Gregory R D

    2007-09-15

    It is widely known that ultraviolet light causes skin damage and melanoma. Different wavelengths of ultraviolet light penetrate the skin at different depths, causing varying levels of damage. Higher wavelengths tend to penetrate deeper and, consequently, are thought to induce a myriad of skin conditions, thereby playing a significant role in the photoaging process. Sunscreens containing the ultraviolet A blocker Mexoryl are important in impeding ultraviolet A light, potentially reducing many of the characteristics of skin aging and preventing biochemical changes that can lead to nonmelanoma carcinoma. Until now, sunscreen products sold in the United States focused on blocking ultraviolet B light. Those that did provide ultraviolet A filtering contained physical blocks (zinc oxide or titanium dioxide) or the chemical block Parsol 1789 (avobenzone). These broad-spectrum sunscreens have limitations, such as degradation under ultraviolet exposure, that resulted in decreased effectiveness. Mexoryl, a novel ultraviolet A filter, provides efficient ultraviolet A coverage, better photostability, and enhanced water resistance. Sunscreens containing Mexoryl are widely used in Europe and Canada. It was not until July 24, 2006, that the U.S. Food and Drug Association approved the compound.

  1. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  2. Ultraviolet radiation levels during the Antarctic spring

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Snell, Hilary E.

    1988-01-01

    The decrease in atmospheric ozone over Antarctica during spring implies enhanced levels of ultraviolet (UV) radiation received at the earth's surface. Model calculations show that UV irradiances encountered during the occurrence of an Antarctic 'ozone hole' remain less than those typical of a summer solstice at low to middle latitudes. However, the low ozone amounts observed in October 1987 imply biologically effective irradiances for McMurdo Station, Antarctica, that are comparable to or greater than those for the same location at December solstice. Life indigenous to Antarctica thereby experiences a greatly extended period of summerlike UV radiation levels.

  3. Rocket ultraviolet observations of Comet Halley

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Mccoy, Robert P.; Woods, Thomas N.; Feldman, Paul D.; Opal, Chet B.

    1987-01-01

    Ultraviolet observations of Comet Halley have been obtained in February and March, 1986 with two instrument payloads, one with the Faint Object Telescope and one with a direct imaging electrographic Schmidt camera and an objective grating spectrograph. The observations include spectroscopic imagery in the 1200-200 A wavelength range and imagery of the comet in hydrogen Lyman-alpha (1216 A) radiation. The present observations have been reduced to intensity contour plots in the different emission wavelengths, and production rates are given for the emitting species H, C, O, S, and CO.

  4. The Spartan-281 Far Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.

    1988-01-01

    The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.

  5. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  6. Silicon wire grid polarizer for ultraviolet applications.

    PubMed

    Weber, Thomas; Kroker, Stefanie; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2014-12-01

    We present a silicon wire grid polarizer operating down to a wavelength of 300 nm. Besides metallic grating materials, semiconductors also offer appropriate material properties to realize wire grid polarizers in the ultraviolet (UV) spectral range. The presented polarizer with a period of 140 nm was realized by means of electron beam lithography and dry etching using amorphous silicon as the grating material. At a wavelength of 365 nm, a transmission of 42% and an extinction ratio of 90 (19.5 dB) are measured. The spectral bandwidth of these polarizers in the UV-spectral range is about 100 nm.

  7. Ultraviolet observations of LMC nova 1988

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Stryker, L. L.; Sonneborn, G.; Sparks, Warren M.; Sion, E. M.; Wagner, R. M.; Ferland, Gary; Gallagher, J. S.; Wade, R.; Williams, R. E.

    1988-01-01

    The IUE obtained ultraviolet spectra of a nova in an external galaxy. The spectral features do not seem unusual for a nova at maximum but it is hoped to be able to follow it for a long enough time to be able to study the high ionization lines that appear when the density drops to lower values (the nebular stage). A high dispersion spectrum was also obtained to assist in the line identification and to study the line of sight to the LMC 1 deg of arc away from SN 1987A.

  8. Ultraviolet observations of LMC nova 1988

    SciTech Connect

    Starrfield, S.; Stryker, L.L.; Sonneborn, G.; Sparks, W.M.; Sion, E.M.; Wagner, R.M.; Ferland, G.; Gallagher, J.S.; Wade, R.; Williams, R.E.; Heathcote, S.; Kenyon, S.; Shaviv, G.; Wehrse, R.; Hauschildt, P.; Truran, J.W.; Wu, C.C.; Gehrz, R.D.; Ney, E.P.

    1988-01-01

    This current bright novae was first detected in outburst on March 21, 1988. Its discovery has given us the opportunity of studying the first extragalactic nova in the ultraviolet and we have, therefore, obtained a number of LWP and SWP spectra when it was at maximum. We have also obtained a high dispersion LWP spectrum in order to study the ISM in the Large Magellanic Cloud on a slightly different line-of-sight from that analyzed using SN 1987A. 10 refs., 2 figs.

  9. Cosmic far-ultraviolet background radiation

    NASA Technical Reports Server (NTRS)

    Henry, R. C.

    1982-01-01

    It is demonstrated that interstellar dust grains forward-scatter far-ultraviolet radiation extremely strongly: the value of the Henyey-Greenstein scattering parameter g at 1425 A is shown to be at least 0.75; the actual value is very likely greater than 0.9. Also, observations of the Virgo cluster of galaxies sets a limit of tau greater than 2 x 10 to the 25th sec on the lifetime of 17-20 ev/C-squared heavy neutrinos, if such neutrinos are responsible for the gravitational binding of the cluster.

  10. Far ultraviolet spectrophotometry of BD +28 4211

    NASA Technical Reports Server (NTRS)

    Cook, Timothy A.; Cash, Webster; Green, James C.

    1991-01-01

    The results are reported of a November 1989 rocket flight which recorded a flux-calibrated spectrum of BD +28 4211 from 912 to 1150 A with 1A resolution. BD +28 4211, an SdO-type star, is commonly used as an ultraviolet calibration source in the IUE wavelength band. The present work extends the useful range of this standard shortward of Lyman-alpha. Since previous experiments show marked disparity, this study can be useful in determining a standard in the 912 to 1216 A band.

  11. Ultraviolet light detection using an optical microcavity.

    PubMed

    Harker, Audrey; Mehrabani, Simin; Armani, Andrea M

    2013-09-01

    Ultraviolet (UV) light exposure is connected to both physical and psychological diseases. As such, there is significant interest in developing sensors that can detect UV light in the mW/cm2 intensity range with a high signal-to-noise ratio. In this Letter, we demonstrate a UV sensor based on a silica integrated optical microcavity that has a linear operating response in both the forward and backward directions from 14 to 53 mW/cm2. The sensor response agrees with the developed predictive theory based on a thermodynamic model. Additionally, the signal-to-noise ratio is above 100 at physiologically relevant intensity levels.

  12. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  13. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  14. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  15. Jupiter in blue, ultraviolet and near infrared

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These three images of Jupiter, taken through the narrow angle camera of NASA's Cassini spacecraft from a distance of 77.6 million kilometers (48.2 million miles) on October 8, reveal more than is apparent to the naked eye through a telescope.

    The image on the left was taken through the blue filter. The one in the middle was taken in the ultraviolet. The one on the right was taken in the near infrared.

    The blue-light filter is within the part of the electromagnetic spectrum detectable by the human eye. The appearance of Jupiter in this image is, consequently, very familiar. The Great Red Spot (below and to the right of center) and the planet's well-known banded cloud lanes are obvious. The brighter bands of clouds are called zones and are probably composed of ammonia ice particles. The darker bands are called belts and are made dark by particles of unknown composition intermixed with the ammonia ice.

    Jupiter's appearance changes dramatically in the ultraviolet and near infrared images. These images are near negatives of each other and illustrate the way in which observations in different wavelength regions can reveal different physical regimes on the planet.

    All gases scatter sunlight efficiently at short wavelengths; this is why the sky appears blue on Earth. The effect is even more pronounced in the ultraviolet. The gases in Jupiter's atmosphere, above the clouds, are no different. They scatter strongly in the ultraviolet, making the deep banded cloud layers invisible in the middle image. Only the very high altitude haze appears dark against the bright background. The contrast is reversed in the near infrared, where methane gas, abundant on Jupiter but not on Earth, is strongly absorbing and therefore appears dark. Again the deep clouds are invisible, but now the high altitude haze appears relatively bright against the dark background. High altitude haze is seen over the poles and the equator.

    The Great Red Spot, prominent in all images, is

  16. Vacuum ultraviolet absorption in a hydrogen arcjet

    NASA Technical Reports Server (NTRS)

    Manzella, David H.; Cappelli, Mark A.

    1992-01-01

    Atomic absorption spectroscopy was utilized to measure the ground state atomic hydrogen number density in the plasma produced in a low power hydrogen arcjet. A microwave driven hydrogen plasma was used as the source of radiation resonant with the vacuum ultraviolet Lyman alpha transition. The suitability of this radiation source is discussed. The optical depth of this transition prevented measurements at locations where the ground state atomic hydrogen number density was larger than 3 x 10 exp 19/cu m. These results indicate that other single-photon optical diagnostic techniques are equally ineffective in locations of higher hydrogen number density unless the spectral line shape of the atomic hydrogen absorbers is known.

  17. Nanostructured Photodetectors: From Ultraviolet to Terahertz

    NASA Astrophysics Data System (ADS)

    Chen, Hongyu; Liu, Hui; Zhang, Zhiming; Hu, Kai; Fang, Xiaosheng

    2016-01-01

    Inspired by nanoscience and nanoengineering, numerous nanostructured materials developed by multidisciplinary approaches exhibit excellent photoelectronic properties ranging from ultraviolet to terahertz frequencies. As a new class of building block, nanoscale elements in terms of quantum dots, nanowires, and nanolayers can be used for fabricating photodetectors with high performance. Moreover, in conjunction with traditional photodetectors, they exhibit appealing performance for practical applications including high density of integration, high sensitivity, fast response, and multifunction. Therefore, with the perspective of photodetectors constructed by diverse low-dimensional nanostructured materials, recent advances in nanoscale photodetectors are discussed here; meanwhile, challenges and promising future directions in this research field are proposed.

  18. Attenuated total reflection far-ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Ozaki, Yukihiro; Morisawa, Yusuke; Goto, Takeyoshi; Tanabe, Ichiro

    2016-09-01

    Recently, far-ultraviolet (FUV) spectroscopy of solid and liquid states has been a matter of keen interest because it provides new possibilities for studying electronic structures and transitions of almost all kinds of molecules. It has also great potential for a variety of applications from quantitative and qualitative analysis of aqueous solutions to environmental and geographical analyses. This review describes the state-of- the-art of FUV spectroscopy; an introduction to FUV spectroscopy, the development of FUV spectrometers, investigations on electronic transitions and structure, its various applications, and future prospects.

  19. Vacuum Ultraviolet Action Spectroscopy of Polysaccharides

    NASA Astrophysics Data System (ADS)

    Enjalbert, Quentin; Brunet, Claire; Vernier, Arnaud; Allouche, Abdul-Rahman; Antoine, Rodolphe; Dugourd, Philippe; Lemoine, Jérôme; Giuliani, Alexandre; Nahon, Laurent

    2013-08-01

    We studied the optical properties of gas-phase polysaccharides (maltose, maltotetraose, and maltohexaose) ions by action spectroscopy using the coupling between a quadrupole ion trap and a vacuum ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility (France) in the 7 to 18 eV range. The spectra provide unique benchmarks for evaluation of theoretical data on electronic transitions of model carbohydrates in the VUV range. The effects of the nature of the charge held by polysaccharide ions on the relaxation processes were also explored. Finally the effect of isomerization of polysaccharides (with melezitose and raffinose) on their photofragmentation with VUV photons is presented.

  20. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  1. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  2. Multifunctional Deployment Hinges Rigidified by Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert; Scarborough, Stephen Emerson

    2005-01-01

    Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.

  3. Ultraviolet radiation and skin cancer: molecular mechanisms.

    PubMed

    Hussein, Mahmoud R

    2005-03-01

    Every living organism on the surface of the earth is exposed to the ultraviolet (UV) fraction of the sunlight. This electromagnetic energy has both life-giving and life-endangering effects. UV radiation can damage DNA and thus mutagenize several genes involved in the development of the skin cancer. The presence of typical signature of UV-induced mutations on these genes indicates that the ultraviolet-B part of sunlight is responsible for the evolution of cutaneous carcinogenesis. During this process, variable alterations of the oncogenic, tumor-suppressive, and cell-cycle control signaling pathways occur. These pathways include (a) mutated PTCH (in the mitogenic Sonic Hedgehog pathway) and mutated p53 tumor-suppressor gene in basal cell carcinomas, (b) an activated mitogenic ras pathway and mutated p53 in squamous cell carcinomas, and (c) an activated ras pathway, inactive p16, and p53 tumor suppressors in melanomas. This review presents background information about the skin optics, UV radiation, and molecular events involved in photocarcinogenesis.

  4. Ultraviolet Opacity and Fluorescence in Supernova Envelopes

    NASA Technical Reports Server (NTRS)

    Li, Hongwei; McCray, Richard

    1996-01-01

    By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.

  5. Extreme Ultraviolet Explorer (EUVE): Emergency support

    NASA Technical Reports Server (NTRS)

    Zayas, H.; Barrowman, J.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will conduct a survey of the entire celestial sphere in the extreme ultraviolet (UV) spectrum, 100 to 1000 angstrom units. This survey will be accomplished using four grazing incidence telescopes mounted on a spinning spacecraft whose spin axis is along the Sun line. Data is taken only when the spacecraft is in the Earth's shadow. The EUVE will be placed in a near circular orbit by a Delta expendable launch vehicle. The design orbit is circular at an altitude of 550 km by 28.5 degrees for a period of 96 minutes. The EUVE will be flown on a standardized Explorer Platform (EP) which will be reused for followup Explorer missions. Coverage will be provided by the Deep Space Network (DSN) for EUVE emergencies that would prevent communications via the normal channels of the Tracking and Data Relay Satellite System (TDRSS). Emergency support will be provided by the 26-meter subnet. Data is presented in tabular form for DSN support, frequency assignments, telemetry, and command.

  6. Orientation of migratory birds under ultraviolet light.

    PubMed

    Wiltschko, Roswitha; Munro, Ursula; Ford, Hugh; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2014-05-01

    In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m(2), birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m(2), robins showed an axial preference in the east-west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m(2), robins changed direction to a north-south axis. When UV light was combined with yellow light, robins showed easterly 'fixed direction' responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.

  7. ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES

    SciTech Connect

    Peek, J. E. G.; Schiminovich, David

    2013-07-01

    In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV and NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.

  8. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  9. IAA transport in corn roots includes the root cap

    SciTech Connect

    Hasenstein, K.H. )

    1989-04-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing {sup 3}H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 {mu}1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 {mu}1 of sorbitol or the Ca{sup 2+} chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap.

  10. Ultraviolet microscopy aids in cytological and biomedical research

    NASA Technical Reports Server (NTRS)

    Schlenk, F.; Svihla, B.

    1967-01-01

    Ultraviolet microscopy is used by cytologists and biochemists to study the morphological and physiological changes in the living cell under varied culture conditions. The yeast cell is used because of its content of ultraviolet absorbing materials and its lack of motility.

  11. Ultraviolet lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Reports cited from the international literature describe various aspects of ultraviolet lasers including laser output, far ultraviolet radiation, electron pumping, optical pumping, and laser materials. Gas lasers, pulsed lasers, dye lasers, CO2 lasers, xenon fluoride lasers, and transversely excited atmospheric (TEA) lasers are considered. This updated bibliography contains 283 citations, 66 of which are new additions to the previous edition.

  12. Ultraviolet behavior of N = 8 supergravity at four loops.

    PubMed

    Bern, Z; Carrasco, J J M; Dixon, L J; Johansson, H; Roiban, R

    2009-08-21

    We describe the construction of the complete four-loop four-particle amplitude of N=8 supergravity. The amplitude is ultraviolet finite, not only in four dimensions, but in five dimensions as well. The observed extra cancellations provide additional nontrivial evidence that N=8 supergravity in four dimensions may be ultraviolet finite to all orders of perturbation theory.

  13. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ultraviolet radiation intended to polymerize (set) resinous dental pit and fissure sealants or...

  14. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ultraviolet radiation intended to polymerize (set) resinous dental pit and fissure sealants or...

  15. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  16. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  17. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  18. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  19. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878.4635 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4635 Ultraviolet lamp...

  20. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.

  1. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems.

  2. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  3. Power and Roots by Recursion.

    ERIC Educational Resources Information Center

    Aieta, Joseph F.

    1987-01-01

    This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)

  4. Swarming behavior in plant roots.

    PubMed

    Ciszak, Marzena; Comparini, Diego; Mazzolai, Barbara; Baluska, Frantisek; Arecchi, F Tito; Vicsek, Tamás; Mancuso, Stefano

    2012-01-01

    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming.

  5. Crenarchaeota colonize terrestrial plant roots.

    PubMed

    Simon, H M; Dodsworth, J A; Goodman, R M

    2000-10-01

    Microorganisms that colonize plant roots are recruited from, and in turn contribute substantially to, the vast and virtually uncharacterized phylogenetic diversity of soil microbiota. The diverse, but poorly understood, microorganisms that colonize plant roots mediate mineral transformations and nutrient cycles that are central to biosphere functioning. Here, we report the results of epifluorescence microscopy and culture-independent recovery of small subunit (SSU) ribosomal RNA (rRNA) gene sequences showing that members of a previously reported clade of soil Crenarchaeota colonize both young and senescent plant roots at an unexpectedly high frequency, and are particularly abundant on the latter. Our results indicate that non-thermophilic members of the Archaea inhabit an important terrestrial niche on earth and direct attention to the need for studies that will determine their possible roles in mediating root biology.

  6. White Light Coronograph (WLC) and Ultra-Violet Coronal Spectrometer (UVCS)

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1985-01-01

    The white light coronagraph (WLC) and ultraviolet coronal spectrometer (UVCS) together reveal the corona and the roots of the solar wind from 1.5 to 6 solar radii from Sun center. The WLC measures the plasma density and spatial structure of the corona and coronal mass ejections at a resolution of about 20 arcseconds. The UVCS, in combination with the WLC, measures the temperature and radial outflow speed of the coronal plasma. These instruments will detect mass ejections from active regions and high speed solar wind streams from coronal holes a few days before the source regions rotate onto the face of the Sun, thus giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth.

  7. Baicalein Protects Human Skin Cells against Ultraviolet B-Induced Oxidative Stress

    PubMed Central

    Oh, Min Chang; Piao, Mei Jing; Fernando, Pattage Madushan Dilhara Jayatissa; Han, Xia; Hewage, Susara Ruwan Kumara Madduma; Park, Jeong Eon; Ko, Mi Sung; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS. PMID:27257012

  8. Initial Results of Ultraviolet Imager on AKATSUKI

    NASA Astrophysics Data System (ADS)

    Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto; Imamura, Takeshi

    2016-10-01

    The UV images of the Venusian cloud top were obtained by several Venus spacecrafts such as Mariner 10 [Bruce et al., 1974], Pioneer Venus [Travis et al., 1979; Rossow et al., 1980], Galileo [Belton et al., 1991], Venus Express [Markiewicz et al., 2007; Titov et al., 2008]. Those previous instruments have taken images at the wavelength around 365-nm, but what material distribution reflects the contrasting density has been unknown yet. There is the SO2 absorption band around the 283-nm wavelength, and the 283-nm images clarify the distribution of SO2. The ultraviolet imager (UVI) on the AKATUSKI satellite takes ultraviolet images of the solar radiation scattered at the Venusian cloud top level at the both 283- and 365-nm wavelengths. There are absorption bands of SO2 and unknown absorber in these wavelength regions. The UVI carries out the measurements of the SO2 and the unknown absorber distributions, and the sequential images lead to understand the velocity vector of the wind at the cloud top altitude. The UVI is equipped with fast off-axial catadioptric optics, two bandpass filters and a diffuser installed in a filter wheel moving with a stepping motor, and a high-sensitive CCD devise with a UV coating. The UVI takes images of the ultraviolet solar radiation scattered from the Venusian cloud top in two wavelength ranges at the center of 283nm and 365nm with bandpass of 15 nm. A back illuminated type of a frame-transfer CCD with a UV sensitive coating is adopted. Its effective area is 1024 x 1024 pixels. UVI has 12-deg field-of-view, so the angular resolution is 0.012 deg/pix. The nominal exposure time is 125 msec and 46 msec at the observations of the 283- and 365-nm wavelengths, respectively. CCD has no mechanical shutter, so a smear noise in transferring from the image area to the storage area degrades the signal-to-noise ratio of the signal image especially in the short exposure operation. The images have a signal-to-noise ratio of over 100 after desmearing of

  9. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations

    PubMed Central

    Curnow, Alison; Owen, Sara J.

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations. PMID:26953144

  10. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  11. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  12. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  13. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media.

    PubMed

    Todt, Michael A; Albert, Daniel R; Davis, H Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  14. Ultraviolet spectropolarimetry of the Be star PP Carinae with the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Meade, M. R.; Nordsieck, K. H.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Code, A. D.; Magalhaes, A. M.; Schulte-Ladbeck, R. E.; Taylor, M.

    1993-01-01

    We present the first ultraviolet spectropolarimetric observations of the Be star PP Car, obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro 1 mission. Usable polarization data were obtained from 1400 to 2330 A, along with a good spectrum from 1400 to 3200 A. These data show a lower polarization shortward of the Balmer jump than had been predicted by standard models, and a broad UV polarization dip around 1900 A is seen. These results are in agreement with those found from the WUPPE observations of two other Be stars, Xi Tau and Pi Aqr, which were published earlier. All these observations are an important probe of the Be circumstellar envelopes and demonstrate the need for the inclusion of metal-line effects in circumstellar disk models of Be star UV polarization.

  15. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  16. Phototoxicity in an ultraviolet ink manufacturing plant.

    PubMed

    Linnell, Joshua D; Amani-Taleshi, Darius; Korentager, Richard; Dougherty, William R

    2012-01-01

    Ultraviolet (UV) dyes are used as inks in garment printing. Hypersensitivity reactions to these compounds have been reported in the literature. The authors report a case of reaction to UV ink in a patient already on corticosteroid therapy. The patient's clinical course was reviewed along with images of wounds that subsequently developed. The affected areas were debrided and covered with Vaseline gauze and silver impregnated dressings. Epithelium was salvaged in many areas, and regrowth occurred over several weeks in regions of deeper injury. The concurrent use of steroids and the rapidity of the onset of symptoms were not characteristic of hypersensitivity dermatitis, which has previously been reported. The cause of the wounds was likely phototoxicity from radical subtypes in the ink that catalyze the reaction when exposed to UV light.

  17. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  18. Combined ultraviolet studies of astronomical source

    NASA Technical Reports Server (NTRS)

    Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.

    1985-01-01

    As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.

  19. Near ultraviolet spectrograph for balloon platform

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  20. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  1. Ultraviolet radiation and systemic lupus erythematosus.

    PubMed

    Barbhaiya, M; Costenbader, K H

    2014-05-01

    Exposure to ultraviolet (UV) radiation is among the environmental factors that have been proposed and studied in association with systemic lupus erythematosus (SLE). While it is known that UV radiation exposure may exacerbate pre-existing lupus, it remains unclear whether UV exposure is a risk factor for the development of SLE. Experimental studies show a significant immunomodulatory role for UV radiation, but strong epidemiologic data regarding its role in triggering SLE onset are lacking. Further studies are needed to assess the role of UV radiation in relation to development of incident SLE, yet they are challenging to design due to difficulties in accurate exposure assessment, the heterogeneous nature of SLE, and the challenge of assessing photosensitivity, a feature of SLE, which often precedes its diagnosis.

  2. ZnO-Based Ultraviolet Photodetectors

    PubMed Central

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2010-01-01

    Ultraviolet (UV) photodetection has drawn a great deal of attention in recent years due to a wide range of civil and military applications. Because of its wide band gap, low cost, strong radiation hardness and high chemical stability, ZnO are regarded as one of the most promising candidates for UV photodetectors. Additionally, doping in ZnO with Mg elements can adjust the bandgap largely and make it feasible to prepare UV photodetectors with different cut-off wavelengths. ZnO-based photoconductors, Schottky photodiodes, metal–semiconductor–metal photodiodes and p–n junction photodetectors have been developed. In this work, it mainly focuses on the ZnO and ZnMgO films photodetectors. We analyze the performance of ZnO-based photodetectors, discussing recent achievements, and comparing the characteristics of the various photodetector structures developed to date. PMID:22163675

  3. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  4. Improved aluminum coatings for the ultraviolet

    SciTech Connect

    Edwards, D.F.; LaDelfe, P.; Ochoa, E.

    1981-01-01

    Highly reflective aluminum coatings or aluminum coatings with dielectric overcoats are frequently used in the ultraviolet. The reflectance values published by Hass and his group are generally accepted for this uv region. We have produced evaporated aluminum coatings for a wide range of deposition conditions and none of our coatings exhibit the Hass reflectance characteristics. The reflectance of our coatings appear to be independent of the evaporation pressure and deposition time or rate. Our coatings do not have the characteristic decrease in reflectance with decreasing wavelength. Our main attention has been focused on the origin of a reflectance dip for each of our coatings near 300 nm. This dip has apparently not been reported before and does not appear to be due to adsorbed layers on the film or due to trapped impurities within the film.

  5. Absolute sensitivity calibration of extreme ultraviolet photoresists

    SciTech Connect

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  6. Quantum Frequency Conversion between Infrared and Ultraviolet

    NASA Astrophysics Data System (ADS)

    Rütz, Helge; Luo, Kai-Hong; Suche, Hubertus; Silberhorn, Christine

    2017-02-01

    We report on the implementation of quantum frequency conversion between infrared and ultraviolet (UV) wavelengths by using single-stage up-conversion in a periodically poled potassium-titanyl-phosphate waveguide. Because of the monolithic waveguide design, we manage to transfer a telecommunication-band input photon to the wavelength of the ionic dipole transition of Yb+ at 369.5 nm. The external (internal) conversion efficiency is around 5% (10%). The high-energy pump used in this converter introduces a spontaneous parametric down-conversion process, which is a cause for noise in the UV mode. Using this process, we show that the converter preserves nonclassical correlations in the up-conversion process, rendering this miniaturized interface a source for quantum states of light in the UV.

  7. An analysis of middle ultraviolet dayglow spectra

    NASA Astrophysics Data System (ADS)

    Walden, Billie S.

    1991-12-01

    Middle ultraviolet spectra from 1800 to 3400A are analyzed. These spectra were obtained from the March 1990 rocket flight of the NPS MUSTANG instrument over the altitudes 105km to 315km. The data were compared with computer generated synthetic spectra. A least squares fitting procedure was developed for this purpose. Each data point was weighted using the standard deviation of the means. Synthetic spectra were generated for the following emissions: N2 Vegard-Kaphan; N2 Lyman-Birge-Hopfield; NO gamma, delta, and epsilon; OI 2972A, OII 2470A; and NII 2143A. Altitude profiles for the emissions were obtained. Tentative identification was made of the OIII 2853A emission. A comparison of VK and LBH profiles demonstrates the process of N2 A-state quenching by atomic oxygen.

  8. Extreme Ultraviolet Solar Spectroscopy with CHIPS

    NASA Astrophysics Data System (ADS)

    Hurwitz, Mark V.; Sasseen, T. P.; Sirk, M.; Marchant, W.; McDonald, J.; Thorsness, J.; Lewis, M.; Woods, T.

    2006-12-01

    The Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) can be utilized to collect extreme ultraviolet spectra of the full solar disk. CHIPS has been collecting solar spectra since late 2005, although the observation geometry was not standardized until April 2006. Since that time, CHIPS has been accumulating spectra on nearly a daily basis. As for the diffuse emission that CHIPS was designed to observe, the bandpass is about 90 to 260 Å, with a peak resolution (λ/Δλ) of about 100. The instrumental efficiency as a function of wavelength is expected to be stable, but is subject to an overall scale factor that is less certain. We explain how CHIPS can collect these spectra, and present representative results.

  9. The Coronal Ultraviolet Berkeley Spectrometer (CUBS)

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Chakrabarti, Supriya

    1992-01-01

    We describe an instrument package to remotely measure thermospheric, exospheric, and plasmaspheric structure and composition. This instrument was flown aboard the second test flight of the Black Brant XII sounding rocket on December 5, 1989, which attained an apogee of 1460 km. The experiment package consisted of a spectrophotometer to measure He I 584 A, O II 834 A, O I 989 A, hydrogen Lyman beta (1025 A), hydrogen Lyman alpha (1216 A), and O I 1304 A transitions, and a photometer to measure the He II 304 A emission. The optical design of the spectrophotometer was identical to that of the Berkeley Extreme Ultraviolet (EUV) Airglow Rocket Spectrometer payload, flown on September 30, 1988 aboard the maiden flight of the Black Brant XII rocket. We present the initial data analysis and describe directions we will go toward the completion of our study.

  10. Phototherapy cabinet for ultraviolet radiation therapy

    SciTech Connect

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  11. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  12. Protection against solar ultraviolet radiation in childhood.

    PubMed

    Pustisek, Nives; Situm, Mirna

    2011-09-01

    In the last decade, awareness of the harmful effects of solar ultraviolet radiation has increased. Modern lifestyles, outdoor occupations, sports and other activities make total sun avoidance impossible. Children spend more time outdoors than adults and there is compelling evidence that childhood is a particularly vulnerable time for the photocarcinogenic effects of the sun. Sun exposure among infants and pre-school age children is largely depend on the discretion of adult care providers. It is important to learn safe habits about sun-safety behaviours during the childhood. Children deserve to live and play in safe environments, and it is the responsibility of every adult to help children stay safe. Protecting children from excessive sun exposure is protection from sunburn today and other forms of sun damages, especially skin cancers, in the future.

  13. Ultraviolet induction of antifungal activity in plants.

    PubMed

    Schumpp, O; Bruderhofer, N; Monod, M; Wolfender, J-L; Gindro, K

    2012-11-01

    Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.

  14. Ultraviolet radiation as an ant repellent

    SciTech Connect

    Thorvilson, H.G.; Russell, S.A.; Green, B.; Gransberg, D.

    1996-12-31

    In an effort to repel red imported fire ants (RIFA) from electrical devices, such as transformers, ultraviolet (UV) light was tested. Initial tests determined if RIFA`s tolerate a UV-irradiated environment when given a choice between UV-irradiated and non-irradiated. All replications in this test indicated that RIFA`s are intolerant of UV-irradiation and sought to escape it. RIFA`s moved to shaded environments and transported their brood out its well. A second test sought to determine if long-term UV-irradiation of the entire colonies cause increased RIFA mortality. Queenright colonies were exposed to UV irradiation of 254nm constantly for 115 days and colonies had a higher mortality rate than did a control colony. RIFA`s attempted to escape UV light and had increased rate when exposed to UV (254nm), but a practical application of this technique may be detrimental to insulation on electrical wiring.

  15. Erythemal irradiances of filtered ultraviolet radiation.

    PubMed

    Parisi, A V; Wong, J C

    1997-07-01

    A spectrum evaluator (3 cm x 3 cm) employing four passive dosimeters has been used to evaluate the time averaged spectrum to allow calculation of the erythemal exposures resulting from the predominantly UVA component of filtered solar ultraviolet radiation. An exposure interval of approximately 20 min to autumn and spring sunshine was required for the spectrum evaluator to allow evaluation of the filtered source spectrum. For a clear spring day an erythemal exposure of 0.85 MED (minimum erythemal dose) to a horizontal plane and 0.38 MED to a vertical plane over a 6 h period was measured within a glass enclosure. For a partially cloudy day six weeks later, these were 0.89 and 0.44 MED for the horizontal and the vertical planes respectively. The ratios of the filtered to the unfiltered erythemal exposures within and outside the enclosure respectively ranged from 0.08 to 0.18 throughout the two days.

  16. Femtosecond transparency in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Greene, Chris H.

    2012-06-01

    Electromagnetically induced transparency-like behavior in the extreme ultraviolet (XUV) is studied theoretically, including the effect of intense 800nm laser dressing of He 2s2p(^1P^o) and 2p^2(^2S^e) autoionizing states. We present an ab initio solution of the time-dependent Schr"odinger equation in an LS-coupling configuration interaction basis set. The method enables a rigorous treatment of optical field ionization of these coupled autoionizing states into the N = 2 continuum in addition to N = 1. Our calculated transient absorption spectra show the formation of the Autler-Townes doublet in the presence of the dressing laser field. The presented results are in encouraging agreement with experiment [1]. [4pt] [1] Z.H. Loh, C.H. Greene, and S. R. Leone, Chem. Phys. 350, 7 (2008)

  17. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  18. Absolute sensitivity calibration of extreme ultraviolet photoresists.

    PubMed

    Naulleau, Patrick P; Gullikson, Eric M; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-07-21

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here we report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  19. Ni/TiO2 Ultraviolet Detector

    NASA Astrophysics Data System (ADS)

    Mohamadzade Lajvardi, Mehdi; Jahangiri, Mojtaba

    2016-03-01

    The fabrication technology of solid-state photon detectors based on semiconductors other than silicon is yet to mature, but their recent progress opens new possibilities. Such devices are especially attractive for ultraviolet radiation level measurements because semiconductor materials with band gaps larger than 3.0 eV can be used as “visible-blind” detectors, the operation of which do not require using visible light filters. Here, fabrication and characterization of a UV detector based on nickel/titanium dioxide Schottky junction is reported. The operation of the device is described based on the photoelectric mechanism taking place in the carrier- depleted oxide adjacent to the Ni layer. Simplicity of fabrication, cost-effectiveness and fast response are the positive features of the device. These features of the device are compared with those of the previously reported Ag/TiO2 UV detectors.

  20. Effect of parameter choice in root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, M.; Schneider, C.; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A.

    2014-10-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between

  1. Coherent Extreme Ultraviolet Generation and Surface Studies Using Ultraviolet Excimer Lasers.

    DTIC Science & Technology

    1986-02-10

    are detected by a two-stage multi-channel plate detector, (MCP-Chevron type), which is connected to a transient digitizer (Tektronix 7912 AD). The...Supplement). 43. "Ultraviolet Excitation of Cryogenic Rare-Gas Chlorine Solutions ," H. Jara, M. Shahidi, H. Pummer, H. Egger, akd C. K. Rhodes, in...like core. In principle, these equations are nonlinear in the applied electromagnetic field. We observe that the incident electromagentic field has a

  2. Far Ultraviolet Imaging from the Image Spacecraft

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Lampton, M.; Geller, S. P.; Stock, J. M.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Habraken, S.

    2000-01-01

    Direct imaging of the magnetosphere by the IMAGE spacecraft will be supplemented by observation of the global aurora. The IMAGE satellite instrument complement includes three Far Ultraviolet (FUV) instruments. The Wideband Imaging Camera (WIC) will provide broad band ultraviolet images of the aurora for maximum spatial and temporal resolution by imaging the LBH N2 bands of the aurora. The Spectrographic Imager (SI), a novel form of monochromatic imager, will image the aurora, filtered by wavelength. The proton-induced component of the aurora will be imaged separately by measuring the Doppler-shifted Lyman-a. Finally, the GEO instrument will observe the distribution of the geocoronal emission to obtain the neutral background density source for charge exchange in the magnetosphere. The FUV instrument complement looks radially outward from the rotating IMAGE satellite and, therefore, it spends only a short time observing the aurora and the Earth during each spin. To maximize photon collection efficiency and use efficiently the short time available for exposures the FUV auroral imagers WIC and SI both have wide fields of view and take data continuously as the auroral region proceeds through the field of view. To minimize data volume, the set of multiple images are electronically co-added by suitably shifting each image to compensate for the spacecraft rotation. In order to minimize resolution loss, the images have to be distort ion-corrected in real time. The distortion correction is accomplished using high speed look up tables that are pre-generated by least square fitting to polynomial functions by the on-orbit processor. The instruments were calibrated individually while on stationary platforms, mostly in vacuum chambers. Extensive ground-based testing was performed with visible and near UV simulators mounted on a rotating platform to emulate their performance on a rotating spacecraft.

  3. New Ultraviolet Observations of AM CVn

    NASA Astrophysics Data System (ADS)

    Wade, Richard A.; Eracleous, Michael; Flohic, Hélène M. L. G.

    2007-11-01

    We have obtained observations of the ultraviolet spectrum of AM CVn, an ultrashort-period helium cataclysmic variable, using the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope (HST). We obtained data in time-tag mode during two consecutive orbits of HST, covering 1600-3150 and 1140-1710 Å, respectively. The mean spectrum is approximately flat in fν. The absorption profiles of the strong lines of N V, Si IV, C IV, He II, and N IV are blueshifted and in some cases asymmetric, evidencing a wind that is partly occulted by the accretion disk. There is weak redshifted emission from N V and He II. The profiles of these lines vary mildly with time. The light curve shows a decline of ~20% over the span of the observations. There is also flickering and a 27 s (or 54 s) "dwarf nova oscillation," revealed in a power-spectrum analysis. The amplitude of this oscillation is larger at shorter wavelengths. We assemble and illustrate the spectral energy distribution of AM CVn from the ultraviolet to the near-infrared. Modeling the accretion phenomenon in this binary system can in principle lead to a robust estimate of the mass accretion rate on to the central white dwarf, which is of great interest in characterizing the evolutionary history of the binary system. Inferences about the mass accretion rate depend strongly on the local radiative properties of the disk, as we illustrate. Uncertainty in the distance of AM CVn and other parameters of the binary system currently limit the ability to confidently infer the mass accretion rate. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 8159.

  4. Ultraviolet spectral synthesis of HD 72660

    NASA Astrophysics Data System (ADS)

    Golriz, S. S.; Landstreet, J. D.

    2016-03-01

    The study of chemical abundances in stellar atmosphere provides a useful tool to investigate the formation and evolution history of stars. The optical wavelength range has been used almost exclusively in the past to determine the elemental abundance in A-type stars. We use high-resolution, high signal-to-noise ultraviolet spectra obtained from the STIS/NUV-MAMA instrument on board Hubble Space Telescope. The spectra available cover the wavelength ranges 1630 Å-1901 Å and 2130 Å-2887 Å. The main challenge to carrying out abundance analysis in the ultraviolet is the extreme level of line blending. Abundance analysis using single isolated spectral lines is almost completely impossible; it is necessary to model spectral windows using spectrum synthesis with fairly complete line-lists. We have used the LTE spectrum synthesis code ZEEMAN to model the UV spectrum of HD 72660, adjusting abundances for a best match for elements with 6 ≤ Z≤ 82 for which lines are present in the Vinna Atomic Line Database line-list. Abundances or upper limits are derived for 32 elements. We find that except a few, our derived abundances are slightly higher than solar values. We estimate upper limits for abundances of eleven elements and abundance values of 12 elements which have not been detected in the optical. The high abundances that we find for some heavy elements may point to radiative levitation. The presence of lanthanides plus our results, suggest the reclassification of HD 72660 as a transition object between an HgMn star and an Am star.

  5. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  6. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Guo, X.; Pei, D.; Li, W.; Blatz, J.; Hsu, K.; Benjamin, D.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.; Shohet, J. L.

    2016-06-01

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3 and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this "UV/VUV curing" process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.

  7. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  8. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  9. Structural basis of ultraviolet-B perception by UVR8.

    PubMed

    Wu, Di; Hu, Qi; Yan, Zhen; Chen, Wen; Yan, Chuangye; Huang, Xi; Zhang, Jing; Yang, Panyu; Deng, Haiteng; Wang, Jiawei; Deng, XingWang; Shi, Yigong

    2012-02-29

    The Arabidopsis thaliana protein UVR8 is a photoreceptor for ultraviolet-B. Upon ultraviolet-B irradiation, UVR8 undergoes an immediate switch from homodimer to monomer, which triggers a signalling pathway for ultraviolet protection. The mechanism by which UVR8 senses ultraviolet-B remains largely unknown. Here we report the crystal structure of UVR8 at 1.8 Å resolution, revealing a symmetric homodimer of seven-bladed β-propeller that is devoid of any external cofactor as the chromophore. Arginine residues that stabilize the homodimeric interface, principally Arg 286 and Arg 338, make elaborate intramolecular cation-π interactions with surrounding tryptophan amino acids. Two of these tryptophans, Trp 285 and Trp 233, collectively serve as the ultraviolet-B chromophore. Our structural and biochemical analyses identify the molecular mechanism for UVR8-mediated ultraviolet-B perception, in which ultraviolet-B radiation results in destabilization of the intramolecular cation-π interactions, causing disruption of the critical intermolecular hydrogen bonds mediated by Arg 286 and Arg 338 and subsequent dissociation of the UVR8 homodimer.

  10. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  11. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  12. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  13. Far-ultraviolet imagery of the Barnard Loop Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    An electrographic Schmidt camera carried on a sounding rocket has yielded far-ultraviolet (1050-2000 A and 1230-2000 A) images of the Barnard Loop Nebula and of the general background in the Orion region due to scattering of ultraviolet starlight by interstellar dust particles. The total intensity in the Barnard Loop region agrees well with OAO-2 measurements, but the discrete Loop structure contributes only some 15% of the total. The measurements are consistent with a relatively high albedo for the dust grains in the far-ultraviolet.

  14. Investigation of the diffuse ultraviolet background with DE data

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1988-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite is used to measure the intensity of the diffused ultraviolet radiation on two great circles about the sky. It was found that the extragalactic component of the diffuse ultraviolet radiation has an intensity of 530 + or - 15 units (a unit is one photon/(sq cm s A sr) at a wavelength of 150 nm. The galactic component of the diffuse ultraviolet radiation has a dependence on galactic latitude which requires strongly forward scattering particles if it is produced by dust above the galactic plane.

  15. Ultraviolet properties of N=4 supergravity at four loops.

    PubMed

    Bern, Zvi; Davies, Scott; Dennen, Tristan; Smirnov, Alexander V; Smirnov, Vladimir A

    2013-12-06

    We demonstrate that pure N=4 supergravity is ultraviolet divergent at four loops. The form of the divergence suggests that it is due to the rigid U(1) duality-symmetry anomaly of the theory. This is the first known example of an ultraviolet divergence in a pure ungauged supergravity theory in four dimensions. We use the duality between color and kinematics to construct the integrand of the four-loop four-point amplitude, whose ultraviolet divergence is then extracted by standard integration techniques.

  16. Ultraviolet fluxes for globular clusters in M31 - A rediscussion

    SciTech Connect

    Crotts, A.P.S.; Kron, R.G.; Cacciari, C.; Fusi-Pecci, F. McDonald Observatory, Austin, TX Yerkes Observatory, Williams Bay, WI Osservatorio Astronomico, Bologna Bologna Universita )

    1990-07-01

    Long-exposure observations of three bright globular clusters in M31 obtained with both the short- and long-wavelength low-resolution cameras of the International Ultraviolet Explorer satellite are discussed. All of the clusters are seen at the longer wavelengths, but only one of the clusters is seen at short wavelengths, and this detection is marginal. The ultraviolet fluxes are in fact known with only poor precision, and previous conclusions concerning the stellar population are weakened accordingly. Discrepancies between the ultraviolet fluxes obtained here and in other published work are described. 16 refs.

  17. Extreme ultraviolet spectral irradiance measurements since 1946

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  18. The Ultraviolet Spectroscopic Legacy of HST

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2016-01-01

    Hubble Space Telescope has been a spectacularly successful platform for spectroscopy in the diagnostic-rich far-ultraviolet (FUV: 120-170 nm) and near-ultraviolet (NUV: 170-310 nm) regions. HST has hosted four generations of UV instruments, beginning with Faint Object Spectrograph (FOS) and Goddard High-Resolution Spectrograph (GHRS) in the original 1990 payload, followed by Space Telescope Imaging Spectrograph (STIS) in 1997, and more recently Cosmic Origins Spectrograph (COS) as part of Servicing Mission 4 in 2009. The latter two instruments have contributed by far the lion's share of HST's spectroscopic archive: STIS, because of its longevity (thirteen years in operation so far, although with a hiatus between 2004-2009); and COS because of its high sensitivity, which allows efficient observations, and thus many more targets in a typical GO program. STIS benefits from a compact echelle design, and the sharp stable imaging of HST, to provide high-resolution (3-7 km s-1) spectra of bright objects, including stars, nebulae, quasars, novae, and so forth. COS achieves astounding sensitivity in the FUV by a sophisticated design that compensates for the spherical abberation of HST's primary mirror, disperses the target's light, and focuses the spectral image all with just a single optical element. While the spectral resolution of COS (about 18 km s-1) is not as high as that of STIS, it is adequate for diverse investigations, including faint broad-lined AGN at the edge of the Universe, hot stars in nearby galaxies, and magnetically active planet-hosting red dwarfs in the solar neighborhood. Thanks in part to the "UV Initiative" in recent HST proposal cycles, there have been several large efforts involving both STIS and COS, to assemble important spectral collections, including full UV atlases of representative hot and cool stars at high resolution with STIS; long time series of archetype AGN ("reverberation mapping") with COS; and hundreds of sightlines to distant

  19. The GALEX Ultraviolet Atlas of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Gil de Paz, Armando; Boissier, Samuel; Madore, Barry F.; Seibert, Mark; Joe, Young H.; Boselli, Alessandro; Wyder, Ted K.; Thilker, David; Bianchi, Luciana; Rey, Soo-Chang; Rich, R. Michael; Barlow, Tom A.; Conrow, Tim; Forster, Karl; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Small, Todd; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Milliard, Bruno; Szalay, Alex S.; Yi, Sukyoung

    2007-12-01

    We present images, integrated photometry, and surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the Galaxy Evolution Explorer (GALEX) satellite in its far-ultraviolet (FUV; λeff=1516 Å) and near-ultraviolet (NUV; λeff=2267 Å) bands. Our catalog of objects is derived primarily from the GALEX Nearby Galaxies Survey (NGS) supplemented by galaxies larger than 1' in diameter serendipitously found in these fields and in other GALEX exposures of similar of greater depth. The sample analyzed here adequately describes the distribution and full range of properties (luminosity, color, star formation rate [SFR]) of galaxies in the local universe. From the surface brightness profiles obtained we have computed asymptotic magnitudes, colors, and luminosities, along with the concentration indices C31 and C42. We have also morphologically classified the UV surface brightness profiles according to their shape. This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different subtypes. Elliptical galaxies with brighter K-band luminosities (i.e., more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) (a color sensitive to the presence of a strong UV upturn) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color (or, equivalently, the slope of the UV spectrum, β) and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly

  20. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity.

  1. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  2. Determination of the Solar Ultraviolet Transmission in Tree Shade.

    ERIC Educational Resources Information Center

    Parisi, Alfio V.; Kimlin, Michael G.

    1999-01-01

    Presents an activity in which the amount of solar ultraviolet radiation in tree shade is measured at different times of the day and compared with changes in illumination levels and temperature. (Author/WRM)

  3. Good Afternoon, Sunshine! Protecting Children from Ultraviolet Rays.

    ERIC Educational Resources Information Center

    Certo, Delaine

    1996-01-01

    Notes caregivers' responsibility to protect children from too much exposure to ultraviolet radiation and the potential for melanoma. Provides suggestions on how to prevent children from sunburn and skin cancer, including the proper way to apply sunscreen. (MOK)

  4. CHARACTERIZATION OF RELATIVE SENSITIVITY OF AMPHIBIANS TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Different studies have demonstrated that solar ultraviolet (UV) radiation can adversely affect survival and development of embryonic and larval amphibians. However, because of among-laboratory variations in exposure profiles (artificial vs. natural sunlight; natural sunlight at d...

  5. Advanced Applications Flight Equipment (AAFE) 125mm ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Schroeder, R. J.

    1973-01-01

    The conceptual work is reported for the 125 mm ultraviolet spectrometer to measure atmospheric ozone as a function of height, latitude, and time. The instrument is described along with the assembly, test, and calibration.

  6. A Comparison of Optical Detectors for the Visible and Ultraviolet.

    ERIC Educational Resources Information Center

    Grossman, William E. L.

    1989-01-01

    Presents data for instructors on the current state of ultraviolet-visible detector technology and gives sources of further information. Described are the mechanisms and characteristics of photomultiplier tubes and array detectors. Lists 15 references. (YP)

  7. Complex refractive index of Martian dust - Mariner 9 ultraviolet observations

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.

    1976-01-01

    Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.

  8. Quantitative Morphology of Galaxies Observed in the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kuchinski, L.; Madore, B.; Trewhella, M.; Freedman, W.

    2000-01-01

    We present a quantitative study of the far-ultraviolet (FUV) and optical morphology in 32 nearby galaxies and estimate the morphological k-correction expected if these objects were observed unevolved at high redshift.

  9. Ultraviolet Radiation Induction of Mutation in Penicillium Claviforme.

    ERIC Educational Resources Information Center

    New, June; Jolley, Ray

    1986-01-01

    Cites reasons why Penicillium claviforme is an exceptionally good species for ultraviolet induced mutation experiments. Provides a set of laboratory instructions for teachers and students. Includes a discussion section. (ML)

  10. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  11. Observations of the far ultraviolet airflow by the Ultraviolet Limb Imaging experiment on STS-39

    NASA Technical Reports Server (NTRS)

    Budzien, S. A.; Feldman, P. D.; Conway, R. R.

    1994-01-01

    The Ultraviolet Limb Imaging (UVLIM) experiment flew on STS-39 in the spring of 1991 to observe the Earth's thermospheric airglow and included a far ultraviolet (1080-1800 A) spectrometer. We present first results from this spectrometer, including a spectroscopic analysis at 6-A resolution of H, O, N, and N2 dayglow emissions and modeling of the observed limb-scan profiles of dayglow emissions. The observed N2 Lyman-Birge-Hopfield (LBH) emission reflects a vibrational population distribution in the a(1 Pi)(sub g) state that differs significantly from those predicted for direct electron excitation and excitation with cascade from the a('1 Sigma)(sub u)(-) and w(1 Delta)(sub u) states. The vibrational population distribution and LBH brightness suggest a total cascade rate 45% that of direct excitation, in contrast to laboratory measurements. For the first time, pronounced limb brightening is observed in both the N I lambda 1200 limb emission profiles, as expected for emissions excited by N2 dissociation which produces kinetically fast N fragments; however, optically thick components of these features are also observed. Preliminary modeling of the OI lambda 1356, HI lambda 1216, and OI lambda 1304 and OI lambda 1641 emissions agrees to within roughly 10% of the observed limb-scan profiles, but the models underestimate the N2 LBH profiles by a factor of 1.4-1.6, consistent with the inferred cascade effect. Other findings include: an OI lambda 1152/lambda 1356 intensity ratio that is inconsistent with the large cascade contribution to OI lambda 1356 from np 5P states required by laboratory and nightglow observations; nightglow observations of the tropical ultraviolet arcs exhibit a wide range of OI lambda 1356/lambda 1304 intensity ratios and illustrate the complicated observing geometry and radiative transfer effects that must be modeled; and we find a 3-sigma upper limit of 8.5 R to the total LBH vehicle glow emission.

  12. Control of zebra mussels with ultraviolet radiation

    SciTech Connect

    Lewis, D.P.

    1998-07-01

    This paper presents the results of research on the effects of low and medium pressure ultraviolet (UV) radiation on zebra mussel mortality carried out between 1992 and 1995. An initial 1992 study, carried out by Aquatic Sciences (ASI), showed that flow-through UV systems have the ability to kill zebra mussels and prevent them from attaching to downstream surfaces. However, this work did not include expanded testing to determine the limitations of UV radiation at higher flow rates or to further define effective working parameters. The 1994 study was carried out at the Lennox Thermal Generating Station (TGS) of Ontario Hydro in Kingston, Ontario. This study involved the testing of two open channel UV systems (medium and low pressure) in an effort to determine flow rates and volumes for which UV disinfection would be effective and practical for the prevention of zebra mussel infestation. It was recommended that medium pressure (MP) and low pressure (LP) UV systems be tested for their ability to control downstream settlement of zebra mussels, in flow-through trials.

  13. Vitamin D and ultraviolet phototherapy in Caucasians.

    PubMed

    Grigalavicius, Mantas; Moan, Johan; Dahlback, Arne; Juzeniene, Asta

    2015-06-01

    Ultraviolet B (UVB) radiation increases vitamin D level, but the influence of different UV sources (broadband and narrowband UVB lamps, solar simulators and sunbeds) and exposure durations have not been well characterized. In this study the influence of different UV sources on serum 25-hydroxyvitamin-D3 (25(OH)D3) levels in humans are reviewed. Serum 25(OH)D levels before and after UV exposure, and UV doses were extracted from 18 papers published in the past eight years. It was found that the UV dose-response curve for vitamin D generation in humans, as measured by the increments of serum 25(OH)D, is not linear with increasing UV doses and reaches a plateau at about 55 nmol/L after 4-5 weeks. About a half of this increase is equal to the difference between winter and summer 25(OH)D levels, and may be reached after 23 SEDs. The increments decrease with increasing baseline concentration of serum 25(OH)D, and the efficiency of only 0.7 nmol/L per SED is expected on the average when initial concentrations are higher than 50-60 nmol/L. A whole body exposure to 2 SEDs of UVB radiation 3 times per week is expected to rise serum 25(OH)D with an initial rate of 3.9 nmol/L per SED, bringing a winter level of serum 25(OH)D up to a summer level.

  14. Ultraviolet Radiation on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Catling, D. C.; Cockell, C. S.; McKay, C. P.

    1999-01-01

    An evaluation of the ultraviolet (UV) flux incident on the Martian surface is important for a number of issues. UV-induced photolysis of water changes the chemistry of the soil and atmosphere, inducing its oxidizing nature. Alternatively, UV may directly affect surface chemistry by generating silicate defects. UV also rapidly degrades organic material delivered by meteoritic infall. Consequently, UV affects the overall chemistry of the Martian surface and atmosphere. The extent of UV breakdown of organic molecules is also relevant to concerns regarding contaminants on lander or rover surfaces that could interfere with life-detection experiments causing "false positives". The radiation flux at a point on the surface of Mars depends on factors such as cloud cover, atmospheric dust loading, season, local time, and latitude. Previously, the UV spectrum incident on the surface of Mars has been calculated from a simple radiative transfer model. Limitations of this earlier model include no accounting for the effect of dust, which may be a perennial constituent of the atmosphere, and also the use of gas absorption data measured at room temperature that overestimate absorption for lower Martian temperatures. We present an updated model for UV radiation (200-400 nm) that incorporates dust and more recent data for the solar spectrum, gas absorption, and UV surface albedo. Additional information is contained in the original extended abstract.

  15. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L.; Potter, James M.

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  16. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  17. Reflective masks for extreme ultraviolet lithography

    SciTech Connect

    Nguyen, Khanh Bao

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  18. Simulation of parabolic reflectors for ultraviolet phototherapy

    NASA Astrophysics Data System (ADS)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  19. Ultraviolet background fluctuations with clustered sources

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Dizgah, Azadeh Moradinezhad; Biagetti, Matteo

    2014-11-01

    We develop a count-in-cells approach to the distribution of ultraviolet background fluctuations that includes source clustering. We demonstrate that an exact expression can be obtained if the clustering of ionizing sources follows the hierarchical ansatz. In this case, the intensity distribution depends solely on their two-point correlation function. We show that the void scaling function of high-redshift mock quasars is consistent with the negative binomial form, before applying our formalism to the description of He II-ionizing fluctuations at the end of helium reionization. The model inputs are the observed quasar luminosity function and two-point correlation at z ˜ 3. We find that, for an (comoving) attenuation length ≲55 Mpc, quasar clustering contributes less than 30 per cent of the variance of intensity fluctuations so long as the quasar correlation length does not exceed ˜15 Mpc. We investigate also the dependence of the intensity distribution on the large-scale environment. Differences in the mean He II-ionizing intensity between low- and high-density regions could be a factor of few if the sources are highly clustered. An accurate description of quasar demographics and their correlation with strong absorption systems is required to make more precise predictions.

  20. Atomic emission in the ultraviolet nightglow

    SciTech Connect

    Sharp, W.E.; Siskind, D.E. )

    1989-12-01

    An observation of the ultraviolet nightglow between 2,670 {angstrom} and 3,040 {angstrom} was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter uv spectrometer operating at 3.5 {angstrom} resolution viewed the Earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2,852 {angstrom} is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2,972 {angstrom} line from O({sup 1}S) was less than that predicted from the accepted O({sup 1}S) branching ratio and acceptable ratios of Herzberg I to 5,577 {angstrom} emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  1. Vacuum-ultraviolet frequency-modulation spectroscopy.

    PubMed

    Hollenstein, U; Schmutz, H; Agner, J A; Sommavilla, M; Merkt, F

    2017-01-07

    Frequency-modulation (FM) spectroscopy has been extended to the vacuum-ultraviolet (VUV) range of the electromagnetic spectrum. Coherent VUV laser radiation is produced by resonance-enhanced sum-frequency mixing (νVUV=2νUV+ν2) in Kr and Xe using two near-Fourier-transform-limited laser pulses of frequencies νUV and ν2. Sidebands generated in the output of the second laser (ν2) using an electro-optical modulator operating at the frequency νmod are directly transferred to the VUV and used to record FM spectra. Demodulation is demonstrated both at νmod and 2νmod. The main advantages of the method compared to VUV absorption spectroscopy are its background-free nature, the fact is that its implementation using table-top laser equipment is straightforward and that it can be used to record VUV absorption spectra of cold samples in skimmed supersonic beams simultaneously with laser-induced-fluorescence and photoionization spectra. To illustrate these advantages, we present VUV FM spectra of Ar, Kr, and N2 in selected regions between 105000 cm(-1) and 122000 cm(-1).

  2. Coherence techniques at extreme ultraviolet wavelengths

    SciTech Connect

    Chang, Chang

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  3. Ultraviolet Radiation in the Solar System

    NASA Astrophysics Data System (ADS)

    Vázquez, M., Hanslmeier, A.

    UV radiation is an important part in the electromagnetic spectrum since the energy of the photons is great enough to produce important chemical reactions in the atmospheres of planets and satellites of our Solar System, thereby affecting the transmission of this radiation to the ground and its physical properties. Scientists have used different techniques (balloons and rockets) to access to the information contained in this radiation, but the pioneering of this new frontier has not been free of dangers. The Sun is our main source of UV radiation and its description occupies the first two chapters of the book. The Earth is the only known location where life exists in a planetary system and therefore where the interaction of living organism with UV radiation can be tested through different epochs and on distinct species. The development of the human technology has affected the natural shield of ozone that protects complex lifeforms against damaging UV irradiation. The formation of the ozone hole and its consequences are described, together with the possible contribution of UV radiation to recent climate changes. Finally, we will discuss the the potential role of ultraviolet light in the development of life on bodies such as Mars, Europa and Titan. The Solar System is not isolated; other external sources can contribute to the enhancement of the UV radiation in our environment. The influence of such events as nearby supernovae and gamma-ray bursts are described, together with the consequences to terrestrial life from such events.

  4. SUMI - The Solar Ultraviolet Magnetograph Investigation

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; West, E. A.; Davis, J. M.; Gary, G. A.; Noble, M. W.; Thomas, R. J.; Rabin, D. M.; Uitenbroek, H.

    2003-01-01

    Solar physics has been successful in characterizing the full vector magnetic field in the photosphere, where the ratio of gas pressure to magnetic pressure (Beta) is >1. However, at higher levels in the atmosphere, where Beta <<1 and flares and CMEs are believed to be triggered, observations are difficult, severely limiting the understanding of these processes. In response to this situation, we are developing SUMI (the Solar Ultraviolet Magnetograph Investigation) a unique instrument designed to measure the circular and linear polarization of upper chromospheric Mg II lines (280 nm) and circular polarization of transition region C IV lines (155 nm). To date the telescope mirrors have been built, tested and coated with dielectric stacks designed to reflect only the wavelengths of interest. We have also developed a unique UV polarimeter and completed the design of a high-resolution spectrograph that uses dual toroidal varied- line-space (TVLS) gratings. Incorporating measurements of those components developed so far, the revised estimate of the system throughput exceeds our original estimate by more than an order of magnitude. A sounding rocket flight is anticipated in 2006. Our objectives and progress are detailed in this presentation.

  5. An atlas of ultraviolet P Cygni profiles

    NASA Technical Reports Server (NTRS)

    Snow, Theodore P.; Lamers, Henny J. G. L. M.; Lindholm, Douglas M.; Odell, Andrew P.

    1994-01-01

    We have selected spectra of 232 stars from the International Ultraviolet Explorer (IUE) archives for inclusion in an atlas intended for various uses but tailored especially for the study of stellar winds. The atlas covers the range in spectral types from O3 to F8. The full atlas covers the reduced and normalized high resolution spectra from the IUE long- and short-wavelength spectrographs. Here we discuss the selection of the stars and the data reduction, and we present in velocity units the profiles of lines formed in the stellar winds. The selected lines cover a wide range of ionizations, allowing a comparison of the profiles from different ions in the wind of each star and a comparison of the different wind lines as a function spectral type and luminosity. We also present the basic data on the program stars to facilitate study of the dependence of wind features on stellar parameters such as luminosity, temperature, escape velocity, and v sin i. We provide an overview of the characteristic behavior of the wind lines in the H-R diagram. The complete spectra are available in digital form through the NASA Astrophysics Data System (ADS). We offer a description of the electronic database that is available through the ADS and guidelines for obtaining access to that database.

  6. Laboratory studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  7. Benefits and Costs of Ultraviolet Fluorescent Lighting

    PubMed Central

    Lestina, Diane C.; Miller, Ted R.; Knoblauch, Richard; Nitzburg, Marcia

    1999-01-01

    Objective To demonstrate the improvements in detection and recognition distances using fluorescent roadway delineation and auxiliary ultra-violet (UVA) headlights and determine the reduction in crashes needed to recover increased costs of the UVA/flourescent technology. Methods Field study comparisons with and without UVA headlights. Crash types potentially reduced by UVA/flourescent technology were estimated using annual crash and injury incidence data from the General Estimates System (1995–1996) and the 1996 Fatality Analysis Reporting System. Crash costs were computed based on body region and threat-to-life injury severity. Results Significant improvements in detection and recognition distances for pedestrian scenarios, ranging from 34% to 117%. A 19% reduction in nighttime motor vehicle crashes involving pedestrians or pedal-cycles will pay for the additional UVA headlight costs. Alternatively, a 5.5% reduction in all relevant nighttime crashes will pay for the additional costs of UVA headlights and fluorescent highway paint combined. Conclusions If the increased detection and recognition distances resulting from using UVA/flourescent technology as shown in this field study reduce relevant crashes by even small percentages, the benefit cost ratios will still be greater than 2; thus, the UVA/flourescent technology is very cost-effective and a definite priority for crash reductions.

  8. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  9. Analysis of ultraviolet spectrophotometric data from Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1979-01-01

    Ultraviolet spectral data from the OAO 3 satellite are being used to study interstellar absorption lines and stellar and circumstellar lines in hot stars. The interstellar data are beneficial in analyzing the depletions of heavy elements from the gas phase and in elucidating how these depletions depend on physical conditions. Abundances in separate velocity components were determined from line profiles. Observations were carried out for interstellar abundances, both atomic and molecular, towards a number of stars. The better quality data are being analyzed for profile information and the lesser data are being used in curve-of-growth analyses. Molecular observations were carried out as well, N2 was sought; interstellar C2 was detected and its rotational excitation utilized to establish limits in interstellar cloud temperatures. An extensive search for H2O resulted in a tentative identification which will produce new information on chemical reaction rates. Interstellar depletions and grain properties in the rho Ophiuchi cloud, stellar wind variability, and circumstellar lines are also under study.

  10. An enhanced multiwavelength ultraviolet biological trigger lidar

    NASA Astrophysics Data System (ADS)

    Achey, Alexander; Bufton, Jack; Dawson, Jeffrey; Huang, Wen; Lee, Sangmin; Mehta, Nikhil; Prasad, Coorg R.

    2004-12-01

    A compact Ultraviolet Biological Trigger Lidar (UBTL) instrument for detection and discrimination of bio-warfare-agent (BWA) simulant aerosol clouds was developed by us [Prasad, et al, 2004] using a 5mW, 375nm semiconductor UV optical source (SUVOS) laser diode. It underwent successful field tests at Dugway Proving Ground and demonstrated measurement ranges of over 300m for elastic scattering and >100m for fluorescence. The UBTL was modified during mid-2004 to enhance its detection and discrimination performance with increased range of operation and sensitivity. The major optical modifications were: 1. increase in telescope collection aperture to 200 mm diameter: 2. addition of 266nm and 977nm laser transmitters: 3. addition of three detection channels for 266nm and 977nm elastic backscatter and fluorescence centered at 330nm. Also the commercial electronics of the original UBTL were replaced with a multi-channel field programmable gate array (FPGA) chip for laser diode modulation and data acquisition that allowed simultaneous and continuous operation of the UBTL sensor on all of its transmitter and receiver wavelengths. A notebook computer was added for data display and storage. Field tests were performed during July 2004 at the Edgewood Chemical and Biological Center in Maryland to establish the enhanced performance of UBTL subsystems. Results of these tests are presented and discussed.

  11. Far Ultraviolet Remote Sensing: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.

    2004-12-01

    The far ultraviolet is commonly taken to be that spectral range from 115 nm to 185 nm. This definition reflects the practical nature and origin of the measurement technique. The short wavelength cut-off is defined by the transmittance cut-off of window materials (about 115 nm). The long wavelength end of the region is defined by the desire to exclude the orders-of-magnitude brighter signal at around 195 nm, which, happily, coincides with the fall-off in CsI photocathode efficiency at around 185 nm. The FUV allows us to probe the atmosphere down to about 130 km (as low as 80 km in H Lyman alpha). In this paper I will discuss what we have learned by using a novel imager, GUVI, on TIMED to study the ionosphere-thermosphere (IT) system, how we see the IT coupled to geospace and the solar input, and what we can learn from a future FUV system. In particular, I want to stress that FUV remote sensing is an important COMPONENT of a complete system for exploring the connections between the Sun, geospace, and the IT system. To that end, I will briefly discuss how those data need to be integrated into a virtual observatory that will enable new investigations into the near-Earth environment.

  12. CUTIE: Cubesat Ultraviolet Transient Imaging Experiment

    NASA Astrophysics Data System (ADS)

    Cenko, Stephen B.; Bellm, Eric Christopher; Gal-Yam, Avishay; Gezari, Suvi; Gorjian, Varoujan; Jewell, April; Kruk, Jeffrey W.; Kulkarni, Shrinivas R.; Mushotzky, Richard; Nikzad, Shouleh; Piro, Anthony; Waxman, Eli; Ofek, Eran Oded

    2017-01-01

    We describe a mission concept for the Cubesat Ultraviolet Transient Imaging Experiment (CUTIE). CUTIE will image an area on the sky of ~ 1700 square degrees every ~ 95 min at near-UV wavelengths (260-320 nm) to a depth of 19.0 mag (AB). These capabilities represent orders of magnitude improvement over past UV imagers, allowing CUTIE to conduct the first true synoptic survey of the transient and variable sky in the UV bandpass. CUTIE will uniquely address key Decadal Survey science questions such as how massive stars end their lives, how super-massive black holes accrete material and influence their surroundings, and how suitable habitable-zone planets around low-mass stars are for hosting life. By partnering with upcoming ground-based time-domain surveys, CUTIE will further leverage its low-Earth orbit to provide a multi-wavelength view of the dynamic universe that can only be achieved from space. The remarkable sensitivity for such a small payload is achieved via the use of large format delta-doped CCDs; space qualifying this technology will serve as a key milestone towards the development of future large missions (Explorers and Surveyors). Finally, our innovative design in a 6U cubesat form factor will enable significant cost savings, accelerating the timeline from conception to on-sky operation (5 years; well matched for graduate student participation).

  13. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  14. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  15. Biological Sensors for Solar Ultraviolet Radiation

    PubMed Central

    Yagura, Teiti; Makita, Kazuo; Yamamoto, Hiromasa; Menck, Carlos F.M.; Schuch, André P.

    2011-01-01

    Solar ultraviolet (UV) radiation is widely known as a genotoxic environmental agent that affects Earth ecosystems and the human population. As a primary consequence of the stratospheric ozone layer depletion observed over the last decades, the increasing UV incidence levels have heightened the concern regarding deleterious consequences affecting both the biosphere and humans, thereby leading to an increase in scientific efforts to understand the role of sunlight in the induction of DNA damage, mutagenesis, and cell death. In fact, the various UV-wavelengths evoke characteristic biological impacts that greatly depend on light absorption of biomolecules, especially DNA, in living organisms, thereby justifying the increasing importance of developing biological sensors for monitoring the harmful impact of solar UV radiation under various environmental conditions. In this review, several types of biosensors proposed for laboratory and field application, that measure the biological effects of the UV component of sunlight, are described. Basically, the applicability of sensors based on DNA, bacteria or even mammalian cells are presented and compared. Data are also presented showing that on using DNA-based sensors, the various types of damage produced differ when this molecule is exposed in either an aqueous buffer or a dry solution. Apart from the data thus generated, the development of novel biosensors could help in evaluating the biological effects of sunlight on the environment. They also emerge as alternative tools for using live animals in the search for protective sunscreen products. PMID:22163847

  16. The diffuse component of erythemal ultraviolet radiation.

    PubMed

    Silva, Abel A

    2015-11-01

    The diffuse (Dif) component of ultraviolet radiation (UVR) plays an important role in the daily exposure of humans to solar radiation. This study proposes a semi-empirical method to obtain the Dif component of the erythemal dose rate, or the erythemally weighted irradiance, (EDRDif) calculated from synchronized measurements of the Dif component of UVR (UVDif) and the global (G) irradiances of both UVR (UVG) and the erythemal dose rate (EDRG). Since the study was conducted in the tropics, results involve a wide range of solar zenith angles to which EDRDif is seasonally dependent. Clouds are the main atmospheric agent affecting Dif radiation. The ratio between Dif and G (Dif/G) showed a quadratic dependence on cloud cover with a coefficient of determination r(2) = 0.79. The maxima of EDRDif were mainly above the moderate range (>137.5 mW m(-2)) of the UV-Index and reached the extreme range (>262.5 mW m(-2)) for the spring-summer period. The fraction of the global daily erythemal dose (daily EDG) corresponding to Dif radiation (daily EDDif) ranged from 936 J m(-2) to 5053 J m(-2) and averaged 2673 J m(-2). Daily EDDif corresponded to at least 48% of daily EDG for a practically cloudless sky. Therefore, Dif radiation is a real threat. Lighter skin people (types I and II) can get sunburnt in a couple of minutes under such an incidence of radiation. Moreover, accumulative harm can affect all skin types.

  17. Ultraviolet and Visible Emission Mechanisms in Astrophysics

    NASA Technical Reports Server (NTRS)

    Stancil, Phillip C.; Schultz, David R.

    2003-01-01

    The project involved the study of ultraviolet (UV) and visible emission mechanisms in astrophysical and atmospheric environments. In many situations, the emission is a direct consequence of a charge transferring collision of an ion with a neutral with capture of an electron to an excited state of the product ion. The process is also important in establishing the ionization and thermal balance of an astrophysical plasma. As little of the necessary collision data are available, the main thrust of the project was the calculation of total and state-selective charge transfer cross sections and rate coefficients for a very large number of collision systems. The data was computed using modern explicit techniques including the molecular-orbital close-coupling (MOCC), classical trajectory Monte Carlo (CTMC), and continuum distorted wave (CDW) methods. Estimates were also made in some instances using the multichannel Landau-Zener (MCLZ) and classical over-the-barrier (COB) models. Much of the data which has been computed has been formatted for inclusion in a charge transfer database on the World Wide Web (cfadc.phy.ornl.gov/astro/ps/data/). A considerable amount of data has been generated during the lifetime of the grant. Some of it has not been analyzed, but it will be as soon as possible, the data placed on our website, and papers ultimately written.

  18. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-03-15

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm (2)(3×MPE) on the inside of the helmets to around 15 mJ/cm (2)(5×MPE) on the headband

  19. Far ultraviolet wide field imaging and photometry - Spartan-202 Mark II Far Ultraviolet Camera

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.; Heckathorn, Harry M.; Opal, Chet B.; Witt, Adolf N.; Henize, Karl G.

    1988-01-01

    The U.S. Naval Research Laboratory' Mark II Far Ultraviolet Camera, which is expected to be a primary scientific instrument aboard the Spartan-202 Space Shuttle mission, is described. This camera is intended to obtain FUV wide-field imagery of stars and extended celestial objects, including diffuse nebulae and nearby galaxies. The observations will support the HST by providing FUV photometry of calibration objects. The Mark II camera is an electrographic Schmidt camera with an aperture of 15 cm, a focal length of 30.5 cm, and sensitivity in the 1230-1600 A wavelength range.

  20. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  1. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  2. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  3. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed.

  4. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  5. Engineering support for an ultraviolet imager for the ISTP mission

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    Design and development activities were carried out for the Ultraviolet Imager (UVI) to be flown on the Polar Spacecraft of the INternational Solar Terrestrial Physics (ISTP) Mission. The following tasks were performed: (1) design and fabrication of prototype/engineering model of the UVI imager; (2) preliminary design review; (3) vacuum ultraviolet filter design; (4) auroral energy deposition code; (5) model of LBH vehicle glow; (6) laboratory measurement program of collision cross-sections; and (7) support of ISTP meetings.

  6. Prediction of skin cancer occurrence by ultraviolet solar index.

    PubMed

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M

    2012-04-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile.

  7. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  8. Extreme Ultraviolet (XUV) Coronal Spectroheliograph - Experiment S082A

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes Skylab's Extreme Ultraviolet (XUV) Coronal Spectroheliograph, one of the eight Apollo Telescope Mount facilities. It was designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths . The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  9. Extreme Ultraviolet (XUV) Coronal Spectroheliograph - Experiment S082A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This photograph shows Skylab's Extreme Ultraviolet (XUV) Spectroheliograph during an acceptance test and checkout procedures in April 1971. The unit was an Apollo Telescope Mount (ATM) instrument designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths. The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  10. Prediction of skin cancer occurrence by ultraviolet solar index

    PubMed Central

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M.

    2012-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile. PMID:22741013

  11. Discuss the testing problems of ultraviolet irradiance meters

    NASA Astrophysics Data System (ADS)

    Ye, Jun'an; Lin, Fangsheng

    2014-09-01

    Ultraviolet irradiance meters are widely used in many areas such as medical treatment, epidemic prevention, energy conservation and environment protection, computers, manufacture, electronics, ageing of material and photo-electric effect, for testing ultraviolet irradiance intensity. So the accuracy of value directly affects the sterile control in hospital, treatment, the prevention level of CDC and the control accuracy of curing and aging in manufacturing industry etc. Because the display of ultraviolet irradiance meters is easy to change, in order to ensure the accuracy, it needs to be recalibrated after being used period of time. By the comparison with the standard ultraviolet irradiance meters, which are traceable to national benchmarks, we can acquire the correction factor to ensure that the instruments working under accurate status and giving the accurate measured data. This leads to an important question: what kind of testing device is more accurate and reliable? This article introduces the testing method and problems of the current testing device for ultraviolet irradiance meters. In order to solve these problems, we have developed a new three-dimensional automatic testing device. We introduce structure and working principle of this system and compare the advantages and disadvantages of two devices. In addition, we analyses the errors in the testing of ultraviolet irradiance meters.

  12. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  13. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical

  14. Four cuspal maxillary second premolar with single root and three root canals: Case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  15. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  16. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  17. Cutting the Roots of Violence.

    ERIC Educational Resources Information Center

    Koziey, Paul W.

    1996-01-01

    Violence is rooted in obedience to authority and in comparisons--foundations of our institutions of parenting and schooling. Obedience brings reward and punishment, comparison perpetuates a cycle of competition and conflict. Television violence is especially harmful because children easily understand visual images. The Reality Research approach to…

  18. Excising the Root from STEM

    ERIC Educational Resources Information Center

    Lock, Roger

    2009-01-01

    There are a number of well-intentioned STEM initiatives, some designed to improve the recruitment and retention of science teachers. Sometimes it appears that the initiators are remote from direct contact with the "grass roots" issues that feed the "stem" on which the blossoms of young enthusiastic recruits to the science teaching profession are…

  19. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  20. Roots: An Asian American Reader.

    ERIC Educational Resources Information Center

    Tachiki, Amy, Ed.; And Others

    A documentary collection of the experiences of Asian Americans from a multitude of perspectives, including a scholarly focus and also containing contemporary expressions, comprises "Roots: An Asian American Reader." The volume is said to be designed to meet the needs of Asian Americans by providing a compilation of materials in readily…

  1. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  2. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  3. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  4. Strigolactones are regulators of root development.

    PubMed

    Koltai, Hinanit

    2011-05-01

    Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

  5. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  6. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  7. ULTRAVIOLET DISCOVERIES AT ASTEROID (21) LUTETIA BY THE ROSETTA ALICE ULTRAVIOLET SPECTROGRAPH

    SciTech Connect

    Stern, S. A.; Parker, J. Wm.; Steffl, A.; Birath, E.; Graps, A.; Feldman, P. D.; Weaver, H. A.; A'Hearn, M. F.; Feaga, L.; Bertaux, J.-L.; Cunningham, N.

    2011-06-15

    The NASA Alice ultraviolet (UV) imaging spectrograph on board the ESA Rosetta comet orbiter successfully conducted a series of flyby observations of the large asteroid (21) Lutetia in the days surrounding Rosetta's closest approach on 2010 July 10. Observations included a search for emission lines from gas, and spectral observations of the Lutetia's surface reflectance. No emissions from gas around Lutetia were observed. Regarding the surface reflectance, we found that Lutetia has a distinctly different albedo and slope than both the asteroid (2867) Steins and Earth's moon, the two most analogous objects studied in the far ultraviolet (FUV). Further, Lutetia's {approx}10% geometric albedo near 1800 A is significantly lower than its 16%-19% albedo near 5500 A. Moreover, the FUV albedo shows a precipitous drop (to {approx}4%) between 1800 A and 1600 A, representing the strongest spectral absorption feature observed in Lutetia's spectrum at any observed wavelength. Our surface reflectance fits are not unique but are consistent with a surface dominated by an EH5 chondrite, combined with multiple other possible surface constituents, including anorthite, water frost, and SO{sub 2} frost or a similar mid-UV absorber. The water frost identification is consistent with some data sets but inconsistent with others. The anorthite (feldspar) identification suggests that Lutetia is a differentiated body.

  8. Image analysis from root system pictures

    NASA Astrophysics Data System (ADS)

    Casaroli, D.; Jong van Lier, Q.; Metselaar, K.

    2009-04-01

    Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. In general the studies from root system are made with either monolith or minirhizotron method which is used as a quantitative tool but requires comparison with conventional destructive methods. This work aimed to analyze roots systems images, obtained from a root atlas book, to different crops in order to find the root length and root length density and correlate them with the literature. Five crops images from Zea mays, Secale cereale, Triticum aestivum, Medicago sativa and Panicum miliaceum were divided in horizontal and vertical layers. Root length distribution was analyzed for horizontal as well as vertical layers. In order to obtain the root length density, a cuboidal volume was supposed to correspond to each part of the image. The results from regression analyses showed root length distributions according to horizontal or vertical layers. It was possible to find the root length distribution for single horizontal layers as a function of vertical layers, and also for single vertical layers as a function of horizontal layers. Regression analysis showed good fits when the root length distributions were grouped in horizontal layers according to the distance from the root center. When root length distributions were grouped according to soil horizons the fits worsened. The resulting root length density estimates were lower than those commonly found in literature, possibly due to (1) the fact that the crop images resulted from single plant situations, while the analyzed field experiments had more than one plant; (2) root overlapping may occur in the field; (3) root experiments, both in the field and image analyses as performed here, are subject to sampling errors; (4) the (hand drawn) images used in this study may have omitted some of the smallest roots.

  9. Benefit and risk of organic ultraviolet filters.

    PubMed

    Nohynek, G J; Schaefer, H

    2001-06-01

    Modern sunscreen products provide broad-spectrum UV protection and may contain one or several UV filters. A modern UV filter should be heat and photostable, water resistant, nontoxic, and easy to formulate. Identification of a substance that meets these criteria is as difficult as discovering a new drug; hundreds of new molecules are synthesized and screened before a lead candidate is identified. The most important aspect in the development of a new UV filter is its safety. In our laboratories, the safety of new ultraviolet filters is assessed by an initial in vitro screen including photostability, cytotoxicity, photocytotoxicity, genotoxicity, and photogenotoxicity tests. These tests are performed in mammalian, yeast, and bacterial cell systems. Skin penetration potential is measured in vitro using human skin or, when required by regulations, in vivo. Because modern sunscreens are selected on the basis of their retention on and in the stratum corneum and are formulated as poorly penetrating emulsions, they generally have very low to negligible penetration rates. The safety and efficacy of UV filters are regulated and approved by national and international health authorities. Safety standards in the European Union, United States, or Japan stipulate that new filters pass a stringent toxicological safety evaluation prior to approval. The safety dossier of a new UV filter resembles that of a new drug and includes acute toxicity, irritation, sensitization, phototoxicity, photosensitization, subchronic and chronic toxicity, reproductive toxicity, genotoxicity, photogenotoxicity, carcinogenicity, and, in the United States, photocarcinogenicity testing. The margin of safety of new UV filters for application to humans is estimated by comparing the potential human systemic exposure with the no-effect level from in vivo toxicity studies. Only substances with a safe toxicological profile and a margin of safety of at least 100-fold are approved for human use. Finally, prior to

  10. Ultraviolet spectral synthesis of Iota Herculis

    NASA Astrophysics Data System (ADS)

    Golriz, S. S.; Landstreet, J. D.

    2017-04-01

    The atmospheric abundances of elements provide essential insights into the formation and evolution history of stars. The visible wavelength window has been used almost exclusively in the past to determine the abundances of chemical elements in B-type stars. However, some elements do not have useful spectral lines in the visible spectrum. A high-resolution spectrum of ι Herculis is available from 999 to 1400 Å. In this project, we investigate the chemicalabundance determination in the ultraviolet (UV). We identify the elements whose abundances can be tested, and search for elements whose abundances can be determined in the UV to add to those in the current literature. We also investigate the completeness of the Vienna Atomic Line Database line-list in this region, and the adequacy of local thermodynamic equilibrium (LTE) modelling in the UV for this star. We have used the LTE spectrum synthesis code ZEEMAN to model the UV spectrum of ι Herculis for elements with 5 ≤ Z ≤ 80. Abundances or upper limits are derived for 24 elements. We find that most of our results are in reasonable agreement with previous results. We estimate a value or an upper limit for the abundance of nine elements in this star that were not detected in the visible spectrum. LTE UV spectral synthesis is found to be a useful tool for abundance determination, even though limitations such as incomplete and uncertain atomic data, uncertain continuum normalization and scattered light, and severe blending can introduce difficulties. The high abundance of two heavy elements may be a sign of radiative levitation.

  11. The Extreme Ultraviolet Variability of Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500-920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0-7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  12. Ultraviolet diversity of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Pan, Yen-Chen; Brown, P.; Filippenko, A. V.; Fox, O. D.; Hillebrandt, W.; Kirshner, R. P.; Marion, G. H.; Milne, P. A.; Parrent, J. T.; Pignata, G.; Stritzinger, M. D.

    2016-09-01

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here, we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 Å. We focus on spectra taken within 5 d of maximum brightness. Our sample of 10 SNe Ia spans, the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 Å (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.

  13. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  14. GaN membrane MSM ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  15. The Diffuse Galactic Far-ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-01

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin2 pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N H I column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm-2 s-1 sr-1 Å-1 non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr-1. We find a similar linear relationship between FUV and N H I below 1021 cm-2. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  16. Ultraviolet Photodissociation Action Spectroscopy of Protonated Azabenzenes

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher S.; Blanksby, Stephen J.; Bieske, Evan; Reimers, Jeffrey R.; Trevitt, Adam J.

    2014-06-01

    Azabenzenes are derivatives of benzene containing between one and six nitrogen atoms. Protonated azabenzenes are the fundamental building blocks of many biomolecules, charge-transfer dyes, ionic liquids and fluorescent tags. However, despite their ubiquity, there exists limited spectroscopic data that reveals the structure, behaviour and stability of these systems in their excited states. For the case of pyridinium (C_5H_5N-H^+), the simplest azabenzene, the electronic spectroscopy is complicated by short excited state lifetimes, efficient non-radiative deactivation methods and limited fluorescence. Ultraviolet (UV) photodissociation (PD) action spectroscopy provides new insight into the spectroscopic details, excited state behaviour and photodissociation processes of a series of protonated azabenzenes including pyridinium, diazeniums and their substituted derivatives. The room-temperature UV PD action spectra, often exhibiting vibronic detail,^b will be presented alongside PD mass spectra and the kinetic data from structurally-diagnostic ion-molecule reaction kinetics. Analysis of the spectra, with the aid of quantum chemical calculations, reveal that many azabenzenes prefer a non-planar excited state geometry reminiscent of the structures encountered in 'channel 3'-like deactivation of aromatics. The normal modes active in this isomerization contribute largely to the spectroscopy of the N-pyridinium ion as they build upon totally-symmetric vibronic transitions leading to repeating sets of closely-spaced spectral features. Hansen, C.S. et al.; J. Am. Soc. Mass Spectrom. 24:932-940 (2013) Hansen, C.S. et al.; J. Phys. Chem. A 117:10839-10846 (2013)

  17. Ultra-Violet Induced Insulator Flashover

    SciTech Connect

    Javedani, J B; Houck, T L; Kelly, B T; Lahowe, D A; Shirk, M D; Goerz, D A

    2008-05-21

    Insulators are critical components in high-energy, pulsed power systems. It is known that the vacuum surface of the insulator will flashover when illuminated by ultraviolet (UV) radiation depending on the insulator material, insulator cone angle, applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx} 2 MW/cm{sup 2}, 30 ns FWHM,), a vacuum chamber (low 1.0E-6 torr), and dc high voltage power supply (<60 kV) was assembled for insulator testing to measure the UV dose during a flashover event. Five in-house developed and calibrated fast D-Dot probes (>12 GHz, bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of flashover with respect to UV arrival. A commercial energy meter were used to measure the UV fluence for each pulse. Four insulator materials High Density Polyethylene, Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex with side-angles of 0, {+-}30, and {+-}45 degrees, 1.0 cm thick samples, were tested with a maximum UV fluence of 75 mJ/cm{sup 2} and at varying electrode charge (10 kV to 60 kV). This information clarified/corrected earlier published studies. A new phenomenon was observed related to the UV power level on flashover that as the UV pulse intensity was increased, the UV fluence on the insulator prior to flashover was also increased. This effect would bias the data towards higher minimum flashover fluence.

  18. The diffuse galactic far-ultraviolet sky

    SciTech Connect

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  19. Ultraviolet photodissociation dynamics of the phenyl radical

    SciTech Connect

    Song Yu; Lucas, Michael; Alcaraz, Maria; Zhang Jingsong; Brazier, Christopher

    2012-01-28

    Ultraviolet (UV) photodissociation dynamics of jet-cooled phenyl radicals (C{sub 6}H{sub 5} and C{sub 6}D{sub 5}) are studied in the photolysis wavelength region of 215-268 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The phenyl radicals are produced from 193-nm photolysis of chlorobenzene and bromobenzene precursors. The H-atom photofragment yield spectra have a broad peak centered around 235 nm and are in good agreement with the UV absorption spectra of phenyl. The H + C{sub 6}H{sub 4} product translational energy distributions, P(E{sub T})'s, peak near {approx}7 kcal/mol, and the fraction of average translational energy in the total excess energy, , is in the range of 0.20-0.35 from 215 to 268 nm. The H-atom product angular distribution is isotropic. The dissociation rates are in the range of 10{sup 7}-10{sup 8} s{sup -1} with internal energy from 30 to 46 kcal/mol above the threshold of the lowest energy channel H +o-C{sub 6}H{sub 4} (ortho-benzyne), comparable with the rates from the Rice-Ramsperger-Kassel-Marcus theory. The results from the fully deuterated phenyl radical are identical. The dissociation mechanism is consistent with production of H +o-C{sub 6}H{sub 4}, as the main channel from unimolecular decomposition of the ground electronic state phenyl radical following internal conversion of the electronically excited state.

  20. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community.

  1. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa.

    PubMed

    Hishi, Takuo; Takeda, Hiroshi

    2005-08-01

    To understand the physiology of fine-root functions in relation to soil organic sources, the heterogeneity of individual root functions within a fine-root system requires investigation. Here the heterogeneous dynamics within fine-root systems are reported. The fine roots of Chamaecyparis obtusa were sampled using a sequential ingrowth core method over 2 yr. After color categorization, roots were classified into protoxylem groups from anatomical observations. The root lengths with diarch and triarch groups fluctuated seasonally, whereas the tetrarch root length increased. The percentage of secondary root mortality to total mortality increased with increasing amounts of protoxylem. The carbon : nitrogen ratio indicated that the decomposability of primary roots might be greater than that of secondary roots. The position of diarch roots was mostly apical, whereas tetrarch roots tended to be distributed in basal positions within the root architecture. We demonstrate the heterogeneous dynamics within a fine-root system of C. obtusa. Fine-root heterogeneity should affect soil C dynamics. This heterogeneity is determined by the branching position within the root architecture.

  2. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    PubMed

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  3. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  4. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.

  5. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  6. The role of strigolactones in root development.

    PubMed

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.

  7. Endoplasmic Reticulum Stress Response in Arabidopsis Roots

    PubMed Central

    Cho, Yueh; Kanehara, Kazue

    2017-01-01

    Roots are the frontier of plant body to perceive underground environmental change. Endoplasmic reticulum (ER) stress response represents circumvention of cellular stress caused by various environmental changes; however, a limited number of studies are available on the ER stress responses in roots. Here, we report the tunicamycin (TM) -induced ER stress response in Arabidopsis roots by monitoring expression patterns of immunoglobulin-binding protein 3 (BiP3), a representative marker for the response. Roots promptly responded to the TM-induced ER stress through the induction of similar sets of ER stress-responsive genes. However, not all cells responded uniformly to the TM-induced ER stress in roots, as BiP3 was highly expressed in root tips, an outer layer in elongation zone, and an inner layer in mature zone of roots. We suggest that ER stress response in roots has tissue specificity. PMID:28298914

  8. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  9. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  10. Ultraviolet analysis of Eta Carinae using observations from the InternationalUltraviolet Explorer

    NASA Astrophysics Data System (ADS)

    Durofchalk, Nicholas C.; Gimar, Caleb J.; Gull, Theodore R.

    2015-01-01

    Presented here is an examination of data on the Eta Carinae binary star system obtained by the International Ultraviolet Explorer (IUE) satellite that was in operation from 1978 to 1996. The data were searched for (1) evidence of an ultraviolet flux increase over the time period of IUE's operation and (2) additional evidence for the 5.54-year cycle observed by A. Daminelli et al. This investigation focused on the emission lines of [N III] at 1750Å, Fe II at 1786Å, Si III at 1893Å, Fe III at 1914Å, and Fe II at 2507/2509Å. Through the examination of emission line profiles from IUE ultraviolet spectra, quantitative values for integrated and continuum flux were measured in roughly eighty observations. The fluxes for individual emission line profiles were compared over time and at different phases of the superimposed 5.54 year cycle. In addition, values for emission flux were plotted against time so as to visualize the system's behavior over a multi-cycle time interval. Observations recorded during the brief low-state, periastron event, while few in number, were consistent with the 5.54 period. Fluxes of the [N III], Si III, and Fe III emission features noted previously had increased across the 18-year interval. However, the Fe II emission lines did not show significant long-term flux increases. Examination of the Grotian diagram for Fe+ demonstrated that hydrogen Lyman alpha can excite the outer electron from the ground state to upper levels, leading to population inversion and over-intensity of the Fe II emissions (Johansson & Letokhov, 2003). Likely, the different 'long-term' behaviors of the [N III], Si III, and Fe III emission lines and the Fe II emission lines arose from the very different physical phenomena that lead to each particular emission lines' existence. The consistency of the Fe II emission fluxes indicated that Eta Carinae's secondary stellar Lyman continuum flux was constant, leading to the conclusion that there was little change, if any, in the

  11. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor.

  12. Doubling bialgebras of rooted trees

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Belhaj; Manchon, Dominique

    2017-01-01

    The vector space spanned by rooted forests admits two graded bialgebra structures. The first is defined by Connes and Kreimer using admissible cuts, and the second is defined by Calaque, Ebrahimi-Fard and the second author using contraction of trees. In this article, we define the doubling of these two spaces. We construct two bialgebra structures on these spaces which are in interaction, as well as two related associative products obtained by dualization. We also show that these two bialgebras verify a commutative diagram similar to the diagram verified Calaque, Ebrahimi-Fard and the second author in the case of rooted trees Hopf algebra, and by the second author in the case of cycle-free oriented graphs.

  13. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  14. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  15. Sonic instruments in root canal therapy.

    PubMed

    Waplington, M; Lumley, P J; Walmsley, A D

    1995-10-01

    Although hand instrumentation is considered the most acceptable method of preparing root canals, sonic instruments may be useful additions to the endodontic armamentarium. Sonic instrumentation may be incorporated as an adjunct to traditional techniques for shaping the root canal. The use of such instruments may assist the practitioner during root canal treatment in general practice.

  16. The removal of root surface deposits.

    PubMed

    Eaton, K A; Kieser, J B; Davies, R M

    1985-02-01

    The importance of adequate root surface instrumentation has received increasing emphasis. The purpose of this study was to determine the extent to which root planning could produce surfaces free of stainable deposits. Initial laboratory investigations on extracted, periodontally involved roots demonstrated that after meticulous root preparation, totally non-stainable surfaces could be obtained. These surfaces were shown to consist of either thin cementum or dentine. The efficacy of instrumenting periodontally involved buccal root surfaces on the anterior teeth of 33 patients, undergoing routine periodontal flap surgery was then evaluated. Root surfaces were instrumented either before or after the reflection of surgical flaps. Remaining bacterial deposits were disclosed with a gentian violet solution and the root surfaces then photographed. Further root planing, disclosure and photography were then carried out. These photographic slides were analysed for stainable deposits on the root surfaces using an image analysis system, based on densitometric principles, to measure the areas of stainable root surface deposits. The findings revealed that root planning under direct vision at the time of surgery was more effective than blind instrumentation. However, in no instance was any root surface found to be completely free of stainable deposits.

  17. Phenotyping jasmonate regulation of root growth.

    PubMed

    Kellermeier, Fabian; Amtmann, Anna

    2013-01-01

    Root architecture is a complex and highly plastic feature of higher plants. Direct treatments with jasmonates and alterations in jasmonate signaling have been shown to elicit a range of root phenotypes. Here, we describe a fast, noninvasive, and semiautomatic method to monitor root architectural responses to environmental stimuli using plant tissue culture and the software tool EZ-RHIZO.

  18. Root functioning modifies seasonal climate.

    PubMed

    Lee, Jung-Eun; Oliveira, Rafael S; Dawson, Todd E; Fung, Inez

    2005-12-06

    Hydraulic redistribution (HR), the nocturnal vertical transfer of soil water from moister to drier regions in the soil profile by roots, has now been observed in Amazonian trees. We have incorporated HR into an atmospheric general circulation model (the National Center for Atmospheric Research Community Atmospheric Model Version 2) to estimate its impact on climate over the Amazon and other parts of the globe where plants displaying HR occur. Model results show that photosynthesis and evapotranspiration increase significantly in the Amazon during the dry season when plants are allowed to redistribute soil water. Plants draw water up and deposit it into the surface layers, and this water subsidy sustains transpiration at rates that deep roots alone cannot accomplish. The water used for dry season transpiration is from the deep storage layers in the soil, recharged during the previous wet season. We estimate that HR increases dry season (July to November) transpiration by approximately 40% over the Amazon. Our model also indicates that such an increase in transpiration over the Amazon and other drought-stressed regions affects the seasonal cycles of temperature through changes in latent heat, thereby establishing a direct link between plant root functioning and climate.

  19. Ultraviolet radiation and the anterior eye.

    PubMed

    Coroneo, Minas

    2011-07-01

    The eye is on the one hand dependent on visible light energy and on the other hand can be damaged by these and the contiguous ultraviolet (UV) and infrared wavelengths. Diseases of the eye in which sunlight has been implicated have been termed the ophthalmohelioses, and these conditions pose a significant problem to the eye health of many communities. The ophthalmohelioses have a tremendous impact on patients' quality of life and have significant implications on the cost of health care. Although cataract is not entirely caused by insolation, it now seems certain that sunlight plays a contributory role-cataract extraction is one of the, if not the most, commonly performed surgical procedures in many societies. Pterygium, typically afflicting a younger population, adds a tremendous burden, both human and financial, in many countries. We review evidence that peripheral light focusing by the anterior eye to the sites of usual locations of pterygium and cataract plays a role in the pathogenesis of these conditions. Recognition of the light pathways involved with foci at stem cell niches has directed our investigations into inflammatory and matrix metalloproteinase-related pathophysiologic mechanisms. An understanding of the intracellular mechanisms involved has provided some insight into how medical treatments have been developed for the effective management of ocular surface squamous neoplasia. The concept of peripheral light focusing has also provided direction in the prevention of these diseases. This has resulted in improved sunglass design and the further development of UV-blocking contact lenses. With the development of ocular UV fluorescence photographic techniques, we have been able to demonstrate preclinical ocular surface evidence of solar damage. Evidence that diet may play a role in the development of certain conditions is reviewed. The conundrum of the public health message about solar exposure is also reviewed, and in this context, the potential role of

  20. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  1. Root-cubing and general root-powering methods for finding the zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Mathematical analysis technique generalizes a root squaring and root cubing method into a general root powering method. The introduction of partitioned polynomials into this general root powering method simplifies the coding of the polynomial transformations into input data suitable for processing by computer. The method includes analytic functions.

  2. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  3. Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation.

    PubMed

    Ren, Mengmeng; Wang, Xu; Dong, Changshuai; Li, Baoyin; Liu, Yang; Chen, Teng; Wu, Peng; Cheng, Zheng; Liu, Xiangyang

    2015-10-07

    The effect of ultraviolet irradiation on fluorinated graphene (FG) dispersed in toluene was investigated for the first time. The chemical and physical characteristics of FG before and after ultraviolet irradiation were analyzed by UV-vis, FTIR, XPS,EDS, oxygen flask combustion (OFC), XRD, TGA, Raman, SEM, TEM and fluorescence spectroscopy. It is found that the F/C ratio initially decreases rapidly and then slowly with irradiation time, finally to 0.179 after irradiation for 48 h. The nature of partial C-F bonds transforms from covalent to "semi-covalent" bonding in the process of irradiation. The restoration of new sp(2) clusters is fast at the early stage within 6 h of irradiation, promoting the structural rearrangement. The morphology of irradiated fluorinated graphene (iFG) is not significantly destroyed by ultraviolet while more overlapped sheets are formed due to quick defluorination. Photoluminescence (PL) properties show that "blue emission" located at 432 nm is enhanced due to the recovery of sp(2) domains. In particular, compared to non-aromatic solvents, there is a "synergistic effect" between aromatic solvents and ultraviolet in the defluorination process. FG is unstable and shows some structural transformations under ultraviolet irradiation, which can be used to tune its structure and properties.

  4. Interpretation of the vacuum ultraviolet photoabsorption spectrum of iodobenzene by ab initio computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto; Limão-Vieira, Paulo

    2015-04-07

    Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE1 and IE4, X(2)B1 and C(2)B1), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm(-1) (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE2 (A(2)A2) were found, but those based on IE3 (B(2)B2) are undetectable. The almost complete absence of observable Rydberg states relating to IE2 and IE3 (A(2)A2 and B(2)B2, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE1. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 1(1)B1 and 1(1)B2 states with very low oscillator strength, while the 2(1)B1 state was found to lie under the lowest ππ(∗) 1(1)A1 state. All three of these (1)B1 and (1)B2 states are excitations into low-lying σ(∗) orbitals. The strongest VUV band near 7 eV contains two very strong ππ(∗) valence states, together with other weak contributors. The lowest Rydberg 4b16s state (3(1)B1) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.

  5. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  6. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    PubMed

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  7. Energy deposition in ultrathin extreme ultraviolet resist films: extreme ultraviolet photons and keV electrons

    NASA Astrophysics Data System (ADS)

    Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.

    2016-07-01

    The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.

  8. First ultraviolet spectropolarimetry of Be stars from the Wisconsin Ultraviolet Photo-Polarimeter Experiment

    NASA Technical Reports Server (NTRS)

    Bjorkman, K. S.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Nook, M. A.; Schulte-Ladbeck, R. E.

    1991-01-01

    The first UV spectropolarimetric observations of Be stars are presented. They were obtained with the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) aboard the Astro-1 mission. WUPPE data on the Be stars Zeta Tau and Pi Aqr, along with near-simultaneous optical data obtained at the Pine Bluff Observatory (PBO). Combined WUPPE and PBO data give polarization as a function of wavelength across a very broad spectral region, from 1400 to 7600 A. Existing Be star models predicted increasing polarization toward shorter wavelengths in the UV, but this is not supported by the WUPPE observations. Instead, the observations show a constant or slightly declining continuum polarization shortward of the Balmer jump, and broad UV polarization dips around 1700 and 1900 A, which may be a result of Fe-line-attenuation effects on the polarized flux. Supporting evidence for this conclusion comes from the optical data, in which decreases in polarization across Fe II lines in Zeta Tau were discovered.

  9. Far-ultraviolet observations of the supernova remnant N49 using the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Vancura, Olaf; Blair, William P.; Long, Knox S.; Davidsen, Arthur F.; Bowers, Charles W.; Dixon, W. V. D.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.

    1992-01-01

    The Hopkins Ultraviolet Telescope has been used to obtain the first sub-Lyman-alpha spectrum of an extragalactic SNR, N49, in the LMC. Emission from O VI 1032, 1038 has been detected in this spectral region. The measured fluxes of C IV, semiforbidden O IV, and O VI and the upper limit on N V provide stringent limits on the shocks responsible for the bulk of the O VI production. O VI cannot originate in the shocks with velocities of 140 km/s or less because the postshock temperature is not high enough. The nonradiative main blast wave cannot account for the brightness of the observed O VI emission. The majority of the O VI must originate in an optically faint system of shocks with velocities of 190-270 km/s and preshock densities of 20-40 cu cm. The emission from such high-velocity shocks is dominated by O VI.

  10. Root canal treatment of a maxillary second premolar with two palatal roots: A case report

    PubMed Central

    George, Gingu Koshy; Varghese, Anju Mary; Devadathan, Aravindan

    2014-01-01

    Anatomical variations in root canal morphology are an enigma and it is this variability, which is often a complicating factor in a successful root canal treatment. To achieve success in endodontic therapy it is imperative that all the canals are located, cleaned and shaped and obturated three dimensionally. Maxillary first premolar having three separate roots has an incidence of 0.5-6%. Even rarer are reported clinical case reports of maxillary second premolar with three separate roots and three canals. This case report describes the endodontic management of maxillary second premolar with two palatal roots and one buccal root having three root canals PMID:24944457

  11. Extreme ultraviolet (EUV) and FUV calibration facility for special sensor ultraviolet limb imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Boyer, Craig N.; Osterman, Steven N.; Thonnard, Stefan E.; McCoy, Robert P.; Williams, J. Z.; Parker, S. E.

    1994-09-01

    A facility for calibrating far ultraviolet and extreme ultraviolet instruments has recently been completed at the Naval Research Laboratory. Our vacuum calibration vessel is 2-m in length, 1.67-m in diameter, and can accommodate optical test benches up to 1.2-m wide by 1.5-m in length. A kinematically positioned frame with four axis precision pointing capability of 10 microns for linear translation and .01 degrees for rotation is presently used during vacuum optical calibration of SSULI. The chamber was fabricated from 304 stainless steel and polished internally to reduce surface outgassing. A dust-free environment is maintained at the rear of the vacuum chamber by enclosing the 2-m hinged vacuum access door in an 8 ft. by 8 ft. class 100 clean room. Every effort was made to obtain an oil-free environment within the vacuum vessel. Outgassing products are continually monitored with a 1 - 200 amu residual gas analyzer. An oil-free claw and vane pump evacuates the chamber to 10-2 torr through 4 in. diameter stainless steel roughing lines. High vacuum is achieved and maintained with a magnetically levitated 480 l/s turbo pump and a 3000 l/s He4 cryopump. Either of two vacuum monochrometers, a 1-m f/10.4 or a 0.2-m f/4.5 are coaxially aligned with the optical axis of the chamber and are used to select single UV atomic resonance lines from a windowless capillary or penning discharge UV light source. A calibrated channeltron detector is coaxially mounted with the SSULI detector during calibration. All vacuum valves, the cooling system for the cryopump compressor, and the roughing pump are controlled through optical fibers which are interfaced to a computer through a VME board. Optical fibers were chosen to ensure that complete electrical isolation is maintained between the computer and the vacuum system valves-solenoids and relays.

  12. The Ultraviolet Sky as Observed by the Shuttle-Borne Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Waller, W. H.; Marsh, M.; Bohlin, R. C.; Cornett, R. H.; Dixon, W. V.; Isensee, J. E.; Murthy, J.; O'Connell, R. W.; Roberts, M. S.; Smith, A. M.; Stecher, T. P.

    1995-09-01

    Analysis of 489 wide-field images obtained by the Shuttle-borne Ultraviolet Imaging Telescope (UIT) has yielded positive detections of FUV and NUV backgrounds in both the orbital daytime and nighttime skies. The daytime backgrounds can be attributed to atmospheric dayglow line emission (in the FUV) and solar stray-light contamination (in the NUV). A few of the nighttime backgrounds (in both bands) appear to be affected by stray light from UV-bright stars just beyond the imaged fields of view. In both bands, the highest nighttime background levels are found in nebular fields at low galactic latitude. The diffuse backgrounds in these fields are probably associated with the adjoining nebulosity. Away from the galactic plane, the nighttime FUV backgrounds are confused by O I nightglow emission and possible photometric errors. The more tightly constrained NUV intensities correlate with those predicted from corresponding optical measurements of the Zodiacal light, yielding a NUV/Vis "color" of 0.5 +/- 0.2 for the Zodiacal light. After subtraction of the predicted Zodiacal component, the residual NUV intensities correlate with FIR measurements of the corresponding fields. Extrapolation to negligible FIR intensities yields an extragalactic NUV component of 300 photon units or less. This upper limit supports the low intensities that have been proposed in the debate over the strength and structure of the UV background (cf. Henry, ARA&A, 29,89, 1991; Bowyer, ARA&A, 29,59 1991). Such low values reinforce the characterization of the ultraviolet sky as the "window" of choice in the search for nearby low- surface-brightness galaxies and faint primeval galaxies much farther away.

  13. Light as stress factor to plant roots - case of root halotropism.

    PubMed

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  14. Conserved and diverse mechanisms in root development.

    PubMed

    Hochholdinger, Frank; Zimmermann, Roman

    2008-02-01

    The molecular basis of root formation and growth is being analyzed in more and more detail in the dicot model organism Arabidopsis. However, considerable progress has also been made in the molecular and genetic dissection of root system development in the monocot species rice and maize. This review will highlight some recent molecular data that allow for the comparison of cereal and Arabidopsis root development. Members of the COBRA, GRAS, and LOB domain gene families and a gene encoding a subunit of the exocyst complex are associated with root development. Analyses of these genes revealed some common and distinct molecular principles and functions in cereal versus Arabidopsis root formation.

  15. Chemical stress by different agents affects the melatonin content of barley roots.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2009-04-01

    The presence of melatonin (N-acetyl-5-methoxytryptamine) in plants has been clearly demonstrated. However, while this indoleamine has been intensively studied in animals, especially in mammals, the same is not true in the case of plants, where one of the most interesting aspects is its possible role as antioxidative molecule in physiological processes. Some data reflect the possible protective role that melatonin may exert in some stress situations such as ultraviolet (UV)-radiation, induced senescence and copper stress. The present work was designed to establish how the melatonin content changes in plants as a result of chemically induced stress. For this, barley plants were exposed in different treatments to the chemical-stress agents: sodium chloride, zinc sulphate or hydrogen peroxide. After different times, the content of melatonin in treated roots and control roots were determined using liquid chromatography (LC) with time-of-flight/mass spectrometry and LC with fluorescence detection for identification and quantification, respectively. The data show that the melatonin content in roots increased due to stress, reaching up to six times the melatonin content of control roots. Induction was time dependent, while hydrogen peroxide (10 mm) and zinc sulphate (1 mm) were the most effective inducers. The capacity of roots to absorb melatonin from soil was also studied. The data establish, for first time, that the chemical-stress agents assayed can induce the biosynthesis of melatonin in barley roots and produce a significant increase in their melatonin content. Such an increase in melatonin probably plays an important antioxidative role in the defense against chemically induced stress and other abiotic/biotic stresses.

  16. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  17. An ultraviolet polarimeter for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Calvert, J.; Griner, D.; Montenegro, J.; Nola, F.; Rutledge, F.; Tandberg-Hanssen, E.; Wyman, C. L.; Beckers, J. M.

    1979-01-01

    The Solar Maximum Mission experiment contingency will include one instrument originally designed and built for OSO-8. The engineering model of the OSO-8 High Resolution Spectrometer has been rebuilt to make it lightworthy and to encompass several new functions, including solar ultraviolet polarimetry. The rebuilt package is designated as the High Resolution Ultraviolet Spectrometer/Polarimeter. The device that enables polarimetry is a dual channel rotating waveplate system. The waveplates are magnesium fluoride and will allow measurements to be made ranging from the Lyman alpha line to near visible ultraviolet. One wavelength channel will use the polarization characteristics of the spectrometer diffraction grating as the analyzer. The second channel has a built-in four-mirror polarizer. This paper describes the polarimeter design, operation, and calibration.

  18. Familial melanoma associated with dominant ultraviolet radiation sensitivity

    SciTech Connect

    Ramsay, R.G.; Chen, P.; Imray, F.P.; Kidson, C.; Lavin, M.F.; Hockey, A.

    1982-07-01

    Sensitivity to ultraviolet radiation was studied in lymphoblastoid cell lines derived from 32 members of two families with histories of multiple primary melanomas in several generations. As assayed by colony formation in agar or by trypan blue exclusion following irradiation, cellular sensitivity showed a bimodal distribution. All persons with melanoma or multiple moles were in the sensitive group, while some family members exhibited responses similar to those of controls. Cells from four cases of sporadic melanoma showed normal levels of sensitivity. The data are consistent with a dominantly inherited ultraviolet light sensitivity associated with these examples of familial melanoma. Spontaneous and ultraviolet light-induced sister chromatid exchange frequencies were similar to those in control cell lines. No defect in excision repair was detected in any of the above cell lines, but the sensitive group showed postirradiation inhibition of DNA replication intermediate between controls and an excision-deficient xeroderma pigmentosum cell line.

  19. SOLAR ultraviolet radiation and vitamin D: a historical perspective.

    PubMed

    Rajakumar, Kumaravel; Greenspan, Susan L; Thomas, Stephen B; Holick, Michael F

    2007-10-01

    Rickets, the state of vitamin D deficiency, has reemerged as a potential problem in the United States. At the dawn of the 20th century, rickets was pervasive among infants residing in the polluted cities of Europe and the northeastern United States. Important milestones in the history of rickets were the understanding that photosynthesized vitamin D and dietary vitamin D were similar, the discernment of the antirachitic potency of artificial and natural ultraviolet rays, and the discovery that ultraviolet irradiation could render various foods antirachitic. Clinical guidelines were instituted to promote sensible exposure to sunlight and artificial ultraviolet radiation. In addition, irradiated ergosterol from yeast became the major vitamin D source for food fortification and the treatment of rickets, leading to a public health campaign to eradicate rickets by the 1930s. We review the sequence and turn of events pertaining to the discovery of vitamin D and the strategies for the eradication of the reemerging rickets problem.

  20. Coordinated ultraviolet and radio observations of selected nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1987-01-01

    All of the US2 shifts assigned were successfully completed with simultaneous International Ultraviolet Explorer (IUE) and the Very Large Array (VLA) observations of the proposed target stars. The target stars included dwarf M flare stars and RS CVn stars. The combined ultraviolet (IUE) and microwave (VLA) observations have provided important new insights to the radiation mechanisms at these two widely-separated regions of the electromagnetic spectrum. The VLA results included the discovery of narrow-band microwave radiation and rapid time variations in the microwave radiation of dwarf M flare stars. The results indicate that conventional radiation mechanisms cannot explain the microwave emission from these stars. In general, ultraviolet variations and bursts occur when no similar variations are detected at microwave wavelengths and vice versa. Although these is some overlap, the variations in these two spectral regions are usually uncorrelated, suggesting that there is little interaction between the activity centers at the two associated atmospheric levels.

  1. The ultraviolet spectra of M31 globular clusters

    NASA Technical Reports Server (NTRS)

    Cowley, A. P.; Burstein, D.

    1988-01-01

    Ultraviolet spectra of 11 of the brightest globular clusters in M31 show that some exhibit residual flux below 3000 A, greater than that expected from the bright, evolved stars in the cluster. There seems to be no apparent correlation of the strength of this ultraviolet flux with parameters such as metallicity, U-B color, visual magnitude, X-ray emission, or location within the parent galaxy. However, comparison of the ultraviolet colors of the M31 globular clusters with those in the Galaxy and in the Large Magellanic Cloud suggests that the M31 clusters may contain a high percentage of blue horizontal-branch stars or that some clusters could be as young as about 2 x 10 to the 9th yr.

  2. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  3. Optimal root arrangement of cereal crops

    NASA Astrophysics Data System (ADS)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  4. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.

    PubMed

    Black, Marykate Z; Patterson, Kevin J; Minchin, Peter E H; Gould, Kevin S; Clearwater, Michael J

    2011-05-01

    Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xylem pressure potential (Ψ) were used to calculate K(plant) and K(root) in vines with zero and ∼80% of roots severed. Whole vine transpiration (E), Ψ and K(plant) were significantly reduced within 24 h of root pruning, and did not recover within 6 weeks. Sap flux in intact roots increased within 24 h of root pruning, driven by an increase in the pressure gradient between the soil and canopy and without any change in root hydraulic conductance. Photosynthesis (A) and stomatal conductance (g(s)) were reduced, without significant effects on leaf internal CO(2) concentration (c(i)). Shoot growth rates were maintained; fruit growth and dry matter content were increased following pruning. The woody roots of kiwifruit did not demonstrate a rapid dynamic response to root system damage as has been observed previously in monocot seedlings. Increased sap flux in intact roots with no change in K(root) and only a moderate decline in shoot A suggests that under normal growing conditions root hydraulic conductance greatly exceeds requirements for adequate shoot hydration.

  5. Patterns of variability in the diameter of lateral roots in the banana root system.

    PubMed

    Lecompte, François; Pagès, Loïc; Ozier-Lafontaine, Harry

    2005-09-01

    The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.

  6. Measurement and analysis of near ultraviolet solar radiation

    NASA Astrophysics Data System (ADS)

    Mehos, M. S.; Pacheco, K. A.; Link, H. F.

    1991-12-01

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global horizontal ultraviolet (280 to 385 nm) and full spectrum (280 to 4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global horizontal ultraviolet to full spectrum radiation of 4 to 6 pct. that is weakly dependent on air mass. Conversely, data for direct normal ultraviolet radiation indicate a much larger dependence on air mass, with a ratio of approx. 5 pct. at low air mass to 1 pct. at higher masses. Results show excellent agreement between the measured data and clear sky predictions for both the ultraviolet and the full spectrum global horizontal radiation. For the direct normal components, however, the tendency is for the clear sky model to underpredict the measured data. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global horizontal component of the radiation exceeds the direct normal component throughout the year.

  7. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    NASA Technical Reports Server (NTRS)

    Morgan, T. H.; Spear, G. G.; Kondo, Y.; Henize, K. G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600-3600 A is reported for the bright early-type stars beta, eta, gamma, delta, iota, epsilon, sigma, zeta, and kappa Ori. The results are in good agreement with other observations, and, with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori.

  8. Mars ultraviolet reflectance compared with imaging, topography and geology

    NASA Astrophysics Data System (ADS)

    Simmons, K. E.; Mankoff, K. D.; Hendrix, A. R.; Barth, C. A.

    2003-04-01

    We compare ultraviolet reflectance spectra from the Mariner Mars 1971 (MM71) Ultraviolet Spectrometer (UVS) with imaging data from the Viking Mars Digital Image Model (MDIM), with surface topography from the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA), and with geology from the USGS Survey Atlas of Mars digital maps. We use a new web-accessible database of MM71 UVS Reflectances and two software tools: 1) a surface and atmosphere database visualization tool called Albatross and 2) a web-based Mars data comparison tool called MDC. See http://lasp.colorado.edu/software_tools/. We present several examples, including the northern polar region and Lyot Crater.

  9. Far-ultraviolet imagery of the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    Two electrographic cameras carried on a sounding rocket have yielded useful-resolution far-ultraviolet (1000-2000 A) imagery of the Orion Nebula. The brightness distribution in the images is consistent with a primary source which is due to scattering of starlight by dust grains, although an emission-line contribution, particularly in the fainter outer regions, is not ruled out. The results are consistent with an albedo of the dust grains that is high in the far-ultraviolet and which increases toward shorter wavelengths below 1230 A.

  10. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  11. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  12. The Surface Compositon of Enceladus: Clues from the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2009-01-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's UltraViolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH3 and a small amount of a tholin in addition to H?O ice on the surface.

  13. Science With The Extreme Ultraviolet Spectrometer For Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Young, P. R.; EUS Science Working Group

    2007-01-01

    The CCLRC Rutherford Appleton Laboratory (UK) is leading a consortium that proposes to build an ultraviolet spectrometer for Solar Orbiter provisionally called the Extreme Ultraviolet Spectrometer (EUS). The selection of wavelength bands for EUS has been re-assessed by the EUS Science Working Group in recent months and the final decision calls for three wavelength bands covering 700-800 Å, 970-1040 Å, and 1163-1265 Å. The key features of these bands are summarised here, and particular science topics that can be addressed by EUS are discussed.

  14. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  15. Observations of the sun, an ultraviolet variable star

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1972-01-01

    The uncertainty as to whether or not the sun is a variable star in that region of the ultraviolet which is absorbed in the mesosphere and stratosphere led to an experiment with acronym MUSE, Monitor of Ultraviolet Solar Energy. The experiment was first flown on an Aerobee rocket in August 1966 and subsequently on Nimbus 3 and 4 in April 1969 and April 1970 respectively. The basic philosophy behind the design of the experiment was to provide an instrument which would not require a solar pointing mechanism and at the same time would be capable of high radiometric accuracy for long periods in space.

  16. Boron and silicon - Filters for the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Labov, S.; Bowyer, S.; Steele, G.

    1985-01-01

    Thin films of boron and silicon have been developed using electron beam deposition. The transmissions of these filters were measured from soft X-ray wavelengths to the far ultraviolet and at optical wavelengths. The boron filter transmission peaks near 66 A and the silicon filter peaks near 136 A as expected on theoretical grounds, but the extreme ultraviolet bandpass is narrower than expected. The peak transmission of these filters does not change with time, but the width of the silicon filter bandpass is reduced slightly as the filter ages.

  17. Low resolution ultraviolet and optical spectrophotometry of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Slovak, M. H.

    1982-01-01

    Low resolution International Ultraviolet Explorer spectra combined with optical spectrophotometry provide absolute flux distributions for seven symbiotic variables from 1200 to 6450 A. For five stars (EG And, BF Cyg, CI Cyg, AG Peg, and Z And) the data are representative of the quiescent/out-of-eclipse energy distributions; for CH Cyg and AX Per, the observations were obtained following their atest outburst in 1977 and 1978, respectively. The de-reddened distributions reveal a remarkable diversity of both line spectra and continua. While the optical and near infrared regions lambda = 5500 A) are well represented by single component stellar models, multicomponent flux distributions are required to reproduce the ultraviolet continua.

  18. Results from the transition region camera. [for solar ultraviolet photography

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Bonnet, R. M.

    1984-01-01

    Three series of high resolution ultra-violet pictures of the sun have been obtained during the three flights of rocket experiment T.R.C. Transition Region Camera) which took place on 3 July 1979, 23 September 1980 and 13 July 1982. These pictures reveal many structures in Ly alpha and ultraviolet continua at 160 nm and 220 nm. The scientific objectives, instrumentation, flight conditions and campaigns of simultaneous observations are described. The contribution of T.R.C. to solar physics is discussed in the framework of chromospheric multicomponent models, magnetic flux tubes, local heating and periodic structures in the chromosphere.

  19. Home ultraviolet phototherapy of early mycosis fungoides: preliminary observations.

    PubMed

    Milstein, H J; Vonderheid, E C; Van Scott, E J; Johnson, W C

    1982-03-01

    Thirty-one patients with early mycosis fungoides (MF) and three patients with parapsoriasis en plaques were treated with ultraviolet phototherapy (280 to 350 nm) at home using a commercially available light source containing four Westinghouse FS40 lamps. A complete clinical and histologic remission of disease, lasting for a median duration in excess of 18 months, was achieved in nineteen patients (61%) with MF. Although higher complete response rates generally are achieved with other therapeutic modalities, ultraviolet phototherapy with its minimal adverse effects may be indicated for selected patients. Controlled studies are encouraged to evaluate the full potential of conventional phototherapy in the management of MF.

  20. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.