Sample records for root uv-b sensitive2

  1. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  2. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth

    NASA Astrophysics Data System (ADS)

    Brand, David; Wijewardana, Chathurika; Gao, Wei; Reddy, K. Raja

    2016-12-01

    Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol-1 (+(CO2)], temperature [28/20 and 20/12°C (-T)], and UV-B radiation [0 and 10 kJ·m-2·d-1 (+ UV-B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol-1 [CO2], 28/21°C temperature, and 0 kJ UV-B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with + UV-B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV-B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV-B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

  3. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  4. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  5. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  6. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    PubMed

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation, such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such as growth, DNA damage, oxidative damage and induction of changes in secondary chemicals. Thus, use of a single BSWF for plant or ecosystem response is not appropriate. This brief review emphasizes progress since the previous report toward the understanding of solar ultraviolet radiation effects on terrestrial systems as it relates to ozone column reduction and the interaction of climate change factors.

  7. Efficient Rutin and Quercetin Biosynthesis through Flavonoids-Related Gene Expression in Fagopyrum tataricum Gaertn. Hairy Root Cultures with UV-B Irradiation

    PubMed Central

    Huang, Xuan; Yao, Jingwen; Zhao, Yangyang; Xie, Dengfeng; Jiang, Xue; Xu, Ziqin

    2016-01-01

    Transformed hairy roots had been efficiently induced from the seedlings of Fagopyrum tataricum Gaertn. due to the infection of Agrobacterium rhizogenes. Hairy roots were able to display active elongation with high root branching in 1/2 MS medium without growth regulators. The stable introduction of rolB and aux1 genes of A. rhizogenes WT strain 15834 into F. tataricum plants was confirmed by PCR analysis. Besides, the absence of virD gene confirmed hairy root was bacteria-free. After six different media and different sources of concentration were tested, the culturing of TB7 hairy root line in 1/2 MS liquid medium supplemented with 30 g l-1 sucrose for 20 days resulted in a maximal biomass accumulation (13.5 g l-1 fresh weight, 1.78 g l-1 dry weight) and rutin content (0.85 mg g-1). The suspension culture of hairy roots led to a 45-fold biomass increase and a 4.11-fold rutin content increase in comparison with the suspension culture of non-transformed roots. The transformation frequency was enhanced through preculturing for 2 days followed by infection for 20 min. The UV-B stress treatment of hairy roots resulted in a striking increase of rutin and quercetin production. Furthermore, the hairy root lines of TB3, TB7, and TB28 were chosen to study the specific effects of UV-B on flavonoid accumulation and flavonoid biosynthetic gene expression by qRT-PCR. This study has demonstrated that the UV-B radiation was an effective elicitor that dramatically changed in the transcript abundance of ftpAL, FtCHI, FtCHS, FtF3H, and FtFLS-1 in F. tataricum hairy roots. PMID:26870075

  8. Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation.

    PubMed

    Yang, Liyan; Han, Rong; Sun, Yi

    2012-08-01

    We explored the use of He-Ne laser on alleviating the effects of ultraviolet-B (UV-B) light on winter wheat development. Triticum aestivum L. cv. Linyuan 077038 seeds were irradiated with either UV-B (10.08 kJ m(-2) d(-1)) (enhanced UV-B) or a combination of UV-B light and the He-Ne laser (5.43 mW mm(-2)). Plants also were exposed to the He-Ne laser alone. Our results showed that enhanced UV-B produced negative effects on seed germination and seedling development. Germination rate and shoot growth decreased compared with the control. Root development was inhibited, and root length was decreased. Chlorophyll content and expression of peroxidase (POD) isozymes and their activity decreased. Seedling height and shoot biomass dropped significantly compared to the control. Implementing the He-Ne laser partially alleviated the injury of enhanced UV-B radiation, because germination rate and shoot growth were enhanced together with root development. Chlorophyll content and POD expression and activity increased. Seedling height and shoot biomass were increased. Furthermore, the use of the He-Ne laser alone showed a favorable effect on seedling growth compared with the control. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Role of root UV-B sensing in Arabidopsis early seedling development.

    PubMed

    Tong, Hongyun; Leasure, Colin D; Hou, Xuewen; Yuen, Gigi; Briggs, Winslow; He, Zheng-Hui

    2008-12-30

    All sun-exposed organisms are affected by UV-B [(UVB) 280-320 nm], an integral part of sunlight. UVB can cause stresses or act as a developmental signal depending on its fluence levels. In plants, the mechanism by which high-fluence-rate UVB causes damages and activates DNA-repair systems has been extensively studied. However, little is known about how nondamaging low-fluence-rate UVB is perceived to regulate plant morphogenesis and development. Here, we report the identification of an Arabidopsis mutant, root UVB sensitive 1 (rus1), whose primary root is hypersensitive to very low-fluence-rate (VLF) UVB. Under standard growth-chamber fluorescent white light, rus1 displays stunted root growth and fails to form postembryonic leaves. Experiments with different monochromatic light sources showed that rus1 phenotypes can be rescued if the seedlings are allowed to grow in light conditions with minimum UVB. We determined that roots, not other organs, perceive the UVB signal. Genetic and molecular analyses confirmed that the root light-sensitive phenotypes are independent of all other known plant photoreceptors. Three rus1 alleles have been identified and characterized. A map-based approach was used to identify the RUS1 locus. RUS1 encodes a protein that contains DUF647 (domain of unknown function 647), a domain highly conserved in eukaryotes. Our results demonstrate a root VLF UVB-sensing mechanism that is involved in Arabidopsis early seedling morphogenesis and development.

  10. Oxygen toxicity and antioxidative responses in arsenic stressed Helianthus annuus L. seedlings against UV-B.

    PubMed

    Yadav, Geeta; Srivastava, Prabhat Kumar; Parihar, Parul; Tiwari, Sanjesh; Prasad, Sheo Mohan

    2016-12-01

    In order to know the impact of elevated level of UV-B on arsenic stressed Helianthus annuus L. var. DRSF-113 plants, certain physiological (growth - root and shoot lengths, their fresh masses and leaf area; photosynthetic competence and respiration) and biochemical parameters (pigments - Chl a and b, Car, anthocyanin and flavonoids; reactive oxygen species - superoxide radicals, H 2 O 2 ; reactive carbonyl group, electrolyte leakage; antioxidants - superoxide dismutase, peroxidise, catalase, glutathione-S-transferase, proline) of their seedlings were analysed under the simultaneous exposures of two arsenic doses (6mgkg -1 soil, As 1 ; and 12mgkg -1 soil, As 2 ) and two UV-B doses (1.2kJm -2 d -1 , UV-B 1 ; and 3.6kJm -2 d -1 , UV-B 2 ). As 1 and As 2 alone declined all the studied growth parameters - along with photosynthetic pigments which were further aggravated after the simultaneous exposures of predefined levels of UV-B. Each As exposure was accompanied by significant accumulation of As in root, shoot and leaves and was substantiated by simultaneous exposures of UV-B doses which manifested into suppressed growth, decreased chlorophyll contents and photosynthesis. In similar conditions, other photo-shielding pigments, viz. carotenoids, anthocyanin and flavonoids along with respiration and oxidative stress markers such as O 2 • ¯, H 2 O 2 ; and indicators of cell membrane damage like MDA (malondialdehyde), RCG (reactive carbonyl group), electrolyte leakage were enhanced by As, and became more pronounced after the simultaneous exposures of UV-B doses. As doses stimulated the activities of SOD, POD, CAT, GST and Pro which got further accelerated after the simultaneous exposures of UV-B doses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  12. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  13. Simultaneous determination of vitamin B12 and its derivatives using some of multivariate calibration 1 (MVC1) techniques

    NASA Astrophysics Data System (ADS)

    Samadi-Maybodi, Abdolraouf; Darzi, S. K. Hassani Nejad

    2008-10-01

    Resolution of binary mixtures of vitamin B12, methylcobalamin and B12 coenzyme with minimum sample pre-treatment and without analyte separation has been successfully achieved by methods of partial least squares algorithm with one dependent variable (PLS1), orthogonal signal correction/partial least squares (OSC/PLS), principal component regression (PCR) and hybrid linear analysis (HLA). Data of analysis were obtained from UV-vis spectra. The UV-vis spectra of the vitamin B12, methylcobalamin and B12 coenzyme were recorded in the same spectral conditions. The method of central composite design was used in the ranges of 10-80 mg L -1 for vitamin B12 and methylcobalamin and 20-130 mg L -1 for B12 coenzyme. The models refinement procedure and validation were performed by cross-validation. The minimum root mean square error of prediction (RMSEP) was 2.26 mg L -1 for vitamin B12 with PLS1, 1.33 mg L -1 for methylcobalamin with OSC/PLS and 3.24 mg L -1 for B12 coenzyme with HLA techniques. Figures of merit such as selectivity, sensitivity, analytical sensitivity and LOD were determined for three compounds. The procedure was successfully applied to simultaneous determination of three compounds in synthetic mixtures and in a pharmaceutical formulation.

  14. Mutation and repair in an ultraviolet-sensitive Chinese hamster ovary cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.D.

    1981-11-01

    An ultraviolet (UV) light-sensitive mutant of Chinese hamster ovary cells (CHO) has been isolated and characterized with respect to a number of post-irradiation responses. The UV-sensitive mutant, termed 43-3B, has the same growth rate and chromosome number as the wild-type CHO-9. 43-3B is hypersensitive to the lethal effects of UV light (D/sub 0/ of 0.3 J/m/sup 2/ as compared to 3.2 J/m/sup 2/ for the wild-type). A marked UV-hypermutability is observed in 43-3B as compared to the wild-type, as measured with markers for induced resistance to 6-thioguanine, ouabain, and diphtheria toxin. A factor of 38 to 65 more mutations aremore » induced per unit fluence in 43-3B than in CHO-9. The UV-sensitive mutant is also sensitive to killing by simulated solar light, although the D/sub 0/ ratio is not as great as for germicidal UV. 43-3B exhibits only about 17% of the wild-type level of UV-stimulated DNA repair synthesis, as measured by autoradiography of G/sub 1/ phase cells. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild-type CHO-9, but little recovery was seen in 43-3B. The present investigation demonstrates that a sensitive/wild-type pair of CHO cell lines can be used in comparative studies to determine the involvement of repair in a wide range of post-irradiation phenomena.« less

  15. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis.

    PubMed

    Fina, Julieta P; Masotti, Fiorella; Rius, Sebastián P; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses.

  16. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis

    PubMed Central

    Fina, Julieta P.; Masotti, Fiorella; Rius, Sebastián P.; Crevacuore, Franco; Casati, Paula

    2017-01-01

    Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses. PMID:28740501

  17. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk.

    PubMed

    Guneser, O; Karagul Yuceer, Y

    2012-11-01

    The objective of this study was to investigate and compare the effects of UV light and heat treatment on vitamins A, B(2), C, and E in cow and goat milk. Vitamins were analyzed by reverse-phase high-pressure liquid chromatography. Ultraviolet and pasteurization treatments caused loss in vitamin C in milk. Pasteurization did not have any significant effect on vitamin B(2). However, UV light treatment decreased the amount of vitamin B(2) after several passes of milk through the UV system. In addition, UV light treatment decreased the amount of vitamins A and E. Vitamins C and E are more sensitive to UV light. UV light sensitivities of vitamins were C>E>A>B(2). These results show that UV light treatment decreases the vitamin content in milk. Also, the number of passes through the UV system and the initial amount of vitamins in milk are important factors affecting vitamin levels. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  19. Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins.

    PubMed

    Eom, Han Young; Park, So-Young; Kim, Min Kyung; Suh, Joon Hyuk; Yeom, Hyesun; Min, Jung Won; Kim, Unyong; Lee, Jeongmi; Youm, Jeong-Rok; Han, Sang Beom

    2010-06-25

    Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B(1), -B(2), -B(3), -B(4), -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis Express C18 column (100 mm x 4.6 mm, 2.7 microm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress more than spinach at all nutrient levels and 1.5× recommended NPK lowered the sensitivity maximally to enhanced UV-B with respect to photosynthesis, biomass and yield. PCA score has also confirmed the lower sensitivity of amaranthus compared with spinach with respect to the measured physiological and biochemical parameters.

  1. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii.

    PubMed

    Lee, Tse-Min; Shiu, Chia-Tai

    2009-02-01

    Ultraviolet-B (UV-B) radiation (0.5, 1.0, 1.5, and 3.0Wm(-2)) induced higher H(2)O(2) production and lipid peroxidation in alga Gelidium amansii inhabiting in lower subtidal regions than upper subtidal alga Ptercladiella capillacea. Compared to G. amansii, mycosporine-like amino acid (MAA) concentration in P. capillacea was higher and can be increased by 0.5-1.0Wm(-2) UV-B, while carotenoid concentration was lower but also increased by 1.5-3.0Wm(-2) UV-B. UV-B increased ascorbate concentration, but to a higher degree in P. capillacea. UV-B decreased glutathione concentration, but to a higher degree in G. amansii. UV-B increased ascorbate peroxidase (APX) and glutathione reductase (GR) activities in P.capillacea but decreased them in G. amansii. UV-B increased superoxide dismutase and catalase activities, but to a higher degree in G. amansii. So, G. amansii suffered greater oxidative stress from UV-B radiation. P. capillacea can effectively reduce UV-B sensitivity by increasing sunscreen ability and antioxidant defense capacity.

  2. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.

  3. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  4. [Effects of silicon supply on rice growth and methane emission from paddy soil under elevated UV-B radiation].

    PubMed

    Meng, Yan; Lou, Yun-sheng; Wu, Lei; Cui, He-yang; Wang, Wei-qing

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon supply on rice growth and methane (CH4) emission in paddy field under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B (ambient, A) and elevated UV-B radiation (elevated by 20%, E) ; with four silicon supply levels, i.e., Si0 (control, without silicon), Si2 (as sodium silicate, 100 kg SiO2 . hm-2), Si2 (as sodium silicate, 200 kg SiO2 hm-2) and Si3 (as slag fertilizer, 200 kg SiO2 . hm-2). The results indicated that, silicon supply obviously alleviated the depressive effect of elevated UV-B radiation on rice growth, and increased the tiller numbers, chlorophyll content, and shoot and root dry masses. Silicon supply promoted rice growth, which increased with the silicon supply level (sodium silicate). Slag fertilizer was better than*sodium silicate in promoting rice growth. CH4 flux and accumulated CH4emission were obviously increased by elevated UV-B radiation, but significantly decreased by silicon application. CH4 emission was reduced with increasing the silicon supply level. Under the same silicon supply level, slag fertilizer was better than sodium silicate in inhibiting CH4 flux and accumulated CH4 emission. This research suggested that fertilizing slag in rice production was helpful not only in utilizing industrial wastes, but also in significantly mitigating CH4 emissions in rice paddy under elevated UV-B radiation.

  5. The effects of ultraviolet-B radiation on freshwater invertebrates: Experiments with a solar simulator

    USGS Publications Warehouse

    Hurtubise, R.D.; Havel, J.E.; Little, E.E.

    1998-01-01

    There is concern that decreases in stratospheric ozone will lead to hazardous levels of ultraviolet-B (UV-B) radiation at the Earth's surface. In clear water, UV-B may penetrate to significant depths. The purpose of the current study was to compare the sensitivity of freshwater invertebrates to UV-B. We used a solar simulator, calibrated to match local ambient solar radiation, to expose five species of freshwater invertebrates to enhanced levels of UV-B radiation. UV-B measurements in a eutrophic pond revealed that 10% of the irradiance penetrated to 30-cm depth and 1% to 57-cm depth. The irradiance at the upper 5-20 cm was comparable to levels used in the simulator. Median lethal dose (LD50) values were determined for the cladocerans Ceriodaphnia reticulata, Scapholeberis kingii (two induced color morphs), and Daphnia magna; the ostracod Cyprinotus incongruens; and the amphipod Hyalella azteca. Among the species, 96-h LD50 estimates were quite variable, ranging from 4.2 to 84.0 ??W cm-2. These estimates indicated S. kingii to be highly sensitive and H. azteca, C. reticulata, and D. magna to be moderately sensitive, whereas the ostracod C. incongruens was very tolerant to UV-B radiation. Overall, this study suggests that, in shallow ponds without physical refuges, UV-B radiation would have the strongest effects upon cladocerans and amphipods occurring in the water column, whereas ostracods would be better protected.

  6. Light and the circadian clock mediate time-specific changes in sensitivity to UV-B stress under light/dark cycles

    PubMed Central

    Takeuchi, Tomomi; Newton, Linsey; Burkhardt, Alyssa; Mason, Saundra; Farré, Eva M.

    2014-01-01

    In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day. PMID:25147271

  7. Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, A.B.; Teramura, A.H.; Sisler, H.D.

    1990-09-01

    Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment ofmore » 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.« less

  8. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  9. Topical corticosteroids in the treatment of acute sunburn: a randomized, double-blind clinical trial.

    PubMed

    Faurschou, Annesofie; Wulf, Hans C

    2008-05-01

    To examine the effect of topical corticosteroid treatment on acute sunburn. Randomized, double-blind clinical trial. University dermatology department. Twenty healthy volunteers with Fitzpatrick skin types I (highly sensitive, always burns easily, tans minimally) through III (sun-sensitive skin, sometimes burns, slowly tans to light brown). Seven 34-cm(2) areas were marked on the upper aspect of the back of each participant. An untreated area was tested to determine UV sensitivity. Two areas were treated with excess amounts (2 mg/cm(2)) of either a moderate-potency corticosteroid or a high-potency corticosteroid 30 minutes before UV-B exposure as controls. Six or 23 hours after exposure to radiation, the remaining areas were treated with the 2 corticosteroid preparations. The sunburn improvement factor (SIF) was determined by the following equation: SIF = MED (minimal erythema dose) on treated skin/MED on nontreated skin. An SIF greater than 1 indicated an effect of topical corticosteroids in sunburn relief. The SIFs in the areas treated with either topical corticosteroid 30 minutes before UV-B exposure or high-potency corticosteroid 6 hours after UV-B exposure were significantly different from SIFs in areas that received no treatment (SIF 1.1-1.7; P < .05). Only the median SIF of 1.7 in the areas treated with high-potency corticosteroid 30 minutes before UV-B exposure was clinically relevant. The areas treated 23 hours after UV-B exposure and the areas treated with a moderate-potency corticosteroid 6 hours after UV-B exposure showed no significant reduction in redness. Treatment with topical moderate-potency or high-potency corticosteroids does not provide a clinically useful decrease in the acute sunburn reaction when applied 6 or 23 hours after UV exposure.

  10. Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation

    USGS Publications Warehouse

    Calfee, R.D.; Bridges, C.M.; Little, E.E.

    2006-01-01

    Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.

  11. Is it a biological response or chemical process? Chemical and transcriptional regulation experiments probe the cause for the increased accumulation of chlorogenic acid (CGA) in carrot root slices exposed to UV-B light

    USDA-ARS?s Scientific Manuscript database

    We recently demonstrated that wounded carrot roots subjected to a brief UV-B light treatment accumulate large quantities of chlorogenic acid (CGA) in the treated tissues. Chlorogenic acid is an intermediate in the phenylpropanoid pathway and a potent anti-oxidant. Chemical analysis and real-time P...

  12. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.

    PubMed

    Myasnik, M; Manasherob, R; Ben-Dov, E; Zaritsky, A; Margalith, Y; Barak, Z

    2001-08-01

    Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280--330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h.

  13. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2016-04-01

    The effects of supplemental ultraviolet-B (s-UV-B; 3.6 kJ m(-2) day(-1) above ambient) radiation were investigated on plant metabolite profile, essential oil content and composition, and free radical scavenging capacities of methanolic extracts of Coleus forskohlii (an indigenous medicinal plant) grown under field conditions. Essential oil was isolated using hydrodistillation technique while alterations in metabolite profile and oil composition were determined via gas chromatography-mass spectroscopy (GC-MS). Leaf and root methanolic extracts were investigated via various in vitro assays for their DPPH radical-, superoxide radical-, hydrogen peroxide-, hydroxyl radical-, and nitric oxide radical scavenging activities, ferrous ion chelating activity, and reducing power. Phytochemical analysis revealed the presence of alkaloids, anthocyanins, coumarins, flavonoids, glycosides, phenols, saponins, steroids, tannins, and terpenoids. Oil content was found to be reduced (by ∼7 %) in supplemental UV-B (s-UV-B) treated plants; the composition of the plant extracts as well as essential oil was also considerably altered. Methanolic extracts from treated plant organs showed more potency as free radical scavengers (their EC50 values being lower than their respective controls). Anomalies were observed in Fe(2+) chelating activity for both leaves and roots. The present study concludes that s-UV-B adversely affects oil content in C. forskohlii and also alters the composition and contents of metabolites in both plant extracts and oil. The results also denote that s-UV-B treated plant organs might be more effective in safeguarding against oxidative stress, though further studies are required to authenticate these findings.

  14. Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria†

    PubMed Central

    Arrieta, Jesús María; Weinbauer, Markus G.; Herndl, Gerhard J.

    2000-01-01

    The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters. PMID:10742228

  15. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    PubMed

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of elevated CO2, O3, and UV radiation on soils.

    PubMed

    Formánek, Pavel; Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.

  17. Effect of Elevated CO2, O3, and UV Radiation on Soils

    PubMed Central

    Rejšek, Klement; Vranová, Valerie

    2014-01-01

    In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424

  18. Impact of UV-B exposure on amphibian embryos: linking species physiology and oviposition behaviour

    PubMed Central

    Palen, Wendy J; Williamson, Craig E; Clauser, Aaron A; Schindler, Daniel E

    2005-01-01

    Increasing ultraviolet-B radiation (UV-B) has recently captured the attention of ecologists as a key environmental stressor. Certain species may be particularly vulnerable as a result of either high natural exposure to UV-B or limited physiological capacity to withstand it. UV-B sensitivity has been examined at the cellular and individual level for a wide variety of taxa, but estimates of exposure to UV-B in natural systems are lacking and predictions of large-scale impacts are therefore limited. Here, we combine data on the physiological sensitivity to UV-B and patterns of field exposure across sites for embryos of several well-studied US Pacific Northwest amphibian species. We find substantial differences among species' physiological abilities to withstand UV-B and in the level of UV-B exposure of embryos in the field. More specifically, we find that species with the highest physiological sensitivity to UV-B are those with the lowest field exposures as a function of the location of embryos and the UV-B attenuation properties of water at each site. These results also suggest that conclusions made about species' vulnerability to UV-B in the absence of information on field exposures may often be misleading. PMID:16024386

  19. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    PubMed

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spectral dependence on the correction factor of erythemal UV for cloud, aerosol, total ozone, and surface properties: A modeling study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon

    2016-07-01

    Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.

  1. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  2. Gromwell (Lithospermum erythrorhizon) root extract protects against glycation and related inflammatory and oxidative stress while offering UV absorption capability.

    PubMed

    Glynn, Kelly M; Anderson, Penny; Fast, David J; Koedam, James; Rebhun, John F; Velliquette, Rodney A

    2018-06-15

    Glycation and advanced glycation endproducts (AGE) damage skin which is compounded by AGE-induced oxidative stress and inflammation. Lip and facial skin could be susceptible to glycation damage as they are chronically stressed. As Gromwell (Lithospermum erythrorhizon) root (GR) has an extensive traditional medicine history that includes providing multiple skin benefits, our objective was to determine if GR extract and its base naphthoquinone, shikonin, might protect skin by inhibiting glycation, increasing oxidative defenses, suppressing inflammatory responses, and offering ultraviolet (UV) absorptive potential in lip and facial cosmetic matrices. We show GR extract and shikonin dose-dependently inhibited glycation and enhanced oxidative defenses through nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) activation. Inflammatory targets, nuclear factor kappa light chain enhancer of activated B cells (NFκB) and tumor necrosis factor alpha (TNFα), were suppressed by GR extract and shikonin. Glyoxalase 1 (GLO1) and glutathione synthesis genes were significantly upregulated by GR extract and shikonin. GR extract boosted higher wavelength UV absorption in select cosmetic matrices. Rationale for the use of GR extract and shikonin are supported by our research. By inhibiting glycation, modulating oxidative stress, suppressing inflammation, and UV-absorptive properties, GR extract and shikonin potentially offer multiple skin benefits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.

    PubMed

    Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen

    2014-03-31

    Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.

  4. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  5. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    PubMed

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  6. Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli.

    PubMed Central

    Tang, M S; Ross, L

    1985-01-01

    We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites. PMID:3882671

  7. Influence of total organic carbon and UV-B radiation on zinc toxicity and bioaccumulation in aquatic communities.

    PubMed

    Kashian, Donna R; Prusha, Blair A; Clements, William H

    2004-12-01

    The effects of total organic carbon (TOC) and UV-B radiation on Zn toxicity and bioaccumulation in a Rocky Mountain stream community were assessed in a 10-d microcosm experiment. We predicted that TOC would mitigate Zn toxicity and that the combined effects of Zn and UV-B would be greater than Zn alone. However, TOC did not mitigate Zn toxicity in this study. In fact, treatments with TOC plus Zn had significantly lower community respiration as compared with the controls and Zn concentrations associated with the periphyton increased in the presence of TOC. UV-B had no additive effect on periphyton Zn accumulation or community respiration. Heptageniid mayflies (Ephemeroptera) were particularly sensitive to Zn, and reduced abundances were observed in all Zn treatments. UV-B did not additionally impact Heptageniid abundances; however UV-B did have a greater effect on macroinvertebrate drift than Zn alone. Ephemeroptera, Plecoptera, and Trichoptera (groups typically classified as sensitive to disturbance) were found in highest numbers in the drift of UV-B + Zn treatments. Measures of Zn accumulation in the caddisfly Arctopsyche grandis, periphyton biomass, and total macroinvertebrate abundance were not sufficiently sensitive to differentiate effects of TOC, UV-B, and Zn. These results indicate that UV-B and TOC affect Zn bioavailability and toxicity by impacting species abundance, behavior, and ecosystem processes.

  8. Reproductive, morphological, and phytochemical responses of Arabidopsis thaliana ecotypes to enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbull, V.L.; McCloud, E.S.; Paige, K.N.

    1994-06-01

    Two ecotypes of Arabidopsis thaliana, collected from Libya and Norway, were grown in the greenhouse under. UV-B doses of 0 and 10.5 kJ m[sup [minus]2] UV-B[sub BE]. The high UV-B dose simulated midsummer ambient conditions over Libya and a 40% reduction in stratospheric ozone over Norway. The Libyan ectotype, which originated from latitudes where solar UV-B is high, showed no UV-B induced damage to plant growth. However the Norwegian ecotype, which originated from latitudes where solar UV-B is low, showed a significant reduction in plant height, inflorescence weight, and rosette weight in response to enhanced UV-B. Although fruit and seedmore » number for both ecotypes were unaffected by enhanced UV-B radiation the germination success of the seeds harvested from the irradiated Norwegian plants were significantly reduced. The two ecotypes also differed with respect to their accumulation of kaempferol, a putative UV-B protective filter. The Libyan ecotype increased kaempferol concentration by 38% over the 0 kJ treatment whereas the Norwegian ecotype increased by only 15%. These data suggest that, for these ecotypes, variation in UV-B sensitivity may be explained by the differential induction of UV-absorbing leaf pigments.« less

  9. UV absorption and photoisomerization of p-methoxycinnamate grafted silicone.

    PubMed

    Pattanaargson, Supason; Hongchinnagorn, Nantawan; Hirunsupachot, Piyawan; Sritana-anant, Yongsak

    2004-01-01

    p-Methoxycinnamate moieties, UV-B-absorptive chromophores of the widely used UV-B filter, 2-ethylhexyl p-methoxycinnamate (OMC), were grafted onto the 7 mol% amino functionalized silicone polymer through amide linkages. Comparing with OMC, the resulting poly [3-(p-methoxycinnamido)(propyl)(methyl)-dimethyl] siloxane copolymer (CAS) showed less E to Z isomerization when exposed to UV-B light. The absorption profiles of the product showed the maximum absorption wavelength to be similar to that of OMC but with less sensitivity to the type of solvent. Poly (methylhydrosiloxane) grafted with 10 mol% p-methoxycinnamoyl moieties was prepared through hydrosilylations of 2-propenyl-p-methoxycinnamate, in which the resulting copolymer showed similar results to those of CAS.

  10. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    NASA Astrophysics Data System (ADS)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm-2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm-2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  11. Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants.

    PubMed

    Kataria, Sunita; Guruprasad, K N; Ahuja, Sumedha; Singh, Bupinder

    2013-10-05

    A field experiment was conducted under tropical climate for assessing the effect of ambient UV-B and UV-A by exclusion of UV components on the growth, photosynthetic performance and yield of C3 (cotton, wheat) and C4 (amaranthus, sorghum) plants. The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315nm), UV-A+B (<400nm), transmitted all the UV (280-400nm) or without filters. All the four plant species responded to UV exclusion by a significant increase in plant height, leaf area, leaf biomass, total biomass accumulation and yield. Measurements of the chlorophyll, chlorophyll fluorescence parameters, gas exchange parameters and the activity of Ribulose-1,5-bisphosphate carboxylase (Rubisco) by fixation of (14)CO2 indicated a direct relationship between enhanced rate of photosynthesis and yield of the plants. Quantum yield of electron transport was enhanced by the exclusion of UV indicating better utilization of PAR assimilation and enhancement in reducing power in all the four plant species. Exclusion of UV-B in particular significantly enhanced the net photosynthetic rate, stomatal conductance and activity of Rubisco. Additional fixation of carbon due to exclusion of ambient UV-B was channeled towards yield as there was a decrease in the level of UV-B absorbing substances and an increase in soluble proteins in all the four plant species. The magnitude of the promotion in all the parameters studied was higher in dicots (cotton, amaranthus) compared to monocots (wheat, sorghum) after UV exclusion. The results indicated a suppressive action of ambient UV-B on growth and photosynthesis; dicots were more sensitive than monocots in this suppression while no great difference in sensitivity was found between C3 and C4 plants. Experiments indicated the suppressive action of ambient UV on carbon fixation and yield of C3 and C4 plants. Exclusion of solar UV-B will have agricultural benefits in both C3 and C4 plants under tropical climate. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses.

    PubMed

    Larkum, A W; Wood, W F

    1993-04-01

    Several species of marine benthic algae, four species of phytoplankton and two species of seagrass have been subjected to ultraviolet B irradiation for varying lengths of time and the effects on respiration, photosynthesis and fluorescence rise kinetics studied. No effect on respiration was found. Photosynthesis was inhibited to a variable degree in all groups of plants after irradiation over periods of up to 1 h and variable fluorescence was also inhibited in a similar way. The most sensitive plants were phytoplankton and deep-water benthic algae. Intertidal benthic algae were the least sensitive to UV-B irradiation and this may be related to adaptation, through the accumulation of UV-B screening compounds, to high light/high UV-B levels. Inhibition of variable fluorescence (Fv) of the fluorescence rise curve was a fast and sensitive indicator of UV-B damage. Two plants studied, a brown alga and a seagrass, showed very poor recovery of Fv over a period of 32 h.

  13. Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates.

    PubMed

    Santos, A L; Lopes, S; Baptista, I; Henriques, I; Gomes, N C M; Almeida, A; Correia, A; Cunha, A

    2011-04-01

    To assess the variability in UV-B (280-320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress. Bacterial suspensions were exposed to UV-B radiation (3·3 W m⁻²). Effects on culturability and activity were assessed from colony counts and (3) H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4-99·3%) and activity (36·0-98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m⁻²; photosynthetic active radiation, 40 W m⁻²; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. Genotypic variation of soybean and cotton crops in their response to UV-B radiation for vegetative growth and physiology

    NASA Astrophysics Data System (ADS)

    Reddy, K. R.; Koti, S.; Kakani, V. G.; Zhao, D.; Gao, W.

    2005-08-01

    The effects of ultraviolet-B (UV-B) radiation on seven cotton (DP 458B/RR, DP 5415RR, FM 832B, NuCOTN 33B, Pima S7, Tamcot HQ95 and SG 521B) and six soybean (D 88-5320, D 90-9216, Stalwart III, PI 471938, DG 5630RR, and DP 4933RR) genotypes were evaluated in sunlit controlled-environment chambers under optimum water, nutrient and temperature conditions. Plants were exposed to UV-B radiation levels of 4, 8, 12 and 16 (cotton); and 0, 5, 10 and 15 kJ m-2 d-1 (soybean) from emergence to 31 days after sowing (DAS) in cotton and 58 DAS in soybean. Growth and physiological responses were measured and quantified. Higher UV-B significantly reduced dry matter production, plant height, leaf area in all genotypes compared to control plants in both the crops; however, significant genotypic differences in the magnitude of the UV-B induced changes were observed. Cumulative stress response index (CSRI), the sum of individual percentage of relative responses to UV-B radiation, total response index (TRI), the sum of CSRI at all the levels of UV-B for each genotype were used to classify the genotypes for UV-B tolerance. The TRI ranged from -195 to - 417 in soybean and -40 to -524 in cotton. Based on TRI, cotton genotypes, DP 458B/RR, NuCOTN 33B and DP 5415RR were classified as tolerant; Pima S7, and FM 832B as intermediate; and SG 521B, and Tamcot HQ95 as sensitive. In soybean, PI 471938 was tolerant; Stalwart III and D 88-5320 as intermediate; DG 5630RR, DP 4933RR and D 90-9216 were identified as sensitive genotypes. Even though, relative injury of the leaves decreased and phenolic concentrations increased with increasing UV-B in all genotypes, there were no significant correlations between these parameters and TRI of the genotypes in either crop. The observed genotypic differences suggest that it is possible to breed and select UV-B tolerant soybean and cotton genotypes for a niche environment.

  15. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  16. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  17. Applicability of UV resistant Bacillus pumilus endospores as a ...

    EPA Pesticide Factsheets

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two month at 4C without a significant change in UV sensitivity. Synergistic endospore damage by pre-pasteurization of water samples was observed, suggesting post-pasteurization only of UV treated water samples. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories. This article describes the usefulness of Bacillus pumilus endspores as a viable surrogate for adeno virus in UV disinfection studies.

  18. A new method for estimating UV fluxes at ground level in cloud-free conditions

    NASA Astrophysics Data System (ADS)

    Wandji Nyamsi, William; Pitkänen, Mikko R. A.; Aoun, Youva; Blanc, Philippe; Heikkilä, Anu; Lakkala, Kaisa; Bernhard, Germar; Koskela, Tapani; Lindfors, Anders V.; Arola, Antti; Wald, Lucien

    2017-12-01

    A new method has been developed to estimate the global and direct solar irradiance in the UV-A and UV-B at ground level in cloud-free conditions. It is based on a resampling technique applied to the results of the k-distribution method and the correlated-k approximation of Kato et al. (1999) over the UV band. Its inputs are the aerosol properties and total column ozone that are produced by the Copernicus Atmosphere Monitoring Service (CAMS). The estimates from this new method have been compared to instantaneous measurements of global UV irradiances made in cloud-free conditions at five stations at high latitudes in various climates. For the UV-A irradiance, the bias ranges between -0.8 W m-2 (-3 % of the mean of all data) and -0.2 W m-2 (-1 %). The root mean square error (RMSE) ranges from 1.1 W m-2 (6 %) to 1.9 W m-2 (9 %). The coefficient of determination R2 is greater than 0.98. The bias for UV-B is between -0.04 W m-2 (-4 %) and 0.08 W m-2 (+13 %) and the RMSE is 0.1 W m-2 (between 12 and 18 %). R2 ranges between 0.97 and 0.99. This work demonstrates the quality of the proposed method combined with the CAMS products. Improvements, especially in the modeling of the reflectivity of the Earth's surface in the UV region, are necessary prior to its inclusion into an operational tool.

  19. Methods for assessing the impacts of ultraviolet-B radiation on aquatic invertebrates

    USGS Publications Warehouse

    Hurtubise, R.D.; Little, Edward E.; Havel, J.E.; Little, Edward E.; Greenberg, Bruce M.; Delonay, Aaron J.

    1998-01-01

    A standard methodology for assessing the impacts of simulated solar ultraviolet-B radiation (UV-B) on aquatic invertebrates was established. A solar simulator was used to expose a variety of aquatic invertebrates to different levels of UV-B. The simulator was calibrated as close as possible to match local ambient solar radiation measured in and out of water with a scanning spectroradiometer. A series of repeated exposures were conducted to determine the effects of UV-B on two species of Ceriodaphnia. Survivorship of C. reticulata declined with increasing UV-B with 100% mortality occurring after four daily 5 hr exposures to a UV-B irradiance that was 14% of ambient sunlight (40.8/μW/cm2) and 70% mortality for C. dubia after seven days of an exposure to 5% of ambient (14.5μW/cm2). Significant reductions in fertility (#young/adult) was observed in both low and high light adapted individuals with low light individuals appearing to be more sensitive. This methodology allowed us to make comparisons to natural conditions in aquatic habitats and to make risk assessments for individual species.

  20. MOF-5(Zn)-Fe2O4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples.

    PubMed

    Bahrani, Sonia; Ghaedi, Mehrorang; Dashtian, Kheibar; Ostovan, Abbas; Mansoorkhani, Mohammad Javad Khoshnood; Salehi, Amin

    2017-11-01

    In present work, facile method is developed for determination of colchicine in human plasma sample, autumn and spring root of colchicium extracts by ultrasound assisted dispersive magnetic solid phase microextraction followed by HPLC-UV method (UAD-MSPME-HPLC-UV). Magnetic (Fe 2 O 4 -nanoparticles) metal organic framework-5, (MOF-5(Zn)-Fe 2 O 4 NPs) was synthesized by dispersing MOF-5 and Fe(NO 3 ) 3 .9H 2 O in ethylene glycol (as capping agent) and NaOH (pH adjustment agent) by hydrothermal method. The prepared sorbent was characterized via XRD and SEM analysis and applied as magnetic solid phase in UAD-MSPME-HPLC-UV method. In this method, colchicine molecules were sorbed on MOF-5(Zn)-Fe 2 O 4 NPs sorbent by various mechanisms like ion exchange, hydrogen bonding and electrostatic, ᴨ-ᴨ, hard-hard and dipole-ion interaction followed by exposing sonication waves as incremental mass transfer agent and then the sorbent was separated from the sample matrix by an external magnetic fields. Subsequently, accumulated colchicine were eluted by small volume of desorption organic solvent. Influence of operational variables such as MOF-5(Zn)-Fe 2 O 4 NPs mass, volume of extracting solvent and sonication time on response property (recovery) were studied and optimized by central composite design (CCD) combined with desirability function (DF) approach. Under optimum condition, the method has wide linear calibration rang (0.5-1700ngmL -1 ) with reasonable detection limit (0.13ngmL -1 ) and R 2 =0.9971. Finally, the UAD-MSPME-HPLC-UV method was successfully applied for determination of colchicine autumn and spring root of colchicium extracts and plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.

    1977-01-01

    Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.

  2. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchik, S.M.; Day, T.A.

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollenmore » was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.« less

  3. Developmental reprogramming by UV-B radiation in plants.

    PubMed

    Dotto, Marcela; Casati, Paula

    2017-11-01

    Plants are extremely plastic organisms with the ability to adapt and respond to the changing environmental conditions surrounding them. Sunlight is one of the main resources for plants, both as a primary energy source for photosynthesis and as a stimulus that regulates different aspects of their growth and development. UV-B comprises wavelengths that correspond to a high energy region of the solar spectrum capable of reaching the biosphere, influencing plant growth. It is currently believed that plants are able to acclimate when growing under the influence of this radiation and perceive it as a signal, without stress signs. Nonetheless, many UV-B induced changes are elicited after DNA damage occurs as a consequence of exposure. In this review we focus on the influence of UV-B on leaf, flower and root development and emphasize the limited understanding of the molecular mechanisms for most of this developmental processes affected by UV-B documented over the years of research in this area. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation.

    PubMed

    Jordan, B R; Chow, W S; Strid, A; Anderson, J M

    1991-06-17

    The cab and psb A RNA transcript levels have been determined in Pisum sativum leaves exposed to supplementary ultraviolet-B radiation. The nuclear-encoded cab transcripts are reduced to low levels after only 4 h of UV-B treatment and are undetectable after 3 days exposure. In contrast, the chloroplast-encoded psb A transcript levels, although reduced, are present for at least 3 days. After short periods of UV-B exposure (4 h or 8 h), followed by recovery under control conditions, cab RNA transcript levels had not recovered after 1 day, but were re-established to ca. 60% of control levels after 2 more days. Increased irradiance during exposure to UV-B reduced the effect upon cab transcripts, although the decrease was still substantial. These results indicate rapid changes in the cellular regulation of gene expression in response to supplementary UV-B and suggest increased UV-B radiation may have profound consequences for future productivity of sensitive crop species.

  5. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    NASA Astrophysics Data System (ADS)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  6. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  7. Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites.

    PubMed

    Luengo Escobar, Ana; Magnum de Oliveira Silva, Franklin; Acevedo, Patricio; Nunes-Nesi, Adriano; Alberdi, Miren; Reyes-Díaz, Marjorie

    2017-09-01

    UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum

    PubMed Central

    Mazza, Carlos A.; Izaguirre, Miriam M.; Curiale, Javier; Ballaré, Carlos L.

    2010-01-01

    Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia. PMID:19846453

  9. Flavonoids from the roots of Artocarpus heterophyllus.

    PubMed

    Yuan, Wen-Jun; Yuan, Jin-Bin; Peng, Jia-Bing; Ding, Yuan-Qing; Zhu, Ji-Xiao; Ren, Gang

    2017-03-01

    Four new flavonoids, artoheteroids A-D (1-4), together with six known ones (5-10), were isolated from the roots of Artocarpus heterophyllus. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR, UV, IR, CD, and HR-ESI-MS. All isolated compounds were screened for their inhibitory abilities against cathepsin K (CatK). Among them, compounds 1-2, 4-6, and 10 were found to have suppression capabilities against CatK with IC 50 values ranging from 1.4 to 93.9μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Caffeine Eye Drops Protect Against UV-B Cataract

    PubMed Central

    Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per

    2013-01-01

    The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096

  11. Glucocorticoid effects on contact hypersensitivity and on the cutaneous response to ultraviolet light in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, P.M.; Walberg, J.A.; Bradlow, H.L.

    1988-03-01

    A single exposure to 254 nm ultraviolet irradiation (UV) can systemically suppress experimental sensitization to the simple allergen 2,4-dinitro, 1-chlorobenzene (DNCB) in the mouse. We show here that topical application at the site of irradiation of the 21-oic acid methyl ester derivative of the synthetic glucocorticoid triamcinolone acetonide (TAme) prevents UV suppression of sensitization. That is, mice painted with TAme at the site of UV exposure developed normal contact hypersensitivity (CH); mice exposed to UV only, like mice treated with the parent compound triamcinolone acetonide (TA), failed to be sensitized by DNCB applied to a distal site. TAme is inactivatedmore » rapidly by plasma esterases, so its effect is thought to be confined to the skin. Apparently, TAme blocked the cutaneous signal(s) for systemic suppression of CH. Histologically, irradiated skin exhibited mild inflammation and hyperproliferation, but these effects were greatly exaggerated and prolonged in the UV + TAme-treated skin, independent of sensitization at the distal site. The infiltrate consisted mostly of neutrophils and lacked the round cells characteristic of cell-mediated immunity. Apparently, normal immune suppression by UV prevented this vigorous reaction to irradiated skin. Applied together with DNCB. TAme blocked sensitization. It also prevented response to challenge by DNCB in previously sensitized animals. However, unlike the parent compound triamcinolone acetonide (TA), Budesonide or Beclomethasone diproprionate, each of which can penetrate the epidermis in active form, TAme had no effect on sensitization when applied at a distal site. Likewise, TAme did not affect plasma B (17-desoxycortisol) levels, whereas the other three compounds reduced plasma B tenfold, as expected of compounds causing adrenal-pituitary suppression.« less

  12. Innovative Approach to Validation of Ultraviolet (UV) Reactors ...

    EPA Pesticide Factsheets

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & surface water pathogen inactivation including viruses for low-pressure and medium-pressure UV systems. Evaluation objectives of the study: Practical approach for validating LP and MP UV reactors for virus & cryptosporidium inactivation using various test microbes, i.e., MS2, B. pumilus, AD2, T1; Apply UV dose algorithms based on theory vs empirical that predict log-I and RED as a function of the UV sensitivity of the microbe (combined variable criteria), flow, lamp-sensor output, DL-ASCFs, w/wo UVT; Assess capabilities of test microbe for predicting target pathogen, assess credibility with second test microbe vs bracketing; Evaluate UV lamp sensor technology that accounts for germicidal contributions of low-and high-wavelength UV light within MP reactors; Address approaches for propagating and assaying AD2, B. pumilus, MS2, and methods for determining low and high wavelength ASCFs using collimated beam LP & MP UV lamps; Determine & apply low and high wavelength ASCFs to predict cryptosporidium and adenovirus credit using MS2, or B. pumilus, T1 test data; Simplify Validation-Factor (VF) analysis of uncertainties/biases; Develop recommendations document from recent lessons learned applicabl

  13. Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B.

    PubMed

    Masood, Amjad; Zeeshan, M; Abraham, G

    2008-06-01

    Effect of ultravilolet-B (0.4 Wm(-2)) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla filiculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. filiculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. filiculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. filiculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. filiculoides which appears to be sensitive.

  14. Isolation of uv-sensitive variants of human FL cells by a viral suicide method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiomi, T.; Sato, K.

    A new method (viral suicide method) for the isolation of uv-sensitive mutants is described. Colonies of mutagenized human FL cells were infected with uv-irradiated Herpes simplex viruses and surviving ones which seemed to be deficient in host cell reactivation (HCR) were examined for their uv sensitivity. Nineteen of 238 clones examined were sensitive to uv irradiation at the time of the isolation. After recloning, four of these clones have been studied and two (UVS-1 and UVS-2) of them are stable in their uv sensitivity for 4 months in culture. uv sensitivity of UVS-1, UVS-2, and the parental FL cells aremore » as follows: the extrapolation numbers (n) are 2.2, 2.1, and 1.8 and mean lethal doses (DO) are 2.9, 3.7, and 7.8 J/m/sup 2/ for UVS-1, UVS-2, and the parental FL cells, respectively. They are no more sensitive than FL cells to x-irradiation. The ability of HCR in UVS-2 cells is apparently lower than that in FL cells, whereas UVS-1 cells are the same as FL cells in the ability.« less

  15. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis

    PubMed Central

    Favory, Jean-Jacques; Stec, Agnieszka; Gruber, Henriette; Rizzini, Luca; Oravecz, Attila; Funk, Markus; Albert, Andreas; Cloix, Catherine; Jenkins, Gareth I; Oakeley, Edward J; Seidlitz, Harald K; Nagy, Ferenc; Ulm, Roman

    2009-01-01

    The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment. PMID:19165148

  16. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, L.A.; Goldberg, L.H.; Ley, R.D.

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated thatmore » skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.« less

  17. An action spectrum for UV-B radiation and the rat lens.

    PubMed

    Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M

    2000-08-01

    To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.

  18. Protection of enzymes from photodegradation by entrapment within alumina.

    PubMed

    Shapovalova, Olga E; Levy, David; Avnir, David; Vinogradov, Vladimir V

    2016-10-01

    Most enzymes are highly sensitive to UV-light in all of its ranges and their activity can irreversibly drop even after a short time of exposure. Here we report a solution of this problem by using sol-gel matrices as effective protectors against this route of enzyme inactivation and denaturation. The concept presented here utilizes several modes of action: First, the entrapment within the rigid ceramic sol-gel matrix, inhibits denaturation motions, and the hydration shell around the entrapped protein provides extra protection. Second, the matrix itself - alumina in this report - absorbs UV light. And third, sol-gel materials have been shown to be quite universal in their ability to entrap small molecules, and so co-entrapment with well documented sun-screening molecules (2-hydroxybenzophenone, 2,2'-dihydroxybenzophenone, and 2,2'-dihydroxy-4-methoxybenzophenone) is an additional key protective tool. Three different enzymes as models were chosen for the experiments: carbonic anhydrase, acid phosphatase and horseradish peroxidase. All showed greatly enhanced UV (regions UV-A, UV-B, and UV-C) stabilization after entrapment within the doped sol-gel alumina matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  20. CO2 Enhancement of Growth and Photosynthesis in Rice (Oryza sativa) 1

    PubMed Central

    Ziska, Lewis H.; Teramura, Alan H.

    1992-01-01

    Two cultivars of rice (Oryza sativa L.) IR-36 and Fujiyama-5 were grown at ambient (360 microbars) and elevated CO2 (660 microbars) from germination through reproduction in unshaded greenhouses at the Duke University Phytotron. Growth at elevated CO2 resulted in significant decreases in nighttime respiration and increases in photosynthesis, total biomass, and yield for both cultivars. However, in plants exposed to simultaneous increases in CO2 and ultraviolet-B (UV-B) radiation, CO2 enhancement effects on respiration, photosynthesis, and biomass were eliminated in IR-36 and significantly reduced in Fujiyama-5. UV-B radiation simulated a 25% depletion in stratospheric ozone at Durham, North Carolina. Analysis of the response of CO2 uptake to internal CO2 concentration at light saturation suggested that, for IR-36, the predominant limitation to photosynthesis with increased UV-B radiation was the capacity for regeneration of ribulose bisphosphate (RuBP), whereas for Fujiyama-5 the primary photosynthetic decrease appeared to be related to a decline in apparent carboxylation efficiency. Changes in the RuBP regeneration limitation in IR-36 were consistent with damage to the photochemical efficiency of photosystem II as estimated from the ratio of variable to maximum chlorophyll fluorescence. Little change in RuBP regeneration and photochemistry was evident in cultivar Fujiyama-5, however. The degree of sensitivity of photochemical reactions with increased UV-B radiation appeared to be related to leaf production of UV-B-absorbing compounds. Fujiyama-5 had a higher concentration of these compounds than IR-36 in all environments, and the production of these compounds in Fujiyama-5 was stimulated by UV-B fluence. Results from this study suggest that in rice alterations in growth or photosynthesis as a result of enhanced CO2 may be eliminated or reduced if UV-B radiation continues to increase. PMID:16668910

  1. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    PubMed

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Spectroscopic (FT-IR, FT-Raman and UV-Visible) investigations, NMR chemical shielding anisotropy (CSA) parameters of 2,6-Diamino-4-chloropyrimidine for dye sensitized solar cells using density functional theory.

    PubMed

    Gladis Anitha, E; Joseph Vedhagiri, S; Parimala, K

    2015-02-05

    The molecular structure, geometry optimization, vibrational frequencies of organic dye sensitizer 2,6-Diamino-4-chloropyrimidine (DACP) were studied based on Hartree-Fock (HF) and density functional theory (DFT) using B3LYP methods with 6-311++G(d,p) basis set. Ultraviolet-Visible (UV-Vis) spectrum was investigated by time dependent DFT (TD-DFT). Features of the electronic absorption spectrum in the UV-Visible regions were assigned based on TD-DFT calculation. The absorption bands are assigned to transitions. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer DACP is due to an electron injection process from excited dye to the semiconductor's conduction band. The observed and the calculated frequencies are found to be in good agreement. The energies of the frontier molecular orbitals (FMOS) have also been determined. The chemical shielding anisotropic (CSA) parameters are calculated from the NMR analysis, Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying

    PubMed Central

    Guntur, Ananya R.; Gou, Bin; Gu, Pengyu; He, Ruo; Stern, Ulrich; Xiang, Yang; Yang, Chung-Hui

    2017-01-01

    The evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to H2O2 sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear. Here, we demonstrate that H2O2-sensitive dTRPA1 isoforms promote avoidance of UV when adult Drosophila females are selecting sites for egg-laying. First, we show that blind/visionless females are still capable of sensing and avoiding UV during egg-laying when intensity of UV is high yet within the range of natural sunlight. Second, we show that such vision-independent UV avoidance is mediated by a group of bitter-sensing neurons on the proboscis that express H2O2-sensitive dTRPA1 isoforms. We show that these bitter-sensing neurons exhibit dTRPA1-dependent UV sensitivity. Importantly, inhibiting activities of these bitter-sensing neurons, reducing their dTRPA1 expression, or reducing their H2O2-sensitivity all significantly reduced blind females’ UV avoidance, whereas selectively restoring a H2O2-sensitive isoform of dTRPA1 in these neurons restored UV avoidance. Lastly, we show that specifically expressing the red-shifted channelrhodopsin CsChrimson in these bitter-sensing neurons promotes egg-laying avoidance of red light, an otherwise neutral cue for egg-laying females. Together, these results demonstrate a physiological role of the UV-sensitive dTRPA1 isoforms, reveal that adult Drosophila possess at least two sensory systems for detecting UV, and uncover an unexpected role of bitter-sensing taste neurons in UV sensing. PMID:27932542

  4. H2O2-Sensitive Isoforms of Drosophila melanogaster TRPA1 Act in Bitter-Sensing Gustatory Neurons to Promote Avoidance of UV During Egg-Laying.

    PubMed

    Guntur, Ananya R; Gou, Bin; Gu, Pengyu; He, Ruo; Stern, Ulrich; Xiang, Yang; Yang, Chung-Hui

    2017-02-01

    The evolutionarily conserved TRPA1 channel can sense various stimuli including temperatures and chemical irritants. Recent results have suggested that specific isoforms of Drosophila TRPA1 (dTRPA1) are UV-sensitive and that their UV sensitivity is due to H 2 O 2 sensitivity. However, whether such UV sensitivity served any physiological purposes in animal behavior was unclear. Here, we demonstrate that H 2 O 2 -sensitive dTRPA1 isoforms promote avoidance of UV when adult Drosophila females are selecting sites for egg-laying. First, we show that blind/visionless females are still capable of sensing and avoiding UV during egg-laying when intensity of UV is high yet within the range of natural sunlight. Second, we show that such vision-independent UV avoidance is mediated by a group of bitter-sensing neurons on the proboscis that express H 2 O 2 -sensitive dTRPA1 isoforms. We show that these bitter-sensing neurons exhibit dTRPA1-dependent UV sensitivity. Importantly, inhibiting activities of these bitter-sensing neurons, reducing their dTRPA1 expression, or reducing their H 2 O 2 -sensitivity all significantly reduced blind females' UV avoidance, whereas selectively restoring a H 2 O 2 -sensitive isoform of dTRPA1 in these neurons restored UV avoidance. Lastly, we show that specifically expressing the red-shifted channelrhodopsin CsChrimson in these bitter-sensing neurons promotes egg-laying avoidance of red light, an otherwise neutral cue for egg-laying females. Together, these results demonstrate a physiological role of the UV-sensitive dTRPA1 isoforms, reveal that adult Drosophila possess at least two sensory systems for detecting UV, and uncover an unexpected role of bitter-sensing taste neurons in UV sensing. Copyright © 2017 by the Genetics Society of America.

  5. Changes in growth, leaf anatomy and pigment concentrations in pea under modulated UV-B field treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, T.A.; Howells, B.W.; Ruhland, C.T.

    1995-06-01

    In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less

  6. Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in Arabidopsis Leaves[C][W

    PubMed Central

    Casadevall, Romina; Rodriguez, Ramiro E.; Debernardi, Juan M.; Palatnik, Javier F.; Casati, Paula

    2013-01-01

    Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of GROWTH-REGULATING FACTORs (GRFs) and of microRNA miR396 in UV-B–mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3–RELATED and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs. PMID:24076976

  7. AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN

    PubMed Central

    Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada

    2016-01-01

    DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483

  8. POTENTIAL IMPACTS OF INCREASED SOLAR UV-B ON GLOBAL PLANT PRODUCTIVITY

    EPA Science Inventory

    Ultraviolet-B radiation comprises only a small portion of the electromagnetic spectrum but has a disproportionately large photobiological effect. oth plants and animals are greatly affected by increases in UV-B radiation but there exists tremendous variability in the sensitivity ...

  9. Characterization and error analysis of an operational retrieval algorithm for estimating column ozone and aerosol properties from ground-based ultra-violet irradiance measurements

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian

    2005-08-01

    Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.

  10. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  11. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  12. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers.

    PubMed

    Beardall, John; Sobrino, Cristina; Stojkovic, Slobodanka

    2009-09-01

    It is well known that UV radiation can cause deleterious effects to the physiological performance, growth and species assemblages of marine primary producers. In this review we describe the range of interactions observed between these impacts of ultraviolet radiation (UVR, 280-400 nm) with other environmental factors such as the availability of photosynthetically active radiation (PAR), nutrient status and levels of dissolved CO2, all of which can, in turn, be influenced by global climate change. Thus, increases in CO2 levels can affect the sensitivity of some species to UV-B radiation (UV-B), while others show no such impact on UV-B susceptibility. Both nitrogen- and phosphorus-limitation can have direct interactive effects on the susceptibility of algal cells and communities to UVR, though such effects are somewhat variable. Nutrient depletion can also potentially lead to a dominance of smaller celled species, which may be less able to screen out and are thus likely to be more susceptible to UVR-induced damage. The variability of responses to such interactions can lead to alterations in the species composition of algal assemblages.

  13. OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIAN POPULATIONS FROM UV-B IN THE US PACIFIC NORTHWEST

    EPA Science Inventory

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the US Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least 4 amphibian specie...

  14. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling

    PubMed Central

    Yoon, Min Young; Kim, Moon Young; Shim, Sangrae; Kim, Kyung Do; Ha, Jungmin; Shin, Jin Hee; Kang, Sungtaeg; Lee, Suk-Ha

    2016-01-01

    The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress. PMID:28066473

  15. Optical characteristics of natural waters protect amphibians from UV-B in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Palen, Wendy J.; Schindler, David E.; Adams, Michael J.; Pearl, Christopher A.; Bury, R. Bruce; Diamond, S.A.

    2002-01-01

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the U.S. Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least four amphibian species to UV-B has been central to the literature about amphibian decline. However, these results have not been expanded to address population-scale effects and natural landscape variation in UV-B transparency of water at amphibian breeding sites: both necessary links to assess the importance of UV-B for amphibian declines. We quantified the UV-B transparency of 136 potential amphibian breeding sites to establish the pattern of UV-B exposure across two montane regions in the PNW. Our data suggest that 85% of sites are naturally protected by dissolved organic matter in pond water, and that only a fraction of breeding sites are expected to experience UV-B intensities exceeding levels associated with elevated egg mortality. Thus, the spectral characteristics of natural waters likely mediate the physiological effects of UV-B on amphibian eggs in all but the clearest waters. These data imply that UV-B is unlikely to cause broad amphibian declines across the landscape of the American Northwest.

  16. BrMYB4, a suppressor of genes for phenylpropanoid and anthocyanin biosynthesis, is down-regulated by UV-B but not by pigment-inducing sunlight in turnip cv. Tsuda.

    PubMed

    Zhang, Lili; Wang, Yu; Sun, Mei; Wang, Jing; Kawabata, Saneyuki; Li, Yuhua

    2014-12-01

    The regulation of light-dependent anthocyanin biosynthesis in Brassica rapa subsp. rapa cv. Tsuda turnip was investigated using an ethyl methanesulfonate (EMS)-induced mutant R30 with light-independent pigmentation. TILLING (targeting induced local lesions in genomes) and subsequent analysis showed that a stop codon was inserted in the R2R3-MYB transcription factor gene BrMYB4 and that the encoded protein (BrMYB4mu) had lost its C-terminal region. In R30, anthocyanin accumulated in the below-ground portion of the storage root of 2-month-old plants. In 4-day-old seedlings and 2-month-old plants, expression of BrMYB4 was similar between R30 and the wild type (WT), but the expression of the cinnamate 4-hydroxylase gene (BrC4H) was markedly enhanced in R30 in the dark. In turnip seedlings, BrMYB4 expression was suppressed by UV-B irradiation in the WT, but this negative regulation was absent in R30. Concomitantly, BrC4H was repressed by UV-B irradiation in the WT, but stayed at high levels in R30. A gel-shift assay revealed that BrMYB4 could directly bind to the promoter region of BrC4H, but BrMYB4mu could not. The BrMYB4-enhanced green fluorescent protein (eGFP) protein could enter the nucleus in the presence of BrSAD2 (an importin β-like protein) nuclear transporter, but BrMYB4mu-eGFP could not. These results showed that BrMYB4 functions as a negative transcriptional regulator of BrC4H and mediates UV-B-dependent phenylpropanoid biosynthesis, while BrMYB4mu has lost this function. In the storage roots, the expression of anthocyanin biosynthesis genes was enhanced in R30 in the dark and in sunlight in both the WT and R30. However, in the WT, anthocyanin-inducing sunlight did not suppress BrMYB4 expression. Therefore, sunlight-induced anthocyanin biosynthesis does not seem to be regulated by BrMYB4. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    PubMed

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Effects of High Toxic Boron Concentration on Protein Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by a 2-DE Based MS Approach

    PubMed Central

    Sang, Wen; Huang, Zeng-Rong; Yang, Lin-Tong; Guo, Peng; Ye, Xin; Chen, Li-Song

    2017-01-01

    Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of “Sour pummelo” (Citrus grandis) and “Xuegan” (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis. PMID:28261239

  19. Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity.

    PubMed

    Kumar, Kundan; Mosa, Kareem A; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2014-01-01

    Boron (B) toxicity is responsible for low cereal crop production in a number of regions worldwide. In this report, we characterized two rice genes, OsPIP2;4 and OsPIP2;7, for their involvement in B permeability and tolerance. Transcript analysis demonstrated that the expression of OsPIP2;4 and OsPIP2;7 were downregulated in shoots and strongly upregulated in rice roots by high B treatment. Expression of both OsPIP2;4 and OsPIP2;7 in yeast HD9 strain lacking Fps1, ACR3, and Ycf1 resulted in an increased B sensitivity. Furthermore, yeast HD9 strain expressing OsPIP2;4 and OsPIP2;7 accumulated significantly higher B as compared to empty vector control, which suggests their involvement in B transport. Overexpression of OsPIP2;4 and OsPIP2;7 in Arabidopsis imparted higher tolerance under B toxicity. Arabidopsis lines overexpressing OsPIP2;4 and OsPIP2;7 showed significantly higher biomass production and greater root length, however there was no difference in B accumulation in long term uptake assay. Short-term uptake assay using tracer B (¹⁰B) in shoots and roots demonstrated increased ¹⁰B accumulation in Arabidopsis lines expressing OsPIP2;4 and OsPIP2;7, compare to wild type control plants. Efflux assay of B in the roots showed that ¹⁰B was effluxed from the Arabidopsis transgenic plants overexpressing OsPIP2;4 or OsPIP2;7 during the initial 1-h of assay. These data indicate that OsPIP2;4 and OsPIP2;7 are involved in mediating B transport in rice and provide tolerance via efflux of excess B from roots and shoot tissues. These genes will be highly useful in developing B tolerant crops for enhanced yield in the areas affected by high B toxicity.

  20. Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation.

    PubMed

    VoPham, Trang; Hart, Jaime E; Bertrand, Kimberly A; Sun, Zhibin; Tamimi, Rulla M; Laden, Francine

    2016-11-24

    Ultraviolet B (UV-B) radiation plays a multifaceted role in human health, inducing DNA damage and representing the primary source of vitamin D for most humans; however, current U.S. UV exposure models are limited in spatial, temporal, and/or spectral resolution. Area-to-point (ATP) residual kriging is a geostatistical method that can be used to create a spatiotemporal exposure model by downscaling from an area- to point-level spatial resolution using fine-scale ancillary data. A stratified ATP residual kriging approach was used to predict average July noon-time erythemal UV (UV Ery ) (mW/m 2 ) biennially from 1998 to 2012 by downscaling National Aeronautics and Space Administration (NASA) Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) gridded remote sensing images to a 1 km spatial resolution. Ancillary data were incorporated in random intercept linear mixed-effects regression models. Modeling was performed separately within nine U.S. regions to satisfy stationarity and account for locally varying associations between UV Ery and predictors. Cross-validation was used to compare ATP residual kriging models and NASA grids to UV-B Monitoring and Research Program (UVMRP) measurements (gold standard). Predictors included in the final regional models included surface albedo, aerosol optical depth (AOD), cloud cover, dew point, elevation, latitude, ozone, surface incoming shortwave flux, sulfur dioxide (SO 2 ), year, and interactions between year and surface albedo, AOD, cloud cover, dew point, elevation, latitude, and SO 2 . ATP residual kriging models more accurately estimated UV Ery at UVMRP monitoring stations on average compared to NASA grids across the contiguous U.S. (average mean absolute error [MAE] for ATP, NASA: 15.8, 20.3; average root mean square error [RMSE]: 21.3, 25.5). ATP residual kriging was associated with positive percent relative improvements in MAE (0.6-31.5%) and RMSE (3.6-29.4%) across all regions compared to NASA grids. ATP residual kriging incorporating fine-scale spatial predictors can provide more accurate, high-resolution UV Ery estimates compared to using NASA grids and can be used in epidemiologic studies examining the health effects of ambient UV.

  1. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation.

    PubMed

    Krupa, S V; Kickert, R N

    1989-01-01

    There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.

  2. Bi- and bisbibenzyls from the roots of Dichapetalum heudelotii and their antiproliferative activities.

    PubMed

    Osei-Safo, Dorcas; Dziwornu, Godwin Akpeko; Salgado, Antonio; Sunassee, Suthananda Naidu; Chama, Mary Anti

    2017-10-01

    Two new bisbibenzyls, heudelotol A (1) and B (2), along with the known bibenzyls, (E)-combretastatin A-1 (3) and combretastatin B-1 (4) have been isolated from the ethyl acetate extract of the roots of Dichapetalum heudelotii. Structure elucidation of all four isolated compounds was achieved using UV, IR, 1D and 2D NMR spectroscopy and HR-Mass Spectrometry. The compounds exhibited varying antiproliferative activity against six cancer cell lines using the CellTiter-Glo® Luminiscent Cell Viability Assay. Compound 3 was found to be the most active with sub-micromolar growth inhibition concentrations against all the cell lines (GI 50 0.03-0.72μM). However, it was about ten-fold less active than the positive control, taxol. The new bisbibenzyls heudelotol A and B exhibited good activity against human pancreatic adenocarcinoma (GI 50 9.04μM) and Burkitt's lymphoma (GI 50 4.67μM) respectively, and average activity against the other cancer cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Different susceptibility of cells of porcine skin and internal organs to ultraviolet A-induced breaking of nuclear DNA.

    PubMed

    Brozyna, Anna; Chwirot, Barbara W

    2005-01-01

    There is a continuously growing interest in medical applications of ultraviolet radiation (UV-A and long-wavelength UV-B) especially for laser surgery, phototherapy and photodiagnostics of human internal organs. UV-B and UV-A radiation is potentially mutagenic, however, there has been very little information published to date concerning the significance of possible deleterious action of such photons on cells of internal tissues. The aim of this study is to compare the sensitivities of skin cells to those of internal organs upon exposure to UV-A. To assess this sensitivity we have determined the UV-A dose-dependent frequency of nuclear DNA breaks detected with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) technique. The materials for the study were macroscopic samples of porcine skin, colon and esophagus. The UV-A dose ranged from 0.1 to 1000 mJ/cm2, which is similar to doses received by cells in regions examined with laser-induced fluorescence or by cells surrounding areas subject to a laser ablation. To reduce the influence of DNA repair processes the tissue samples were kept at a low temperature during the irradiation and were deep frozen immediately after completing the irradiation procedure. The cells of the internal organs are much more susceptible to UV-A-induced breaking of DNA than the skin cells. The percentage fractions and the spatial distributions of the damaged cells and the characteristics of the UV-A dose dependence seem to vary by type of internal organ.

  4. Determination of minimal erythema dose and anomalous reactions to UVA radiation by skin phototype.

    PubMed

    Pérez Ferriols, A; Aguilera, J; Aguilera, P; de Argila, D; Barnadas, M A; de Cabo, X; Carrrascosa, J M; de Gálvez Aranda, M V; Gardeazábal, J; Giménez-Arnau, A; Lecha, M; Lorente, J; Martínez-Lozano, J A; Rodríguez Granados, M T; Sola, Y; Utrillas, M P

    2014-10-01

    Phototesting is a technique that assesses the skin's sensitivity to UV radiation by determining the smallest dose of radiation capable of inducing erythema (minimal erythema dose [MED]) and anomalous responses to UV-A radiation. No phototesting protocol guidelines have been published to date. This was a multicenter prospective cohort study in which 232 healthy volunteers were recruited at 9 hospitals. Phototests were carried out with solar simulators or fluorescent broadband UV-B lamps. Each individual received a total of 5 or 6 incremental doses of erythemal radiation and 4 doses of UV-A radiation. The results were read at 24hours. At hospitals where solar simulators were used, the mean (SD) MED values were 23 (8), 28 (4), 35 (4), and 51 (6) mJ/cm(2) for skin phototypes i to iv, respectively. At hospitals where broadband UV-B lamps were used, these values were 28 (5), 32 (3), and 34 (5) mJ/cm(2) for phototypes ii to iv, respectively. MED values lower than 7, 19, 27, and 38 mJ/cm(2) obtained with solar simulators were considered to indicate a pathologic response for phototypes I to IV, respectively. MED values lower than 18, 24, and 24mJ/cm(2) obtained with broadband UV-B lamps were considered to indicate a pathologic response for phototypes ii to iv, respectively. No anomalous responses were observed at UV-A radiation doses of up to 20J/cm(2). Results were homogeneous across centers, making it possible to standardize diagnostic phototesting for the various skin phototypes and establish threshold doses that define anomalous responses to UV radiation. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  5. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  6. Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition. PMID:23818993

  7. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    PubMed Central

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-01-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231

  8. VIIRS VisNIR/SMWIR end of life sensitivity predictions

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Nelson, Neil; Johnson, Eric; Yokoyama, Karen

    2012-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. The radiometric response for VIIRS spectral bands in the 600 - 2300 nm wavelength range (I1, M5, M6, M7 / I2, M8, M9, M10 / I3, M11), which started with significant signal to noise ratio margin at beginning of life, has shown some degradation on orbit. This degradation has been correlated with UV exposure of the VIIRS optics. UV exposure of witness samples from the Rotating Telescope Assembly (RTA) mirrors by Aerospace Corporation showed reflectance loss with the same spectral signature as the response degradation observed for VIIRS. The investigation and root cause determination for the VIIRS response degradation are discussed in separate papers. A model of VIIRS throughput degradation has been developed from witness sample UV exposure test results made by Aerospace. A direct relationship is assumed between UV dose (fluence) and the reflectance degradation of the RTA mirrors. The UV dose on orbit for the primary mirror is proportional to the incident earthshine and its solid angle of view. For subsequent mirrors the UV dose is weighted by solid angle and preceding mirror UV reflectance. UV dose is converted to reflectance change based on witness sample exposure measurements. The change in VIIRS throughput is calculated by multiplying the reflectance of the four RTA mirrors and agrees with the on-orbit measured response changes as a function of UV exposure time. Model predictions of the radiometric sensitivity for the affected VIIRS bands show positive margin at end of life for all affected bands.

  9. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress.

    PubMed

    Gao, Limei; Li, Yongfeng; Shen, Zhihua; Han, Rong

    2018-05-01

    UV-B acclimation effects and UV-B damage repair induced by a 632.8-nm He-Ne laser were investigated in Arabidopsis thaliana plants in response to supplementary UV-B stress. There was an increasing trend in growth parameters in the combination-treated plants with He-Ne laser and UV-B light compared to those stressed with enhanced UV-B light alone during different developmental stages of plants. The photosynthetic efficiency (Pn) and survival rates of seedlings were significantly higher in the combination treatments than UV-B stress alone. The expression of UVR8, phytochrome B (PhyB), and their mediated signal responsive genes such as COP1, HY5, and CHS were also significantly upregulated in plants with the laser irradiation compared with other groups without the laser. Levels of flavonol accumulation in leaves and capsule yield of He-Ne laser-treated plants were increased. The phyB-9 mutants were more sensitive to enhanced UV-B stress and had no obvious improvements in plant phenotypic development and physiological damage caused by enhanced UV-B stress after He-Ne laser irradiation. Our results suggested that UVR8 and its mediated signaling pathway via interaction with COP1 can be induced by He-Ne laser, and these processes were dependent on cytoplasmic PhyB levels in plant cells, which might be one of the most important mechanisms of He-Ne laser on UV-B protection and UV-B damage repair. These current data have also elucidated that the biostimulatory effects of He-Ne laser on Arabidopsis thaliana plants would happen not only during the early growth stage but also during the entire late developmental stage.

  10. Comparative studies on the lethal, mutagenic, and recombinogenic effects of ultraviolet -A, -B, -C, and visible light with and without 8-methoxypsoralen in Saccharomyces cerevisiae.

    PubMed

    Mondon, P; Shahin, M M

    1992-05-01

    Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.

  11. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    PubMed Central

    Takahashi, Shinya; Kojo, Kei H.; Kutsuna, Natsumaro; Endo, Masaki; Toki, Seiichi; Isoda, Hiroko; Hasezawa, Seiichiro

    2015-01-01

    Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m−2) and high-dose UV-B (high UV-B: 2960 J m−2) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death. PMID:25954287

  12. Boron nutrition and chilling tolerance of warm climate crop species.

    PubMed

    Huang, Longbin; Ye, Zhengqian; Bell, Richard W; Dell, Bernard

    2005-10-01

    Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

  13. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  14. Quantitative analysis of boeravinones in the roots of Boerhaavia Diffusa by UPLC/PDA.

    PubMed

    Bairwa, Khemraj; Srivastava, Amit; Jachak, Sanjay Madhukar

    2014-01-01

    Boerhaavia diffusa is a perennial herb belonging to Nyctaginaceae. Various classes of chemical constituents such as phenolics (boeravinones), terpenoids and organic acids have been reported in B. diffusa roots. As boeravinones have been proposed as putative active constituents for the anti-cancer, spasmolytic and anti-inflammatory activities exhibited by B. diffusa extracts, it is worthwhile developing and validating an ultra-performance liquid chromatography (UPLC) method for analysis of boeravinones in B. diffusa roots. To develop and validate a simple, accurate, robust and rapid UPLC analytical method for quality control of B. diffusa roots. Samples for analysis were prepared by refluxing powdered root material with methanol for 2 h. The extracts were concentrated, dried and stored at -20°C until their use. A UPLC with photodiode array (PDA) method was developed and validated for the quantification of boeravinones in the roots of B. diffusa. The separation of boeravinones was achieved using a BEH Shield C18 -column (2.1 × 100 mm, 1.7 µm) with gradient elution of methanol and water (0.1% acetic acid), at a flow rate of 0.4 mL/min and detection was carried out at λmax 273 nm. The UPLC method developed showed good linearity (r(2)  ≥ 0.9999), accuracy and precision. The UPLC method developed provided a selective, sensitive and rapid analytical method for the quantification of boeravinones in B. diffusa roots. All the validation parameters were found to be within the permissible limits as per International Conference on Harmonisation guidelines. Copyright © 2014 John Wiley & Sons, Ltd.

  15. The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.

    PubMed

    Liu, Jie; Wang, Wen-Xiong

    2017-09-01

    Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development.

    PubMed

    Wijewardana, Chathurika; Henry, W Brien; Gao, Wei; Reddy, K Raja

    2016-07-01

    Crop growth and development are highly responsive to global climate change components such as elevated carbon dioxide (CO2), drought, and ultraviolet-B (UV-B) radiation. Plant tolerance to these environmental stresses comprises its genetic potential, physiological changes, metabolism, and signaling pathways. An inclusive understanding of morphological, physiological, and biochemical responses to these abiotic stresses is imperative for the development of stress tolerant varieties for future environments. The objectives of this study were to characterize the changes in vegetative and physiological traits in maize hybrids in their response to multiple environmental factors of (CO2) [400 and 750μmolmol(-1) (+(CO2)], irrigation treatments based evapotranspiration (ET) [100 and 50% (-ET)], and UV-B radiation [0 and 10kJm(-2)d(-1) (+UV-B)] and to identify the multiple stress tolerant hybrids aid in mitigating projected climate change for shaping future agriculture. Six maize hybrids (P1498, DKC 65-81, N75H-GTA, P1319, DKC 66-97, and N77P-3111) with known drought tolerance variability were grown in eight sunlit, controlled environment chambers in which control treatment consisted of 400μmolmol(-1) [CO2], 100% ET-based irrigation, and 0kJ UV-B. Plants grown at +UV-B alone or combination with 50% ET produced shorter plants and smaller leaf area while elevated CO2 treatments ameliorated the damaging effects of drought and higher UV-B levels on maize hybrids. Plant height, leaf area, total dry matter chlorophyll, carotenoids, and net photosynthesis measured were increased in response to CO2 enrichment. Total stress response index (TSRI) for each hybrid, developed from the cumulative sum of response indices of vegetative and physiological parameters, varied among the maize hybrids. The hybrids were classified as tolerant (P1498), intermediate (DKC 65-81, N75H-GTA, N77P-3111) and sensitive (P1319 and DKC 66-97) to multiple environmental stresses. The positive correlation between TSRI and vegetative and physiological index developed in this study demonstrates that a combination of vegetative and physiological traits is an effective screening tool to identify germplasm best suited to cope with future changing climates. Furthermore, the tolerant hybrids identified in this study indicate that the possibility of cultivar selection for enhanced agronomic performance and stability in a water limited environment with higher UV-B, anticipated to occur in future climates. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  18. Photosynthethic carbon reduction by seagrasses exposed to ultraviolet b radiation. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-15

    The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletionmore » was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.« less

  19. Photosynthethic carbon reduction by seagrasses exposed to ultraviolet B radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletion was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.

  20. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores.

    PubMed Central

    Mason, J M; Setlow, P

    1987-01-01

    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores. Images PMID:3112127

  1. Possible impacts of changes in UV-B radiation on North American trees and forests.

    PubMed

    Sullivan, Joe H

    2005-10-01

    Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition.

  2. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways.

    PubMed

    Moon, Bo-Ram; Kim, Tae-Kyoung; Kim, Moon-Kyung; Choi, Jaewon; Zoh, Kyung-Duk

    2017-10-01

    The removal and degradation pathways of microcystin-LR (MC-LR, [M+H] +  = 995.6) in UV-B photolysis and UV-B/H 2 O 2 processes were examined using liquid chromatography-tandem mass spectrometry. The UV/H 2 O 2 process was more efficient than UV-B photolysis for MC-LR removal. Eight by-products were newly identified in the UV-B photolysis ([M+H] +  = 414.3, 417.3, 709.6, 428.9, 608.6, 847.5, 807.4, and 823.6), and eleven by-products were identified in the UV-B/H 2 O 2 process ([M+H] +  = 707.4, 414.7, 429.3, 445.3, 608.6, 1052.0, 313.4, 823.6, 357.3, 245.2, and 805.7). Most of the MC-LR by-products had lower [M+H] + values than the MC-LR itself during both processes, except for the [M+H] + value of 1052.0 during UV-B photolysis. Based on identified by-products and peak area patterns, we proposed potential degradation pathways during the two processes. Bond cleavage and intramolecular electron rearrangement by electron pair in the nitrogen atom were the major reactions during UV-B photolysis and UV-B/H 2 O 2 processes, and hydroxylation by OH radical and the adduct formation reaction between the produced by-products were identified as additional pathways during the UV-B/H 2 O 2 process. Meanwhile, the degradation by-products identified from MC-LR during UV-B/H 2 O 2 process can be further degraded by increasing H 2 O 2 dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management.

    PubMed

    Singh, Suruchi; Sarkar, Abhijit; Agrawal, S B; Agrawal, Madhoolika

    2014-11-01

    In the present study, the response of kidney bean (Phaseolus vulgaris L. cv. Pusa Komal) plants was evaluated under three different levels of ultraviolet-B (UV-B), i.e., excluded UV-B (eUV-B), ambient UV-B (aUV-B; 5.8 kJ m(-2) day(-1)), and supplemental UV-B (sUV-B; 280-315 nm; ambient + 7.2 kJ m(-2) day(-1)), under near-natural conditions. eUV-B treatment clearly demonstrated that both aUV-B and sUV-B are capable of causing significant changes in the plant's growth, metabolism, economic yield, genome template stability, total protein, and antioxidative enzyme profiles. The experimental findings showed maximum plant height at eUV-B, but biomass accumulation was minimum. Significant reductions in quantum yield (Fv/Fm) were observed under both aUV-B and sUV-B, as compared to eUV-B. UV-B-absorbing flavonoids increased under higher UV-B exposures with consequent increments in phenylalanine ammonia lyase (PAL) activities. The final yield was significantly higher in plants grown under eUV-B, compared to those under aUV-B and sUV-B. Total protein profile through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analysis of isoenzymes, like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR), through native PAGE revealed major changes in the leaf proteome under aUV-B and sUV-B, depicting induction of some major stress-related proteins. The random amplified polymorphic DNA (RAPD) profile of genomic DNA also indicated a significant reduction of genome template stability under UV-B exposure. Thus, it can be inferred that more energy is diverted for inducing protection mechanisms rather than utilizing it for growth under high UV-B level.

  4. Perturbing NR2B-PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling.

    PubMed

    Xu, Fangxia; Zhao, Xin; Liu, Lin; Song, Jia; Zhu, Yingjun; Chu, Shuaishuai; Shao, Xueming; Li, Xiuxiu; Ma, Zhengliang; Gu, Xiaoping

    2017-09-06

    Neuropathic pain is characterized by central sensitization. The interaction between N-methyl-D-aspartate receptors (NMDARs) and postsynaptic density protein-95 (PSD-95) plays a major role in central sensitization. Here, we aimed to investigate the analgesic effect of disruption of the interaction between NMDAR and PSD-95. Chronic dorsal root ganglia compression model rats were used to mimic sciatica. Thermal hyperalgesia and mechanical allodynia were evaluated. The expression of spinal phospho-NR2B, PSD-95, calcium/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element binding protein (CREB) was measured using western blotting. A mimetic peptide Myr-NR2B9c was injected intrathecally to disrupt the interaction between PSD-95 and NR2B and detected by coimmunoprecipitation. Chronic dorsal root ganglia compression surgery induced thermal hyperalgesia and mechanical allodynia, and upregulated pain-related proteins such as phospho-NR2B, PSD-95, CaMKII, and CREB expressions in the spinal cord. Myr-NR2B9c disrupted the interaction between NR2B-containing NMDARs and PSD-95 in the spinal cord. Intrathecal administration of Myr-NR2B9c attenuated neuropathic pain behaviors and downregulated the expressions of phospho-NR2B, PSD-95, CaMKII, and CREB in the spinal cord. The present study indicates that dissociation of NR2B-containing NMDARs from PSD-95 inactivates CaMKII and CREB signaling and relieves pain.

  5. Development of photo-modified starch/kefiran/TiO2 bio-nanocomposite as an environmentally-friendly food packaging material.

    PubMed

    Goudarzi, Vahid; Shahabi-Ghahfarrokhi, Iman

    2018-05-21

    This paper reports on an experiment in which starch/kefiran/TiO 2 (SKT)-based bio-nanocomposite films were developed and modified by photo-chemical reaction. In so doing, film-forming solutions were exposed to ultraviolet A (UV-A) for different times (1, 6, and 12 h). The obtained results indicated that increasing UV-A exposure time brought about an increase (≈14.9%) in the tensile strength of bio-nanocomposites. However, elongation at break and Young's modulus of irradiated film specimen decreased (≈32%, ≈12%, respectively) by increasing UV-A exposure time, and the moisture-sensitive parameters of specimen decreased using UV-A irradiation. According to the results, the functional properties of irradiated bio-nanocomposite are depended on the ratio of cross-linkages between polymer chains and the potentially produced mono and disaccharide by UV-A. Copyright © 2018. Published by Elsevier B.V.

  6. Co-sensitized natural dyes potentially used to enhance light harvesting capability

    NASA Astrophysics Data System (ADS)

    Amelia, R.; Sawitri, D.; Risanti, D. D.

    2015-01-01

    We present the photoelectrochemical properties of dye-sensitized solar cells using natural pigments containing anthocyanins, betalains, and caroteins. The dyes were adsorbed by a photoanode that was fabricated from nanocrystalline TiO2 on transparent conductive glass. TiO2 comprises of 100% anatase and 90:10 anatase:rutile fraction. The dyes extracted from mangosteen pericarp, Musa aromatica pericarp, Celosia cristata flower and red beet root were characterized through UV-vis and IPCE. The effectiveness of the dyes was explained through photocurrent as a function of incident light power. It was found that the cocktail and multilayered dyes comprised of anthocyanins and caroteins is beneficial to obtain high photocurrent, whereas betalains is not recommended to be applied on untreated TiO2. Due to the bandgap properties of rutile and anatase, the presence of 10% rutile in TiO2 is favourable to further enhance the electron transport.

  7. The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B.

    PubMed

    Filip, Adriana; Daicoviciu, Doina; Clichici, Simona; Bolfa, Pompei; Catoi, Cornel; Baldea, Ioana; Bolojan, Laura; Olteanu, Diana; Muresan, Adriana; Postescu, I D

    2011-11-03

    The study investigated the protective activity of red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on multiple doses of ultraviolet radiation (UV)-B-induced deleterious effects in SKH-1 mice skin. Eighty 8-weeks-old female SKH-1 mice were divided into 8 groups: control, vehicle, UV-B irradiated, vehicle+UV-B irradiated, BM 2.5mg polyphenols (PF)/cm(2)+UV-B irradiated, BM 4 mg PF/cm(2)+UV-B irradiated, UV-B+BM 2.5mg PF/cm(2), UV-B+BM 4 mg PF/cm(2). The extract was applied topically before or after each UV-B exposure (240 mJ/cm(2)), for 10 days consecutively. The antioxidant activity of BM extract is higher than gallic acid (k(BM)=0.017, k(gallic acid)=0.013). Multiple doses of UV-B generated the formation of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, increased glutathione peroxidase (GPx) and catalase (CAT) activities respectively glutathione (GSH) and IL-1β levels in skin. In group treated with 2.5mg PF/cm(2) before UV-B irradiation BM extract inhibited UV-B-induced sunburn cells, restored the superoxide dismutase (MnSOD) activity, increased insignificantly CAT and GPx activities and reduced IL-1β level. The BM 4.0 mg PF/cm(2) treatment decreased GSH level and reduced the percentage of CPDs positive cells in skin. Both doses of BM extract administered after UV-B irradiation increased the MnSOD and GPx activities and reduced the formation of sunburn cells in skin. Our results suggest that BM extract might be a potential chemo-preventive candidate in reducing the oxidative stress and apoptosis induced by multiple doses of UV-B in skin. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  9. Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high" product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD).

    PubMed

    Zuway, Khaled Y; Smith, Jamie P; Foster, Christopher W; Kapur, Nikil; Banks, Craig E; Sutcliffe, Oliver B

    2015-09-21

    The global increase in the production and abuse of cathinone-derived New Psychoactive Substances (NPSs) has developed the requirement for rapid, selective and sensitive protocols for their separation and detection. Electrochemical sensing of these compounds has been demonstrated to be an effective method for the in-field detection of these substances, either in their pure form or in the presence of common adulterants, however, the technique is limited in its ability to discriminate between structurally related cathinone-derivatives (for example: (±)-4′-methylmethcathinone (4-MMC, 2a) and (±)-4′-methyl-N-ethylmethcathinone (4-MEC, 2b) when they are both present in a mixture. In this paper we demonstrate, for the first time, the combination of HPLC-UV with amperometric detection (HPLC-AD) for the qualitative and quantitative analysis of 4-MMC and 4-MEC using either a commercially available impinging jet (LC-FC-A) or custom-made iCell channel (LC-FC-B) flow-cell system incorporating embedded graphite screen-printed macroelectrodes. The protocol offers a cost-effective, reproducible and reliable sensor platform for the simultaneous HPLC-UV and amperometric detection of the target analytes. The two systems have similar limits of detection, in terms of amperometric detection [LC-FC-A: 14.66 μg mL(-1) (2a) and 9.35 μg mL(-1) (2b); LC-FC-B: 57.92 μg mL(-1) (2a) and 26.91 μg mL(-1) (2b)], to the previously reported oxidative electrochemical protocol [39.8 μg mL(-1) (2a) and 84.2 μg mL(-1) (2b)], for two synthetic cathinones, prevalent on the recreational drugs market. Though not as sensitive as standard HPLC-UV detection, both flow cells show a good agreement, between the quantitative electroanalytical data, thereby making them suitable for the detection and quantification of 4-MMC and 4-MEC, either in their pure form or within complex mixtures. Additionally, the simultaneous HPLC-UV and amperometric detection protocol detailed herein shows a marked improvement and advantage over previously reported electroanalytical methods, which were either unable to selectively discriminate between structurally related synthetic cathinones (e.g. 4-MMC and 4-MEC) or utilised harmful and restrictive materials in their design.

  10. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  11. PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period.

    PubMed

    Götz, Michael; Albert, Andreas; Stich, Susanne; Heller, Werner; Scherb, Hagen; Krins, Andreas; Langebartels, Christian; Seidlitz, Harald K; Ernst, Dieter

    2010-07-01

    Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 micromol m(-2) s(-1)) and high biologically effective UV irradiation (UV-B(BE) 180 mW m(-2)) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 micromol m(-2) s(-1)) and low UV-B (UV-B(BE) 25 mW m(-2)) resulted in somewhat lower levels of quercetin products compared to the high-UV-B(BE) conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 micromol m(-2) s(-1)) and high UV-B (UV-B(BE) 180 mW m(-2)), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315-400 nm) in UV action on A. thaliana.

  12. Smart plants, smart models? On adaptive responses in vegetation-soil systems

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Teuling, Ryan; van Dam, Nicole; de Rooij, Gerrit

    2015-04-01

    Hydrological models that will be able to cope with future precipitation and evapotranspiration regimes need a solid base describing the essence of the processes involved [1]. The essence of emerging patterns at large scales often originates from micro-behaviour in the soil-vegetation-atmosphere system. A complicating factor in capturing this behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. To assess root water uptake by plants in a changing soil environment, a direct indication of the amount of energy required by plants to take up water can be obtained by measuring the soil water potential in the vicinity of roots with polymer tensiometers [2]. In a lysimeter experiment with various levels of imposed water stress the polymer tensiometer data suggest maize roots regulate their root water uptake on the derivative of the soil water retention curve, rather than the amount of moisture alone. As a result of environmental changes vegetation may wither and die, or these changes may instead trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [3-7]. To investigate a possible relation between plant genotype, the plant stress hormone abscisic acid (ABA) and the soil water potential, a proof of principle experiment was set up with Solanum Dulcamare plants. The results showed a significant difference in ABA response between genotypes from a dry and a wet environment, and this response was also reflected in the root water uptake. Adaptive responses may have consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224. [2] Van der Ploeg, M.J., H.P.A. Gooren, G. Bakker, C.W. Hoogendam, C. Huiskes, L.K. Koopal, H. Kruidhof and G.H. de Rooij. 2010. Polymer tensiometers with ceramic cones: performance in drying soils and comparison with water-filled tensiometers and time domain reflectometry. Hydrol. Earth Syst. Sci. 14: 1787-1799, doi: 10.5194/hess-14-1787-2010. [3] McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801 [4] Ries G, Heller W, Puchta H, Sandermann H, Seldlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature 2000; 406: 98-101 [5] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals, J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genet. 2002; 30: 311-314 [6] Kovalchuk I, Kovalchuk O, Kalck V., Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423: 760-762 [7] Cullis C A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. (Lond.) 2005; 95: 201-206

  13. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS.

    PubMed

    Farag, Mohamed A; Huhman, David V; Lei, Zhentian; Sumner, Lloyd W

    2007-02-01

    An integrated approach utilizing HPLC-UV-ESI-MS and GC-MS was used for the large-scale and systematic identification of polyphenols in Medicago truncatula root and cell culture. Under optimized conditions, we were able to simultaneously quantify and identify 35 polyphenols including 26 isoflavones, 3 flavones, 2 flavanones, 2 aurones and a chalcone. All identifications were based upon UV spectra, mass spectral characteristics of protonated molecules, tandem mass spectral data, mass measurements obtained using a quadrupole time-of-flight mass spectrometer (QtofMS), and confirmed through the co-characterization of authentic compounds. In specific instances where the stereochemistry of sugar conjugates was uncertain, subsequent enzymatic hydrolysis of the conjugate followed by GC-MS was used to assign the sugar stereochemical configuration. Comparative metabolic profiling of Medicago truncatula root and cell cultures was then performed and revealed significant differences in the isoflavonoid composition of these two tissues.

  14. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    PubMed

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. UV-VIS backscattering measurements on atmospheric particles mixture using polarization lidar coupled with numerical simulations and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick

    2015-04-01

    As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys. 13, 6757-6776 (2013). [4] M.I. Mishchenko, L.D. Travis and A.A. Lacis: "Scattering, absorption and emission of Light by small particles," 3rd edition, Cambridge University Press UK, (2002). [5] G. David, B. Thomas, E. Coillet, A. Miffre, and P. Rairoux, Polarization-resolved exact light backscattering by an ensemble of particles in air, Opt. Exp., 21, No. 16, 18624-18639, (2013). [6] G. David, B. Thomas, Y. Dupart, B. D'Anna, C. George, A. Miffre and P. Rairoux, UV polarization lidar for remote sensing new particles formation in the atmosphere, Opt. Exp., 22, A1009-A1022, (2014).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Vrønning Hoffmann, Søren, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu

    New photoelectron (PE) and ultra violet (UV) and vacuum UV (VUV) spectra have been obtained for chlorobenzene by synchrotron study with higher sensitivity and resolution than previous work and are subjected to detailed analysis. In addition, we report on the mass-resolved (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectra of a jet-cooled sample. Both the VUV and REMPI spectra have enabled identification of a considerable number of Rydberg states for the first time. The use of ab initio calculations, which include both multi-reference multi-root doubles and singles configuration interaction (MRD-CI) and time dependent density functional theoretical (TDDFT) methods, hasmore » led to major advances in interpretation of the vibrational structure of the ionic and electronically excited states. Franck-Condon (FC) analyses of the PE spectra, including both hot and cold bands, indicate much more complex envelopes than previously thought. The sequence of ionic states can be best interpreted by our multi-configuration self-consistent field computations and also by comparison of the calculated vibrational structure of the B and C ionic states with experiment; these conclusions suggest that the leading sequence is the same as that of iodobenzene and bromobenzene, namely: X{sup 2}B{sub 1}(3b{sub 1}{sup −1}) < A{sup 2}A{sub 2}(1a{sub 2}{sup −1}) < B{sup 2}B{sub 2}(6b{sub 2}{sup −1}) < C{sup 2}B{sub 1}(2b{sub 1}{sup −1}). The absorption onset near 4.6 eV has been investigated using MRD-CI and TDDFT calculations; the principal component of this band is {sup 1}B{sub 2} and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. The other low-lying absorption band near 5.8 eV is dominated by a {sup 1}A{sub 1} state, but an underlying weak {sup 1}B{sub 1} state (πσ{sup ∗}) is also found. The strongest band in the VUV spectrum near 6.7 eV is poorly resolved and is analyzed in terms of two ππ{sup ∗} states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The calculated vertical excitation energies of these two states are critically dependent upon the presence of Rydberg functions in the basis set, since both manifolds are strongly perturbed by the Rydberg states in this energy range. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene and bromobenzene.« less

  17. Transcriptional regulation of chlorogenic acid biosynthesis in carrot root slices exposed to UV-B light

    USDA-ARS?s Scientific Manuscript database

    Orange carrots are well known for their nutritional value as producers of ß-carotene, a Vitamin A precursor. Lesser known, is their ability to accumulate antioxidants such as chlorogenic acid. Chlorogenic acid is produced through the same biosynthetic pathway that produces lignins, anthocyanins, f...

  18. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2009-04-01

    The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.

  19. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance.

    PubMed

    Guo, Woei-Jiun; Meetam, Metha; Goldsbrough, Peter B

    2008-04-01

    Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.

  20. [Diagnostic value of MRI for posterior root tear of medial and lateral meniscus].

    PubMed

    Qian, Yue-Nan; Liu, Fang; Dong, Yi-Long; Cai, Chun-Yuan

    2018-03-25

    To explore diagnostic value of MRI on posterior root tear of medial and lateral meniscus. From January 2012 to January 2016, clinical data of 43 patients with meniscal posterior root tear confirmed by arthroscopy were retrospective analyzed, including 25 males and 18 females, aged from 27 to 69 years old with an average age of(42.5±8.3)years old;27 cases on the right side and 16 cases on the left side. MRI examinations of 43 patients with tear of posterior meniscus root confirmed by knee arthroscopies were retrospectively reviewed. MRI images were double-blinded, independently, retrospectively scored by two imaging physicians. Sensitivity, specificity and accuracy of MRI diagnosis of lateral and medial meniscus posterior root tear were calculated, and knee ligament injury and meniscal dislocation were calculated. Forty-three of 143 patients were diagnosed with meniscus posterior root tears by arthroscopy, including 19 patients with lateral tears and 24 patients with medial tears. The sensitivity, specificity and accuracy in diagnosis of posterior medial meniscus root tears for doctor A were 91.67%, 86.6% and 83.9% respectively, and for doctor B were 87.5%, 87.4% and 87.4%, 19 patients with medial meniscal protrusion and 2 patients with anterior cruciate ligament tear. The sensitivity, specificity and accuracy in diagnosis of posterior lateral meniscus root tears for doctor A were 73.7%, 79.9% and 79% respectively, and for doctor B were 78.9%, 82.3% and 82.5%, 4 patients with lateral meniscus herniation and 16 patients with cruciate ligament tear. Kappa statistics for posterior medial meniscus root tears and posterior lateral meniscus root tears were 0.84 and 0.72. MRI could effectively demonstrate imaging features of medial and lateral meniscal root tear and its accompanying signs. It could provide the basis for preoperative diagnosis of clinicians, and be worthy to be popularized. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  1. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  2. Characterizing the discoloration of EBT3 films in solar UV A+B measurement using red LED

    NASA Astrophysics Data System (ADS)

    Omar, Ahmad Fairuz; Osman, Ummi Shuhada; Tan, Kok Chooi

    2017-09-01

    This research article proposes an alternative method to measure the discoloration or the color changes of EBT3 films due to exposure by solar ultraviolet (UV A+B) dose. Common methods to measure the color changes of EBT3 are through imaging technique measured by flatbed scanner and through absorbance spectroscopy measured by visible spectrometer. The research presented in this article measure the color changes of EBT3 through simplified optical system using the combination of light emitting diode (LED) as the light source and photodiode as the detector. In this research, 50 pieces of Gafchromic EBT3 films were prepared with the dimension of 3 cm x 2 cm. Color of the films changed from light green to dark green based on the total accumulated UV dose (mJ/cm2) by each film that depends on the duration of exposure, irradiance level (mW/cm2) and condition of the sky. The exposed films were then taken to the laboratory for its color measurement using absorbance spectroscopy technique and using newly developed simplified optical instrument using LED-photodiode. Results from spectroscopy technique indicate that wavelength within red region exhibit better response in term of linearity and responsivity towards the colors of EBT3 films. Wavelength of 626 nm was then selected as the peak emission wavelength for LED-photodiode absorbance system. UV dose measurement using LEDphotodiode system produced good result with coefficient of determination, R2 of 0.97 and root mean square of error, RMSE of 431.82 mJ/cm2 while comparatively, similar wavelength but analyzed from spectroscopy dataset produced R2 of 0.988 and RMSE of 268.94 mJ/cm2.

  3. An ultraviolet light induced bacteriophage in Beneckea gazogenes. [organism growth on precambrian earth

    NASA Technical Reports Server (NTRS)

    Rambler, M.; Margulis, L.

    1979-01-01

    The effects of UV and high intensity irradiation on microorganisms growing under conditions prevalent during the early Precambrian Aeon are examined. The study employed the anaerobic red pigmented marine vibrio, Beneckea gazogenes (Harwood, 1978), using an extreme UV sensitivity of 2537 A, extensive cell lysis, and commitant production of bacteriophage induced by the UV light. Three types of white mutant, pink colony mutant, and red wild type isolates of B gazogenes were grown showing differential irradiation sensitivity and phage particles from all three lysates were collected and examined.

  4. Functional characterization of type-B response regulators in the Arabidopsis cytokinin response.

    PubMed

    Hill, Kristine; Mathews, Dennis E; Kim, Hyo Jung; Street, Ian H; Wildes, Sarah L; Chiang, Yi-Hsuan; Mason, Michael G; Alonso, Jose M; Ecker, Joseph R; Kieber, Joseph J; Schaller, G Eric

    2013-05-01

    Cytokinins play critical roles in plant growth and development, with the transcriptional response to cytokinin being mediated by the type-B response regulators. In Arabidopsis (Arabidopsis thaliana), type-B response regulators (ARABIDOPSIS RESPONSE REGULATORS [ARRs]) form three subfamilies based on phylogenic analysis, with subfamily 1 having seven members and subfamilies 2 and 3 each having two members. Cytokinin responses are predominantly mediated by subfamily 1 members, with cytokinin-mediated effects on root growth and root meristem size correlating with type-B ARR expression levels. To determine which type-B ARRs can functionally substitute for the subfamily 1 members ARR1 or ARR12, we expressed different type-B ARRs from the ARR1 promoter and assayed their ability to rescue arr1 arr12 double mutant phenotypes. ARR1, as well as a subset of other subfamily 1 type-B ARRs, restore the cytokinin sensitivity to arr1 arr12. Expression of ARR10 from the ARR1 promoter results in cytokinin hypersensitivity and enhances shoot regeneration from callus tissue, correlating with enhanced stability of the ARR10 protein compared with the ARR1 protein. Examination of transfer DNA insertion mutants in subfamilies 2 and 3 revealed little effect on several well-characterized cytokinin responses. However, a member of subfamily 2, ARR21, restores cytokinin sensitivity to arr1 arr12 roots when expressed from the ARR1 promoter, indicating functional conservation of this divergent family member. Our results indicate that the type-B ARRs have diverged in function, such that some, but not all, can complement the arr1 arr12 mutant. In addition, our results indicate that type-B ARR expression profiles in the plant, along with posttranscriptional regulation, play significant roles in modulating their contribution to cytokinin signaling.

  5. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dosemore » (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.« less

  6. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat.

    PubMed

    Reid, Rob; Fitzpatrick, Kate

    2009-09-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small.

  7. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    PubMed Central

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  8. Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study.

    PubMed

    Paudel, Pradeep; Yu, Ting; Seong, Su Hui; Kuk, Eun Bi; Jung, Hyun Ah; Choi, Jae Sue

    2018-05-22

    Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G ( 1 ), albanol B ( 2 ), and kuwanon G ( 3 ) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1 ⁻ 3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1 ⁻ 3 demonstrated negative binding energies in both enzymes. Moreover, 1 ⁻ 3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1 ⁻ 3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.

  9. MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.

    2012-01-01

    A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.

  10. Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity.

    PubMed

    Singh, Vijay Pratap; Srivastava, Prabhat Kumar; Prasad, Sheo Mohan

    2012-12-01

    Effects of low (UV-B(L); 0.1 μmol m(-2) s(-1)) and high (UV-B(H); 1.0 μmol m(-2) s(-1)) fluence rates of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle (AsA-GSH cycle) were investigated in two cyanobacteria viz. Phormidium foveolarum and Nostoc muscorum under copper (2 and 5 μM) toxicity after 24 and 72 h of experiments. Cu at 2 and 5 μM and UV-B(H) irradiation decreased growth in both the organisms and the effect was more pronounced in N. muscorum. Superoxide radical (SOR) and hydrogen peroxide (H(2)O(2)) productions were significantly enhanced by Cu and UV-B(H) which was accompanied by accelerated lipid peroxidation (malondialdehyde; MDA) and protein oxidation (reactive carbonyl groups; RCG). The components of AsA-GSH cycle, i.e. ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascobate reductase (MDHAR) and dehydroascorbate reductase (DHAR) activities as well as total ascorbate and glutathione contents and their reduced/oxidized ratios were decreased considerably by Cu and UV-B(H). Further, combined treatments of Cu and UV-B(H) exacerbated damaging effects in both the cyanobacteria. Unlike UV-B(H), UV-B(L) irradiation rather than damaging cyanobacteria caused alleviation in Cu-induced toxicity by down-regulating the levels of SOR, H(2)O(2), MDA and RCG due to enhanced activity of APX, GR, MDHAR and DHAR, and contents of ascorbate and glutathione. Results revealed that UV-B radiation at low fluence rate (UV-B(L)) stimulated protective responses in both the organisms under Cu toxicity while UV-B(H) irradiation caused damage alone as well as together with Cu, and the components of AsA-GSH cycle play significant role in these responses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Evaluating the combined effects of pretilachlor and UV-B on two Azolla species.

    PubMed

    Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Anita; Singh, Rachana

    2016-03-01

    The present study assessed the comparative responses of two agronomic species of Azolla (A.microphylla and A. pinnata) exposed to man-made and natural stressors by evaluating biomass accumulation, pigments (chlorophyll a and b and carotenoid contents), photosynthetic activity and nitrogen metabolism. The study was carried out in field where two species of Azolla were cultured and treated with various concentrations (5, 10 and 20 μg ml(-1)) of herbicide; pretilachlor [2-chloro-2,6-diethyl-N-(2-propoxyethyl) acetanilide] and enhanced levels (UV-B1: ambient +2.2 kJ m(-2) day(-1) and UV-B2: ambient +4.4 kJ m(-2) day(-1)) of UV-B, alone as well as in combination. Biomass accumulation, photosynthetic pigments; chlorophyll a, b and carotenoids, photosynthetic oxygen yield and photosynthetic electron transport activities i.e. photosystem II (PS II) and photosystem I (PS I) in both the species declined with the increasing doses of pretilachlor and UV-B radiation, which further declined when applied in combination. The lower doses (5 and 10 μg ml(-1)) of pretilachlor and UV-B (UV-B1 and UV-B2) alone, damaged mainly the oxidation side of PS II, whereas higher dose (20 μg ml(-1)) of pretilachlor alone and in combination with UV-B1 and UV-B2 caused damage to PS II reaction centre and beyond this towards the reduction side. A significant enhancement in respiration was also noticed in fronds of both the Azolla species following pretilachlor and UV-B treatment, hence indicating strong damaging effect. The nitrate assimilating enzymes - nitrate reductase and nitrite reductase and ammonium assimilating enzymes - glutamine synthetase and glutamate synthase were also severely affected when treated either with pretilachlor and/or UV-B while glutamate dehydrogenase exhibited a stimulatory response. The study suggests that both the species of Azolla showed considerable damage under pretilachlor and UV-B treatments alone, however, in combination the effect was more intense. Further, in comparison to A. pinnata, A. microphylla exhibited greater resistance against tested doses of both the stresses, either alone or in combination. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A spirooxazine derivative as a highly sensitive cyanide sensor by means of UV-visible difference spectroscopy.

    PubMed

    Zhu, Shaoyin; Li, Minjie; Sheng, Lan; Chen, Peng; Zhang, Yumo; Zhang, Sean Xiao-An

    2012-12-07

    A spirooxazine derivative 2-nitro-5a-(2-(4-dimethylaminophenyl)-ethylene)-6,6-dimethyl-5a,6-dihydro-12H-indolo[2,1-b][1,3]benzooxazine (P1) was explored as a sensitive cyanide probe. Different from conventional spiropyrans, P1 avoided locating the 3H-indolium cation and the 4-nitrophenolate anion in the same conjugated structure, which enhanced the positive charge of 3H-indolium cation so that the sensitivity and reaction speed were improved highly. UV-visible difference spectroscopy using P1 detection solution as a timely reference improved the measurement accuracy, prevented the error caused by the inherent absorption change of P1 solution with time. This enabled the "positive-negative alternative absorption peaks" in difference spectrum to be used as a finger-print to distinguish whether the spectral change was caused by cyanide. Benefiting from the special design of the molecular structure and the strategy of difference spectroscopy, P1 showed high selectivity and sensitivity for CN(-). A detection limit of 0.4 μM and a rate constant of 1.1 s(-1) were achieved.

  14. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    PubMed

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  15. Tropospheric Ozone Profiling Using Simulated GEO-CAPE Measurement

    NASA Technical Reports Server (NTRS)

    Natraj, Vijay; Li, Xiong; Kulawik, Susan; Chance, Kelly; Chatfield, Robert; Edwards, David P .; Eldering, Annmarie; Francis, Gene; Kurosu, Thomas; Pickering, Kenneth; hide

    2011-01-01

    Multi-spectral retrievals (UV+VIS, UV+TIR, UV+VIS+TIR) improve sensitivity to the variability in near-surface O3 by a factor of 2 - 2.7 over those from UV or TIR alone. Multi-spectral retrievals provide the largest benefit when there is enhanced O3 near the surface. Combining all 3 wavelengths (UV+VIS+TIR) provides the greatest sensitivity below 850 hPa, with a 36% improvement over UV+VIS and a 17% improvement over UV+TIR. The impacts of clouds and aerosols are being assessed.

  16. UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana

    PubMed Central

    Willing, Eva-Maria; Piofczyk, Thomas; Albert, Andreas; Winkler, J. Barbro; Schneeberger, Korbinian; Pecinka, Ales

    2016-01-01

    Ground levels of solar UV-B radiation induce DNA damage. Sessile phototrophic organisms such as vascular plants are recurrently exposed to sunlight and require UV-B photoreception, flavonols shielding, direct reversal of pyrimidine dimers and nucleotide excision repair for resistance against UV-B radiation. However, the frequency of UV-B-induced mutations is unknown in plants. Here we quantify the amount and types of mutations in the offspring of Arabidopsis thaliana wild-type and UV-B-hypersensitive mutants exposed to simulated natural UV-B over their entire life cycle. We show that reversal of pyrimidine dimers by UVR2 photolyase is the major mechanism required for sustaining plant genome stability across generations under UV-B. In addition to widespread somatic expression, germline-specific UVR2 activity occurs during late flower development, and is important for ensuring low mutation rates in male and female cell lineages. This allows plants to maintain genome integrity in the germline despite exposure to UV-B. PMID:27905394

  17. High-performance ultraviolet detection and visible-blind photodetector based on Cu{sub 2}O/ZnO nanorods with poly-(N-vinylcarbazole) intermediate layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw; Center for Micro/Nano Science and Technology, National Cheng Kung University, One University Road, Tainan 701, Taiwan; Lin, Hsueh-Pin

    This study reports a high-performance hybrid ultraviolet (UV) photodetector with visible-blind sensitivity fabricated by inserting a poly-(N-vinylcarbazole) (PVK) intermediate layer between low-cost processed Cu{sub 2}O film and ZnO nanorods (NRs). The PVK layer acts as an electron-blocking/hole-transporting layer between the n-ZnO and p-Cu{sub 2}O films. The Cu{sub 2}O/PVK/ZnO NR photodetector exhibited a responsivity of 13.28 A/W at 360 nm, a high detectivity of 1.03 × 10{sup 13} Jones at a low bias of −0.1 V under a low UV light intensity of 24.9 μW/cm{sup 2}. The photo-to-dark current ratios of the photodetector with and without the PVK intermediate layer at a bias of −0.5 V are 1.34 × 10{supmore » 2} and 3.99, respectively. The UV-to-visible rejection ratios (R{sub 360 nm}/R{sub 450 nm}) are 350 and 1.735, respectively. Several features are demonstrated: (a) UV photo-generated holes at the ZnO NRs can effectively be transported through the PVK layer to the p-Cu{sub 2}O layer; (b) the insertion of a PVK buffer layer significantly minimizes the reverse-bias leakage current, which leads to a larger amplification of the photocurrent; and (c) the PVK buffer layer greatly improves the UV-to-visible responsivity ratio, allowing the device to achieve high UV detection sensitivity at a low bias voltage using a very low light intensity.« less

  18. Simulation study of natural UV-B radiation on Catla catla and its impact on physiology, oxidative stress, Hsp 70 and DNA fragmentation.

    PubMed

    Singh, Moirangthem Kameshwor; Sharma, Jai Gopal; Chakrabarti, Rina

    2015-08-01

    UV-B radiation is a potential stressor to the aquacultural species. Catla catla, catla larvae (1.08±0.065g) were exposed to different doses of UV-B radiation, 0 (control), 504, 1008, 1512 and 2016mJ/cm(2) at a mean radiant energy of 80μW/cm(2) for 21days. The dose of UV-B radiation was selected on the basis of the field study conducted in Lake Naini, Delhi, India (Latitude: 28°41'26″N and Longitude: 77°12″37″E). Significantly (P<0.05) lower survival, average weight and specific growth rate were found in UV-B irradiated larvae compared to the control one. Food conversion ratio was 1.5-4-fold higher in UV-B treated larvae compared to the control one. The carbonyl protein (CP), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) levels were significantly (P <0.05) higher in UV-B irradiated larvae compared to the control group. Among the treated larvae, CP and SOD were significantly (P <0.05) higher in larvae exposed at 1512mJ/cm(2) UV-B. A correlation was found between the CP and SOD (R(2)=0.834). Highest TBARS level was found in 2016mJ/cm(2) UV-B exposed catla. Nitric oxide synthase level was significantly (P <0.05) lower in UV-B exposed larvae compared to the control one. A 3-fold increased Hsp 70 level was recorded in UV-B irradiated catla compared to the control larvae. Comet assay analysis indicated that UV-B irradiation enhanced DNA fragmentation. Tail extent moment and the olive tail moment were significantly (P <0.05) higher in 2016mJ/cm(2) UV-B exposed catla compared to others. The tail length was significantly (P <0.05) higher in 1512 and 2016mJ/cm(2) UV-B exposed larvae compared to the other doses. The present study suggests that the catla is a useful species for the biomonitoring of stress in the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. UV-B-induced cutaneous inflammation and prospects for antioxidant treatment in Kindler syndrome.

    PubMed

    Maier, Kristin; He, Yinghong; Wölfle, Ute; Esser, Philipp R; Brummer, Tilman; Schempp, Christoph; Bruckner-Tuderman, Leena; Has, Cristina

    2016-12-15

    Kindler syndrome (KS), a rare, autosomal recessive disorder comprises mechanical skin fragility and photosensitivity, which manifest early in life. The progression of the disorder is irreversible and results in tissue damage in form of cutaneous and mucosal atrophy and scarring and epithelial cancers. Here, we unravel molecular mechanisms of increased UV-B sensitivity of keratinocytes derived from KS patients. We show that the pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α, are upregulated in KS skin and in UV-B irradiated KS keratinocytes. These cytokines are dependent on p38 activation, which is increased in the absence of kindlin-1 and induced by higher ROS levels. Other dysregulated cytokines and growth factors were identified in this study and might be involved in paracrine interactions contributing to KS pathology. We show a direct relationship between kindlin-1 abundance and UV-B induced apoptosis in keratinocytes, whereas kindlin-2 overexpression has no compensatory effect. Importantly, low levels of kindlin-1 are sufficient to relieve or rescue this feature. Reduction of pro-inflammatory cytokines and of UV-B induced apoptosis is a valid therapeutic goal to influence long term complications of KS. Here, we demonstrate that antioxidants and the plant flavonoid luteolin represent feasible topical therapeutic approaches decreasing UV-B induced apoptosis in two-dimensional and organotypic KS cultures. We provide evidence for potential new therapeutic approaches to mitigate the progressive course of KS, for which no cure is available to date. Furthermore, we established organotypic KS models, a valuable in vitro tool for research with a morphology similar to the skin of patients in situ. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Serious complications in experiments in which UV doses are effected by using different lamp heights.

    PubMed

    Flint, Stephan D; Ryel, Ronald J; Hudelson, Timothy J; Caldwell, Martyn M

    2009-10-06

    Many experiments examining plant responses to enhanced ultraviolet-B radiation (280-315nm) simply compare an enhanced UV-B treatment with ambient UV-B (or no UV-B radiation in most greenhouse and controlled-environment studies). Some more detailed experiments utilize multiple levels of UV-B radiation. A number of different techniques have been used to adjust the UV dose. One common technique is to place racks of fluorescent UV-emitting lamps at different heights above the plant canopy. However, the lamps and associated support structure cast shadows on the plant bed below. We calculated one example of the sequence of shade intervals for two common heights of lamp racks and show the patterns and duration of shade which the plants receive is distributed differently over the course of the day for different heights of the lamp racks. We also conducted a greenhouse experiment with plants (canola, sunflower and maize) grown under unenergized lamp racks suspended at the same two heights above the canopy. Growth characteristics differed in unpredictable ways between plants grown under the two heights of lamp racks. These differences could enhance or obscure potential UV-B effects. Also, differences in leaf mass per unit foliage area, which were observed in this experiment, could contribute to differences in plant UV-B sensitivity. We recommend the use of other techniques for achieving multiple doses of UV-B radiation. These range from simple and inexpensive approaches (e.g., wrapping individual fluorescent tubes in layers of a neutral-density filter such as cheese cloth) to more technical and expensive alternatives (e.g., electronically modulated lamp control systems). These choices should be determined according to the goals of the particular experiment.

  1. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole.

    PubMed

    Rao, Balaji; Wang, Wei; Cai, Qingsong; Anderson, Todd; Gu, Baohua

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t(1/2)) of approximately 0.70 d and activation energy (E(a)) of 53 kJ mol(-1). Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280-315 nm) resulted in a greater quantum yield of transformation (φ(UV-B)=3.7×10(-4)) than rates obtained with UV-A light (φ(UV-A)=2.9×10(-4) at 316-400 nm) and sunlight (φ(sun)=1.1×10(-4)). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. Published by Elsevier B.V.

  2. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    PubMed

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was helpful not only in recycling industrial wastes, but also in effectively mitigating the depressive effects of elevated UV-B radiation on photosynthesis and transpiration in rice production.

  3. A new pentacyclic phenol and other constituents from the root bark of Bauhinia racemosa Lamk.

    PubMed

    Jain, Renuka; Yadav, Namita; Bhagchandani, Teena; Jain, Satish C

    2013-10-01

    This work reported the isolation of one unknown (1) and 10 known compounds (2-11) from the root bark of Bauhinia racemosa Lamk. (family: Caesalpiniaceae). Racemosolone (1) was characterised as a pentacyclic phenolic compound possessing an unusual skeleton with a cycloheptane ring and a rare furopyran moiety. The structure elucidation was carried out on the basis of UV, infrared (IR), HR-ESI-MS, 1D and 2D NMR spectra and finally confirmed by the single crystal X-ray analysis. The known compounds were characterised as n-tetracosane, β-sitosteryl stearate, eicosanoic acid, stigmasterol, β-sitosterol, racemosol, octacosyl ferulate, de-O-methyl racemosol, lupeol and 1,7,8,12b-tetrahydro-2,2,4-trimethyl-2H-benzo[6,7]cyclohepta [1,2,3-de] [1] benzopyran-5,10,11 triol on the basis of spectroscopic data comparison with the literature value. Compounds with skeleton similar to 1 have never been reported from any natural or other source.

  4. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis.

    PubMed

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G; Ultsch, Alfred

    2017-08-16

    The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  5. Plant adaptive behaviour in hydrological models (Invited)

    NASA Astrophysics Data System (ADS)

    van der Ploeg, M. J.; Teuling, R.

    2013-12-01

    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215-224. [2] McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792-801 [3] Ries G, Heller W, Puchta H, Sandermann H, Seldlitz HK, Hohn B. Elevated UV-B radiation reduces genome stability in plants. Nature 2000; 406: 98-101 [4] Lucht JM, Mauch-Mani B, Steiner H-Y, Metraux J-P, Ryals, J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nature Genet. 2002; 30: 311-314 [5] Kovalchuk I, Kovalchuk O, Kalck V., Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423: 760-762 [6] Cullis C A. Mechanisms and control of rapid genomic changes in flax. Ann. Bot. (Lond.) 2005; 95: 201-206 [7] de Rosnay, P. and J. Polcher. 1998. Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrology and Earth System Sciences 2: 239-255. [8] Feddes, R.A., H. Hoff, M. Bruen, T. Dawson, P. de Rosnay, P. Dirmeyer, R.B. Jackson, P. Kabat, A. Kleidon, A. Lilly, and A.J. Pitman. 2001. Modeling root water uptake in hydrological and climate models. Bulletin of the American Meteorological Society 82: 2797-2809. [9] Jung, M., M. Reichstein, P. Ciais, S.I. Seneviratne, J. Sheffield et al. 2010. Recent decline in the global land evaporation trend due to limited moisture supply. Nature 476: 951-954, doi:10.1038/nature09396.

  6. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  7. Anchoring energy of photo-sensitive polyimide alignment film containing methoxy cinnamate

    NASA Astrophysics Data System (ADS)

    Kim, Suyoung; Shin, Sung Eui; Shin, DongMyung

    2010-02-01

    Photosensitive polyimide containing 2-methoxy cinnamate was synthesized for photo-alignment layer of liquid crystals (LCs). 2-Methoxy cinnamic acid was confirmed photo-sensitive material by linearly polarized UV light. We studied that effect of polarized UV light on rubbed polyimide film. Anchoring energy of liquid crystal with aligning surface was measured. Irradiation of depolarized UV light on rubbed Polyimide film suppressed effective anchoring energy. Linearly polarized UV light on rubbed polyimide film controlled anchoring energy effectively. Polyimide film containing 2-methoxy cinnamate can control the photo-alignment layer easily due to its photo-sensitivity.

  8. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated.

    PubMed

    Faseela, Parammal; Puthur, Jos T

    2018-01-01

    High light and ultraviolet-B radiation (UV-B) are generally considered to have negative impact on photosynthesis and plant growth. The present study evaluates the tolerance potential of three cultivars of Oryza sativa L. (Kanchana, Mattatriveni and Harsha) seedlings towards high light and UV-B stress on the basis of photosynthetic pigment degradation, chlorophyll a fluorescence parameters and rate of lipid peroxidation, expressed by malondialdehyde content. Surprisingly, it was revealed that Kanchana was the most sensitive cultivar towards high light and at the same time it was the most tolerant cultivar towards UV-B stress. This contrasting feature of Kanchana towards high light and UV-B tolerance was further studied by analyzing photosystem (PS) I and II activity, mitochondrial activity, chlorophyll a fluorescence transient, enzymatic and non-enzymatic antioxidant defense system. Due to the occurrence of more PS I and PSII damages, the inhibition of photochemical efficiency and emission of dissipated energy as heat or fluorescence per PSII reaction center was higher upon high light exposure than UV-B treatments in rice seedlings of Kanchana. The mitochondrial activity was also found to be drastically altered upon high light as compared to UV-B treatments. The UV-B induced accumulation of non-enzymatic antioxidants (proline, total phenolics, sugar and ascorbate) and enzymatic antioxidants (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and glutathione reductase) in rice seedlings than those subjected to high light exposure afforded more efficient protection against UV-B radiation in rice seedlings. Our results proved that high tolerance of Kanchana towards UV-B than high light treatments, correlated linearly with the protected photosynthetic and mitochondrial machinery which was provided by upregulation of antioxidants particularly by total phenolics, ascorbate and ascorbate peroxidase in rice seedlings. Data presented in this study conclusively proved that rice cultivar Kanchana respond to different environmental signals independently and tolerance mechanisms to individual stress factors was also varied. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantification and Discrimination of in Vitro Regeneration Swertia nervosa at Different Growth Periods using the UPLC/UV Coupled with Chemometric Method.

    PubMed

    Li, Jie; Zhang, Ji; Zuo, Zhitian; Huang, Hengyu; Wang, Yuanzhong

    2018-05-09

    Background : Swertia nervosa (Wall. ex G. Don) C. B. Clarke, a promising traditional herbal medicine for the treatment of liver disorders, is endangered due to its extensive collection and unsustainable harvesting practices. Objective : The aim of this study is to discuss the diversity of metabolites (loganic acid, sweroside, swertiamarin, and gentiopicroside) at different growth stages and organs of Swertia nervosa using the ultra-high-performance LC (UPLC)/UV coupled with chemometric method. Methods : UPLC data, UV data, and data fusion were treated separately to find more useful information by partial least-squares discriminant analysis (PLS-DA). Hierarchical cluster analysis (HCA), an unsupervised method, was then employed for validating the results from PLS-DA. Results : Three strategies displayed different chemical information associated with the sample discrimination. UV information mainly contributed to the classification of different organs; UPLC information was prominently responsible for both organs and growth periods; the data fusion did not perform with apparent superiority compared with single data analysis, although it provided useful information to differentiate leaves that could not be recognized by UPLC. The quantification result showed that the content of swertiamarin was the highest compared with the other three metabolites, especially in leaves at the rooted stage (19.57 ± 5.34 mg/g). Therefore, we speculated that interactive transformations occurred among these four metabolites, facilitated by root formation. Conclusions : This work will contribute to exploitation of bioactive compounds of S. nervosa , as well as its large-scale propagation. Highlights : The roots formation may influence the distribution and accumulation of metabolites.

  10. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

    PubMed Central

    Tilbrook, Kimberley; Arongaus, Adriana B.; Binkert, Melanie; Heijde, Marc; Yin, Ruohe; Ulm, Roman

    2013-01-01

    Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly. PMID:23864838

  11. [Effect of lanthanum on the flavonoids contents and antioxidant capacity in soybean seedling under ultraviolet-B stress].

    PubMed

    Peng, Qi; Zhou, Qing

    2008-07-01

    Dynamic state of antioxidant capacity of flavonoids was investigated for a further demonstration of alleviating the damage of the UV-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoids and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied in this paper. The results showed flavonoids contents in Soybean seedlings during the stress and convalescent period increase firstly and then reduce. Membrane permeability and MDA contents increase firstly (1st-5th day) and then fall (6th to 11th day). A similar change of flavonoids contents and clearance of flavonoids scavenging O2*- and *OH in soybean seedlings occur; the flavonoids contents La(III) + UV-B > UV-B > La(III) > CK, La(III) + T1 > La(III) + T2. Plasma membrane permeability and MAD contents UV-B> La(III) + UV-B > CK > La(III), La(III) + T2 > La(III) + T1. The ability of Scavenging activities of free radical (O2*-, *OH) La(III) + UV-B > UV-B > La(III) > CK. It suggested that the regulative effect of La(III) on flavonoids, improved the metabolism of ROS, diminished the concentration of MDA and maintained normal Plasma membrane permeability, and that its protective effect against low UV-B radiation was superior to that of high UV-B radiation. To conclude, the defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.

  12. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    PubMed

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  13. UV-A radiation effects on higher plants: Exploring the known unknown.

    PubMed

    Verdaguer, Dolors; Jansen, Marcel A K; Llorens, Laura; Morales, Luis O; Neugart, Susanne

    2017-02-01

    Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.; Worrest, R. C.

    1976-01-01

    Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.

  15. Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent.

    PubMed

    Chen, Feiran; Huber, Christian; May, Robert; Schröder, Peter

    2016-04-05

    Oxybenzone (OBZ), known as Benzophenone-3, is a commonly used UV filter in sun tans and skin protectants, entering aquatic systems either directly during recreational activities or indirectly through wastewater treatment plants discharge. To study the potential degradation capacity of plants for OBZ in phytotreatment, a well-established hairy root culture (Armoracia rusticana) was treated with OBZ. More than 20% of spiked OBZ (100μM) was eliminated from the medium by hairy roots after 3h of exposure. Two metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS and TOF-MS. Formation of these metabolites was confirmed by enzymatic synthesis, as well as enzymatic and alkaline hydrolysis. Incubation with O-glucosyltransferase (O-GT) extracted from roots formed OBZ-Glu; whereas β-d-Glucosidase hydrolyzed OBZ-Glu. However, alkaline hydrolysis led to cleavage of OBZ-Mal-Glu and yielded OBZ-Glu. In the hairy root culture, an excretion of OBZ-Glu into the growth medium was observed while the corresponding OBZ-Mal-Glu remained stored in root cells over the incubation time. We propose that metabolism of oxybenzone in plants involves initial conjugation with glucose to form OBZ-Glu followed by malonylation to yield OBZ-Mal-Glu. To our best knowledge this first finding presenting the potential of plants to degrade benzophenone type UV filters by phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production.

    PubMed

    Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C

    2007-05-01

    Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.

  17. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomés, E; Aguirreolea, J; Pascual, I

    2013-12-01

    The present study aimed at evaluating the short- and long-term effects of UV-B radiation on leaves of grapevine Vitis vinifera (cv. Tempranillo). Grapevine fruit-bearing cuttings were exposed to two doses of supplemental biologically effective UV-B radiation (UV-BBE) under glasshouse-controlled conditions: 5.98 and 9.66kJm(-2)d(-1). The treatments were applied either for 20d (from mid-veraison to ripeness) or 75d (from fruit set to ripeness). A 0kJm(-2)d(-1) UV-B treatment was included as control. The main effects of UV-B were observed after the short-term exposure (20d) to 9.66kJm(-2)d(-1). Significant decreases in net photosynthesis, stomatal conductance, sub-stomatal CO2 concentration, the actual photosystem II (PSII) efficiency, total soluble proteins and de-epoxidation state of the VAZ cycle were observed, whereas the activities of several antioxidant enzymes increased significantly. UV-B did not markedly affect dark respiration, photorespiration, the maximum potential PSII efficiency (Fv/Fm), non-photochemical quenching (NPQ), as well as the intrinsic PSII efficiency. However, after 75d of exposure to 5.98and 9.66kJm(-2)d(-1) UV-B most photosynthetic and biochemical variables were unaffected and there were no sign of oxidative damage in leaves. The results suggest a high long-term acclimation capacity of grapevine to high UV-B levels, associated with a high accumulation of UV-B absorbing compounds in leaves, whereas plants seemed to be tolerant to moderate doses of UV-B. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. A versatile fiber-optic coupled system for sensitive optical spectroscopy in strong ambient light

    NASA Astrophysics Data System (ADS)

    Sinha, Sudarson Sekhar; Verma, Pramod Kumar; Makhal, Abhinandan; Pal, Samir Kumar

    2009-05-01

    In this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels. It is demonstrated using this setup that even low optical signal from a liquid sample under strong UV-exposure for the picosecond-resolved fluorescence transient measurement can reliably be detected by ultrasensitive microchannel plate photomultiplier tube solid state detector. The kinetics of photodeterioration of vitamin B2 measured using our setup is consistent with that reported in the literature. Our present studies also justify the usage of tungsten light than the fluorescent light for the healthy preservation of food with vitamin B2.

  19. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  20. [The impact of UV radiation B and C in vitro on different of bacteria strains isolated from patients hospitalized in the Warsaw Medical University Clinics].

    PubMed

    Rongies, Witold; Wultańska, Dorota; Kot, Katarzyna; Bogusz, Aleksandra; Rongies, Magdalena; Świercz, Paweł; Swierszcz, Paweł; Lewandowska, Monika; Cholewińska, Grazyna; Meisel-Mikołajczyk, Felicja

    2011-01-01

    Infections in human body caused by various microbes are a significant problem in modern medicine. Special attention is put to infections of wounds, which are a significant threat to the life of patients. Attempts to treat these wounds base mainly on the application of various chemical preparations (locally) and systematic antibiotic treatment. UV radiation, because of its anti-bacterial activity, appear a complementary issue in therapy. AIM OF THE SURVEY: The aim of this study was an examination of the sensitivity of bacteria strains isolated from patients hospitalised in the Warsaw Medical University clinics, and prove that antibiotics and operation of UV B and C radiation with Endolamp 474 may become a complementary or alternative method of treatment. The study used 65 strains grown aerobically (15 strains of Escherichia coli, 20 strains of Pseudomonas aeruginosa, 15 strains of Staphylococcus aureus, 15 strains of Streptococcus and Enterococcus sp). The same strains were planted on different excipients and were subjected to UV radiation using Endolamp 474. Correctly prepared strains were radiated from a 25 cm distance in various durations (from 5 seconds to 105 seconds). As a result of UV irradiation of microorganisms studied B and C using 474 Endolampy received varied, but the great sensitivity to the effects of this radiation, in all tested bacterial strains. UV radiation on microorganisms requires further study, also in vivo.

  1. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants

    NASA Astrophysics Data System (ADS)

    Ma, Xuan; Ou, Yong-Bin; Gao, Yong-Feng; Lutts, Stanley; Li, Tao-Tao; Wang, Yang; Chen, Yong-Fu; Sun, Yu-Fang; Yao, Yin-An

    2016-09-01

    The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.

  2. UV-B susceptibility and photoreactivation in embryonic development of the two-spotted spider mite, Tetranychus urticae.

    PubMed

    Yoshioka, Yoshio; Gotoh, Tetsuo; Suzuki, Takeshi

    2018-05-14

    Developmental errors are often induced in the embryos of many organisms by environmental stress. Ultraviolet-B radiation (UV-B) is one of the most serious environmental stressors in embryonic development. Here, we investigated susceptibility to UV-B (0.5 kJ m -2 ) in embryos of the two-spotted spider mite, Tetranychus urticae, to examine the potential use of UV-B in control of this important agricultural pest worldwide. Peak susceptibility to UV-B (0% hatchability) was found in T. urticae eggs 36-48 h after oviposition at 25 °C, which coincides with the stages of morphogenesis forming the germ band and initial limb primordia. However, hatchability recovered to ~ 80% when eggs irradiated with UV-B were subsequently exposed to visible radiation (VIS) at 10.2 kJ m -2 , driving photoreactivation (the photoenzymatic repair of DNA damage). The recovery effect decreased to 40-70% hatchability, depending on the embryonic developmental stage, when VIS irradiation was delayed for 4 h after the end of exposure to UV-B. Thus UV-B damage to T. urticae embryos is critical, particularly in the early stages of morphogenesis, and photoreactivation functions to mitigate UV-B damage, even in the susceptible stages, but immediate VIS irradiation is needed after exposure to UV-B. These findings suggest that nighttime irradiation with UV-B can effectively kill T. urticae eggs without subsequent photoreactivation and may be useful in the physical control of this species.

  3. The Origins of UV-optical Color Gradients in Star-forming Galaxies at z ˜ 2: Predominant Dust Gradients but Negligible sSFR Gradients

    NASA Astrophysics Data System (ADS)

    Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin

    2017-07-01

    The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5< z< 2.8 in the CANDELS/GOODS-S and UDS fields. We show that these SFGs generally have negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.

  4. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m 2 , and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m 2 ) induced developmental delays, and higher doses (6-18kJ/m 2 ) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m 2 ) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effects of UV-B radiation intensity on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum.

    PubMed

    Yao, Xiao-Qin; Chu, Jian-Zhou; He, Xue-Li; Si, Chao

    2014-01-01

    The article studied UV-B effects on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum during the bud stage. The experiment included four UV-B radiation levels (CK, ambient UV-B; T1, T2 and T3 indicated a 5%, 10% and 15% increase in ambient UV-BBE, respectively) to determine the optimal UV-B radiation intensity in regulating active ingredients level in flowers of two chrysanthemum varieties. Flower dry weight of two cultivars was not affected by UV-B radiation under experimental conditions reported here. UV-B treatments significantly increased the rate of superoxide radical production, hydrogen peroxide (H2O2) (except for T1) and malondialdehyde concentration in flowers of Huai chrysanthemum and H2O2 concentration in flowers of Qi chrysanthemum. T2 and T3 treatments induced a significant increase in phenylalanine ammonia lyase enzyme (PAL) activity, anthocyanins, proline, ascorbic acid, chlorogenic acid and flavone content in flowers of two chrysanthemum varieties, and there were no significant differences in PAL activity, ascorbic acid, flavone and chlorogenic acid content between the two treatments. These results indicated that appropriate UV-B radiation intensity did not result in the decrease in flower yield, and could regulate PAL activity and increase active ingredients content in flowers of two chrysanthemum varieties. © 2014 The American Society of Photobiology.

  6. Ultraviolet radiation in the Atacama Desert.

    PubMed

    Cordero, R R; Damiani, A; Jorquera, J; Sepúlveda, E; Caballero, M; Fernandez, S; Feron, S; Llanillo, P J; Carrasco, J; Laroze, D; Labbe, F

    2018-03-31

    The world's highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m 2 (130 kWh/m 2 ) in coastal areas to 5 kWh/m 2 (160 kWh/m 2 ) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.

  7. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  8. VcBBX, VcMYB21, and VcR2R3MYB Transcription Factors Are Involved in UV-B-Induced Anthocyanin Biosynthesis in the Peel of Harvested Blueberry Fruit.

    PubMed

    Nguyen, Chau T T; Lim, Sooyeon; Lee, Jeong Gu; Lee, Eun Jin

    2017-03-15

    This study was carried out to better understand the mechanism responsible for increasing the anthocyanins in blueberries after UV-B radiation at 6.0 kJ m -2 for 20 min. UV-B induced upregulation of genes involved in anthocyanin biosynthesis in blueberry fruit compared to a nontreated control. Phenylalanine ammonia lyase, chalcone synthase, and flavanone 3'-hydroxylase, which are enzymes that function upstream of anthocyanin biosynthesis, were significantly expressed by UV-B. Expression levels of VcBBX, VcMYB21, and VcR2R3MYB transcription factors (TFs) were upregulated by UV-B in the same manner as the anthocyanin biosynthesis genes. The significant increase in the expression of TFs occurred immediately after UV-B treatment and was then maximized within 3 h. In accordance with these changes, individual anthocyanin contents in the fruits treated with UV-B significantly increased within 6 h and were 2-3-fold higher than the control. Our results indicated that UV-B radiation stimulates an increase in anthocyanin biosynthesis, which could be upregulated by the TFs studied.

  9. β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation

    PubMed Central

    Luan, Bing; Zhang, Zhenning; Wu, Yalan; Kang, Jiuhong; Pei, Gang

    2005-01-01

    NF-κB activation is an important mechanism of mammalian UV response to protect cells. UV-induced NF-κB activation depends on the casein kinase II (CK2) phosphorylation of IκBα at a cluster of C-terminal sites, but how it is regulated remains unclear. Here we demonstrate that β-arrestin2 can function as an effective suppressor of UV-induced NF-κB activation through its direct interaction with IκBα. CK2 phosphorylation of β-arrestin2 blocks its interaction with IκBα and abolishes its suppression of NF-κB activation, indicating that the β-arrestin2 phosphorylation is critical. Moreover, stimulation of β2-adrenergic receptors, a representative of G-protein-coupled receptors in epidermal cells, promotes dephosphorylation of β-arrestin2 and its suppression of NF-κB activation. Consequently, the β-arrestin2 suppression leads to promotion of UV-induced cell death, which is also under regulation of β-arrestin2 phosphorylation. Thus, β-arrestin2 is identified as a phosphorylation-regulated suppressor of UV response and this may play a functional role in the response of epidermal cells to UV. PMID:16308565

  10. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  11. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  12. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  13. Immuno-magnetic beads-based extraction-capillary zone electrophoresis-deep UV laser-induced fluorescence analysis of erythropoietin.

    PubMed

    Wang, Heye; Dou, Peng; Lü, Chenchen; Liu, Zhen

    2012-07-13

    Erythropoietin (EPO) is an important glycoprotein hormone. Recombinant human EPO (rhEPO) is an important therapeutic drug and can be also used as doping reagent in sports. The analysis of EPO glycoforms in pharmaceutical and sports areas greatly challenges analytical scientists from several aspects, among which sensitive detection and effective and facile sample preparation are two essential issues. Herein, we investigated new possibilities for these two aspects. Deep UV laser-induced fluorescence detection (deep UV-LIF) was established to detect the intrinsic fluorescence of EPO while an immuno-magnetic beads-based extraction (IMBE) was developed to specifically extract EPO glycoforms. Combined with capillary zone electrophoresis (CZE), CZE-deep UV-LIF allows high resolution glycoform profiling with improved sensitivity. The detection sensitivity was improved by one order of magnitude as compared with UV absorbance detection. An additional advantage is that the original glycoform distribution can be completely preserved because no fluorescent labeling is needed. By combining IMBE with CZE-deep UV-LIF, the overall detection sensitivity was 1.5 × 10⁻⁸ mol/L, which was enhanced by two orders of magnitude relative to conventional CZE with UV absorbance detection. It is applicable to the analysis of pharmaceutical preparations of EPO, but the sensitivity is insufficient for the anti-doping analysis of EPO in blood and urine. IMBE can be straightforward and effective approach for sample preparation. However, antibodies with high specificity were the key for application to urine samples because some urinary proteins can severely interfere the immuno-extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien

    2015-06-14

    Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples showmore » very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.« less

  15. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    PubMed

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  16. UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.

  17. Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng

    2015-01-01

    Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

  18. Changes in dissolved organic material determine exposure of stream benthic communities to UV-B radiation and heavy metals: Implications for climate change

    USGS Publications Warehouse

    Clements, W.H.; Brooks, M.L.; Kashian, D.R.; Zuellig, R.E.

    2008-01-01

    Changes in regional climate in the Rocky Mountains over the next 100 years are expected to have significant effects on biogeochemical cycles and hydrological processes. In particular, decreased discharge and lower stream depth during summer when ultraviolet radiation (UVR) is the highest combined with greater photo-oxidation of dissolved organic materials (DOM) will significantly increase exposure of benthic communities to UVR. Communities in many Rocky Mountain streams are simultaneously exposed to elevated metals from abandoned mines, the toxicity and bioavailability of which are also determined by DOM. We integrated field surveys of 19 streams (21 sites) along a gradient of metal contamination with microcosm and field experiments conducted in Colorado, USA, and New Zealand to investigate the influence of DOM on bioavailability of heavy metals and exposure of benthic communities to UVR. Spatial and seasonal variation in DOM were closely related to stream discharge and significantly influenced heavy metal uptake in benthic organisms. Qualitative and quantitative changes in DOM resulting from exposure to sunlight increased UV-B (290-320nm) penetration and toxicity of heavy metals. Results of microcosm experiments showed that benthic communities from a metal-polluted stream were tolerant of metals, but were more sensitive to UV-B than communities from a reference stream. We speculate that the greater sensitivity of these communities to UV-B resulted from costs associated with metal tolerance. Exclusion of UVR from 12 separate Colorado streams and from outdoor stream microcosms in New Zealand increased the abundance of benthic organisms (mayflies, stoneflies, and caddisflies) by 18% and 54%, respectively. Our findings demonstrate the importance of considering changes in regional climate and UV-B exposure when assessing the effects of local anthropogenic stressors. ?? Journal compilation ?? 2008 Blackwell Publishing.

  19. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  20. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  1. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  3. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    NASA Astrophysics Data System (ADS)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  4. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants.

    PubMed

    Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina

    2008-07-01

    The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.

  5. Studies of hot B subdwarfs. Part 2: Energy distributions of three bright sdB/sdOB stars in the 950-5500 angstrom range

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Holberg, J. B.; Veilleux, S.; Lamontagne, R.; Fontaine, G.

    1985-01-01

    Voyager ultraviolet spectrometer observations of the subdwarf B or OB stars HD 205805, UV 1758+36 and Feige 66 are presented. All three objects display the H I Layman series in absorption. These observations are combined with low dispersion IUE spectrophotometry and with Stroemgren photometry to construct virtually complete energy distributions, which extend over the range 950-5500 angstroms. Effective temperatures based on model atmosphere calculations for high gravity, hydrogen rich stars are determined. Our analyses yield T Sub e 28,200 + or - 1300 K for HD 205805, T sub e 31, 800 + or - 1100 K for UV 1758+36, and T sub e 35,700 + or - 1500 K for Feige 66. The importance of far ultraviolet observations below L sub alpha in reducing the uncertainties associated with the interstellar extinction and the degradation of the IUE sensitivity is emphasized.

  6. The Hopkins Ultraviolet Telescope - Performance and calibration during the Astro-1 mission

    NASA Technical Reports Server (NTRS)

    Davidsen, Arthur F.; Long, Knox S.; Durrance, Samuel T.; Blair, William P.; Bowers, Charles W.; Conard, Steven J.; Feldman, Paul D.; Ferguson, Henry C.; Fountain, Glen H.; Kimble, Randy A.

    1992-01-01

    Results are reported of spectrophotometric observations, made with the Hopkins Ultraviolet Telescope (HUT), of 77 astronomical sources throughout the far-UV (912-1850 A) at a resolution of about 3 A, and, for a small number of sources, in the extreme UV (415-912 A) beyond the Lyman limit at a resolution of about 1.5 A. The HUT instrument and its performance in orbit are described. A HUT observation of the DA white dwarf G191-B2B is presented, and the photometric calibration curve for the instrument is derived from a comparison of the observation with a model stellar atmosphere. The sensitivity reaches a maximum at 1050 A, where 1 photon/sq cm s A yields 9.5 counts/s A, and remains within a factor of 2 of this value from 912 to 1600 A. The instrumental dark count measured on orbit was less than 0.001 counts/s A.

  7. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    PubMed

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.

  8. Photo-Oxidation Products of Skin Surface Squalene Mediate Metabolic and Inflammatory Responses to Solar UV in Human Keratinocytes

    PubMed Central

    Kostyuk, Vladimir; Potapovich, Alla; Stancato, Andrea; De Luca, Chiara; Lulli, Daniela; Pastore, Saveria; Korkina, Liudmila

    2012-01-01

    The study aimed to identify endogenous lipid mediators of metabolic and inflammatory responses of human keratinocytes to solar UV irradiation. Physiologically relevant doses of solar simulated UVA+UVB were applied to human skin surface lipids (SSL) or to primary cultures of normal human epidermal keratinocytes (NHEK). The decay of photo-sensitive lipid-soluble components, alpha-tocopherol, squalene (Sq), and cholesterol in SSL was analysed and products of squalene photo-oxidation (SqPx) were quantitatively isolated from irradiated SSL. When administered directly to NHEK, low-dose solar UVA+UVB induced time-dependent inflammatory and metabolic responses. To mimic UVA+UVB action, NHEK were exposed to intact or photo-oxidised SSL, Sq or SqPx, 4-hydroxy-2-nonenal (4-HNE), and the product of tryptophan photo-oxidation 6-formylindolo[3,2-b]carbazole (FICZ). FICZ activated exclusively metabolic responses characteristic for UV, i.e. the aryl hydrocarbon receptor (AhR) machinery and downstream CYP1A1/CYP1B1 gene expression, while 4-HNE slightly stimulated inflammatory UV markers IL-6, COX-2, and iNOS genes. On contrast, SqPx induced the majority of metabolic and inflammatory responses characteristic for UVA+UVB, acting via AhR, EGFR, and G-protein-coupled arachidonic acid receptor (G2A). Conclusions/Significance Our findings indicate that Sq could be a primary sensor of solar UV irradiation in human SSL, and products of its photo-oxidation mediate/induce metabolic and inflammatory responses of keratinocytes to UVA+UVB, which could be relevant for skin inflammation in the sun-exposed oily skin. PMID:22952984

  9. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection.

    PubMed

    O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J

    2017-05-15

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.

  10. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    USGS Publications Warehouse

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  11. Flow injection chemiluminescence determination of vitamin B12 using on-line UV-persulfate photooxidation and charge coupled device detection.

    PubMed

    Murillo Pulgarín, José A; García Bermejo, Luisa F; Sánchez García, M Nieves

    2011-01-01

    A sensitive chemiluminescence method for vitamin B(12) using a charge-coupled device (CCD) photodetector combined with on-line UV-persulfate oxidation in a simple continuous flow system has been developed. The principle for the determination of vitamin B(12) is based on the enhancive effect of cobalt (II) on the chemiluminescence reaction between luminol and percarbonate in alkaline medium. In addition, percarbonate has been investigated and proposed as a powerful source of hydrogen peroxide as oxidant agent in this chemiluminescence reaction. The digestion of vitamin B(12) to release the cobalt (II) is reached by UV irradiation treatment in a persulfate medium. The CCD detector, directly connected to the flow cell, is used with the continuous flow manifold to obtain the full spectral characteristics of cobalt (II) catalyzed luminol-percarbonate reaction. The vitamin B(12) oxidation process and chemical conditions for the chemiluminescence reaction were investigated and optimized. The increment of the emission intensity was proportional to the concentration of vitamin B(12) , giving a second-order calibration graph over the cobalt (II) concentration range from 10 to 5000 μg L(-1)(r(2) = 0.9985) with a detection limit of 9.3 μg L(-1). The proposed method was applied to the determination of vitamin B(12) in different kinds of pharmaceuticals. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation.

    PubMed

    Yao, Xiaoqin; Chu, Jian-Zhou; Ma, Chun-Hui; Si, Chao; Li, Ji-Gang; Shi, Xiao-Fei; Liu, Chao-Nan

    2015-08-01

    The article studied UV-B effects on biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum. The experiment about UV-B effects on biochemical traits in flowers included six levels of UV-B treatments (0 (UV0), 50 (UV50), 200 (UV200), 400 (UV400), 600 (UV600) and 800 (UV800) μWcm(-2)). UV400, UV600 and UV800 treatments significantly increased the contents of hydrogen peroxide, malondialdehyde and UV-B absorbing compounds, and the activity of phenylalanine ammonia lyase enzyme over the control. The contents of chlorogenic acid and flavone in flowers were significantly increased by UV-B treatments (except for UV50 and UV800). Two-dimensional gel electrophoresis was utilized to analyze proteomic changes in flowers with or without UV-B radiation. Results indicated that 43 protein spots (>1.5-fold difference in volume) were detected, including 19 spots with a decreasing trend and 24 spots with an increasing trend, and 19 differentially expressed protein spots were successfully indentified by MALDI-TOF MS. The indentified proteins were classified based on functions, the most of which were involved in photosynthesis, respiration, protein biosynthesis and degradation and defence. An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress.

    PubMed

    Peng, Qi; Zhou, Qing

    2009-01-01

    The dynamic state of antioxidant capacity of flavonoid was investigated for a further demonstration of alleviating the damage of the ultraviolet (UV)-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoid and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied. The results showed flavonoid content in soybean seedlings with UV-B treatment during the stress and convalescent period was increased initially and then decreased, compared with control. Membrane permeability and MDA contents increase at first (first to fifth day) and then decrease (6th-11th day). A similar change of flavonoid content and clearance of flavonoid scavenging O2- and *OH in soybean seedlings occurred. Flavonoid content and ability of flavonoid scavenging O2- and *OH in soybean seedlings with La(III) + UV-B treatment were higher than those of UV-B treatment. Meanwhile, membrane permeability and MDA contents in soybean seedlings were lower than those of UV-B treatment. Compared with control, phenylalanine content in soybean seedlings with UV-B treatment is depressed, phenylalanine content in soybean seedlings with La(III) treatment was enhanced. However, phenylalanine content in La(III) + UV-B treatment is not decreased but slightly increased, compared with UV-B treatment. It suggested that the regulative effect of La(III) of the optimum concentration on flavonoid improved the metabolism of ROS, diminished the concentration of MDA and maintained normal plasma membrane permeability, and that its protective effect against low UV-B radiation is superior to that of high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress is carried out on the layer of defense system.

  14. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  15. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract.

    PubMed

    Nagajyothi, P C; Cha, Sang Ju; Yang, In Jun; Sreekanth, T V M; Kim, Kwang Joong; Shin, Heung Mook

    2015-05-01

    The exploitation of various plant materials for the green synthesis of nanoparticles is considered an eco-friendly technology because it does not involve toxic chemicals. In this study, zinc oxide nanoparticles (ZnO NPs) were synthesized using the root extract of Polygala tenuifolia. Synthesized ZnO NPs were characterized by UV-Vis spectroscopy, FTIR, TGA, TEM, SEM and EDX. Anti-inflammatory activity was investigated in LPS-stimulated RAW 264.7 macrophages, whereas antioxidant activity was examined using a DPPH free radical assay. ZnO NPs demonstrated moderate antioxidant activity by scavenging 45.47% DPPH at 1mg/mL and revealed excellent anti-inflammatory activity by dose-dependently suppressing both mRNA and protein expressions of iNOS, COX-2, IL-1β, IL-6 and TNF-α. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.

    PubMed

    Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P

    2014-01-24

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    PubMed

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the glutathione cycle was involved in the response of marine microalgae to UV-B stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens

    PubMed Central

    Abney, Kristin R.; Kopsell, Dean A.; Sams, Carl E.; Zivanovic, Svetlana; Kopsell, David E.

    2013-01-01

    Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2 ·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. PMID:23606817

  19. UV-observations with a Brewer spectrophotometer at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Vandersee, Winfried; Koehler, U.

    1994-01-01

    Regular spectral UV-B measurements with a Brewer spectrophotometer have been performed at Hohenpeissenberg since 1990. Intercomparison of the Brewer instrument with other UV-B monitoring devices have shown agreement to within plus or minus 10 percent. Comparisons of UV-B spectra measured on fair weather days reveal the well known increasing influence of ozone on UV-B irradiance with decreasing wavelengths. The integral amplification factor the erythemal irradiance reaches values up to 2.8, which can be diminished by increasing turbidity. The influence of cirrus cloud on the UV-B is also shown.

  20. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.

    PubMed

    Martínez-Lüscher, J; Morales, F; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Gomès, E; Pascual, I

    2015-07-01

    The increase in grape berry ripening rates associated to climate change is a growing concern for wine makers as it rises the alcohol content of the wine. The present work studied the combined effects of elevated CO2, temperature and UV-B radiation on leaf physiology and berry ripening rates. Three doses of UV-B: 0, 5.98, 9.66 kJm(-2)d(-1), and two CO2-temperature regimes: ambient CO2-24/14 °C (day/night) (current situation) and 700 ppm CO2-28/18 °C (climate change) were imposed to grapevine fruit-bearing cuttings from fruit set to maturity under greenhouse-controlled conditions. Photosynthetic performance was always higher under climate change conditions. High levels of UV-B radiation down regulated carbon fixation rates. A transient recovery took place at veraison, through the accumulation of flavonols and the increase of antioxidant enzyme activities. Interacting effects between UV-B and CO2-temperature regimes were observed for the lipid peroxidation, which suggests that UV-B may contribute to palliate the signs of oxidative damage induced under elevated CO2-temperature. Photosynthetic and ripening rates were correlated. Thereby, the hastening effect of climate change conditions on ripening, associated to higher rates of carbon fixation, was attenuated by UV-B radiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance.

    PubMed

    Lavola, Anu

    1998-01-01

    A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.

  2. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    NASA Astrophysics Data System (ADS)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the application of slag silicon fertilizer mitigates the negative effects of elevated UV-B radiation on photosynthesis and transpiration in rice.

  3. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation.

    PubMed

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the application of slag silicon fertilizer mitigates the negative effects of elevated UV-B radiation on photosynthesis and transpiration in rice.

  4. Evaluation of ultraviolet radiation, ozone and aerosol interactions in the troposphere using automatic differentiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, G.R.; Potra, F.

    1998-10-06

    A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relativemore » humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.« less

  5. Quantitative determination of alkaloids from roots of Hydrastis canadensis L. and dietary supplements using UPLC-UV-MS

    USDA-ARS?s Scientific Manuscript database

    UPLC with UV detection was used for the quantification of alkaloids from roots of Hydrastis canadensis L. (goldenseal) and dietary supplements claiming to contain goldenseal. The chromatographic run time was less than 6 min. The detection wavelengths used were 290 and 344 nm for '-hydrastine, canadi...

  6. Effect of prestorage UV-A, -B, and -C radiation on fruit quality and anthocyanin of 'Duke' blueberries during cold storage.

    PubMed

    Nguyen, Chau T T; Kim, Jeongyun; Yoo, Kil Sun; Lim, Sooyeon; Lee, Eun Jin

    2014-12-17

    Ultraviolet (UV)-A, -B, and -C were radiated to full-ripe blueberries (cv. 'Duke'), and their effects on fruit qualities and phytonutrients during subsequent cold storage were investigated. The blueberries were exposed to each UV light at 6 kJ/m(2) and then stored at 0 °C for 28 days. Weight loss and decay of the fruits after UV treatment were significantly decreased during the cold storage. The total phenolics and antioxidant activities of blueberries after UV-B and -C treatments were always higher than those of the control and UV-A treatment. Individual anthocyanins were markedly increased during the 3 h after the UV-B and -C treatments. The correlation matrix between total phenolics, anthocyanins, and antioxidant activity measured by the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) assay indicated a significantly close correlation with the individual anthocyanin contents. It was confirmed that the prestorage treatments of UV-B and -C increased the storability and phytochemical accumulation of the full-ripe 'Duke' blueberries during cold storage.

  7. Effect of lanthanum(III) on the production of ethylene and reactive oxygen species in soybean seedlings exposed to the enhanced ultraviolet-B radiation.

    PubMed

    Yang, Qing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-06-01

    The enhanced ultraviolet-B (UV-B) radiation caused by ozone depletion may exert deleterious effects on plants. Therefore, studies on the effect of UV-B radiation on plants, as well as studies on the methods for alleviating the deleterious effects by chemical control, are of great significance. In this study, after soybean (Glycine max) seedlings were exposed to UV-B radiation (10.2 and 13.8kJ m(-2)day(-1)) for 5 days and the followed 6 days of restoration, respectively, the effects of 20mg L(-1) lanthanum (III) [La(III)] on leaf phenotype, photosynthetic rate, and production of ethylene and reactive oxygen species (ROS) were investigated. The results indicated that the exposure to 10.2 and 13.8kJ m(-2)day(-1) UV-B radiation could cause injury to the leaf phenotype, and lead to the decrease in the content of chlorophyll and the net photosynthetic rate, and the increase in the contents of ROS, ethylene and 1-aminocyclopropanecarboxylic acid, and 1-aminocyclopropanecarboxylic acid synthase activity in soybean seedlings. Following the withdrawal of the enhanced UV-B radiation, the above mentioned parameters gradually recovered, and the recovery of soybean seedlings exposed to 10.2kJ m(-2)day(-1) UV-B radiation was faster than those in soybean seedlings exposed to 13.8kJ m(-2)day(-1) UV-B radiation. The leaf injury and the changes in the above indices that were induced by the enhanced UV-B radiation, especially at 10.2kJ m(-2)day(-1), were alleviated after the pretreatment of soybean seedlings with 20mg L(-1) La(III). The results of the correlation analysis demonstrated that the injury to the leaf phenotype and the decrease in the photosynthetic rate of soybean seedlings were correlated with the increase in the ROS content that was induced by ethylene in soybean seedlings. The pretreatment with 20mg L(-1) La(III) alleviated the injury caused by the enhanced UV-B radiation through the regulation of the ROS production. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  9. Iron-based radiochromic systems for UV dosimetry applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  10. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  11. Mechanical properties and cytotoxicity of experimental soft lining materials based on urethane acrylate oligomers.

    PubMed

    Kanie, Takahito; Tomita, Koichi; Tokuda, Masayuki; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2009-07-01

    The purpose of this investigation was to determine whether experimental light-curing soft lining materials (ESLMs) based on commercially available urethane acrylate oligomers (UA-160TM, UV-3200B, UV-3500BA, and UV-3700B) are suitable for clinical use by measuring their viscosity, compressive modulus, Shore A hardness, tensile strength, adhesive strength, and cytotoxicity. The viscosities of the four ESLMs at 25 degrees C were 10.5 Pa.s, UV-3500BA; 144.0 Pa.s, UA-160TM; 328.8 Pa.s, UV-3700B; and 1079.7 Pa.s, UV-3200B. Polymerized UV-3700B was very soft, whereas the softness of the other ESLMs was similar to that of conventional soft lining materials. No significant difference in adhesive strength was observed between UV-3500BA and UV-3700B at 1 day and those at 12 months. Cytotoxicity was measured by a MTT-based assay using HeLa S3 and Ca9-22 cells. UV-3200B and UV-3700B oligomers and all four polymerized ESLMs showed cell viability over 95.2% (p < 0.05).

  12. The effect of UV-B radiation on Bufo arenarum embryos survival and superoxide dismutase activity.

    PubMed

    Herkovits, J; D'Eramo, J L; Fridman, O

    2006-03-01

    The exposure of Bufo arenarum embryos to 300-310 nm UV-B at a dose of 4,104 Joule/m(2) resulted in 100% lethality within 24 hr while 820 Joule/m(2) was the NOEC value for short-term chronic (10 days) exposure. The dose response curves show that lethal effects are proportional with the dose and achieve its highest value within 48 hr post exposure. The superoxide dismutase (SOD) activity in amphibian embryos for sublethal UV-B exposures was evaluated by means of UV-B treatments with 273 (A), 820(B), 1368(C) and 1915(D) Joule/m(2) at 2 and 5 hours post irradiation. The SOD activity in units/mg protein in A, B, C and D at 2 hr after treatments were 80.72 +/- 14.29, 74.5 +/- 13.19, 39.5 +/- 6.99 and 10.7 +/- 1.89 respectively while for control embryos it was 10.88 +/- 1.31. At 5 hr after treatments the SOD values were similar to those found in control embryos. The results confirm the high susceptibility of amphibian embryos to UV-B and point out that the SOD activity is enhanced by low doses of UV-B irradiation achieving significantly higher values than in control embryos at 2 hr post exposure.

  13. Novel use of UV broad-band excitation and stretched exponential function in the analysis of fluorescent dissolved organic matter: study of interaction between protein and humic-like components

    NASA Astrophysics Data System (ADS)

    Panigrahi, Suraj Kumar; Mishra, Ashok Kumar

    2017-09-01

    A combination of broad-band UV radiation (UV A and UV B; 250-400 nm) and a stretched exponential function (StrEF) has been utilised in efforts towards convenient and sensitive detection of fluorescent dissolved organic matter (FDOM). This approach enables accessing the gross fluorescence spectral signature of both protein-like and humic-like components in a single measurement. Commercial FDOM components are excited with the broad-band UV excitation; the variation of spectral profile as a function of varying component ratio is analysed. The underlying fluorescence dynamics and non-linear quenching of amino acid moieties are studied with the StrEF (exp(-V[Q] β )). The complex quenching pattern reflects the inner filter effect (IFE) as well as inter-component interactions. The inter-component interactions are essentially captured through the ‘sphere of action’ and ‘dark complex’ models. The broad-band UV excitation ascertains increased excitation energy, resulting in increased population density in the excited state and thereby resulting in enhanced sensitivity.

  14. Redistribution of boron in leaves reduces boron toxicity.

    PubMed

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  15. UV-induced changes of active components and antioxidant activity in postharvest pigeon pea [Cajanus cajan (L.) Millsp.] leaves.

    PubMed

    Wei, Zuo-Fu; Luo, Meng; Zhao, Chun-Jian; Li, Chun-Ying; Gu, Cheng-Bo; Wang, Wei; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie

    2013-02-13

    In this study, the effect of UV irradiation (UV-A, UV-B, and UV-C) on phytochemicals, total phenolics, and antioxidant activity of postharvest pigeon pea leaves was evaluated. The response of pigeon pea leaves to UV irradiation was phytochemical specific. UV-B and UV-C induced higher levels of phytochemicals, total phenolics, and antioxidant activity in pigeon pea leaves compared with UV-A. Furthermore, UV-B irradiation proved to possess a long-lasting effect on the levels of phenolics and antioxidant activity. After adapting for 48 h at 4 °C following 4 h UV-B irradiation, total phenolics and antioxidant activity were approximately 1.5-fold and 2.2-fold increased from 39.4 mg GAE/g DM and 15.0 μmol GAE/g DM to 59.1 mg GAE/g DM and 32.5 μmol GAE/g DM, respectively. These results indicate that UV irradiation of pigeon pea leaves can be beneficial in terms of increasing active components and antioxidant activity.

  16. Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling.

    PubMed

    Ouyang, Xinhao; Huang, Xi; Jin, Xiao; Chen, Zheng; Yang, Panyu; Ge, Hao; Li, Shigui; Deng, Xing Wang

    2014-08-05

    Long-wavelength and low-fluence UV-B light is an informational signal known to induce photomorphogenic development in plants. Using the model plant Arabidopsis thaliana, a variety of factors involved in UV-B-specific signaling have been experimentally characterized over the past decade, including the UV-B light receptor UV resistance locus 8; the positive regulators constitutive photomorphogenesis 1 and elongated hypocotyl 5; and the negative regulators cullin4, repressor of UV-B photomorphogenesis 1 (RUP1), and RUP2. Individual genetic and molecular studies have revealed that these proteins function in either positive or negative regulatory capacities for the sufficient and balanced transduction of photomorphogenic UV-B signal. Less is known, however, regarding how these signaling events are systematically linked. In our study, we use a systems biology approach to investigate the dynamic behaviors and correlations of multiple signaling components involved in Arabidopsis UV-B-induced photomorphogenesis. We define a mathematical representation of photomorphogenic UV-B signaling at a temporal scale. Supplemented with experimental validation, our computational modeling demonstrates the functional interaction that occurs among different protein complexes in early and prolonged response to photomorphogenic UV-B.

  17. Validation of UV spectrophotometric methods for the determination of dothiepin hydrochloride in pharmaceutical dosage form and stress degradation studies

    NASA Astrophysics Data System (ADS)

    Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.

    2012-11-01

    Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.

  18. A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.

    PubMed

    Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G

    2013-06-01

    The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.

  19. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    PubMed

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2017-05-01

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.

  20. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries.

    PubMed

    Martínez-Lüscher, J; Torres, N; Hilbert, G; Richard, T; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Pascual, I; Gomès, E

    2014-06-01

    Grapevine cv. Tempranillo fruit-bearing cuttings were exposed to supplemental ultraviolet-B (UV-B) radiation under controlled conditions, in order to study its effect on grape traits, ripening, amino acids and flavonoid profile. The plants were exposed to two doses of UV-B biologically effective (5.98 and 9.66kJm(-2)d(-1)), applied either from fruit set to ripeness or from the onset of veraison to ripeness. A 0kJm(-2)d(-1) treatment was included as a control. UV-B did not significantly modify grape berry size, but increased the relative mass of berry skin. Time to reach ripeness was not affected by UV-B, which may explain the lack of changes in technological maturity. The concentration of must extractable anthocyanins, colour density and skin flavonols were enhanced by UV-B, especially in plants exposed from fruit set. The quantitative and qualitative profile of grape skin flavonols were modified by UV-B radiation. Monosubstituted flavonols relative abundance increased proportionally to the accumulated UV-B doses. Furthermore, trisubstituted forms, which where predominant in non-exposed berries, were less abundant as UV-B exposure increased. Although total free amino acid content remained unaffected by the treatments, the increased levels of gamma-aminobutyric acid (GABA), as well as the decrease in threonine, isoleucine, methionine, serine and glycine, revealed a potential influence of UV-B on the GABA-mediated signalling and amino acid metabolism. UV-B had an overall positive impact on grape berry composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.

  2. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  3. Flavonoids, Phenolic Acids and Coumarins from the Roots of Althaea officinalis.

    PubMed

    Gudej, J

    1991-06-01

    From the roots of ALTHAEA OFFICINALIS two flavonoid glycosides were separated. Phenolic acids and coumarins were investigated chromatographically. The structures of the compounds were established on the basis of acid hydrolysis and spectroscopic methods (UV, (1)H-NMR, (13)C-NMR) as hypolaetin 8-glucoside and the new flavonoid sulphate - isoscutellarein 4'-methyl ether 8-glucoside-2''-SO (3)K.

  4. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onsetmore » has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.« less

  6. Quantitative determination of curcuminoids from the Roots of Curcuma longa, Curcuma species and dietary supplements using an UPLC-UV-MS method

    USDA-ARS?s Scientific Manuscript database

    A simple, fast UPLC-UV-MS method was developed for the determination of curcuminoids from roots of Curcuma longa L., Curcuma species (C. zedoaria, C. phaecaulis, C. wenyujin and C. kwangsiensis) and dietary supplements claiming to contain C. longa. The total content of curcuminoids (curcumin, desmet...

  7. The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination.

    PubMed

    Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro; van Drunen, Ellen; Hickson, Ian D; Essers, Jeroen; Kanaar, Roland

    2011-11-10

    Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    PubMed

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    PubMed

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-09-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.

  10. Ultraviolet-B radiation causes an upregulation of survivin in human keratinocytes and mouse skin.

    PubMed

    Aziz, Moammir Hasan; Ghotra, Amaninderapal S; Shukla, Yogeshwer; Ahmad, Nihal

    2004-01-01

    Understanding of the mechanism of ultraviolet (UV)-mediated cutaneous damages is far from complete. The cancer-specific expression of Survivin, a member of the inhibitor of apoptosis family of proteins, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a target for cancer treatment. This study was designed to investigate the modulation of Survivin during UV response, both in vitro and in vivo. We used UV-B-mediated damages in normal human epidermal keratinocytes (NHEK) cells as an in vitro model and SKH-1 hairless mouse model for the in vivo studies. For in vitro studies, NHEK were treated with UV-B and samples were processed at 5, 15, 30 min, 1, 3, 6, 12 and 24 h after treatment. Our data demonstrated that UV-B exposure (50 mJ/cm2) to NHEK resulted in a significant upregulation in Survivin messenger RNA (mRNA) and protein levels. We also observed that UV-B exposure to NHEK resulted in significant (1) decrease in Smac/DIABLO and (2) increase in p53. For in vivo studies, the SKH-1 hairless mice were subjected to a single exposure of UV-B (180 mJ/cm2), and samples were processed at 3, 6, 12 and 24 h after UV-B exposure. UV-B treatment resulted in a significant increase in protein or mRNA levels (or both) of Survivin, phospho-Survivin and p53 and a concomitant decrease in Smac/DIABLO in mouse skin. This study demonstrated, for the first time, the involvement of Survivin (and the associated events) in UV-B response in vitro and in vivo in experimental models regarded to have relevance to human situations.

  11. UV-B light contributes directly to the synthesis of chiloglottone floral volatiles

    PubMed Central

    Amarasinghe, Ranamalie; Poldy, Jacqueline; Matsuba, Yuki; Barrow, Russell A.; Hemmi, Jan M.; Pichersky, Eran; Peakall, Rod

    2015-01-01

    Background and Aims Australian sexually deceptive Chiloglottis orchids attract their specific male wasp pollinators by means of 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’, representing a newly discovered class of volatiles with unique structures. This study investigated the hypothesis that UV-B light at low intensities is directly required for chiloglottone biosynthesis in Chiloglottis trapeziformis. Methods Chiloglottone production occurs only in specific tissue (the callus) of the labellum. Cut buds and flowers, and whole plants with buds and flowers, sourced from the field, were kept in a growth chamber and interactions between growth stage of the flowers and duration and intensity of UV-B exposure on chiloglottone production were studied. The effects of the protein synthesis inhibitor cycloheximide were also examined. Key Results Chiloglottone was not present in buds, but was detected in buds that were manually opened and then exposed to sunlight, or artificial UV-B light for ≥5 min. Spectrophotometry revealed that the sepals and petals blocked UV-B light from reaching the labellum inside the bud. Rates of chiloglottone production increased with developmental stage, increasing exposure time and increasing UV-B irradiance intensity. Cycloheximide did not inhibit the initial production of chiloglottone within 5 min of UV-B exposure. However, inhibition of chiloglottone production by cycloheximide occurred over 2 h of UV-B exposure, indicating a requirement for de novo protein synthesis to sustain chiloglottone production under UV-B. Conclusions The sepals and petals of Chiloglottis orchids strongly block UV-B wavelengths of light, preventing chiloglottone production inside the bud. While initiation of chiloglottone biosynthesis requires only UV-B light, sustained chiloglottone biosynthesis requires both UV-B and de novo protein biosynthesis. The internal amounts of chiloglottone in a flower reflect the interplay between developmental stage, duration and intensity of UV-B exposure, de novo protein synthesis, and feedback loops linked to the starting amount of chiloglottone. It is concluded that UV-B light contributes directly to chiloglottone biosynthesis. These findings suggest an entirely new and unexpected biochemical reaction that might also occur in taxa other than these orchids. PMID:25649114

  12. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study.

    PubMed

    Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam

    2016-09-01

    This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  14. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  15. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  16. The effects of ultraviolet radiation on photosynthetic performance, growth and sunscreen compounds in aeroterrestrial biofilm algae isolated from building facades.

    PubMed

    Karsten, U; Lembcke, S; Schumann, R

    2007-03-01

    The effects of artificial ultraviolet radiation [UVR; 8 W m(-2) ultraviolet-A (UVA), 0.4 W m(-2) ultraviolet-B (UVB)] on photosynthetic performance, growth and the capability to synthesise mycosporine-like amino acids (MAAs) was investigated in the aeroterrestrial green algae Stichococcus sp. and Chlorella luteoviridis forming biofilms on building facades, and compared with the responses of two green algae, from soil (Myrmecia incisa) and brackish water (Desmodesmus subspicatus). All species exhibited decreasing quantum efficiency (Fv/Fm) after 1-3 days exposure to UVR. After 8-12 days treatment, however, all aeroterrestrial isolates exhibited full recovery under UVA and UVA/B. In contrast, D. subspicatus showed only 80% recovery after treatment with UVB. While Stichococcus sp. and C. luteoviridis exhibited a broad tolerance in growth under all radiation conditions tested, M. incisa showed a significant decrease in growth rate after exposure to UVA and UVA/B. Similarly D. subspicatus grew with a reduced rate under UVA, but UVA/B led to full inhibition. Using HPLC, an UV-absorbing MAA (324 nm-MAA) was identified in Stichococcus sp. and C. luteoviridis. While M. incisa contained a specific 322 nm-MAA, D. subspicatus lacked any trace of such compounds. UV-exposure experiments indicated that all MAA-containing species are capable of synthesizing and accumulating these compounds, thus supporting their function as an UV-sunscreen. All data well explain the conspicuous ecological success of aeroterrestrial green algae in biofilms on facades. Biosynthesis and accumulation of MAAs under UVR seem to result in a reduced UV-sensitivity of growth and photosynthesis, which consequently may enhance survival in the environmentally harsh habitat.

  17. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  18. UV-responsive polyvinyl alcohol nanofibers prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Khatri, Zeeshan; Ali, Shamshad; Khatri, Imran; Mayakrishnan, Gopiraman; Kim, Seong Hun; Kim, Ick-Soo

    2015-07-01

    We report UV-responsive polyvinyl alcohol (PVA) nanofibers for potential application for recording and erasing quick response (QR) codes. We incorporate 1‧-3‧-dihydro-8-methoxy-1‧,3‧,3‧-trimethyl-6-nitrospiro [2H-1-benzopyran-2,2‧-(2H)-indole] (indole) and,3-dihydro-1,3,3-trimethylspiro [2H-indole-2,3‧-[3H] phenanthr [9,10-b] (1,4) oxazine] (oxazine) into PVA polymer matrix via electrospinning technique. The resultant nanofibers were measured for recording-erasing, photo-coloration and thermal reversibility. The rate of photo-coloration of PVA-indole nanofibers was five times higher than the PVA-oxazine nanofibers, whereas the thermal reversibility found to be more than twice as fast as PVA-oxazine nanofibers. Results showed that the resultant nanofibers have very good capability of recording QR codes multiple times. The FTIR spectroscopy and SEM were employed to characterize the electrospun nanofibers. The UV-responsive PVA nanofibers have great potentials as a light-driven nanomaterials incorporated within sensors, sensitive displays and in optical devices such as erasable and rewritable optical storage.

  19. Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation.

    PubMed

    Hui, Rong; Li, Xinrong; Chen, Cuiyun; Zhao, Xin; Jia, Rongliang; Liu, Lichao; Wei, Yongping

    2013-04-01

    Our understanding of plant responses to enhanced ultraviolet-B (UV-B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV-B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV-B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV-B treatments (2.75, 3.08, 3.25 and 3.41 W m(-2) ), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV-B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV-B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV-B radiation. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion. Copyright © Physiologia Plantarum 2012.

  20. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin.

    PubMed

    Aziz, Moammir Hassan; Afaq, Farrukh; Ahmad, Nihal

    2005-01-01

    Nonmelanoma skin cancer is the most frequently diagnosed malignancy in the United States, and multiple exposures to solar ultraviolet (UV) radiation (particularly its UV-B component, 290-320 nm), is its major cause. 'Chemoprevention' by naturally occurring agents is being appreciated as a newer dimension in the management of neoplasia including skin cancer. We recently demonstrated that resveratrol (trans-3, 5, 4-trihydroxystilbene), an antioxidant found in grapes, red wines and a variety of nuts and berries, imparts protection from acute UV-B-mediated cutaneous damages in SKH-1 hairless mice. Understanding the mechanism of resveratrol-mediated protection of UV responses is important. We earlier demonstrated that resveratrol imparts chemopreventive effects against multiple UV-exposure-mediated modulations in (1) cki-cyclin-cdk network, and (2) mitogen activated protein kinase (MAPK)-pathway. This study was conducted to assess the involvement of inhibitor of apoptosis protein family Survivin during resveratrol-mediated protection from multiple exposures of UV-B (180 mJ/cm(2); on alternate days; for a total of seven exposures) radiations in the SKH-1 hairless mouse skin. Our data demonstrated that topical pre-treatment of resveratrol (10 micromol in 200 microl acetone/mouse) resulted in significant inhibition of UV-B exposure-mediated increases in (1) cellular proliferations (Ki-67 immunostaining), (2) protein levels of epidermal cyclooxygenase-2 and ornithine decarboxylase, established markers of tumor promotion, (3) protein and messenger RNA levels of Survivin, and (4) phosphorylation of survivin in the skin of SKH-1 hairless mouse. Resveratrol pretreatment also resulted in (1) reversal of UV-B-mediated decrease of Smac/DIABLO, and (2) enhancement of UV-B-mediated induction of apoptosis, in mouse skin. Taken together, our study suggested that resveratrol imparts chemopreventive effects against UV-B exposure-mediated damages in SKH-1 hairless mouse skin via inhibiting Survivin and the associated events.

  1. Effects of climate change and UV-B on materials.

    PubMed

    Andrady, Anthony L; Hamid, Halim S; Torikai, Ayako

    2003-01-01

    The outdoor service life of common plastic materials is limited by their susceptibility to solar ultraviolet radiation. Of the solar wavelengths the UV-B component is particularly efficient in bringing about photodamage in synthetic and naturally occurring materials. This is particularly true of plastics, rubber and wood used in the building and agricultural industries. Any depletion in the stratospheric ozone layer and resulting increase in the UV-B component of terrestrial sunlight will therefore tend to decrease the service life of these materials. The extent to which the service life is reduced is, however, difficult to estimate as it depends on several factors. These include the chemical nature of the material, the additives it contains, the type and the amount of light-stabilizers (or protective coatings) used, and the amount of solar exposure it receives. Concomitant climate change is likely to increase the ambient temperature and humidity in some of the same regions likely to receive increased UV-B radiation. These factors, particularly higher temperatures, are also well known to accelerate the rate of photodegradation of materials, and may therefore further limit the service life of materials in these regions. To reliably assess the damage to materials as a consequence of ozone layer depletion, the wavelength sensitivity of the degradation process, dose-response relationships for the material and the effectiveness of available stabilizers need to be quantified. The data needed for the purpose are not readily available at this time for most of the commonly used plastics or wood materials. Wavelength sensitivity of a number of common plastic materials and natural biopolymers are available and generally show the damage (per photon) to decrease exponentially with the wavelength. Despite the relatively higher fraction of UV-A in sunlight, the UV-B content is responsible for a significant part of light-induced damage of materials. The primary approach to mitigation relies on the effectiveness of the existing light stabilizers (such as hindered amine light stabilizers, HALS) used in plastics exposed to harsh solar UV conditions coupled with climate change factors. In developing advanced light-stabilizer technologies, more light-resistant grades of common plastics, or surface protection technologies for wood, the harsh weathering environment created by the simultaneous action of increased UV-B levels due to ozone depletion as well as the relevant climate change factors need to be taken into consideration. Recent literature includes several studies on synergism of HALS-based stabilizers, stabilizer effectiveness in the new m-polyolefins and elucidation of the mechanism of stabilization afforded by titania pigment in vinyl plastics.

  2. Novel selective and sensitive optical chemosensor based on phenylfluorone derivative for detection of Ge(IV) ion in aqueous solution.

    PubMed

    Keawwangchai, Somchai; Morakot, Nongnit; Keawwangchai, Tasawan

    2018-09-05

    A water soluble chemosensor for Ge 4+ ion based on fluorone derivative containing 3,4-bis(2-(diethylamino)-2-oxoethoxy)phenyl (R8) has been synthesized. The binding abilities between R8 and 10 equiv. of Na + , K + , Ca 2+ , Fe 2+ , Cu 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Al 3+ , Cr 3+ , Fe 3+ and Ge 4+ ions in 1% v/v EtOH-water (tris-buffer pH 7.0) were studied using UV-vis and fluorescence spectrophotometry. When observed by naked-eyes, the color of R8 changed from yellow-orange to pink and the fluorescent color changed from green to non-fluorescence when complexed with Ge 4+ ion. The spectral analysis showed that UV-vis absorption and fluorescence emission intensity of R8 decreased dramatically when Ge 4+ ion was added comparing with other ions. To explain this behavior, the quantum calculation was performed using the hybrid density functional at B3LYP /LanL2DZ level of theory. The calculated orbital energies indicated that the decreasing of UV-vis absorption and the quenching of fluorescence were due to the complexation induced metal to ligand charge transfer. The association constants (K a ) of R8-Ge 4+ complexes calculated from Benesi-Hildebrand equation was 6.21 × 10 5  M -1 . The UV-vis detection limit for Ge 4+ was 4.40 × 10 -7  M which was three orders of magnitude lower than those of Al 3+ , Cd 2+ , Cu 2+ and Na + ion. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Optimizing UV Index determination from broadband irradiances

    NASA Astrophysics Data System (ADS)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0.2-0.3 with a root-mean-square relative error in the scatter of ˜ 6.6 % for clear-sky conditions. Similar results are reproduced under cloudy conditions with light to moderate clouds, with a relative error comparable to the clear-sky counterpart; under strong attenuation due to clouds, a substantial increase in the root-mean-square relative error of up to 35 % is observed due to differing cloud radiative transfer models.

  4. The Effect of UV-B Radiation on Bufo arenarum Embryos Survival and Superoxide Dismutase Activity

    PubMed Central

    Herkovits, J.; D’Eramo, J. L.; Fridman, O.

    2006-01-01

    The exposure of Bufo arenarum embryos to 300–310 nm UV-B at a dose of 4,104 Joule/m2 resulted in 100% lethality within 24 hr while 820 Joule/m2 was the NOEC value for short-term chronic (10 days) exposure. The dose response curves show that lethal effects are proportional with the dose and achieve its highest value within 48 hr post exposure. The superoxide dismutase (SOD) activity in amphibian embryos for sublethal UV-B exposures was evaluated by means of UV-B treatments with 273 (A), 820(B), 1368(C) and 1915(D) Joule/m2 at 2 and 5 hours post irradiation. The SOD activity in units/mg protein in A, B, C and D at 2 hr after treatments were 80.72 ± 14.29, 74.5 ± 13.19, 39.5 ± 6.99 and 10.7 ± 1.89 respectively while for control embryos it was 10.88 ± 1.31. At 5 hr after treatments the SOD values were similar to those found in control embryos. The results confirm the high susceptibility of amphibian embryos to UV-B and point out that the SOD activity is enhanced by low doses of UV-B irradiation achieving significantly higher values than in control embryos at 2 hr post exposure. PMID:16823076

  5. The effect of UV light on the inactivation of Giardia lamblia and Giardia muris cysts as determined by animal infectivity assay (P-2951-01).

    PubMed

    Mofidi, Alexander A; Meyer, Ernest A; Wallis, Peter M; Chou, Connie I; Meyer, Barbara P; Ramalingam, Shivaji; Coffey, Bradley M

    2002-04-01

    This study measured the effect of germicidal ultraviolet (UV) light on Giardia lamblia and Giardia muris cysts, as determined by their infectivity in Mongolian gerbils and CD-1 mice, respectively. Reduction of cyst infectivity due to UV exposure was quantified by applying most probable number techniques. Controlled bench-scale, collimated-beam tests exposed cysts suspended in filtered natural water to light from a low-pressure UV lamp. Both G. lamblia and G. muris cysts showed similar sensitivity to UV light. At 3 mJ/cm2, a dose 10-fold lower than what large-scale UV reactors may be designed to provide, > 2-log10 (99 percent) inactivation was observed. These results, combined with previously published data showing other protozoa and bacteria have similar, high sensitivity to UV light, establish that UV disinfection of drinking water is controlled by viruses which may require over 10-fold more UV dose for the same level of control.

  6. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes.

    PubMed

    Fu, Jinling; Nagashima, Mikiko; Guo, Chuanyu; Raymond, Pamela A; Wei, Xiangyun

    2018-01-01

    Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.

  7. Advanced ultraviolet-resistant silver mirrors for use in solar reflectors

    DOEpatents

    Jorgensen, Gary J [Pine, CO; Gee, Randy [Arvada, CO

    2009-11-03

    A silver mirror construction that maintains a high percentage of hemispherical reflectance throughout the UV and visible spectrum when used in solar reflectors, comprising:a) a pressure sensitive adhesive layer positioned beneath a silver overlay;b) a polymer film disposed on the silver overlay;c) an adhesive layer positioned on the polymer film; andd) a UV screening acrylic film disposed on the adhesive layer.

  8. Isoprene emission aids recovery of photosynthetic performance in transgenic Nicotiana tabacum following high intensity acute UV-B exposure.

    PubMed

    Centritto, Mauro; Haworth, Matthew; Marino, Giovanni; Pallozzi, Emanuele; Tsonev, Tsonko; Velikova, Violeta; Nogues, Isabel; Loreto, Francesco

    2014-09-01

    Isoprene emission by terrestrial plants is believed to play a role in mitigating the effects of abiotic stress on photosynthesis. Ultraviolet-B light (UV-B) induces damage to the photosynthetic apparatus of plants, but the role of isoprene in UV-B tolerance is poorly understood. To investigate this putative protective role, we exposed non-emitting (NE) control and transgenic isoprene emitting (IE) Nicotiana tabacum (tobacco) plants to high intensity UV-B exposure. Methanol emissions increased with UV-B intensity, indicating oxidative damage. However, isoprene emission was unaffected during exposure to UV-B radiation, but declined in the 48 h following UV-B treatment at the highest UV-B intensities of 9 and 15 Wm(-2). Photosynthesis and the performance of photosystem II (PSII) declined to similar extents in IE and NE plants following UV-B exposure, suggesting that isoprene emission did not ameliorate the immediate impact of UV-B on photosynthesis. However, after the stress, photosynthesis and PSII recovered in IE plants, which maintained isoprene formation, but not in NE plants. Recovery of IE plants was also associated with elevated antioxidant levels and cycling; suggesting that both isoprene formation and antioxidant systems contributed to reinstating the integrity and functionality of cellular membranes and photosynthesis following exposure to excessive levels of UV-B radiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors

    NASA Astrophysics Data System (ADS)

    Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.

    2006-09-01

    Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.

  10. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes.

    PubMed

    Pereira-Junior, R A; Huarte-Bonnet, C; Paixão, F R S; Roberts, D W; Luz, C; Pedrini, N; Fernandes, É K K

    2018-02-23

    The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m -2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m -2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs. © 2018 The Society for Applied Microbiology.

  11. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility

    PubMed Central

    Comont, David; Winters, Ana; Gomez, Leonardo D; McQueen-Mason, Simon J; Gwynn-Jones, Dylan

    2013-01-01

    Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m–2 day–1 increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration. PMID:23580749

  12. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture.

    PubMed

    Mariz-Ponte, N; Mendes, R J; Sario, S; Ferreira de Oliveira, J M P; Melo, P; Santos, C

    2018-02-01

    Plants developed receptors for solar UV-A/B radiation, which regulate a complex network of functions through the plant's life cycle. However, greenhouse grown crops, like tomato, are exposed to strongly reduced UV radiation, contrarily to their open-field counterparts. A new paradigm of modern horticulture is to supplement adequate levels of UV to greenhouse cultures, inducing a positive mild stress necessary to stimulate oxidative stress pathways and antioxidant mechanisms. Protected cultures of Solanum (cv MicroTom) were supplemented with moderate UV-A (1h and 4h) and UV-B (1min and 5min) doses during the flowering/fruiting period. After 30days, flowering/fruit ripening synchronization were enhanced, paralleled by the upregulation of blue/UV-A and UV-B receptors' genes cry1a and uvr8. UV-B caused moreover an increase in the expression of hy5, of HY5 repressor cop1 and of a repressor of COP1, uvr8. While all UV-A/B conditions increased SOD activity, increases of the generated H 2 O 2 , as well as lipid peroxidation and cell mebrane disruption, were minimal. However, the activity of antioxidant enzymes downstream from SOD (CAT, APX, GPX) was not significant. These results suggest that the major antioxidant pathways involve phenylpropanoid compounds, which also have an important role in UV screening. This hypothesis was confirmed by the increase of phenolic compounds and by the upregulation of chs and fls, coding for CHS and FLS enzymes involved in the phenylpropanoid synthesis. Overall, all doses of UV-A or UV-B were beneficial to flowering/fruiting but lower UV-A/B doses induced lower redox disorders and were more effective in the fruiting process/synchronization. Considering the benefits observed on flowering/fruiting, with minimal impacts in the vegetative part, we demonstrate that both UV-A/B could be used in protected tomato horticulture systems. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Light based technologies for microbial inactivation of liquids, bead surfaces and powdered infant formula.

    PubMed

    Arroyo, Cristina; Dorozko, Anna; Gaston, Edurne; O'Sullivan, Michael; Whyte, Paul; Lyng, James G

    2017-10-01

    This study evaluates the potential of continuous wave Ultraviolet C light (UV-C) and broad-spectrum intense pulsed light (in this study referred to as High Intensity Light Pulses, HILP) for the inactivation of pathogens of public concern in powdered infant formula (PIF) producers. To achieve this goal a sequential set of experiments were performed, firstly in clear liquid media, secondly on the surface of spherical beads under agitation and, finally in PIF. L. innocua was the most sensitive microorganism to both technologies under all conditions studied with reductions exceeding 4 log 10 cycles in PIF. In the clear liquid medium, the maximum tolerance to light was observed for C. sakazakii against UV-C light and for B. subtilis spores against HILP, with a fluence of approximately 17 mJ/cm 2 required for a 1 log 10 cycle inactivation (D value) of each species. In PIF it was possible to inactivate >99% of the vegetative cell populations by HILP with a fluence of 199 mJ/cm 2 and of B. subtilis spores by doubling the fluence. By contrast, for UV-C treatments a fluence of 2853 mJ/cm 2 was needed for 99.9% reduction of C. sakazakii, which was the most light-resistant microorganism to UV-C. Results here obtained clearly show the potential for light-based interventions to improve PIF microbiological safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation.

    PubMed

    Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-01-01

    In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.

  15. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    PubMed

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  16. Plant response to solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.

    1981-01-01

    Plant reactions and mechanisms of reaction to solar UV radiation are reviewed, along with characteristics of plants which enhance UV tolerance. Wavelength regions to which proteins are particularly sensitive are examined and the possibility of synergistic effects from photoreactions to multiple wavelengths is considered, along with available evidence of nonadditive plant spectral responses to UV radiation. Decreases in atmospheric ozone content are explored in terms of UV wavelengths which would increase with the ozone decreases, particularly for UV-B, which depresses photosynthesis and would increase 1% with a 16% reduction of stratospheric ozone. Higher elevations are projected to display effects of increased UV incident flux first, and global distributions of UV increases due to atmospheric inhomogeneity and water surface clarity are examined. Finally, the response of plant nucleic acids, DNA, chlorophyll to enhanced UV are described, along with repair, avoidance, and optical mechanisms which aid plant survival

  17. A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.

    PubMed

    Moustacchi, E; Perlman, P S; Mahler, H R

    1976-11-17

    A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae, more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...

  18. Lycopene control of benzophenone-sensitized lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  19. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jiwon; Department of Microbiology, Chungnam National University, Daejeon 305-764; Choi, Jeong-Hae

    2011-06-03

    Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly inducedmore » in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in Jurkat cells.« less

  20. Protective properties of ginsenoside Rb1 against UV-B radiation-induced oxidative stress in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Kim, Kyunghoon; Lim, Chang-Jin

    2015-06-01

    Ginsenosides, also known as ginseng saponins, are responsible for most pharmacological effect of ginseng. Ginsenoside Rb1 (Rb1) exerts a variety of pharmacological properties, including anti-inflammatory, antistress, anti-aging and anti-neurodegenerative activities. The aim of the present work was to assess the skin anti-photoaging properties of Rb1 in human dermal keratinocyte HaCaT cells. The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) as well as cell viability for HaCaT cells under UV-B irradiation. Rb1 was able to suppress the ROS levels which were elevated under UV-B irradiation, and unable to influence cellular survival in UV-B-irradiated HaCaT cells. Rb1 diminished the enhancement of MMP-2 gelatinolytic activity in conditioned medium, which corresponded with the decreased MMP-2 protein levels in both conditioned medium and cellular lysate prepared from UV-B-irradiated HaCaT cultures. Rb1 could restore the total glutathione (GSH) and superoxide dismutase (SOD) activity diminished in UV-B-irradiated HaCaT cells. Ginsenoside Rb1 possesses skin anti-photoaging properties through scavenging ROS and decreasing MMP-2 levels possibly by enhancing antioxidant activity in keratinocytes under UV-B irradiation.

  1. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    PubMed

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  2. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.).

    PubMed

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Tetraploidy enhances B excess tolerance in citrange CarrizoExpression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidiesB tolerance is attributed to root anatomical modifications induced by genome duplicationThe rootstock 4x citrange carrizo may prevent citrus trees from B excess.

  3. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.)

    PubMed Central

    Ruiz, Marta; Quiñones, Ana; Martínez-Alcántara, Belén; Aleza, Pablo; Morillon, Raphaël; Navarro, Luis; Primo-Millo, Eduardo; Martínez-Cuenca, Mary-Rus

    2016-01-01

    Tetraploidy modifies root anatomy which may lead to differentiated capacity to uptake and transport mineral elements. This work provides insights into physiological and molecular characters involved in boron (B) toxicity responses in diploid (2x) and tetraploid (4x) plants of Carrizo citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.), a widely used citrus rootstock. With B excess, 2x plants accumulated more B in leaves than 4x plants, which accounted for their higher B uptake and root-to-shoot transport rates. Ploidy did not modify the expression of membrane transporters NIP5 and BOR1 in roots. The cellular allocation of B excess differed between ploidy levels in the soluble fraction, which was lower in 4x leaves, while cell wall-linked B was similar in 2x and 4x genotypes. This correlates with the increased damage and stunted growth recorded in the 2x plants. The 4x roots were found to have fewer root tips, shorter specific root length, longer diameter, thicker exodermis and earlier tissue maturation in root tips, where the Casparian strip was detected at a shorter distance from the root apex than in the 2x roots. The results presented herein suggest that the root anatomical characters of the 4x plants play a key role in their lower B uptake capacity and root-to-shoot transport. Highlights Tetraploidy enhances B excess tolerance in citrange Carrizo Expression of NIP5 and BOR1 transporters and cell wall-bounded B are similar between ploidies B tolerance is attributed to root anatomical modifications induced by genome duplication The rootstock 4x citrange carrizo may prevent citrus trees from B excess. PMID:27252717

  4. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. © 2014 John Wiley & Sons Ltd.

  5. Selective and sensitive fluorescent sensor for Pd2+ using coumarin 460 for real-time and biological applications.

    PubMed

    Ashwin, Bosco Christin Maria Arputham; Sivaraman, Gandhi; Stalin, Thambusamy; Yuvakkumar, Rathinam; Muthu Mareeswaran, Paulpandian

    2018-06-01

    The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd 2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd 2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd 2+ with C460. The detection limit up to 2.5 × 10 -7  M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1 H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd 2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd 2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd 2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  7. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2016-05-01

    Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10-30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Our study demonstrated for the 1(st) time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. Flavonoid-enriched ethyl acetate (EA) fraction from A. esculentus protected against ultraviolet-B (UV-B)-induced oxidative DNA damageEA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species productionEA fraction could reduce oxidative stress through the Nrf2-ARE PathwayEA fraction was found to be nongenotoxic and prevented apoptotic changes. Flavonoids from Abelmoschus esculentus protected from ultraviolet-B-induced damageThey were capable of reducing oxidative stress through Nrf2-ARE PathwayThey are nongenotoxic and do not possess mutagenic potentialFlavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen. Abbreviations used: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction.

  8. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR.

    PubMed

    Kurdziel, Magdalena; Filek, Maria; Łabanowska, Maria

    2018-05-01

    UV irradiation has ionisation character and leads to the generation of reactive oxygen species (ROS). The destructive character of ROS was observed among others during interaction of cereal grains with ozone and was caused by changes in structures of biomolecules leading to the formation of stable organic radicals. That effect was more evident for stress sensitive genotypes. In this study we investigated the influence of UV irradiation on cereal grains originating from genotypes with different tolerance to oxidative stress. Grains and their parts (endosperm, embryo and seed coat) of barley, wheat and oat were subjected to short-term UV irradiation. It was found that UV caused the appearance of various kinds of reactive species (O 2 -• , H 2 O 2 ) and stable radicals (semiquinone, phenoxyl and carbon-centred). Simultaneously, lipid peroxidation occurred and the organic structure of Mn(II) and Fe(III) complexes become disturbed. UV irradiation causes damage of main biochemical structures of plant tissues, the effect is more significant in sensitive genotypes. In comparison with ozone treatment, UV irradiation leads to stronger destruction of biomolecules in grains and their parts. It is caused by the high energy of UV light, facilitating easier breakage of molecular bonds in biochemical compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Sequential determination of fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid chromatography/tandem mass spectrometry.

    PubMed

    Tayade, Amol B; Dhar, Priyanka; Kumar, Jatinder; Sharma, Manu; Chaurasia, Om P; Srivastava, Ravi B

    2013-07-30

    A rapid method was developed to determine both types of vitamins in Rhodiola imbricata root for the accurate quantification of free vitamin forms. Rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) with electrospray ionization (ESI) source operating in multiple reactions monitoring (MRM) mode was optimized for the sequential analysis of nine water-soluble vitamins (B1, B2, two B3 vitamins, B5, B6, B7, B9, and B12) and six fat-soluble vitamins (A, E, D2, D3, K1, and K2). Both types of vitamins were separated by ion-suppression reversed-phase liquid chromatography with gradient elution within 30 min and detected in positive ion mode. Deviations in the intra- and inter-day precision were always below 0.6% and 0.3% for recoveries and retention time. Intra- and inter-day relative standard deviation (RSD) values of retention time for water- and fat-soluble vitamin were ranged between 0.02-0.20% and 0.01-0.15%, respectively. The mean recoveries were ranged between 88.95 and 107.07%. Sensitivity and specificity of this method allowed the limits of detection (LOD) and limits of quantitation (LOQ) of the analytes at ppb levels. The linear range was achieved for fat- and water-soluble vitamins at 100-1000 ppb and 10-100 ppb. Vitamin B-complex and vitamin E were detected as the principle vitamins in the root of this adaptogen which would be of great interest to develop novel foods from the Indian trans-Himalaya. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Two new C19-diterpenoid alkaloids from Aconitum tsaii.

    PubMed

    Li, Gui-Qiong; Zhang, Li-Mei; Zhao, Da-Ke; Chen, Yan-Ping; Shen, Yong

    2017-05-01

    Two new C 19 -diterpenoid alkaloids, 14-benzoylliljestrandisine (1) and 14-anisoylliljestrandisine (2), were isolated from the roots of Aconitum tsaii. Their structures were elucidated by different spectroscopic (IR, UV, 1D and 2D NMR) and mass-spectrometric techniques.

  12. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Mannino, G.; Renna, L.; Costa, N.; Badalà, P.

    2016-10-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320-400 nm) and UV-B (290-320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  13. Analysis of responses to valerian root extract in the feline pulmonary vascular bed.

    PubMed

    Fields, Aaron M; Richards, Todd A; Felton, Jason A; Felton, Shaili K; Bayer, Erin Z; Ibrahim, Ikhlass N; Kaye, Alan David

    2003-12-01

    This study was undertaken to investigate pulmonary vascular response to valerian (Valeriana officinalis) in the feline pulmonary vasculature under constant flow conditions. In separate experiments, the effects of NG-L-nitro-L-arginine methyl ester (L-NIO), a nitric oxide synthase inhibitor, glibenclamide, an adenosine triphosphate (ATP)-sensitive potassium (K+) channel blocker, meclofenamate, a nonselective cyclooxygenase (COX) inhibitor, bicuculline, a GABA(A) receptor antagonist, and saclofen, a GABA(B) antagonist, were investigated on pulmonary arterial responses to various agonists in the feline pulmonary vascular bed. These agonists included valerian, muscimol, a GABA(A) agonist, SKF-97541 a GABA(B) agonist, acetylcholine (ACh), and bradykinin, both inducers of nitric oxide synthase, arachidonic acid, a COX substrate, and pinacidil, an ATP-sensitive K+ channel activator, during increased tone conditions induced by the thromboxane A2 mimic, U46619. Laboratory investigation. Mongrel cats of either gender. Injections of the abovementioned agonists and antagonists were given. Baseline pulmonary tone, responses to the agonists, and responses to the agonists after injections of antagonists were all measured via a pulmonary catheter transducer and recorded. Valerian root extract is a potent smooth muscle dilator in the feline pulmonary vascular bed. The vasodilatory effects of valerian root extract were unchanged after the administration of L-NIO, glibenclamide, and meclofenamate. These effects were ablated, however, by both saclofen and bicuculline. The ability of saclofen and bicuculline to modulate the dilatory effects of valerian root extract was not statistically different. The vasodilatory effects of valerian root extract are mediated by a nonselective GABA mechanism.

  14. Redistribution of boron in leaves reduces boron toxicity

    PubMed Central

    Fitzpatrick, Kate L

    2009-01-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots. PMID:20009556

  15. Convergent or parallel molecular evolution of momilactone A and B: potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme.

    PubMed

    Kato-Noguchi, Hisashi

    2011-09-01

    Plant second metabolites momilactone A and B, which act as potent phytoalexins and allelochemicals, have been found thus far only in rice and the moss Hypnum plumaeforme, although both plants are taxonomically quite distinct. The concentrations of momilactone A and B, respectively, in rice plants were 4.5-140 and 2.9-85μg/g, and those in H. plumaeforme were 8.4-58.7 and 4.2-23.4μg/g. Momilactone A and B concentrations in rice and H. plumaeforme plants were increased by UV irradiation, elicitor and jasmonic acid treatments. Rice and H. plumaeforme plants secrete momilactone A and B into the rhizosphere, and the secretion level was also increased by UV irradiation, elicitor and jasmonic acid treatments. In addition, although endogenous concentrations of momilactone A in rice and H. plumaeforme were greater than those of momilactone B, the secretion levels of momilactone B were greater than those of momilactone A in rice and H. plumaeforme, which suggests that momilactone B may be selectively secreted by both rice and H. plumaeforme. As momilactone A and B exert potent antifungal and growth inhibitory activities, momilactone A and B may play an important role in the defense responses in H. plumaeforme and rice against pathogen infections and in allelopathy. The secretion of momilactone A and B into the rhizosphere may also prevent bacterial and fungal infections and provide a competitive advantage for nutrients through the inhibition of invading root systems of neighboring plants as allelochemicals. Therefore, both plants, despite their evolutionary distance, may use same defense strategy with respect to the momilactone A and B production and secretion, which resulting from convergent or parallel evolutionary processes. In the case of parallel evolution, there may be plant species providing the missing link in molecular evolution of momilactones between H. plumaeforme and rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)

    PubMed Central

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060

  17. The Multifaceted Roles of HY5 in Plant Growth and Development.

    PubMed

    Gangappa, Sreeramaiah N; Botto, Javier F

    2016-10-10

    ELONGATED HYPOCOTYL5 (HY5), a member of the bZIP transcription factor family, inhibits hypocotyl growth and lateral root development, and promotes pigment accumulation in a light-dependent manner in Arabidopsis. Recent research on its role in different processes such as hormone, nutrient, abiotic stress (abscisic acid, salt, cold), and reactive oxygen species signaling pathways clearly places HY5 at the center of a transcriptional network hub. HY5 regulates the transcription of a large number of genes by directly binding to cis-regulatory elements. Recently, HY5 has also been shown to activate its own expression under both visible and UV-B light. Moreover, HY5 acts as a signal that moves from shoot to root to promote nitrate uptake and root growth. Here, we review recent advances on HY5 research in diverse aspects of plant development and highlight still open questions that need to be addressed in the near future for a complete understanding of its function in plant signaling and beyond. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1972-01-01

    Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.

  19. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P<=0.015), with smaller but significant increases at five of the nine South American sites (r(exp 2) = 0.24-0.42; P<=0.05). The contribution of the highest UV-B(sub ery) exposure levels (>= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  20. Sensitivity of erythemal UV/global irradiance ratios to atmospheric parameters: application for estimating erythemal radiation at four sites in Thailand

    NASA Astrophysics Data System (ADS)

    Buntoung, Sumaman; Janjai, Serm; Nunez, Manuel; Choosri, Pranomkorn; Pratummasoot, Noppamas; Chiwpreecha, Kulanist

    2014-11-01

    Factors affecting the ratio of erythemal UV (UVER) to broadband (G) irradiance were investigated in this study. Data from four solar monitoring sites in Thailand, namely Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla were used to investigate the UVER/G ratio in response to geometric and atmospheric parameters. These comprised solar zenith angle, aerosol load, total ozone column, precipitable water and clearness index. A modeling scheme was developed to isolate and examine the effect of each individual environmental parameter on the ratio. Results showed that all parameters with the exception of solar zenith angle and clearness index influenced the ratios in a linear manner. These results were also used to develop a semi-empirical model for estimating hourly erythemal UV irradiance. Data from 2009 to 2010 were used to construct the ratio model while validation was performed using erythemal UV irradiance at the above four sites in 2011. The validation results showed reasonable agreement with a root mean square difference of 13.5% and mean bias difference of - 0.5%, under all sky conditions and 10.9% and - 0.3%, respectively, under cloudless conditions.

  1. Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy.

    PubMed

    Tessem, May-Britt; Bathen, Tone F; Cejková, Jitka; Midelfart, Anna

    2005-03-01

    This study was conducted to investigate metabolic changes in aqueous humor from rabbit eyes exposed to either UV-A or -B radiation, by using (1)H nuclear magnetic resonance (NMR) spectroscopy and unsupervised pattern recognition methods. Both eyes of adult albino rabbits were irradiated with UV-A (366 nm, 0.589 J/cm(2)) or UV-B (312 nm, 1.667 J/cm(2)) radiation for 8 minutes, once a day for 5 days. Three days after the last irradiation, samples of aqueous humor were aspirated, and the metabolic profiles analyzed with (1)H NMR spectroscopy. The metabolic concentrations in the exposed and control materials were statistically analyzed and compared, with multivariate methods and one-way ANOVA. UV-B radiation caused statistically significant alterations of betaine, glucose, ascorbate, valine, isoleucine, and formate in the rabbit aqueous humor. By using principal component analysis, the UV-B-irradiated samples were clearly separated from the UV-A-irradiated samples and the control group. No significant metabolic changes were detected in UV-A-irradiated samples. This study demonstrates the potential of using unsupervised pattern recognition methods to extract valuable metabolic information from complex (1)H NMR spectra. UV-B irradiation of rabbit eyes led to significant metabolic changes in the aqueous humor detected 3 days after the last exposure.

  2. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization.

    PubMed

    Balsanelli, Eduardo; Serrato, Rodrigo V; de Baura, Valter A; Sassaki, Guilherme; Yates, Marshall G; Rigo, Liu Un; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A

    2010-08-01

    In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-07

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.

  4. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen.

    PubMed

    Maja, Mengistu M; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Scutellaria radix Extract as a Natural UV Protectant for Human Skin.

    PubMed

    Seok, Jin Kyung; Kwak, Jun Yup; Choi, Go Woon; An, Sang Mi; Kwak, Jae-Hoon; Seo, Hyeong-Ho; Suh, Hwa-Jin; Boo, Yong Chool

    2016-03-01

    Ultraviolet (UV) radiation induces oxidative injury and inflammation in human skin. Scutellaria radix (SR, the root of Scutellaria baicalensis Georgi) contains flavonoids with high UV absorptivity and antioxidant properties. The purpose of this study was to examine the potential use of SR extract as an additive in cosmetic products for UV protection. SR extract and its butanol (BuOH) fraction strongly absorbed UV radiation and displayed free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radials and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals. They also attenuated the UV-induced death of HaCaT cells. Sunscreen creams, with or without supplementation of SR extract BuOH fraction, were tested in vivo in human trials to evaluate potential skin irritation and determine the sun protection factor (SPF). Both sunscreen creams induced no skin irritation. A sunscreen cream containing 24% ZnO showed an SPF value of 17.8, and it increased to 22.7 when supplemented with 5% SR extract BuOH fraction. This study suggests that SR-derived materials are useful as safe cosmetic additives that provide UV protection. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Using CeSiC for UV spectrographs for the WSO/UV

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Gál, C.; Brandt, C.; Haberler, P.; Zuknik, K.-H.; Sedlmaier, T.; Shustov, B.; Sachkov, M.; Moisheev, A.; Kappelmann, N.; Barnstedt, J.; Werner, K.

    2017-11-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project lead by the Russian Federal Space Agency (Roscosmos) with the objective of high performance observations in the ultraviolet range. The 1.7 m WSO/UV telescope feeds UV spectrometers and UV imagers. The UV spectrometers comprise two high resolution Echelle spectrographs for the 100 - 170 nm and 170 - 300 nm wavelength range and a long slit spectrograph for the 100 - 300 nm band. All three spectrometers represent individual instruments that are assembled and aligned separately. In order to save mass while maintaining high stiffness, the instruments are combined to a monoblock. Cesic has been selected to reduce CTE related distortions of the instruments. In contrast to aluminium, the stable structure of Cesic is significantly less sensitive to thermal gradients. No further mechanism for focus correction with high functional, technical and operational complexity and dedicated System costs are necessary. Using Cesic also relaxes the thermal control requirements of +/-5°C, which represents a considerable cost driver for the S/C design. The WUVS instrument is currently studied in the context of a phase B2 study by Kayser-Threde GmbH including a Structural Thermal Model (STM) for verification of thermal and mechanical loads, stability due to thermal distortions and Cesic manufacturing feasibility.

  7. An LED-based UV-B irradiation system for tiny organisms: System description and demonstration experiment to determine the hatchability of eggs from four Tetranychus spider mite species from Okinawa.

    PubMed

    Suzuki, Takeshi; Yoshioka, Yoshio; Tsarsitalidou, Olga; Ntalia, Vivi; Ohno, Suguru; Ohyama, Katsumi; Kitashima, Yasuki; Gotoh, Tetsuo; Takeda, Makio; Koveos, Dimitris S

    2014-03-01

    We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5×5 light-emitting diode (LED) matrix (100×100mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0Wm(-2), respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12hd(-1) at 25°C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02Wm(-2), the hatchabilities increased to >90% under simultaneous irradiation with 4.0Wm(-2) white light. At 0.06Wm(-2) UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B-induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    PubMed

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds

    PubMed Central

    Hernández Moresino, Rodrigo D.; Helbling, E. Walter

    2010-01-01

    The aim of our study was to assess the combined impact of UVR (280–400 nm) and temperature on the first larval stage (Zoea I) of three crab species from the Patagonian coast: Cyrtograpsus altimanus, C. angulatus, and Leucippa pentagona. We determined the survival response of newly hatched Zoea I after being exposed for 8–10 h under a solar simulator (Hönle SOL 1200) at 15 and 20 °C. There was no mortality due to Photosynthetic Active Radiation (PAR, 400–700 nm) or ultraviolet-A radiation (UV-A, 315–400 nm), and all the observed mortality was due to ultraviolet-B radiation (UV-B, 280–315 nm). The data of larval mortality relative to exposure time was best fit using a sigmoid curve. Based on this curve, a threshold (Th) and the lethal dose for 50% mortality (LD50) were determined for each species. Based on the Th and LD50, C. altimanus was found to be the most resistant species, while L. pentagona was found to be the most sensitive to UV-B. For both species of Cyrtograpsus, mortality was significantly lower at 20 °C than at 15 °C; however, no significant differences between the two temperature treatments were found in L. pentagona. Bioaccumulation of UV-absorbing compounds in the gonads and larvae of C. altimanus, and to a lesser extent in C. angulatus, might have contributed for counteracting the impact of UV-B. However, most of the resilience to UV-B observed with the increase in temperature might be due to an increase in metabolic activity caused by a repair mechanism mediated by enzymes. PMID:20559492

  10. Identification of a hydrolyzable tannin, oenothein B, as an aluminum-detoxifying ligand in a highly aluminum-resistant tree, Eucalyptus camaldulensis.

    PubMed

    Tahara, Ko; Hashida, Koh; Otsuka, Yuichiro; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

    2014-02-01

    Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis.

  11. Identification of a Hydrolyzable Tannin, Oenothein B, as an Aluminum-Detoxifying Ligand in a Highly Aluminum-Resistant Tree, Eucalyptus camaldulensis1[C][W

    PubMed Central

    Tahara, Ko; Hashida, Koh; Otsuka, Yuichiro; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

    2014-01-01

    Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis. PMID:24381064

  12. Biocompatibility and antifibrotic effect of UV-cross-linked hyaluronate as a release-system for tranilast after trabeculectomy in a rabbit model--a pilot study.

    PubMed

    Spitzer, Martin S; Sat, Macarena; Schramm, Charlotte; Schnichels, Sven; Schultheiss, Maximilian; Yoeruek, Efdal; Dzhelebov, Dimitar; Szurman, Peter

    2012-06-01

    To analyze the release kinetics and the clinical and histological effects of UV-cross-linked hyaluronic acid as a release-system for the transforming growth factor β-2 antagonist tranilast with anti-phlogistic properties on intraocular pressure after trabeculectomy in an aggressive scarring animal model. Hyaluronate acid was UV-cross linked and loaded with tranilast. The release of tranilast into a buffered salt solution was assessed spectrophotometrically. Glaucoma filtration surgery, similar to that performed in clinical practice, was performed on chinchilla rabbits. The rabbits were divided in 3 groups. (Group A: trabeculectomy alone, group B: trabeculectomy with a cross-linked hyaluronic acid gel preparation and group C: trabeculectomy with cross-linked hyaluronic gel preparation mixed with tranilast). Antifibrotic efficacy was established by clinical response and histologic examination. The cross-linked gels released tranilast for up to 26 h. The release plotted as a function of the square root of time was consistent with a largely diffusion-controlled release system. Both the gel preparation alone and the gel preparation mixed with tranilast were well tolerated in vivo. No adverse effects such as inflammation, corneal toxicity or blurring of the optical media were observed. The intraocular pressure reached preoperative levels within 9 days after surgery in control animals and group B, but remained significantly reduced (p = 0.00016) in the group with tranilast until day 22. The data of this pilot study suggest that the intraoperative application of UV-crossed linked hyaluronic acid used as a slow release system for tranilast may improve the surgical outcome of glaucoma filtration surgery.

  13. Evaluation of the oxidative deoxyribonucleic acid damage biomarker 8-hydroxy-2'-deoxyguanosine in the urine of leukemic children by micellar electrokinetic capillary chromatography.

    PubMed

    Zhang, Pingping; Lian, Kaoqi; Wu, Xiaoli; Yao, Min; Lu, Xin; Kang, Weijun; Jiang, Lingling

    2014-04-04

    Determining the level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, is vital to the study of clinical pathogenesis and drug toxicity. The principal limitation of capillary electrophoresis (CE) with UV detection is its low sensitivity. To overcome this shortcoming, we developed a micellar electrokinetic capillary chromatography (MEKC) with solid-phase extraction (SPE) for urinary 8-OHdG analysis. The sensitivity of MEKC-UV was improved using a reasonable UV system, injection mode, and SPE. The parameters affecting MEKC and SPE were also optimized. The calibration curve was linear within the range from 1 to 500 μg L(-1). The limits of detection and quantification were 0.27 μg L(-1) and 0.82 μg L(-1), respectively. Interday and intraday precision were both <5.6%. The recovery of 8-OHdG in urine ranged from 94.5% to 103.2%. This method was used to measure urinary 8-OHdG from eight normal children, eight newly diagnosed leukemic children, and eight leukemic children undergoing chemotherapy. The results show that the proposed method can be used to assess oxidative stress in patients and the side effects of chemotherapeutic drugs by measuring urinary 8-OHdG. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.

    PubMed

    Dillon, Francisco M; Tejedor, M Daniela; Ilina, Natalia; Chludil, Hugo D; Mithöfer, Axel; Pagano, Eduardo A; Zavala, Jorge A

    2018-02-01

    Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. © 2017 John Wiley & Sons Ltd.

  15. Stellar Laboratories II. New Zn Iv and Zn v Oscillator Strengths and Their Validation in the Hot White Dwarfs G191-B2B and RE0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-01-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191B2B,21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance.Aims. Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191B2B and the DO-type white dwarf RE 0503289. Methods. We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv v spectrum exhibited in high-resolution and high-SN UV observations of G191B2B and RE 0503289. Results. In the UV spectrum of G191B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn 5.52 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined Teff 60 000 2000 K and log g 7.60 0.05. In the spectrum of RE 0503289, we identified 128 Zn v lines for the first time and determined log Zn 3.57 0.2 (155 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191B2B and RE 0503289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the photospheric Zn abundance of these two stars precisely.

  16. Progressive Inhibition by Water Deficit of Cell Wall Extensibility and Growth along the Elongation Zone of Maize Roots Is Related to Increased Lignin Metabolism and Progressive Stelar Accumulation of Wall Phenolics1

    PubMed Central

    Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.

    2006-01-01

    Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904

  17. One step Pd(0)-catalyzed synthesis, X-ray analysis, and photophysical properties of cyclopent[hi]aceanthrylene: fullerene-like properties in a nonalternant cyclopentafused aromatic hydrocarbon.

    PubMed

    Dang, Hung; Levitus, Marcia; Garcia-Garibay, Miguel A

    2002-01-09

    A simple procedure for the synthesis of cyclopentafused polycyclic aromatic hydrocarbons (CP-PAH) with Pd(PPh(3))(2)Cl(2) catalyst has been applied to the one-pot palladium(0)-catalyzed coupling of 9,10-dibromoanthracene (1) with 2-methyl-3-butyn-2-ol. Reactions carried out in refluxing benzene in the presence of CuSO(4)/Al(2)O(3) yielded 9,10-dialkynylanthracene 2a, alkynyl aceanthrylene 2b, and 2,7-disubstituted cyclopent[hi]aceanthrylene 2c in 13%, 23%, and 19% purified yields, respectively, with total conversions of 80-90%. Sealed tube reactions without copper at 110 degrees C improved the yield of 2c up to >75%. Single-crystal X-ray analyses of 2a and 2c reveal a three-dimensional hydrogen bonding network, producing a unique crystal packing. The packing structure of 2b is dominated by pi-pi stacking interactions between two aceanthrylene molecules. CP-PAHs 2b and 2c have potentially interesting fullerene-like photophysics. While the UV-vis and fluorescence spectra of 2a (Phi(F) = 0.87) show the characteristic vibronic structure of anthracene, the UV-vis spectra of ruby-red aceanthrylene 2b and greenish-black cyclopent[hi]aceanthrylene 2c extend well into the visible range. Isomers 2b and 2c showed no detectable fluorescence emission. Unlike fullerenes, compounds 2b and 2c are poor singlet oxygen sensitizers with measured (1)O(2) quantum yields of 0.02 and 0.06, respectively. As expected from a simple Hückel analysis, 2c has relatively low two-electron reduction potentials as determined by cyclic voltammetry.

  18. Color tuning of photonic gel films by UV irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Sung Eui; Kim, Su Young; Shin, Dong Myung

    2010-02-01

    Block copolymers have drawn increasing attention for fabricating functional nanomaterials due to their properties of self-assembly. In particular, photonic crystals hold promise for multiple optical applications. We prepared 1D photonic crystals with polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg /mol-b-57 kg/mol. The lamellar stacks, which are alternating layers of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5wt% of iodomethane solubilized in n-hexane. We demonstrate about the influence of UV light on those photonic gel films. To study of different properties of films, UV-visible absorption spectra were measured as a different UV irradiation time at swollen films with distilled water. The UV-visible maximum absorption spectra shifted by UV irradiation time. Dependent on the time of UV irradiations, we can change the photonic band gap.

  19. Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl.

    PubMed

    Huang, Qingchun; Yun, Xinming; Rao, Wenbing; Xiao, Ciying

    2017-04-01

    Photodynamic sensitizers as useful alternative agents have been used for population control against insect pests, and the response of insect ovarian cells towards the photosensitizers is gaining attention because of the next reproduction. In this paper, antioxidative responses of lepidopteran ovarian Tn5B1-4 and Sf-21 cells to photoactivated alpha-terthienyl (PAT) are investigated. PAT shows positive inhibitory cytotoxicity on the two ovarian cells, and its inhibition on cell viability is enhanced as the concentrations are increased and the irradiation time is extended. Median inhibitory concentrations (IC 50 ) are 3.36μg/ml to Tn5B1-4 cells, and 3.15μg/ml to Sf-21 cells at 15min-UV-A irradiation 2h-dark incubation. Under 10.0μg/ml PAT exposure, 15min-UV-A irradiation excites higher ROS production than 5min-UV-A irradiation does in the ovarian cells, the maximum ROS content is about 7.1 times in Tn5B1-4 cells and 4.3 times in Sf-21 cells, and the maximum malondialdehyde levels in Tn5B1-4 and Sf-21 cells are about 1.47- and 1.36-fold higher than the control groups, respectively. Oxidative stress generated by PAT strongly decreases the activities of POD, SOD and CAT, and induces an accumulation of Tn5B1-4 cells in S phase and Sf-21 cells in G2/M phase in a concentration-dependent fashion. Apoptosis accumulation of Tn5B1-4 cells and the persistent post-irradiation cytotoxicity are further observed, indicating different antioxidative tolerance and arrest pattern of the two ovarian cells towards the cytotoxicity of PAT. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu(2+) in aqueous solution.

    PubMed

    Hu, Yang; Zhang, Jing; Lv, Yuan-Zheng; Huang, Xiao-Huan; Hu, Sheng-Li

    2016-03-15

    A new colorimetric probe 1 based on rhodamine B lactam was developed for naked-eye detection of Cu(2+). The optical feature of 1 for Cu(2+) was investigated by UV-vis absorption spectroscopy. Upon the addition of Cu(2+), the 1 displayed a distinct color change from colorless to pink, which can be directly detected by the naked eye. The stoichiometry of 1 to Cu(2+) complex was found to be 1:1 and the naked-eye detection limit was determined as low as 2 μM. The results suggest that the probe 1 may provide a convenient method for visual detection of Cu(2+) with high sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht

    2017-01-01

    Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.

  2. [Study on the chemical constituents in roots of Gentiana dahurica].

    PubMed

    Chen, Qian-Liang; Shi, Zhang-Yan; Zhang, Ya-Hui; Zheng, Jiang-Bin

    2011-08-01

    To systematically study the chemical constituents in the roots of Gentiana dahurica. Various column chromatographic techniques were used for isolation and purification. The structures were elucidated on the basis of spectral data (UV, IR, MS, NMR) and identified by comparing with the authentic substance. Seven compounds were isolated and identified as: roburic acid (1), oleanolic acid (2), beta-sitosterol (3), daucosterol (4), gentiopicroside(5), swertiamarine (6), sweroside (7). Compounds 1, 2 and 4 are isolated from this plant for the first time.

  3. [Root system distribution and biomechanical characteristics of Bambusa oldhami].

    PubMed

    Zhou, Ben-Zhi; Xu, Sheng-Hua; An, Yan-Fei; Xu, Sheng-Hua

    2014-05-01

    To determine the mechanism of soil stabilizing through Bambusa oldhami root system, the vertical distribution of B. oldhami root system in soil was investigated, and the tensile strength of individual root and soil shear strength were measured in B. oldhami forest. The dry mass, length, surface area and volume of the B. oldhami root system decreased with the increasing soil depth, with more than 90% of the root system occurring in the 0-40 cm soil layer. The root class with D 1 mm occupied the highest percentage of the total in terms of root length, accounting for 79.6%, but the lowest percentage of the total in terms of root volume, accounting for 8.2%. The root class with D >2 mm was the opposite, and the root class with D= 1-2 mm stayed in between. The maximum tensile resistance of B. oldhami root, either with 12% moisture content or a saturated moisture content, increased with the increasing root diameter, while the tensile strength decreased with the increasing root diameter in accordance with power function. Tensile strength of the root, with either of the two moisture contents, was significantly different among the diameter classes, with the highest tensile strength occurring in the root with D < or = 1 mm and the lowest in the root with D > or = 2 mm. The tensile strength of root with 12% moisture content was significantly higher than that with the saturated moisture content, and less effect of moisture content on root tensile strength would occur in thicker roots. The shear strengths of B. oldhami forest soil and of bare soil both increased with the increasing soil depth. The shear strength of B. oldhami forest soil had a linear positive correlation with the root content in soil, and was significantly higher than that of bare soil. The shear strength increment in B. oldhami forest was positively correlated with the root content in soil according to an exponential function, but not related significantly with soil depth.

  4. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    PubMed

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Enhanced UV-B radiation during pupal stage reduce body mass and fat content, while increasing deformities, mortality and cell death in female adults of solitary bee Osmia bicornis.

    PubMed

    Wasielewski, Oskar; Wojciechowicz, Tatiana; Giejdasz, Karol; Krishnan, Natraj

    2015-08-01

    The effects of enhanced UV-B radiation on the oogenesis and morpho-anatomical characteristics of the European solitary red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae) were tested under laboratory conditions. Cocooned females in the pupal stage were exposed directly to different doses (0, 9.24, 12.32, and 24.64 kJ/m(2) /d) of artificial UV-B. Our experiments revealed that enhanced UV-B radiation can reduce body mass and fat body content, cause deformities and increase mortality. Following UV exposure at all 3 different doses, the body mass of bees was all significantly reduced compared to the control, with the highest UV dose causing the largest reduction. Similarly, following UV-B radiation, in treated groups the fat body index decreased and the fat body index was the lowest in the group receiving the highest dose of UV radiation. Mortality and morphological deformities, between untreated and exposed females varied considerably and increased with the dose of UV-B radiation. Morphological deformities were mainly manifested in the wings and mouthparts, and occurred more frequently with an increased dose of UV. Cell death was quantified by the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (DNA fragmentation) during early stages of oogenesis of O. bicornis females. The bees, after UV-B exposure exhibited more germarium cells with fragmented DNA. The TUNEL test indicated that in germarium, low doses of UV-B poorly induced the cell death during early development. However, exposure to moderate UV-B dose increased programmed cell death. In females treated with the highest dose of UV-B the vast majority of germarium cells were TUNEL-positive. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  6. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions.

    PubMed

    Martínez-Lüscher, J; Morales, F; Delrot, S; Sánchez-Díaz, M; Gomès, E; Aguirreolea, J; Pascual, I

    2015-03-01

    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Self-estimation or phototest measurement of skin UV sensitivity and its association with people's attitudes towards sun exposure.

    PubMed

    Falk, Magnus

    2014-02-01

    Fitzpatrick's classification is the most common way of assessing skin UV sensitivity. The study aim was to investigate how self-estimated and actual UV sensitivity, as measured by phototest, are associated with attitudes towards sunbathing and the propensity to increase sun protection, as well as the correlation between self-estimated and actual UV sensitivity. A total of 166 primary healthcare patients filled-out a questionnaire investigating attitudes towards sunbathing and the propensity to increase sun protection. They reported their skin type according to Fitzpatrick, and a UV sensitivity phototest was performed. Self-rated low UV sensitivity (skin type III-VI) was associated with a more positive attitude towards sunbathing and a lower propensity to increase sun protection, compared to high UV sensitivity. The correlation between the two methods was weak. The findings might indicate that individuals with a perceived low but in reality high UV sensitivity do not seek adequate sun protection with regard to skin cancer risk. Furthermore, the poor correlation between self-reported and actual UV sensitivity, measured by phototest, makes the clinical use of Fitzpatrick's classification questionable.

  8. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins.

    PubMed

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2016-02-23

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron ((10)B) treatment. Interestingly, a rapid efflux of (10)B from the roots of the transgenic plants was observed within 1 h of (10)B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils.

  9. Enhanced Boron Tolerance in Plants Mediated by Bidirectional Transport Through Plasma Membrane Intrinsic Proteins

    PubMed Central

    Mosa, Kareem A.; Kumar, Kundan; Chhikara, Sudesh; Musante, Craig; White, Jason C.; Dhankher, Om Parkash

    2016-01-01

    High boron (B) concentration is toxic to plants that limit plant productivity. Recent studies have shown the involvement of the members of major intrinsic protein (MIP) family in controlling B transport. Here, we have provided experimental evidences showing the bidirectional transport activity of rice OsPIP1;3 and OsPIP2;6. Boron transport ability of OsPIP1;3 and OsPIP2;6 were displayed in yeast HD9 mutant strain (∆fps1∆acr3∆ycf1) as a result of increased B sensitivity, influx and accumulation by OsPIP1;3, and rapid efflux activity by OsPIP2;6. RT-PCR analysis showed strong upregulation of OsPIP1;3 and OsPIP2;6 transcripts in roots by B toxicity. Transgenic Arabidopsis lines overexpressing OsPIP1;3 and OsPIP2;6 exhibited enhanced tolerance to B toxicity. Furthermore, B concentration was significantly increased after 2 and 3 hours of tracer boron (10B) treatment. Interestingly, a rapid efflux of 10B from the roots of the transgenic plants was observed within 1 h of 10B treatment. Boron tolerance in OsPIP1;3 and OsPIP2;6 lines was inhibited by aquaporin inhibitors, silver nitrate and sodium azide. Our data proved that OsPIP1;3 and OsPIP2;6 are indeed involved in both influx and efflux of boron transport. Manipulation of these PIPs could be highly useful in improving B tolerance in crops grown in high B containing soils. PMID:26902738

  10. Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: An application for photoprotection.

    PubMed

    Verma, Ankit; Kushwaha, Hari N; Srivastava, Ajeet K; Srivastava, Saumya; Jamal, Naseem; Srivastava, Kriti; Ray, Ratan Singh

    2017-07-01

    Chronic ultraviolet radiation (UV-R) exposure causes skin disorders like erythema, edema, hyperpigmentation, photoaging and photocarcinogenesis. Recent research trends of researchers have focused more attention on the identification and use of photo stable natural agents with photoprotective properties. Piperine (PIP), as a plant alkaloid, is an important constituent present in black pepper (Piper nigrum), used widely in ayurvedic and other traditional medicines and has broad pharmacological properties. The study was planned to photoprotective efficacy of PIP in human keratinocyte (HaCaT) cell line. We have assessed the UV-R induced activation of transcription factor NF-κB in coordination with cell death modulators (Bax/Bcl-2 and p21). The LC-MS/MS analysis revealed that PIP was photostable under UV-A/UV-B exposure. PIP (10μg/ml) attenuates the UV-R (A and B) induced phototoxicity of keratinocyte cell line through the restoration of cell viability, inhibition of ROS, and malondialdehyde generation. Further, PIP inhibited UV-R mediated DNA damage, prevented micronuclei formation, and reduced sub-G1 phase in cell cycle, which supported against photogenotoxicity. This study revealed that PIP pretreatment strongly suppressed UV-R induced photodamages. Molecular docking studies suggest that PIP binds at the active site of NF-κB, and thus, preventing its translocation to nucleus. In addition, transcriptional and translational analysis advocate the increased expression of NF-κB and concomitant decrease in IkB-α expression under UV-R exposed cells, favouring the apoptosis via Bax/Bcl-2 and p21 pathways. However, PIP induced expression of IkB-α suppress the NF-κB activity which resulted in suppression of apoptotic marker genes and proteins that involved in photoprotection. Therefore, we suggest the applicability of photostable PIP as photoprotective agent for human use. Copyright © 2017. Published by Elsevier B.V.

  11. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2015-11-01

    The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and <10 % in Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.

  12. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    PubMed

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Response of interspecific competition between Ulva pertusa and Grateloupia filicina to UV-B irradiation enhancement].

    PubMed

    Li, Li-Xia; Dong, Kai-Sheng; Tang, Xue-Xi

    2008-10-01

    The interspecific competition between Ulva pertusa and Grateloupia filicina and it's response to the UV-B irradiation enhancement were analyzed using mono-culture and co-culture methods. The study adopted reasonable experimental design and took biomass as the main examined index. Results showed that the relation of interspecific competition included both allelopathy effect and nutrient competition. Specific growth rates of U. pertusa under treatment with abundant nutrition and limited nutrition was 2.54 and 2.47 times of those of G. filicina. Thus, compared to U. pertusa, G. filicina was in inferior position. UV-B irradiation could inhibit the growth of U. pertusa and G. filicina under the condition of mono-culture. The higher the dosage and the longer exposure of UV-B irradiation were, the more significant the inhibitive effect was. When they were cultured together, low dosage [1.6 kJ x (m2 x d)(-1)] and medium dosage [4.8 kJ x(m2 x d)(-1)] of UV-B irradiation reduced the competitive ability of U. pertusa, and weights of U. pertusa and G. filicina declined 6.81% and 3.88% in low dosage, and 10.47% and 6.98% in medium dosage, respectively. So the relation of interspecific competition tended to be at a balanced level even though U. pertusa was still the dominant algae. However, on the 12th day, weight of U. pertusa decreased by 13.09%, but the value of G. filicina was 14.72%, which was higher than that of U. pertusa. Therefore, high dosage [9.6 kJ x (m2 x d)(-1)] of UV-B irradiation had more serious inhibitive effect on G. filicina, and competitive dominant position of U. pertusa tended to be more obvious. Thus, UV-B changed the relation of competitive balance of U. pertusa and G. filicina, which changed along with the dosage of UV-B. Moreover, UV-B irradiation might influence the metabolism of the allelochemicals produced by U. pertusa and G. filicina in a long time.

  14. [Analysis of mineral elements of sunflower (Helianthus annuus L.) grown on saline land in Hetao Irrigation District by ICP-AES].

    PubMed

    Tong, Wen-Jie; Chen, Fu; Wen, Xin-Ya

    2014-01-01

    The absorption and accumulation of ten mineral elements in four kinds of organs (root, steam, leaf and flower disc) in Helianthus annuus L. plants cultured in Hetao Irrigation District under different level of salinity stress were determined by ICP-AES with wet digestion (HNO3 + HClO4). The results showed that: (1) The contents of Fe, Mn, Zn, Ca, and Na were highest in roots, so was K in stems, B and Mg in leaves and P in flower discs, while no significant difference was detected in the content of Cu among these organs; (2) The cumulants of Ca, Mg, P, Cu, B and Zn were highest in flower discs, so were Na, Fe and Mn in roots and K in stems; (3) In sunflower plants, the proportion of mineral element cumulant for K : Ca : Mg : P : Na was 16.71 : 5.23 : 3.86 : 1.23 : 1.00, and for Zn : Fe : B : Mn: Cu was 56.28 : 27.75 : 1.93 : 1.17 : 1.00, respectively; (4) The effect of salinity stress on absorption of mineral elements differed according to the kind of organ and element, root was the most sensitive to soil salt content, followed by stem and leaf, and the effect on flower disc seemed complex.

  15. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development.

    PubMed

    Ticconi, Carla A; Delatorre, Carla A; Lahner, Brett; Salt, David E; Abel, Steffen

    2004-03-01

    Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response, pdr2, mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi-starvation responses, such as Pi-responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short-root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high-affinity Pi acquisition. Rescue of root meristem activity in Pi-starved pdr2 by phosphite (Phi), a non-metabolizable Pi analog, and divided-root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi-sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine-tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.

  16. [Effects of combined pollution of lead and benzo[a] pyrene on seed growth of wheat in soils].

    PubMed

    Wang, Hong-Qi; Wang, Shuai; Ning, Shao-Wei; Sun, Yan-Ling; Hou, Ze-Qing

    2011-03-01

    Seed germination, root elongation, shoot elongation and ratio of shoot to root of wheat in soils polluted by lead (Pb) and benzo (a)pyrene (B[a] P) with medium-low concentrations were studied to reveal the ecological effects of combined pollution and screen the indicative markers. Results indicated that seed germination was not sensitive to single or combined pollution of Pb or B[a] P. Root elongation was inhibited by single pollution of Pb or B[a]P to different extents. Extensive interactions between Pb and B[a]P occurred to root elongation of wheat, including synergistic-stimulatory effect and antagonistic-inhibitory effect. The joint action was mainly antagonistic. Single pollution of B [a] P had an inhibitory effect on shoot elongation. Under combined pollution conditions, the shoot elongation of wheat correlated well with Pb contents (p < 0.01). B[a] P or the interactions between pollutants had little effect on shoot elongation of wheat. The joint action on shoot elongation was consistently antagonistic. The response pattern of the ratio of shoot to root was similar to the response pattern of shoot elongation. However, the former had better correlation than the latter, indicating it as a more suitable indicative marker for Pb pollution. If lead acetate was employed instead of lead nitrate, longer root elongation, shorter shoot elongation and no effect on ratio of shoot to root were found. Therefore, the forms of Pb salt had significant influence on seed growth of wheat in soils.

  17. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    PubMed Central

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  18. UHPLC-UV method for the determination of flavonoids in dietary supplements and for evaluation of their antioxidant activities.

    PubMed

    Magiera, Sylwia; Baranowska, Irena; Lautenszleger, Anna

    2015-01-01

    A simple and rapid ultra-high performance liquid chromatographic (UHPLC) method coupled with an ultraviolet detector (UV) has been developed and validated for the separation and determination of 14 major flavonoids ((±)-catechin, (-)-epicatechin, glycitin, (-)-epicatechin gallate, rutin, quercitrin, hesperidine, neohesperidine, daidzein, glycitein, quercetin, genistein, hesperetin, and biochanin A) in herbal dietary supplements. The flavonoids have been separated on a Chromolith Fast Gradient Monolithic RP-18e column utilizing a mobile phase composed of 0.05% trifluoroacetic acid in water and acetonitrile in gradient elution mode. Under these conditions, flavonoids were separated in a 5 min run. The selectivity of the developed UHPLC-UV method was confirmed by comparison with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The validation parameters such as linearity, sensitivity, precision, and accuracy were found to be highly satisfactory. The optimized method was applied to determination of flavonoids in different dietary supplements. Additionally, the developed HPLC-UV method combined with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay was used in the evaluation of antioxidant activity of the selected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots.

    PubMed

    Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica

    2017-11-30

    The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    PubMed

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  1. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    PubMed Central

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  2. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  3. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  4. UV-enhanced CO sensing using Ga 2O 3-based nanorod arrays at elevated temperature

    DOE PAGES

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-23

    Monitoring and control of gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such application due to the inherent high temperature of combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °Cmore » by an order of magnitude. Under the 254 nm UV illumination, CO gas-sensing performance of Ga 2O 3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125 %, and the response time reduced by 30 % for La 0.8Sr 0.2FeO 3(LSFO)-decorated sample. The UV-enhanced detecting of CO might be due to the increased population of photo-induced electron-hole pairs. While for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of sensitizing effect and photocurrent effect.« less

  5. UV-enhanced CO sensing using Ga2O3-based nanorod arrays at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Jan; Gao, Haiyong; Gao, Pu-Xian

    2017-01-01

    Monitoring and control of the gaseous combustion process are critically important in advanced energy systems such as power plants, gas turbines, and automotive engines. However, very limited gas sensing solutions are available in the market for such applications due to the inherent high temperature of the combustion gaseous atmosphere. In this study, we fabricated and demonstrated high-performance metal oxide based nanorod array sensors assisted with ultra-violet (UV) illumination for in situ and real-time high-temperature gas detection. Without UV-illumination, it was found that surface decoration of either 5 nm LSFO or 1 nm Pt nanoparticles can enhance the sensitivity over CO at 500 °C by an order of magnitude. Under the 254 nm UV illumination, the CO gas-sensing performance of Ga2O3-based nanorod array sensors was further enhanced with the sensitivity boosted by 125% and the response time reduced by 30% for the La0.8Sr0.2FeO3(LSFO)-decorated sample. The UV-enhanced detection of CO might be due to the increased population of photo-induced electron-hole pairs, whereas for LSFO-decorated nanorod array sensor under UV illumination, the enhancement is through a combination of the sensitizing effect and photocurrent effect.

  6. Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content1[w

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2003-01-01

    Microarray hybridization was used to assess acclimation responses to four UV regimes by near isogenic maize (Zea mays) lines varying in flavonoid content. We found that 355 of the 2,500 cDNAs tested were regulated by UV radiation in at least one genotype. Among these, 232 transcripts are assigned putative functions, whereas 123 encode unknown proteins. UV-B increased expression of stress response and ribosomal protein genes, whereas photosynthesis-associated genes were down-regulated; lines lacking UV-absorbing pigments had more dramatic responses than did lines with these pigments, confirming the shielding role of these compounds. Sunlight filtered to remove UV-B or UV-B plus UV-A resulted in significant expression changes in many genes not previously associated with UV responses. Some pathways regulated by UV radiation are shared with defense, salt, and oxidative stresses; however, UV-B radiation can activate additional pathways not shared with other stresses. PMID:12913132

  7. Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria.

    PubMed

    Yadav, Shivam; Prajapati, Rajesh; Atri, Neelam

    2016-01-01

    Cyanobacteria sp. (diazotrophic and planktonic) hold a major position in ecosystem, former one due to their intrinsic capability of N2-fixation and later because of mineralization of organic matter. Unfortunately, their exposure to variety of abiotic stresses is unavoidable. Comparative analysis of interactive effect of UV-B and heavy metals (Cd/Zn) on nitrogen and phosphorus metabolism of three cyanobacteria (Anabaena, Microcystis, Nostoc) revealed additive inhibition (χ(2) significant p < 0.05) of NH4(+) and PO4(3-) uptake whereas increase in nitrate uptake upon UV-B + heavy metal exposure. Glutamine synthetase and Alkaline phosphatase activity was reduced after all treatments whereas Nitrate reductase activity showed slight stimulation in UV-B and UV-B + heavy metals treatment. Combination of UV-B and metals seems more detrimental to the NH4(+), PO4(3-) uptake, GS and APA activity. A significant stimulation in NO3(-) uptake and NR activity following exposure to UV-B in all the three cyanobacteria suggests UV-B-induced structural change(s) in the enzyme/carriers. Metals seem to compete for the binding sites of the enzymes and carriers; as noticed for Anabaena and Microcystis showing change in Km while no change in the Km value of Nostoc suggests non-competitive nutrient uptake. Higher accumulation and more adverse effect on Na(+) and K(+) efflux proposes Cd as more toxic compared to Zn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mercury speciation by differential photochemical vapor generation at UV-B vs. UV-C wavelength

    NASA Astrophysics Data System (ADS)

    Chen, Guoying; Lai, Bunhong; Mei, Ni; Liu, Jixin; Mao, Xuefei

    2017-11-01

    Photochemical vapor generation (PVG) is an effective sample introduction scheme for volatile mercury (Hg). Speciation of Hg++ and MeHg+ was fulfilled for the first time by differential PVG under UV-B vs. UV-C wavelength and applied to fish oil supplements. After liquid-liquid extraction, the aqueous extract was mixed with 0.4% anthranilic acid (AA)-20% formic acid (FA) in a quartz coil, and exposed sequentially to 311 nm or 254 nm UV light. The resulting Hg0 vapor was detected by atomic fluorescence spectrometry (AFS). At each wavelength, the AFS intensity was a linear function of Hg++ and MeHg+ concentrations, which were solvable from a set of two equations. This method achieved ultrahigh sensitivity with 0.50 and 0.63 ng mL- 1 limits of detection for Hg++ and MeHg+, respectively, and 73% recovery for MeHg+ at 10 ng mL- 1. Validation was performed by ICP-MS on total Hg. Obviation of chemical or chromatographic separation rendered this method rapid, green, and cost-effective.

  9. Hydrocaffeic and p-coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells in vitro and rabbit eye in vivo.

    PubMed

    Larrosa, Mar; Lodovici, Maura; Morbidelli, Lucia; Dolara, Piero

    2008-10-01

    This paper studied the effect on UV-B ocular damage of 10microM hydrocaffeic acid (HCAF) alone and as a mixture (MIX) (5 microM HCAF+5 microM p-coumaric acid). Since ocular UV-B damage is mediated by reactive oxygen species, the aim was to test if HCAF and MIX could reduce oxidation damage in human conjunctival cells (WKD) in vitro and in cornea and sclera of rabbits in vivo. After UVB irradiation (44 J/m(2)) of WKD cells, 8-oxodG levels in DNA were markedly increased and this effect was attenuated by HCAF and MIX. Rabbit eyes were treated by application of HCAF and MIX drops before UV-B exposure (79 J/m(2)). Corneal and scleral DNA oxidation damage, xanthine-oxidase (XO) activity and malondialdehyde levels (MDA) in corneal tissue and prostaglandin E(2) (PGE(2)) in the aqueous humour were reduced by HCAF alone and in combination with p-coumaric acid, showing their potential as a topical treatment against UV-B damage.

  10. Electrochemical in situ fabrication of titanium dioxide-nanosheets on a titanium wire as a novel coating for selective solid-phase microextraction.

    PubMed

    Li, Yi; Zhang, Min; Yang, Yaoxia; Wang, Xuemei; Du, Xinzhen

    2014-09-05

    A novel TiO2-nanosheets coated fiber for solid-phase microextraction (SPME) was fabricated by anodization of Ti wire substrates in ethylene glycol with concentrated NH4F. The in situ fabricated TiO2-nanosheets were densely embedded into Ti substrates with about 1μm long, 300nm wide and 80nm thick. The as-fabricated TiO2-nanosheets coating was employed to extract polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). It was found that the TiO2-nanosheets coating exhibited high extraction capability and good selectivity for some UV filters frequently used in cosmetic sunscreen formulations. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.1-400μgL(-1). The limits of detection of the proposed method were between 0.026μgL(-1) and 0.089μgL(-1) (S/N=3). The single fiber repeatability varied from 4.50% to 8.76% and the fiber-to-fiber reproducibility ranged from 7.75% to 9.64% for the extraction of spiked water with 50μgL(-1) UV filters (n=5). The SPME-HPLC-UV method was successfully established for the selective preconcentration and sensitive detection of target UV filters from real environmental water samples. Recovery of UV filters spiked at 10μgL(-1) and 25μgL(-1) ranged from 88.8% to 107% and the relative standard deviations were less than 9.8%. Furthermore the in situ growth of the TiO2-nanosheets coating was performed in a highly reproducible manner and the TiO2-nanosheets coated fiber has high mechanical strength, good stability and long service life. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Roles of BOR2, a Boron Exporter, in Cross Linking of Rhamnogalacturonan II and Root Elongation under Boron Limitation in Arabidopsis1[W

    PubMed Central

    Miwa, Kyoko; Wakuta, Shinji; Takada, Shigeki; Ide, Koji; Takano, Junpei; Naito, Satoshi; Omori, Hiroyuki; Matsunaga, Toshiro; Fujiwara, Toru

    2013-01-01

    Boron (B) is required for cross linking of the pectic polysaccharide rhamnogalacturonan II (RG-II) and is consequently essential for the maintenance of cell wall structure. Arabidopsis (Arabidopsis thaliana) BOR1 is an efflux B transporter for xylem loading of B. Here, we describe the roles of BOR2, the most similar paralog of BOR1. BOR2 encodes an efflux B transporter localized in plasma membrane and is strongly expressed in lateral root caps and epidermis of elongation zones of roots. Transfer DNA insertion of BOR2 reduced root elongation by 68%, whereas the mutation in BOR1 reduced it by 32% under low B availability (0.1 µm), but the reduction in shoot growth was not as obvious as that in the BOR1 mutant. A double mutant of BOR1 and BOR2 exhibited much more severe growth defects in both roots and shoots under B-limited conditions than the corresponding single mutants. All single and double mutants grew normally under B-sufficient conditions. These results suggest that both BOR1 and BOR2 are required under B limitation and that their roles are, at least in part, different. The total B concentrations in roots of BOR2 mutants were not significantly different from those in wild-type plants, but the proportion of cross-linked RG-II was reduced under low B availability. Such a reduction in RG-II cross linking was not evident in roots of the BOR1 mutant. Thus, we propose that under B-limited conditions, transport of boric acid/borate by BOR2 from symplast to apoplast is required for effective cross linking of RG-II in cell wall and root cell elongation. PMID:24114060

  12. Effect of 5-S-GAD on UV-B-induced cataracts in rats.

    PubMed

    Kawada, Hiroyoshi; Kojima, Masami; Kimura, Takahito; Natori, Shunji; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2009-09-01

    5-S-Glutathionyl-N-beta-alanyl-3,4-dihydroxyphenylalanine (5-S-GAD) is a novel antibacterial substance purified from Sarcophaga peregrina (flesh fly) that has both a radical scavenging activity and antioxidative activity. This is a report of an investigation of the effect of 5-S-GAD (eyedrops) on UVB-induced cataracts in rats. Brown Norway male rats (n = 32; 7 weeks old) were treated with either 5-S-GAD 0.1%, 5-SGAD 1%, astaxanthin (AST) 0.1% suspension eyedrops or the vehicle alone (the solution without 5-S-GAD) three times a day (three doses at 5-min intervals each time). The treatment was scheduled 2 days before UV-B exposure and 2 days after UV-B exposure. Exposure to 100-200 mJ/cm(2) UV-B was performed once a week between drug treatments for 9 consecutive weeks, with a total dose of 1200 mJ/cm(2) UV-B. Ocular penetration of 5-S-GAD was analyzed using high-pressure liquid chromatography (HPLC). Cataract formation was documented by an anterior eye segment analysis system once a week under mydriasis. The light-scattering intensity (LSI) of the anterior superficial cortex region was measured. In the eighth to ninth week after the start of UV-B exposure, the LSI of anterior subcapsular lenses of 5-S-GAD-treated groups, as detected by HPLC, was significantly lower (P < 0.05) than that of the control, whereas no such difference was found in the AST-treated group. 5-S-GAD eyedrop application may delay the progression of UV-B-induced cataract in rats.

  13. UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit.

    PubMed

    Usaga, Jessie; Padilla-Zakour, Olga I; Worobo, Randy W

    2016-02-01

    The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages.

  14. Effect of narcotic pain reliever on pulp tests in women.

    PubMed

    Kardelis, Anthony C; Meinberg, Trudy A; Sulte, Heather R; Gound, Tom G; Marx, David B; Reinhardt, Richard A

    2002-07-01

    The purpose of this study was to determine the effect of one dose of a common narcotic-based pain reliever (Vicodin) on a battery of oral sensitivity tests across time in women. Fifteen Caucasian women randomly were given an oral dose of 10 mg of hydrocodone/1000 mg of acetaminophen or placebo in a double-blind, cross-over design. At baseline (before drug) and after 2, 4, and 8 h each subject was evaluated for sensitivity thresholds with four tests around an experimental tooth: (a) electric pulp tester applied to exposed root; (b) electric pulp tester on adjacent mucosa; (c) increasing probe pressure (grams) on adjacent mucosa; and (d) decreasing cold probe (degrees C) on the exposed root. The outcomes of all tests were not statistically different between drug and placebo treatments at any time point (p > 0.05). These results suggest that a systemic dose of hydrocodone/acetaminophen has little impact on healthy pulp or mucosa sensitivity in women as measured by common diagnostic tests.

  15. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha x piperita L.).

    PubMed

    Behn, Helen; Albert, Andreas; Marx, Friedhelm; Noga, Georg; Ulbrich, Andreas

    2010-06-23

    Solar radiation is a key environmental signal in regulation of plant secondary metabolism. Since metabolic responses to light and ultraviolet (UV) radiation exposure are known to depend on the ratio of spectral ranges (e.g., UV-B/PAR), we examined effects of different UV-B radiation (280-315 nm) and photosynthetically active radiation (PAR, 400-700 nm) levels and ratios on yield and pattern of monoterpenoid essential oil of peppermint. Experiments were performed in exposure chambers, technically equipped for realistic simulation of natural climate and radiation. The experimental design comprised four irradiation regimes created by the combination of two PAR levels including or excluding UV-B radiation. During flowering, the highest essential oil yield was achieved at high PAR (1150 micromol m(-2) s(-1)) and approximate ambient UV-B radiation (0.6 W m(-2)). Regarding the monoterpene pattern, low PAR (550 micromol m(-2) s(-1)) and the absence of UV-B radiation led to reduced menthol and increased menthone contents and thereby to a substantial decrease in oil quality. Essential oil yield could not be correlated with density or diameter of peltate glandular trichomes, the epidermal structures specialized on biosynthesis, and the accumulation of monoterpenes. The present results lead to the conclusion that production of high quality oils (fulfilling the requirements of the Pharmacopoeia Europaea) requires high levels of natural sunlight. In protected cultivation, the use of UV-B transmitting covering materials is therefore highly recommended.

  16. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  17. Gastro-protective effects of isobrucein B, a quassinoid isolated from Picrolemma sprucei.

    PubMed

    Vieira, Sílvio Manfredo; Silva, Rangel Leal; Lemos, Henrique Paula; Amorim, Rodrigo César das Neves; Silva, Ellen Cristina Costa; Reinach, Peter Sol; Cunha, Fernando Queiróz; Pohlit, Adrian Martin; Cunha, Thiago Mattar

    2014-06-01

    Infusions of Picrolemma sprucei roots, stems and leaves are used in traditional medicine throughout the Amazon region from the Guianas to Brazil and Peru in the treatment of gastritis, intestinal helminths and malaria. As there are no studies describing its mode of action in providing a gastroprotective effect, we determined herein that one of the main constituents found in P. sprucei infusions, the quassinoid isobrucein B (IsoB), reduces some of the pathophysiological effects in a mouse model of non-steroidal anti-inflammatory drug (NSAID)-induced gastritis and provides mechanisms of action. Then, IsoB (1.17 g) was isolated from the roots and stems (6.5 kg) of P. sprucei. Its structure was confirmed by 1D and 2D (1)H and (13)C NMR, ESI-tof-MS, IR and UV. C57BL/6 strain mice were subcutaneously injected with IsoB (0.5-5 mg kg(-1)) or vehicle before oral administration of indomethacin and sacrificed later at different time points. Gastric damage was assessed by measuring lesion length. Leukocyte migration was evaluated based on leukocyte rolling and adhesion using intravital microscopy in the mesenteric microcirculation and tissue MPO activity. Stomach extract cytokine (TNFα, IL-1β and KC/CXCL1) and prostaglandin E2 (PGE2) levels were measured by ELISA and RIA, respectively. IsoB pre-treatment (0.5-5.0 mg kg(-1)) significantly reduced the formation of indomethacin-induced stomach lesions in a dose-dependent manner. The decrease in stomach lesions was associated with less observed leukocyte rolling, decreased leukocyte adhesion and less neutrophil infiltration (MPO activity). IsoB (1 mg kg(-1)) pre-treatment did not prevent indomethacin-induced decreases in stomach PGE2 levels. However, IL-1β and KC/CXCL1 levels were inhibited by this same IsoB dosage, whereas TNF-α was unchanged. IsoB may be a prototypic compound to provide protective effects against NSAID-induced gastritis and possibly other gastropathies. Moreover, IsoB gastroprotective action may be due to a reduction in IL-1β and KC/CXCL1 production/release and leukocyte rolling, adhesion and migration. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.

    PubMed

    Lind, O; Delhey, K

    2015-03-01

    Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  19. The Iminosugar UV-4 is a Broad Inhibitor of Influenza A and B Viruses ex Vivo and in Mice

    PubMed Central

    Warfield, Kelly L.; Barnard, Dale L.; Enterlein, Sven G.; Smee, Donald F.; Khaliq, Mansoora; Sampath, Aruna; Callahan, Michael V.; Ramstedt, Urban; Day, Craig W.

    2016-01-01

    Iminosugars that are competitive inhibitors of endoplasmic reticulum (ER) α-glucosidases have been demonstrated to have antiviral activity against a diverse set of viruses. A novel iminosugar, UV-4B, has recently been shown to provide protection against lethal infections with dengue and influenza A (H1N1) viruses in mice. In the current study, the breadth of activity of UV-4B against influenza was examined ex vivo and in vivo. Efficacy of UV-4B against influenza A and B viruses was shown in primary human bronchial epithelial cells, a principal target tissue for influenza. Efficacy of UV-4B against influenza A (H1N1 and H3N2 subtypes) and influenza B was demonstrated using multiple lethal mouse models with readouts including mortality and weight loss. Clinical trials are ongoing to demonstrate safety of UV-4B and future studies to evaluate antiviral activity against influenza in humans are planned. PMID:27072420

  20. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2015-10-01

    The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a ultraviolet-B protectant. Abbreviations used: ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline- 6-sulphonic acid), AO: Acridine orange, Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's Modified Eagle's Medium, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate buffered saline, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunesorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: Sodium chloride, NFDM: Nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, and qPCR: Quantitative polymerase chain reaction.

  1. Leaf chemical changes induced in Populus trichocarpa by enhanced UV-B radiation and concomitant effects on herbivory by Chrysomela scripta (Coleoptera: Chrysomelidae).

    PubMed

    Warren, Jeffrey M; Bassman, John H; Eigenbrode, Sanford

    2002-11-01

    To assess the potential impact of enhanced ultraviolet-B (UV-B) radiation over two trophic levels, we monitored key leaf chemical constituents and related changes in their concentration to dietary preference and performance of a specialist insect herbivore. Ramets of Populus trichocarpa Torr. & Gray (black cottonwood) were subjected to near zero (0X), ambient (1X) or twice ambient (2X) doses of biologically effective UV-B radiation (UV-B(BE)) in a randomized block design using either a square-wave (greenhouse) or a modulated (field) lamp system. After a 3-month treatment period, apparent photosynthesis was determined in situ and plants were harvested for biomass determination. Leaf subsamples were analyzed for nitrogen, sulfur, chlorophylls, UV-absorbing compounds and protein-precipitable tannins. Effects of changes in these constituents on feeding by Chrysomela scripta Fab. (cottonwood leaf beetle) were determined by (1) adult feeding preference trials and (2) larval growth rate trials. Enhanced UV-B(BE) radiation had minimal effects on photosynthesis, growth, leaf area and biomass distribution. In the greenhouse study, concentrations of foliar nitrogen and chlorophylls increased, but tannins decreased slightly in young leaves exposed to enhanced UV-B(BE) radiation. There were no significant effects on these parameters in the field study. The concentration of methanol-extractable foliar phenolics increased in plants grown with enhanced UV-B(BE) radiation in both the greenhouse and field studies. In feeding preference trials, adult C. scripta chose 2X-treated tissue almost twice as often as 1X-treated tissue in both greenhouse and field studies, but differences were not statistically significant (P = 0.12). In the field study, first instar larvae grown to adult eclosion on 2X-treated leaves had a significant (P < 0.001) reduction in consumption efficiency compared with larvae grown on 1X-treated leaves. We conclude that effects of enhanced UV-B(BE) radiation at the molecular-photochemical level can elicit significant responses at higher trophic levels that may ultimately affect forest canopy structure, plant competitive interactions and ecosystem-level processes.

  2. Evaluation of diode laser and stannous fluoride in the treatment of root sensitivity after access flap surgery: Randomized controlled clinical trial.

    PubMed

    Raut, Chetan Purushottam; Sethi, Kunal Sunder; Kohale, Bhagyashree; Mamajiwala, Alefiya; Warang, Ayushya

    2018-01-01

    Postsurgical root sensitivity has always been an enigma to the periodontists. There is a plethora of evidence suggesting the presence of root sensitivity following periodontal flap surgical procedures. Thus, the aim of the present study was to compare and evaluate the effect of low-power diode lasers with and without topical application of stannous fluoride (SnF 2 ) gel in the treatment of root sensitivity and also evaluate whether laser creates any placebo effect in the control group or not. Thirty patients participated in this study and 99 teeth were included. Root sensitivity was assessed for all groups with a Verbal Rating Scale (VRS). For each patient, the teeth were randomized into three groups. In the test Group I, sensitive teeth were treated with SnF 2 and diode laser. In the test Group II, sensitive teeth were irradiated with laser only. In the control group, no treatment was performed. The mean ± standard deviation (SD) score for VRS and Visual Analog Scale at baseline was not statistically significant ( P > 0.05) between the three groups. After 15 min, statistical significant difference was seen in test Group I and test Group II, although no difference was found in the control group. At 15 th day and 30 th day, the mean ± SD scores were statistically significant ( P < 0.05). Within the limitations of the study, it can be concluded that diode lasers alone and in combination with 0.4% SnF 2 was effective in the treatment of root sensitivity after access flap surgery.

  3. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    PubMed

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Aromatic Cluster Sensor of Protein Folding: Near-UV Electronic Circular Dichroism Bands Assigned to Fold Compactness.

    PubMed

    Farkas, Viktor; Jákli, Imre; Tóth, Gábor K; Perczel, András

    2016-09-19

    Both far- and near-UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far-UV range), L b bands (near-UV range) are applicable as 3D-fold sensors of protein's core structure. In this study we show that both L b (Tyr) and L b (Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross-validation, also provided here. The ensemble of 204 ECD spectra of Trp-cage miniproteins is analysed as a training set for "calibrating" Trp↔Tyr folded systems of known NMR structure. While in the far-UV ECD spectra changes are linear as a function of the temperature, near-UV ECD data indicate a non-linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding↔unfolding mechanism. We found that the L b 293 band is reporting on the 3D-structure compactness. In addition, the pure near-UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp↔Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase-inhibitor etc.) can now be analysed with higher confidence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system.

    PubMed

    Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W

    Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.

  6. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    PubMed

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Total ozone column retrieval from UV-MFRSR irradiance measurements: evaluation at Mauna Loa station

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Fragkos, Konstantinos; Davis, John; Sun, Zhibin; Chen, Maosi; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) comprises of 36 climatological sites along with 4 long-duration research sites, in 27 states, one Canadian province, and the south island of New Zealand. Each station is equipped with an Ultraviolet multi-filter rotating shadowband radiometer (UV-MFRSR) which can provide response-weighted irradiances at 7 wavelengths (300, 305.5, 311.4, 317.6, 325.4, and 368 nm) with a nominal full width at half maximun of 2 nm. These UV irradiance data from the long term monitoring station at Mauna Loa, Hawaii, are used as input to a retrieval algorithm in order to derive high time frequency total ozone columns. The sensitivity of the algorithm to the different wavelength inputs is tested and the uncertainty of the retrievals is assessed based on error propagation methods. For the validation of the method, collocated hourly ozone data from the Dobson Network of the Global Monitoring Division (GMD) of the Earth System Radiation Laboratory (ESRL) under the jurisdiction of the US National Oceanic & Atmospheric Administration (NOAA) for the period 2010-2015 were used.

  8. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L

    NASA Astrophysics Data System (ADS)

    Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.

    2014-01-01

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.

  9. Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers.

    PubMed

    Tripathi, Ruchika; Agrawal, Shashi B

    2013-03-30

    Current scenarios of global climate change predict a significant increase in ultraviolet B (UV-B) and tropospheric ozone (O₃) in the near future. Both UV-B and O₃ can have detrimental effects on the productivity and yield quality of important agricultural crops. The present study was conducted to investigate the individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m⁻² day⁻¹) and O₃ (ambient + 10 ppb) on the yield and oil quality of two cultivars of linseed (Linum usitatissimum L.). The mean monthly ambient O₃ concentration varied from 27.7 to 59.0 ppb during the experimental period. O₃ affected fruit formation, while sUV-B was mainly responsible for ovule abortion. Seed sugar and protein contents showed maximum reduction in O₃-treated plants, while mineral nutrient levels were most affected by sUV-B + O₃ treatment. Rancid oil of low nutritional quality and containing long-chain fatty acids was favoured along with a decrease in oil content. sUV-B and O₃ individually as well as in combination caused deterioration of the yield and quality of oil and seeds of linseed. However, the individual effect of O₃ was more damaging than the effect of sUV-B or sUV-B + O₃, and cultivar T-397 performed better than Padmini. © 2012 Society of Chemical Industry.

  10. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    PubMed

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  11. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    PubMed

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore, the changes of ABA content and absorbance, the rate of stoma closure in cucumber leaves were the adaptive mechanism to enhanced UV-B radiation.

  13. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice.

    PubMed

    Satoh, T; Murata, M; Iwabuchi, N; Odamaki, T; Wakabayashi, H; Yamauchi, K; Abe, F; Xiao, J Z

    2015-01-01

    Probiotics have been shown to have a preventative effect on skin photoaging induced by short term UV irradiation, however, the underlying mechanisms and the effect of probiotics on skin photoaging induced by chronic UV irradiation remain unclear. In this study, we investigated the effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in hairless mice. Mice were irradiated with UVB three times weekly and orally administered B. breve B-3 (2×10(9) cfu/mouse /day) for 7 weeks. Nonirradiated mice and UVB-irradiated mice without probiotic treatment were used as controls. B. breve B-3 significantly suppressed the changes of transepidermal water loss, skin hydration, epidermal thickening and attenuated the damage to the tight junction structure and basement membrane induced by chronic UVB irradiation. Administration of B. breve B-3 tended to suppress the UV-induced interleukin-1β production in skin (P=0.09). These results suggest that B. breve B-3 could potentially be used to prevent photoaging induced by chronic UV irradiation.

  14. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability

    PubMed Central

    Luo, Zhi-Bin

    2013-01-01

    To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4 + and NO3 – at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4 + and NO3 – content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ15N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4 + and NO3 –, root NH4 + and foliar NO3 – content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ15N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply. PMID:23963674

  15. Inhibition of UV-B induced apoptosis in corneal epithelial cells by potassium channel modulators.

    PubMed

    Ubels, John L; Schotanus, Mark P; Bardolph, Susan L; Haarsma, Loren D; Koetje, Leah R; Louters, Julienne R

    2010-02-01

    The goal of this study was to determine whether prevention of K(+) loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150-200 mJ/cm(2) UV-B demonstrated induction of apoptosis 6 h after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K(+). If this protection is due to a reduction of UV-induced K(+) loss then K(+) channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm(2) was significantly reduced when the cells were incubated in 0.3 microM BDS-I or 0.05-1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1-0.3 microM BDS-I and 0.1-1 mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 microM BDS-I and 0.01-0.05 mM quinidine. Patch-clamp recording showed activation of K(+) channels after exposure to UV-B and a decrease in outward K(+) current was observed following application of BDS-I. Quinidine did not block K(+) currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K(+) channels. The effect of the K(+) channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K(+) efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K(+)] in tears may protect the corneal epithelium from effects of ambient UV-B. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Inhibition of UV-B Induced Apoptosis in Corneal Epithelial Cells by Potassium Channel Modulators

    PubMed Central

    Ubels, John L.; Schotanus, Mark P.; Bardolph, Susan L.; Haarsma, Loren D.; Koetje, Leah R.; Louters, Julienne R.

    2009-01-01

    The goal of this study was to determine whether prevention of K+ loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150 – 200 mJ/cm2 UV-B demonstrated induction of apoptosis 6 hrs after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K+. If this protection is due to a reduction of UV induced K+ loss then K+ channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm2 was significantly reduced when the cells were incubated in 0.3 µM BDS-I or 0.05–1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1–0.3 µM BDS-I and 0.1–1mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 µM BDS-I and 0.01–0.05 mM quinidine. Patch-clamp recording showed activation of K+ channels after exposure to UV-B and a decrease in outward K+ current was observed following application of BDS-I. Quinidine did not block K+ currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K+ channels. The effect of the K+ channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K+ efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K+] in tears may protect the corneal epithelium from effects of ambient UV-B. PMID:19874821

  17. Investigation on the photophysical properties of ESPT inspired salicylaldehyde-based sensor for fluoride sensing.

    PubMed

    Liu, Kai; Zhao, Xiaojun; Liu, Qingxiang; Huo, Jianzhong; Wang, Xing; Wu, Yanping

    2015-04-05

    A simple, highly selective and sensitive chemosensor (E)-2-((quinolin-8-ylimino) methyl) phenol (QP) has been developed for the fluoride, as demonstrated by the photophysical properties obtained by UV-vis and fluorescent methods. Excited-state inter/intramolecular proton transfer (ESPT) was suggested to be responsible for the fluoride-induced 'turn on' fluorescence and the blue shift of 25 nm in the emission spectrum. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light.

    PubMed

    Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja

    2015-05-01

    We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2)  s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.

  19. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount ofmore » solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.« less

  20. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes

    PubMed Central

    Mallet, Justin D.; Bastien, Nathalie; Gendron, Sébastien P.; Rochette, Patrick J.

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  1. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crusts, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under further ozone depletion.

  2. Ubc9 is required for damage-tolerance and damage-induced interchromosomal homologous recombination in S. cerevisiae.

    PubMed

    Maeda, Daisuke; Seki, Masayuki; Onoda, Fumitoshi; Branzei, Dana; Kawabe, Yoh-Ichi; Enomoto, Takemi

    2004-03-04

    Ubc9 is an enzyme involved in the conjugation of small ubiquitin related modifier (SUMO) to target proteins. A Saccharomyces cerevisiae ubc9 temperature sensitive (ts) mutant showed higher sensitivity to various DNA damaging agents such as methylmethanesulfonate (MMS) and UV at a semi-permissive temperature than wild-type cells. The sensitivity of ubc9ts cells was not suppressed by the introduction of a mutated UBC9 gene, UBC9-C93S, whose product is unable to covalently bind to SUMO and consequently fails to conjugate SUMO to target proteins. Diploid ubc9ts cells were more sensitive to various DNA damaging agents than haploid ubc9ts cells suggesting the involvement of homologous recombination in the sensitivity of ubc9ts cells. The frequency of interchromosomal recombination between heteroalleles, his1-1/his1-7 loci, in wild-type cells was remarkably increased upon exposure to MMS or UV. Although the frequency of spontaneous interchromosomal recombination between the heteroalleles in ubc9ts cells was almost the same as that of wild-type cells, no induction of interchromosomal recombination was observed in ubc9ts cells upon exposure to MMS or UV. Copyright 2003 Elsevier B.V.

  3. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  4. UV-emitting phosphors: synthesis, photoluminescence and applications

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Muthal, P. L.; Dhopte, S. M.; Kondawar, V. K.; Moharil, S. V.

    2004-02-01

    UV-emitting phosphors find uses in various applications, such as photocopying, phototherapy, sun tanning, etc. The phosphor requirements for these applications vary. Simple methods for preparing different UV-emitting phosphors are described. Novel syntheses for some borates (SrB4O7:Eu, CeMgB5O10:Gd, GdBO3:Pr, LaB3O6:Ce,Bi, LaB3O6:Gd,Bi, LaB3O6:Ce, Ba2B5O9Cl:Eu), a silicate (Ba2SiO5:Pb), phosphates (Sr2-xMgxP2O7:Eu) and a sulphate (CaSO4:Eu) are reported. Photoluminescence spectra of the phosphors so prepared are presented and discussed in the context of applications like phototherapy and photocopying lamps, photoluminescent liquid crystal displays, radiophotoluminescence, etc.

  5. Determination of household and industrial chemicals, personal care products and hormones in leafy and root vegetables by liquid chromatography-tandem mass spectrometry.

    PubMed

    Aparicio, Irene; Martín, Julia; Abril, Concepción; Santos, Juan Luis; Alonso, Esteban

    2018-01-19

    A multiresidue method has been developed for the determination of emerging pollutants in leafy and root vegetables. Selected compounds were 6 perfluoroalkyl compounds (5 perfluorocarboxylic acids and perfluorooctanesulfonic acid), 3 non-ionic surfactants (nonylphenol and nonylphenolethoxylates), 8 anionic surfactants (4 alkylsulfates and 4 linear alkylbenzene sulfonates), 4 preservatives (parabens), 2 biocides (triclosan and triclocarban), 2 plasticizers (bisphenol A and di-(2-ethylhexyl)phthalate), 6 UV-filters (benzophenones) and 4 hormones. The method is based on ultrasound-assisted extraction, clean-up by dispersive solid-phase extraction (d-SPE) and liquid chromatography-tandem mass spectrometry analysis. Due to the diversity of the physico-chemical properties of the target compounds, and to better evaluate the influence of sample treatment variables in extraction efficiencies, Box-Behnken design was applied to optimize extraction solvent volume, number of extraction cycles and d-SPE sorbent amount. Linearity (R 2 ) higher than 0.992, accuracy (expressed as relative recoveries) in the range from 81 to 126%, precision (expressed as relative standard deviation) lower than 19% and limits of detection between 0.025 and 12.5ngg -1 dry weight were achieved. The method was applied to leafy vegetables (lettuce, spinach and chard) and root vegetables (carrot, turnip and potato) from a local market. The highest concentrations corresponded to the surfactants reaching levels up to 114ngg -1 (dry weight), in one of the lettuce samples analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.

  7. Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Kuzmanoff, K. M.; Evans, M. L.; Jarrett, H. W.

    1987-01-01

    Recent evidence indicates a role for calcium and calmodulin in the gravitropic response of primary roots of maize (Zea mays, L.). We examined this possibility by testing the relationship between calmodulin activity and gravitropic sensitivity in roots of the maize cultivars Merit and B73 x Missouri 17. Roots of the Merit cultivar require light to the gravitropically competent. The gravitropic response of the Missouri cultivar is independent of light. The occurrence of calmodulin in primary roots of these maize cultivars was tested by affinity gel chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with bovine brain calmodulin as standard. The distribution of calmodulin activity was measured using both the phosphodiesterase and NAD kinase assays for calmodulin. These assays were performed on whole tissue segments, crude extracts, and purified extracts. In light-grown seedlings of the Merit cultivar or in either dark- or light-grown seedlings of the Missouri cultivar, calmodulin activity per millimeter of root tissue was about 4-fold higher in the apical millimeter than in the subtending 3 millimeters. Calmodulin activity was very low in the apical millimeter of roots of dark-grown (gravitropically nonresponsive) seedlings of the Merit cultivar. Upon illumination, the calmodulin activity in the apical millimeter increased to a level comparable to that of light-grown seedlings and the roots became gravitropically competent. The time course of the development of gravitropic sensitivity following illumination paralleled the time course of the increase in calmodulin activity in the apical millimeter of the root. The results are consistent with the suggestion that calmodulin plays an important role in the gravitropic response of roots.

  8. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    PubMed

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  9. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    PubMed

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  11. A sensitive and efficient method for determination of N-acetylhexosamines and N-acetylneuraminic acid in breast milk and milk-based products by high-performance liquid chromatography via UV detection and mass spectrometry identification.

    PubMed

    Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You

    2016-02-01

    A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tryptophan-to-Tryptophan Energy Transfer in UV-B photoreceptor UVR8

    NASA Astrophysics Data System (ADS)

    Li, Xiankun; Zhong, Dongping

    UVR8 (UV RESISTANCE LOCUS 8) protein is a UV-B photoreceptor in high plants. UVR8 is a homodimer that dissociates into monomers upon UV-B irradiation (280 nm to 315 nm), which triggers various protective mechanisms against UV damages. Uniquely, UVR8 does not contain any external chromophores and utilizes the UV-absorbing natural amino acid tryptophan (Trp) to perceive UV-B. Each UVR8 monomer has 14 tryptophan residues. However, only 2 epicenter Trp (W285 W233) are critical to the light induced dimer-to-monomer transformation. Here, we revealed, using site-directed mutagenesis and spectroscopy, a striking energy flow network, in which other tryptophan chromophores serve as antenna to transfer excitation energy to epicenter Trp, greatly enhancing UVR8 light-harvesting efficiency. Furthermore, Trp-to-Trp energy transfer rates were measured and agree well with theoretical values.

  13. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts.

    PubMed

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Akter Mitu, Shahida; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F

    2017-05-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280‑320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 µg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 µg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 µg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM‑propidium iodide live‑dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX‑2, p38, phospho‑p38, SPK/JNK and phospho‑SPK/JNK following exposure to >2.5 µg/ml extract showed a significant decrease in intensity for COX‑2, phospho‑p38 and phospho‑SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract, including cellmetabolites and peptides, may provide new agents for skin anti‑inflammation, preventing damage due to UV-B.

  14. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts

    PubMed Central

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Mitu, Shahida Akter; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F.

    2017-01-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280–320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 μg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 μg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 μg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM-propidium iodide live-dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX-2, p38, phospho-p38, SPK/JNK and phospho-SPK/JNK following exposure to >2.5 μg/ml extract showed a significant decrease in intensity for COX-2, phospho-p38 and phospho-SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract, including cellmetabolites and peptides, may provide new agents for skin anti-inflammation, preventing damage due to UV-B. PMID:28358420

  15. Images in the rocket ultraviolet - The stellar population in the central bulge of M31

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Cornett, R. H.; Hill, J. K.; Hill, R. S.; Oconnell, R. W.; Stecher, T. P.

    1985-01-01

    Imagery of the bulge of M31 obtained with a rocket-borne telescope in two broad bands centered at 1460 A and 2380 A is discussed. The UV spatial profiles over a region about 200 arcsec wide are identical with those at visible wavelengths. The absence of detectable point sources indicates that main-sequence stars hotter than B0 V are not present in the bulge. It is suggested that the far-UV flux in old stellar populations originates in post-AGB stars. The UV flux from such stars is extremely sensitive to age and the physics of their previous mass loss.

  16. Evaluating UV-C LED disinfection performance and ...

    EPA Pesticide Factsheets

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  17. Impact on Vitamin D2, Vitamin D4 and Agaritine in Agaricus bisporus Mushrooms after Artificial and Natural Solar UV Light Exposure.

    PubMed

    Urbain, Paul; Valverde, Juan; Jakobsen, Jette

    2016-09-01

    Commercial mushroom production can expose mushrooms post-harvest to UV light for purposes of vitamin D2 enrichment by converting the naturally occurring provitamin D2 (ergosterol). The objectives of the present study were to artificially simulate solar UV-B doses occurring naturally in Central Europe and to investigate vitamin D2 and vitamin D4 production in sliced Agaricus bisporus (button mushrooms) and to analyse and compare the agaritine content of naturally and artificially UV-irradiated mushrooms. Agaritine was measured for safety aspects even though there is no rationale for a link between UV light exposure and agaritine content. The artificial UV-B dose of 0.53 J/cm(2) raised the vitamin D2 content to significantly (P < 0.001) higher levels of 67.1 ± 9.9 μg/g dry weight (DW) than sun exposure (3.9 ± 0.8 μg/g dry DW). We observed a positive correlation between vitamin D4 and vitamin D2 production (r(2) = 0.96, P < 0.001) after artificial UV irradiation, with vitamin D4 levels ranging from 0 to 20.9 μg/g DW. The agaritine content varied widely but remained within normal ranges in all samples. Irrespective of the irradiation source, agaritine dropped dramatically in conjunction with all UV-B doses both artificial and natural solar, probably due to its known instability. The biological action of vitamin D from UV-exposed mushrooms reflects the activity of these two major vitamin D analogues (D2, D4). Vitamin D4 should be analysed and agaritine disregarded in future studies of UV-exposed mushrooms.

  18. Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity

    PubMed Central

    Zhang, Lei; Ma, Huijuan; Chen, Tingting; Pen, Jun; Yu, Shuxun; Zhao, Xinhua

    2014-01-01

    Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl− contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars. PMID:25391141

  19. UV-B radiation reduces in vitro germination of Metarhizium anisopliae s.l. but does not affect virulence in fungus-treated Aedes aegypti adults and development on dead mosquitoes.

    PubMed

    Falvo, M L; Pereira-Junior, R A; Rodrigues, J; López Lastra, C C; García, J J; Fernandes, É K K; Luz, C

    2016-12-01

    Control of diurnal Aedes aegypti with mycoinsecticides should consider the exposure of fungus-treated adults to sunlight, and especially to UV-B radiation that might affect activity of conidia applied on the mosquito's surface. Germination of Metarhizium anisopliae s.l. IP 46 conidia on SDAY medium was not affected at the lowest level of radiation with UV-B, 0·69 kJ m -2 , but was retarded and reduced at higher 2·075 and 4·15 kJ m -2 , and completely inhibited at ≥8·3 kJ m -2 . In contrast, germination of conidia applied onto fibreglass nettings and exposed from 0 to 16·6 kJ m -2 did not differ significantly among levels of irradiance exposure and the controls. There was also no significant impact of UV-B up to 16·6 kJ m -2 on the adulticidal activity of IP 46 and on the subsequent conidiogenesis on cadavers. The Quaite-weighted UV-B irradiance in the laboratory (1152 mW m -2 ) was higher than the natural sunlight irradiance observed in the city of Goiânia in Central Brazil on midday (706 mW m -2 in August to 911 mW m -2 in October 2015). UV-B does not impair the activity of IP 46 conidia applied previously to radiation on A. aegypti adults. Findings contribute to a better understanding of the effectiveness of M. anisopliae against day-active A. aegypti and its potential for biological mosquito control. © 2016 The Society for Applied Microbiology.

  20. Association of Diet With Skin Histological Features in UV-B-Exposed Mice.

    PubMed

    Bhattacharyya, Tapan K; Hsia, Yvonne; Weeks, David M; Dixon, Tatiana K; Lepe, Jessica; Thomas, J Regan

    2017-09-01

    Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B-exposed animals who received the obesity diet. Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. NA.

  1. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    NASA Technical Reports Server (NTRS)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  2. Contributions of visible and ultraviolet parts of sunlight to photoinhibition.

    PubMed

    Hakala-Yatkin, Marja; Mäntysaari, Mika; Mattila, Heta; Tyystjärvi, Esa

    2010-10-01

    Photoinhibition is light-induced inactivation of PSII, and action spectrum measurements have shown that UV light causes photoinhibition much more efficiently than visible light. In the present study, we quantified the contribution of the UV part of sunlight in photoinhibition of PSII in leaves. Greenhouse-grown pumpkin leaves were pretreated with lincomycin to block the repair of photoinhibited PSII, and exposed to sunlight behind a UV-permeable or UV-blocking filter. Oxygen evolution and Chl fluorescence measurements showed that photoinhibition proceeds 35% more slowly under the UV-blocking than under the UV-permeable filter. Experiments with a filter that blocks UV-B but transmits UV-A and visible light revealed that UV-A light is almost fully responsible for the UV effect. The difference between leaves illuminated through a UV-blocking and UV-transparent filter disappeared when leaves of field-grown pumpkin plants were used. Thylakoids isolated from field-grown and greenhouse-grown plants were equally sensitive to UV light, and measurements of UV-induced fluorescence from leaves indicated that the protection of the field-grown plants was caused by substances that block the passage of UV light to the chloroplasts. Thus, the UV part of sunlight, especially the UV-A part, is potentially highly important in photoinhibition of PSII but the UV-screening compounds of plant leaves may offer almost complete protection against UV-induced photoinhibition.

  3. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    PubMed

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Characterisation of novel pH indicator of natural dye Oldenlandia umbellata L.

    PubMed

    Ramamoorthy, Siva; Mudgal, Gaurav; Rajesh, D; Nawaz Khan, F; Vijayakumar, V; Rajasekaran, C

    2009-01-01

    Oldenlandia umbellata L., commonly known as 'chay root', belongs to the family Rubiaceae and is one of the unexplored dye-yielding plants. The roots from this plant are the sources of red dye. Extraction protocol and dye characterisation have not been completely studied so far in this plant. Hence, in this article we have used UV spectrophotometry, thin layer chromatography, GC-MS, high-performance liquid chromatography and NMR to identify the five major colouring compounds, including 1,2,3-trimethoxyanthraquinone, 1,3-dimethoxy-2-hydroxyanthraquinone, 1,2-dimethoxyanthraquinone, 1-methoxy-2-hydroxyanthraquinone and 1,2-dihydroxyanthraquinone. It showed application feasibility as a new pH indicator.

  5. Condensin II Alleviates DNA Damage and Is Essential for Tolerance of Boron Overload Stress in Arabidopsis[W

    PubMed Central

    Sakamoto, Takuya; Inui, Yayoi Tsujimoto; Uraguchi, Shimpei; Yoshizumi, Takeshi; Matsunaga, Sachihiro; Mastui, Minami; Umeda, Masaaki; Fukui, Kiichi; Fujiwara, Toru

    2011-01-01

    Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B. PMID:21917552

  6. Isolation of Nicotinic Acid (Vitamin B3) and N-Propylamine after Myosmine Peroxidation.

    PubMed

    Zwickenpflug, Wolfgang; Högg, Christof; Feierfeil, Johannes; Dachs, Manuel; Gudermann, Thomas

    2016-01-13

    The alkaloid myosmine (3-(1-pyrroline-2-yl)pyridine) is widespread in biological matrixes including foodstuffs and tobacco products. Some in vitro tests in cellular systems showed mutagenic activity for myosmine. Myosmine activation including peroxidation mechanism employs unstable oxazirane intermediates. The formation of minor metabolite 3-hydroxymethyl-pyridine in rat metabolism experiments as well as in in vitro peroxidation assays suggests its further oxidation to nicotinic acid and possible concomitant formation of n-propylamine. A sensitive high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for the direct analysis of n-propylamine in the peroxidation assay solution of myosmine employing derivatization with 3,5-dinitrobenzoyl chloride. Additionally, during peroxidation procedures, formation of 3-pyridylmethanol to nicotinic acid, the essential vitamin B3, was observed and characterized using HPLC-UV and gas chromatography/mass spectrometry. This new reaction pathway may present further contribution to our knowledge of myosmine's significance in human food including its activation in human organism, foodstuffs, and biological systems.

  7. Penetration and development of Meloidogyne arenaria on two new grape rootstocks.

    PubMed

    Anwar, Safdar A; McKenry, M V

    2002-06-01

    Penetration, development, and reproduction of a virulent 'Harmony' population of Meloidogyne arenaria was studied on two nematode-resistant grape rootstocks 10-17A and 6-19B. 'Cabernet Sauvignon' was used as a susceptible control for comparison. Plants were inoculated with 100 freshly hatched second-stage juveniles (J2) of M. arenaria. Greater numbers of J2 penetrated roots of 'Cabernet' than 10-17A, and none penetrated roots of 6-19B 4 days after inoculation (DAI). At 7 DAI, vermiform J2 advanced to sausage-shaped J2 in roots of 'Cabernet,' penetrated roots of 6-19B, and had egressed from roots of 10-17A. Resistant rootstocks expressed hypersensitive responses to penetrating J2 along the root epidermis, among the cortical cells, and along the differentiating vascular bundles. At 13 DAI, 68% of the J2 had attained globose stage in roots of 'Cabernet,' whereas there was no development of vermiform J2 in roots of the other two rootstocks. The nematodes reproduced only in roots of 'Cabernet.' Lack of development of J2 in roots of the two resistant grape rootstocks might be the result of a hypersensitive response to J2 feeding.

  8. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: a competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline?

    NASA Astrophysics Data System (ADS)

    Bischof, K.; Kräbs, G.; Hanelt, D.; Wiencke, C.

    2000-05-01

    Chondrus crispus and Mastocarpus stellatus both inhabit the intertidal and upper sublittoral zone of Helgoland, but with C. crispus generally taking a lower position. Measurements of chlorophyll fluorescence, activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and content and composition of UV absorbing mycosporine-like amino acids (MAAs) were conducted in the laboratory, to test whether susceptibility to UV radiation may play a role in the vertical distribution of these two species. Effective and maximal quantum yield of photochemistry as well as maximal electron transport rate (ETRmax) in C. crispus were more strongly affected by UV-B radiation than in M. stellatus. In both species, no negative effects of the respective radiation conditions were found on total activity of RubisCO. Total MAA content in M. stellatus was up to 6-fold higher than in C. crispus and the composition of MAAs in the two species was different. The results indicate that, among others, UV-B sensitivity may be a factor restricting C. crispus to the lower intertidal and upper sublittoral zone, whereas M. stellatus is better adapted to UV radiation and is therefore more competitive in the upper intertidal zone.

  9. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains because there is anecdotal evidence of plant damage on the saguaros that has been linked to increased UV radiation, and (3) the forests of Nothofagus spp. and the steppe of Patagonia where the risk of plant damage at 35S is 5% and increases to as much as 15% at 55S due to increased UV-B radiation. Measurements of UV-B radiation impinging on the surface at 55S largely exceed the predicted UV-B radiation values at 50 latitude and 0% ozone depletion. Preliminary HPLC analyses of UV-B absorbing compounds in Nothofagus antartica, N. pumilio, N. betuloides and Rumex sp. in natural conditions show species-specific patterns. The spectrum of N. antartica grown at 38S differs significantly from that of N. antartica in natural conditions in Ushuaia (55S). These results suggest that the selected main area (Patagonia) is appropriate for assessing the problem and its magnitude and that Nothofagus is appropriate for our study.

  10. Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.

    Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that ofmore » commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.« less

  11. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation.

    PubMed

    Ghasemzadeh, Ali; Ashkani, Sadegh; Baghdadi, Ali; Pazoki, Alireza; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-09-09

    Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV-B treated leaves presented the highest DPPH activity and antiproliferative activity with a half-maximal inhibitory concentration (IC50) value of 56.0 and 40.8 µg/mL, respectively, over that of the control plants (78.0 and 58.2 µg/mL, respectively). These observations suggest that post-harvest irradiation with UV-B can be considered a promising technique to improve the healthy-nutritional and pharmaceutical properties of sweet basil leaves.

  12. Polyphosphate Affects on Breast Cancer Cell Survival

    DTIC Science & Technology

    2007-04-01

    not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-04-2007 2...and verify the strains that were developed. Strains without UvrA are extremely sensitive to UV light so the screen easily displays the strains with...2007) W81XWH-04-1-0379 P.I. Christine Haakenson pPPK 6609 bp Selectable Marker Promoter BAD prom MCS M13 intergenic region pBR322 ORI rrnB araC

  13. Ultraviolet vision in birds: the importance of transparent eye media

    PubMed Central

    Lind, Olle; Mitkus, Mindaugas; Olsson, Peter; Kelber, Almut

    2014-01-01

    Ultraviolet (UV)-sensitive visual pigments are widespread in the animal kingdom but many animals, for example primates, block UV light from reaching their retina by pigmented lenses. Birds have UV-sensitive (UVS) visual pigments with sensitivity maxima around 360–373 nm (UVS) or 402–426 nm (violet-sensitive, VS). We describe how these pigments are matched by the ocular media transmittance in 38 bird species. Birds with UVS pigments have ocular media that transmit more UV light (wavelength of 50% transmittance, λT0.5, 323 nm) than birds with VS pigments (λT0.5, 358 nm). Yet, visual models predict that colour discrimination in bright light is mostly dependent on the visual pigment (UVS or VS) and little on the ocular media. We hypothesize that the precise spectral tuning of the ocular media is mostly relevant for detecting weak UV signals, e.g. in dim hollow-nests of passerines and parrots. The correlation between eye size and UV transparency of the ocular media suggests little or no lens pigmentation. Therefore, only small birds gain the full advantage from shifting pigment sensitivity from VS to UVS. On the other hand, some birds with VS pigments have unexpectedly low UV transmission of the ocular media, probably because of UV blocking lens pigmentation. PMID:24258716

  14. Ultraviolet vision in birds: the importance of transparent eye media.

    PubMed

    Lind, Olle; Mitkus, Mindaugas; Olsson, Peter; Kelber, Almut

    2014-01-07

    Ultraviolet (UV)-sensitive visual pigments are widespread in the animal kingdom but many animals, for example primates, block UV light from reaching their retina by pigmented lenses. Birds have UV-sensitive (UVS) visual pigments with sensitivity maxima around 360-373 nm (UVS) or 402-426 nm (violet-sensitive, VS). We describe how these pigments are matched by the ocular media transmittance in 38 bird species. Birds with UVS pigments have ocular media that transmit more UV light (wavelength of 50% transmittance, λ(T0.5), 323 nm) than birds with VS pigments (λ(T0.5), 358 nm). Yet, visual models predict that colour discrimination in bright light is mostly dependent on the visual pigment (UVS or VS) and little on the ocular media. We hypothesize that the precise spectral tuning of the ocular media is mostly relevant for detecting weak UV signals, e.g. in dim hollow-nests of passerines and parrots. The correlation between eye size and UV transparency of the ocular media suggests little or no lens pigmentation. Therefore, only small birds gain the full advantage from shifting pigment sensitivity from VS to UVS. On the other hand, some birds with VS pigments have unexpectedly low UV transmission of the ocular media, probably because of UV blocking lens pigmentation.

  15. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 × 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  16. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  17. Boron Deficiency in Trifoliate Orange Induces Changes in Pectin Composition and Architecture of Components in Root Cell Walls.

    PubMed

    Wu, Xiuwen; Riaz, Muhammad; Yan, Lei; Du, Chenqing; Liu, Yalin; Jiang, Cuncang

    2017-01-01

    Boron (B) is a micronutrient indispensable for citrus and B deficiency causes a considerable loss of productivity and quality in China. However, studies on pectin composition and architecture of cell wall components in trifoliate orange roots under B deficiency condition are not sufficient. In this study, we investigated the alteration in pectin characteristics and the architecture of cell wall components in trifoliate orange [ Poncirus trifoliata (L.) Raf.] roots under B starvation. The results showed that B-deficient roots resulted in a significant enlargement of root tips and an obvious decrease in cell wall B and uronic acid content in Na 2 CO 3 -soluble pectin compared with B-adequate roots. Meanwhile, they showed a decrease of 2-keto-3-deoxyoctanoic acid in CDTA-soluble and Na 2 CO 3 -soluble pectin in cell walls, while the degree of methylation (DM) of CDTA-soluble pectin was significantly increased under B deficiency. Transmission electron microscope (TEM) micrographs of B deficient plants showed a distinct thickening of the cell walls, with the thickness 1.82 times greater than that of control plant roots. The results from Fourier-transform infrared spectroscopy (FTIR) showed that B deficiency changed the mode of hydrogen bonding between protein and carbohydrates (cellulose and hemicellulose). The FTIR spectra exhibited a destroyed protein structure and accumulation of wax and cellulose in the cell walls under B starvation. The 13 C nuclear magnetic resonance ( 13 C-NMR) spectra showed that B starvation changed the organic carbon structure of cell walls, and enhanced the contents of amino acid, cellulose, phenols, and lignin in the cell wall. The results reveal that the swelling and weakened structural integrity of cell walls, which induced by alteration on the network of pectin and cell wall components and structure in B-deficient roots, could be a major cause of occurrence of the rapid interruption of growth and significantly enlarged root tips in trifoliate orange roots under B-insufficient condition.

  18. PSO4: a novel gene involved in error-prone repair in Saccharomyces cerevisiae.

    PubMed

    Henriques, J A; Vicente, E J; Leandro da Silva, K V; Schenberg, A C

    1989-09-01

    The haploid xs9 mutant, originally selected for on the basis of a slight sensitivity to the lethal effect of X-rays, was found to be extremely sensitive to inactivation by 8-methoxypsoralen (8MOP) photoaddition, especially when cells are treated in the G2 phase of the cell cycle. As the xs9 mutation showed no allelism with any of the 3 known pso mutations, it was now given the name of pso4-1. Regarding inactivation, the pso4-1 mutant is also sensitive to mono- (HN1) or bi-functional (HN2) nitrogen mustards, it is slightly sensitive to 254 nm UV radiation (UV), and shows nearly normal sensitivity to 3-carbethoxypsoralen (3-CPs) photoaddition or methyl methanesulfonate (MMS). Regarding mutagenesis, the pso4-1 mutation completely blocks reverse and forward mutations induced by either 8MOP or 3CPs photoaddition, or by gamma-rays. In the cases of UV, HN1, HN2 or MMS treatments, while reversion induction is still completely abolished, forward mutagenesis is only partially inhibited for UV, HN1, or MMS, and it is unaffected for HN2. Besides severely inhibiting induced mutagenesis, the pso4-1 mutation was found to be semi-dominant, to block sporulation, to abolish the diploid resistance effect, and to block induced mitotic recombination, which indicates that the PSO4 gene is involved in a recombinational pathway of error-prone repair, comparable to the E. coli SOS repair pathway.

  19. Checkpoint Defects Leading to Premature Mitosis Also Cause Endoreplication of DNA in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P. C.; Ye, Xiang S.; Osmani, Stephen A.

    1999-01-01

    The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsBrad3 and uvsDrad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells. PMID:10564263

  20. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  1. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  2. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  3. [Analyzing crude/processed root of Polygonum multiflorum from different habitats by UPLC fingerprint and mode identification methods].

    PubMed

    Xiao, Rong; Lin, Yan; Lei, Si-Min; Zhang, Ying; Huang, Jie; Xia, Bo-Hou; Li, Chun; Liao, Duan-Fang; Wu, Ping; Lin, Li-Mei

    2017-06-01

    To establish a content determination method for 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside (TSG) of the crude/processed root of Polygonum multiflorum from different habitats in China and set up the fingerprint by using UPLC. Various samples were pretreated by macro-porous resin. Then UPLC analysis was performed on Waters ACQUITY UPLC@BEH C18 chromatographic column (2.1 mm×50 mm, 1.7 μm) at (25±5) ℃. A binary gradient elution system was composed of acetonitrile (phase A) and 0.5% acetic acid solution (phase B). Detection was performed at the wavelength of 254 nm, and the mobile flow rate was set at 0.3 mL•min⁻¹. Results showed that the yield of extraction of the 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside from root of P. multiflorum was all over 25.0% after macro-porous resin separation; an exclusive UPLC fingerprint method of the crude/processed root of P. multiflorum from different habitats was successfully set up and 17 chromatographic peaks were calibrated. Cluster analysis can not entirely distinguish the crude one from the processed one, while principal component analysis absolutely can. 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside is the composition that has largest differences in variable importance in projection (VIP) between crude and processed root of P. multiflorum. The separating method can gain high-purity 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside, and the determination method is simple, sensitive, reliable and can be used in fast identifying the crude/processed root of P. multiflorum or as a method for overall quality control of root of P. multiflorum. Copyright© by the Chinese Pharmaceutical Association.

  4. Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+.

    PubMed Central

    Thoms, B; Wackernagel, W

    1988-01-01

    Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We show that in a uvrA recB+ recC+ genetic background there are two prerequisites for the suppression by recA(Srf) of the UV-sensitive phenotype of recF mutants. (i) The recA(Srf) protein must be provided in increased amounts either by SOS derepression or by a recA operator-constitutive mutation in a lexA(Ind) (no induction of SOS functions) genetic background. (ii) The gene recJ, which has been shown previously to be involved in the recF pathway of recombination and repair, must be functional. The level of expression of recJ in a lexA(Ind) strain suffices for full suppression. Suppression by recA441 at 30 degrees C also depends on recJ+. The hampered induction by UV of the SOS gene uvrA seen in a recF mutant was improved by a recA(Srf) mutation. This improvement did not require recJ+. We suggest that recA(Srf) and recA(Tif) mutant proteins can operate in postreplication repair independent of recF by using the recJ+ function. PMID:2841294

  5. The effect of kinetin on wheat seedlings exposed to boron.

    PubMed

    Eser, Ahmet; Aydemir, Tülin

    2016-11-01

    The objective of this study was to examine relationship between boron (B) induced oxidative stress and antioxidant system in boron sensitive and tolerant wheat cultivars Bezostaya and Kutluk, and also to investigate whether Kinetin (KN) enhances the level of antioxidant system, relative growth, concentration of hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA) and proline and chlorophyll content in both cultivars exposed to B stress. B treatments diminished growth and chlorophyll content whereas, it enhanced accumulation of H 2 O 2 , MDA and proline, and various antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and lipoxygenase (LOX) in the shoot and root of both cultivars. However, the follow-up application of KN to the B stressed plants improved growth and chlorophyll content and further enhanced the mentioned antioxidant enzymes and level of H 2 O 2 , MDA and proline. This study thus suggests that KN improves B tolerance of the studied cultivars grown under B toxicity. Copyright © 2016. Published by Elsevier Masson SAS.

  6. Growth, yield and tuber quality of Solanum tuberosum L. under supplemental ultraviolet-B radiation at different NPK levels.

    PubMed

    Singh, S; Kumari, R; Agrawal, M; Agrawal, S B

    2011-05-01

    In many areas, decreases in the stratospheric ozone layer have resulted in an increase in ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth's surface. The present study was conducted to evaluate the interactive effects of supplemental UV-B (sUV-B) and mineral nutrients on a tuber crop, potato (Solanum tuberosum L. var Kufri Badshah), under natural field conditions in a dry tropical environment. The nutrient treatments were the recommended dose of NPK (F(o)), 1.5 times the recommended dose of NPK (F(1)), 1.5 times the recommended dose of N (F(2)) and 1.5 times the recommended dose of K (F(3)). The response of potato plants to sUV-B varied with nutrient treatment and concentration. sUV-B adversely affected growth, yield and quality of tubers, causing an increase in reducing sugars in the tubers and thus reducing the economic value. Growth and fresh weight of tubers was maximal with sUV-B at 1.5 times recommended NPK, but the dry weight of tubers were highest with the recommended NPK dose. Reducing sugar content was lower in potato plants treated with sUV-B and the recommended NPK than with sUV-B and 1.5 times the recommended NPK. This study thus clearly shows that growing potato with 1.5 times the recommended NPK or 1.5 times the recommended dose of N/K does not alleviate the sUV-B induced changes in yield and quality of tubers compared to the recommended NPK dose. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    PubMed

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position phytoplankton will be exposed to solar ultraviolet radiation. This radiation has been shown to affect growth, photosynthesis, nitrogen incorporation and enzyme activity. Other targets of solar UV irradiation are proteins and pigments involved in photosynthesis. Whether or not screening pigments can be induced in phytoplankton to effectively shield the organisms from excessive UV irradiation needs to be determined. Macroalgae show a distinct pattern of vertical distribution in their habitat. They have developed mechanisms to regulate their photosynthetic activity to adapt to the changing light regime and protect themselves from excessive radiation. A broad survey was carried out to understand photosynthesis in aquatic ecosystems and the different adaptation strategies to solar radiation of ecologically important species of green, red and brown algae from the North Sea, Baltic Sea, Mediterranean, Atlantic, polar and tropical oceans. Photoinhibition was quantified by oxygen exchange and by PAM (pulse amplitude modulated) fluorescence measurements based on transient changes of chlorophyll fluorescence.

  9. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    PubMed

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    PubMed Central

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  11. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes.

    PubMed

    Holzinger, Andreas; Albert, Andreas; Aigner, Siegfried; Uhl, Jenny; Schmitt-Kopplin, Philippe; Trumhová, Kateřina; Pichrtová, Martina

    2018-07-01

    Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m -2  s -1 ) in combination with experimental UV-A (315-400 nm, 5.7 W m -2 , no UV-B), designated as PA, or UV-A (10.1 W m -2 ) + UV-B (280-315 nm, 1.0 W m -2 ), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p < 0.05) increase in Zygnema spp. C and S. The content of UV-absorbing phenolic compounds was significantly higher (p < 0.05) in young vegetative cells compared to pre-akinetes. In young vegetative Zygnema sp. S, these phenolic compounds significantly increased (p < 0.05) upon PA and PAB. Transmission electron microscopy showed an intact ultrastructure with massive starch accumulations at the pyrenoids under PA and PAB. A possible increase in electron-dense bodies in PAB-treated cells and the occurrence of cubic membranes in the chloroplasts are likely protection strategies. Metabolite profiling by non-targeted RP-UHPLC-qToF-MS allowed a clear separation of the strains, but could not detect changes due to the PA and PAB treatments. Six hundred seventeen distinct molecular masses were detected, of which around 200 could be annotated from databases. These results indicate that young vegetative cells can adapt better to the experimental UV-B stress than pre-akinetes.

  12. Adaptive kernel independent component analysis and UV spectrometry applied to characterize the procedure for processing prepared rhubarb roots.

    PubMed

    Wang, Guoqing; Hou, Zhenyu; Peng, Yang; Wang, Yanjun; Sun, Xiaoli; Sun, Yu-an

    2011-11-07

    By determination of the number of absorptive chemical components (ACCs) in mixtures using median absolute deviation (MAD) analysis and extraction of spectral profiles of ACCs using kernel independent component analysis (KICA), an adaptive KICA (AKICA) algorithm was proposed. The proposed AKICA algorithm was used to characterize the procedure for processing prepared rhubarb roots by resolution of the measured mixed raw UV spectra of the rhubarb samples that were collected at different steaming intervals. The results show that the spectral features of ACCs in the mixtures can be directly estimated without chemical and physical pre-separation and other prior information. The estimated three independent components (ICs) represent different chemical components in the mixtures, which are mainly polysaccharides (IC1), tannin (IC2), and anthraquinone glycosides (IC3). The variations of the relative concentrations of the ICs can account for the chemical and physical changes during the processing procedure: IC1 increases significantly before the first 5 h, and is nearly invariant after 6 h; IC2 has no significant changes or is slightly decreased during the processing procedure; IC3 decreases significantly before the first 5 h and decreases slightly after 6 h. The changes of IC1 can explain why the colour became black and darkened during the processing procedure, and the changes of IC3 can explain why the processing procedure can reduce the bitter and dry taste of the rhubarb roots. The endpoint of the processing procedure can be determined as 5-6 h, when the increasing or decreasing trends of the estimated ICs are insignificant. The AKICA-UV method provides an alternative approach for the characterization of the processing procedure of rhubarb roots preparation, and provides a novel way for determination of the endpoint of the traditional Chinese medicine (TCM) processing procedure by inspection of the change trends of the ICs.

  13. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. © 2014. Published by The Company of Biologists Ltd.

  14. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  15. Oral Administration of Forskolin, Homotaurine, Carnosine, and Folic Acid in Patients with Primary Open Angle Glaucoma: Changes in Intraocular Pressure, Pattern Electroretinogram Amplitude, and Foveal Sensitivity.

    PubMed

    Mutolo, Maria Giulia; Albanese, Giuseppe; Rusciano, Dario; Pescosolido, Nicola

    2016-04-01

    To evaluate the effects of a food supplement containing forskolin, homotaurine, carnosine, folic acid, vitamins B1, B2, B6, and magnesium in patients with primary open angle glaucoma (POAG) already in treatment and compensated by intraocular pressure (IOP)-lowering drugs, during a period of 12 months. Twenty-two patients (44 eyes) with POAG, with their IOP compensated by topical drugs, were enrolled and randomly assigned to the food supplement or control treatment group. The additional food supplement treatment consisted of 2 tablets per day (1 in the morning, 1 in the evening) given for 1 year of a balanced association of homotaurine, Coleus forskohlii root extract, L-carnosine, folic acid, vitamins B1, B2, B6, and magnesium. Pattern Electroretinogram (PERG) amplitude, foveal sensitivity obtained with the visual field analyzer frequency doubling technology, and IOP were detected at enrollment (T0), 3 months (T1), 6 months (T2), 9 months (T3), and 12 months (T4). We observed in treated patients a significant further decrease of IOP and an improvement of PERG amplitude at 6, 9, and 12 months, and foveal sensitivity at 12 months. All values remained substantially stable in control patients. The results of the present pilot study indicate that the components of the food supplement reach the eye in a detectable manner, as evidenced by the effects on the IOP. Moreover, they suggest a short-term neuroactive effect, as indicated by the improvement of PERG amplitude and foveal sensitivity in treated, but not in control patients.

  16. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation.

    PubMed

    Sheeba; Pratap Singh, Vijay; Kumar Srivastava, Prabhat; Mohan Prasad, Sheo

    2011-10-01

    In the present study, degree of tolerance and tolerance strategies of two paddy field cyanobacteria viz. Nostoc muscorum and Phormidium foveolarum against oxyfluorfen (10 and 20 μg ml(-1)) and UV-B (7.2 kJ m(-2)d(-1)) stress were investigated. Oxyfluorfen and UV-B decreased growth, photosynthesis, nutrient uptake, nitrate reductase, acid and alkaline phosphatase activities, which accompanied with the increase in the level of oxidative stress. However, growth was more affected in N. muscorum than P. foveolarum. Antioxidants exhibited differential responses against oxyfluorfen and UV-B stress. Ascorbate and proline levels were higher in P. foveolarum. A protein of 66 kDa was expressed in N. muscorum, however, it was absent in P. foveolarum than those of N. muscorum. Besides this, a protein of 29 kDa appeared in P. foveolarum under all the treatments, but it was present only in control cells of N. muscorum cells. Overall results indicated resistant nature of P. foveolarum against oxyfluorfen and UV-B stress in comparison to N. muscorum. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effect of Solar Ultraviolet-B Radiation during Springtime Ozone Depletion on Photosynthesis and Biomass Production of Antarctic Vascular Plants1

    PubMed Central

    Xiong, Fusheng S.; Day, Thomas A.

    2001-01-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031

  18. Impact of UV-B radiation on the digestive enzymes and immune system of larvae of Indian major carp Catla catla.

    PubMed

    Sharma, Jaigopal; Rao, Y Vasudeva; Kumar, S; Chakrabarti, Rina

    2010-03-01

    Ultraviolet radiation is a potent threat to the aquatic animals. Exposure to such stressor affects metabolic and immunological processes. The present investigation aims to study the effect of UV-B radiation on digestive enzymes and immunity of larvae of Catla catla. Larvae were exposed to ultraviolet-B (UV-B, 280-320 nm) radiation (145 microW/cm(2)) for three different exposure times of 5, 10 and 15 min on every other day. After 55 days, important digestive enzymes were assayed. For immunological study, lysozyme, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured. Then the fish were kept for one month without radiation and lysozyme level was measured. Protein concentration varied directly with the duration of exposure and was highest among fish that had received the 15 min UV-B irradiation. Significantly higher amylase, protease, trypsin and chymotrypsin activities were found in 5 min exposed fish compared to others. Lysozyme level was significantly higher in control group compared to the UV-B treated fish. The lysozyme level decreased with the increasing duration of UV-B radiation. When fish were kept without UV-B radiation for one month, lysozyme level was brought to the normal level in all treatments, except 15 min exposed fish. The GOT and GPT levels were significantly higher in the 15 min exposed group than others. The effects of UV-B radiation on the digestive physiology and immune system of catla have been clearly observed in the present study. The decreased enzyme activities in UV-B radiated fish results into improper digestion and poor growth.

  19. Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants.

    PubMed

    Xiong, F S; Day, T A

    2001-02-01

    We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.

  20. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula.

    PubMed

    Morales, Luis O; Tegelberg, Riitta; Brosché, Mikael; Lindfors, Anders; Siipola, Sari; Aphalo, Pedro J

    2011-11-01

    The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure. Copyright © Physiologia Plantarum 2011.

  1. Effects of Infection by Belonolaimus longicaudatus on Rooting Dynamics among St. Augustinegrass and Bermudagrass Genotypes.

    PubMed

    Aryal, Sudarshan K; Crow, William T; McSorley, Robert; Giblin-Davis, Robin M; Rowland, Diane L; Poudel, Bishow; Kenworthy, Kevin E

    2015-12-01

    Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass ('Tifway', Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes ['BA132' and 'PI 291590'], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass ('FX 313', susceptible, and 'Floratam' that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. 'Celebration', 'TifSport' and 'PI 291590' bermudagrass, and 'Floratam' St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only 'TifSport' had no significant root loss when infested with B. longicaudatus compared to non-infested. 'Celebration' and 'PI 291590' had significant root loss but retained significantly greater root densities than 'Tifway' in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). 'Celebration', 'TifSport', and 'PI 291590' had better root vigor against B. longicaudatus compared to Tifway.

  2. Effects of Infection by Belonolaimus longicaudatus on Rooting Dynamics among St. Augustinegrass and Bermudagrass Genotypes

    PubMed Central

    Aryal, Sudarshan K.; Crow, William T.; McSorley, Robert; Giblin-Davis, Robin M.; Rowland, Diane L.; Poudel, Bishow; Kenworthy, Kevin E.

    2015-01-01

    Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass (‘Tifway’, Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes [‘BA132’ and ‘PI 291590’], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass (‘FX 313’, susceptible, and ‘Floratam’ that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. ‘Celebration’, ‘TifSport’ and ‘PI 291590’ bermudagrass, and ‘Floratam’ St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only ‘TifSport’ had no significant root loss when infested with B. longicaudatus compared to non-infested. ‘Celebration’ and ‘PI 291590’ had significant root loss but retained significantly greater root densities than ‘Tifway’ in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). ‘Celebration’, ‘TifSport’, and ‘PI 291590’ had better root vigor against B. longicaudatus compared to Tifway. PMID:26941461

  3. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging.

    PubMed

    Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy

    2015-01-01

    We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The UV behaviour of GRB 161219B/SN2016jca

    NASA Astrophysics Data System (ADS)

    Levan, Andrew

    2016-10-01

    The connection between long duration gamma-ray bursts and the stripped-envelope supernova is now secure, however, central questions remain about the nature of the supernovae and the power sources that drive them. Progress in these areas can be made through in-depth observations of nearby GRBs, in which the supernova light is sufficiently bright for detailed studies. However, such events are extremely rare, with only a handful of classical long-duration GRBs being found at z<0.2. Here we request observations of the recent GRB 161219B, and its supernova SN 2016jca. Utilising the unique ultraviolet capabilities of HST we will map the UV spectrum and its evolution with time. At a minimum, this will provide a route to tracking the afterglow and decomposing afterglow and supernova and host contributions - diagnostics that ground-based observations alone struggle to achieve. However, our sensitive UV observations will also probe the UV properties of a GRB-SN for the first time, providing insight into the metal content of the progenitor, and crucially into the nature of the central engine, which may power the prompt emission of the burst, and continue to provide energy to event at much later times. Recent observations suggest that in extremum these engines may drive supernovae to exceptional luminosities (the so-called superluminous supernovae) and provide a link between the most powerful explosions in the Universe. Our observations may offer the route to identifying such an engine at work in a lower luminosity supernova, solidifying this link.

  5. Narrowband UV-B phototherapy in the treatment of cutaneous graft versus host disease.

    PubMed

    Grundmann-Kollmann, Marcella; Martin, Hans; Ludwig, Ralf; Klein, Stefan; Boehncke, Wolf-Henning; Hoelzer, Dieter; Kaufmann, Roland; Podda, Maurizio

    2002-12-15

    Graft versus host disease (GVHD) is an important problem following allogenic bone marrow transplantation (BMT). The beneficial effects of photochemotherapy with psoralens plus UVA irradiation (PUVA) have been described repeatedly; however, PUVA is limited by a wide range of unwanted effects. A novel improved form of UV-B phototherapy, narrowband UV-B, has been proven to be very effective in T-cell mediated dermatoses. Therefore, we investigated the effect of narrowband UV-B phototherapy (5 times per week) in 10 patients with cutaneous GVHD (grade 2-3) resistant to standard immunosuppressive drugs. It was tolerated well by all patients, and no side effects were observed. Skin lesions showed complete clearance in 7 out of 10 patients within 3 to 5 weeks. 3 patients showed significant improvement of GVHD. We suggest that narrowband UV-B phototherapy is a nonaggressive treatment that may benefit patients with cutaneous GVHD who already take high doses of immunosuppressive drugs.

  6. Temperature sensitivity of microbial respiration of fine root litter in a temperate broad-leaved forest.

    PubMed

    Makita, Naoki; Kawamura, Ayumi

    2015-01-01

    The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0-0.5 and 0.5-2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59-3.31 and 1.28-6.27 for Q. serrata and 1.36-6.31 and 1.65-5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0-0.5 and 0.5-2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.

  7. Spatial and temporal variability in the amount and source of dissolved organic carbon: Implications for ultraviolet exposure in amphibian habitats

    USGS Publications Warehouse

    Brooks, P.D.; O'Reilly, C. M.; Diamond, S.A.; Campbell, D.H.; Knapp, R.; Bradford, D.; Corn, P.S.; Hossack, B.; Tonnessen, K.

    2005-01-01

    The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet (UV-B) attenuation, were measured at 1–2 week intervals throughout the summers of 1999, 2000, and 2001 at four sites in Rocky Mountain National Park (Colorado). Eight additional sites, four in Sequoia and Kings Canyon National Park/John Muir Wilderness (California) and four in Glacier National Park (Montana), were sampled during the summer of 2000. Attenuation of UV-B was significantly related to DOC concentrations over the three years in Rocky Mountain (R2 = 0.39, F = 25.71, P < 0.0001) and across all parks in 2000 (R2 = 0.44, F = 38.25, P < 0.0001). The relatively low R2 values, however, reflect significant temporal and spatial variability in the specific attenuation per unit DOC. Fluorescence analysis of the fulvic acid DOC fraction (roughly 600–2,000 Daltons) indicated that the source of DOC significantly affected the attenuation of UV-B. Sites in Sequoia–Kings Canyon were characterized by DOC derived primarily from algal sources and showed much deeper UV-B penetration, whereas sites in Glacier and Rocky Mountain contained a mix of algal and terrestrial DOC-dominated sites, with more terrestrially dominated sites characterized by greater UV-B attenuation per unit DOC. In general, site characteristics that promoted the accumulation of terrestrially derived DOC showed greater attenuation of UV-B per unit DOC; however, catchment vegetation and soil characteristics, precipitation, and local hydrology interacted to make it difficult to predict potential exposure from DOC concentrations.

  8. High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Sangareswari, M.; Meenakshi Sundaram, M.

    2017-05-01

    Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV-DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV-Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.

  9. The effects of ultraviolet-B radiation on the toxicity of fire-fighting chemicals

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.

    2003-01-01

    The interactive effects of ultraviolet (UV) and fire-retardant chemicals were evaluated by exposing rainbow trout (Oncorhyncus mykiss) juveniles and tadpoles of southern leopard frogs (Rana sphenocephala) to six fire-retardant formulations with and without sodium ferrocyanide (yellow prussiate of soda [YPS]) and to YPS alone under three simulated UV light treatments. Yellow prussiate of soda is used as a corrosion inhibitor in some of the fire-retardant chemical formulations. The underwater UV intensities measured were about 2 to 10% of surface irradiance measured in various aquatic habitats and were within tolerance limits for the species tested. Mortality of trout and tadpoles exposed to Fire-Trol?? GTS-R, Fire-Trol 300-F, Fire-Trol LCA-R, and Fire-Trol LCA-F was significantly increased in the presence of UV radiation when YPS was present in the formulation. The boreal toad (Bufo boreas), listed as endangered by the state of Colorado (USA), and southern leopard frog were similar in their sensitivity to these chemicals. Photoenhancement of fire-retardant chemicals can occur in a range of aquatic habitats and may be of concern even when optical clarity of water is low; however, other habitat characteristics can also reduce fire retardant toxicity.

  10. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    PubMed

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3(-), inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  11. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

    PubMed

    Qi, Lifang; Yu, Jiaguo; Jaroniec, Mietek

    2011-05-21

    CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded. © The Owner Societies 2011

  12. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    PubMed

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    PubMed

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar levels. However, given that either non-significant or inconclusive relationships were detected within hemispheres, alternative explanations of the differences in foliar hairs are more likely, including the effects of environment, genotypes or herbivory.

  14. The Association of Glaucomatous Visual Field Loss and Balance

    PubMed Central

    de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.

    2017-01-01

    Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P < 0.001). Neither superior nor inferior IVF sensitivity consistently predicted balance measures better than measures of overall VF sensitivity. Conclusions Balance was worse in glaucoma patients with greater VF damage under foam surface testing (designed to inhibit proprioceptive contributions to balance) as well as feet-together firm-surface conditions when somatosensory inputs were available. Translational Relevance Good balance is essential to avoid unnecessary falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562

  15. US EPA Testing of LP & MP UV Disinfection Technologies

    EPA Science Inventory

    Presentation will discuss the ongoing USEPA research on UV disinfection addressing the following objectives: Conservatively predict log inactivation and RED of adenovirus with surrogates; Conduct many (LP=61) UV reactor conditions challenged with Ad2, B. pumilus, and MS2 & conduc...

  16. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun

    2015-06-15

    A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores

    PubMed Central

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z.; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-01-01

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase. PMID:23531678

  18. Ancestral QTL Alleles from Wild Emmer Wheat Enhance Root Development under Drought in Modern Wheat.

    PubMed

    Merchuk-Ovnat, Lianne; Fahima, Tzion; Ephrath, Jhonathan E; Krugman, Tamar; Saranga, Yehoshua

    2017-01-01

    A near-isogenic line (NIL-7A-B-2), introgressed with a quantitative trait locus (QTL) on chromosome 7AS from wild emmer wheat ( Triticum turgidum ssp. dicoccoides ) into the background of bread wheat ( T. aestivum L.) cv. BarNir, was recently developed and studied in our lab. NIL-7A-B-2 exhibited better productivity and photosynthetic capacity than its recurrent parent across a range of environments. Here we tested the hypothesis that root-system modifications play a major role in NIL-7A-B-2's agronomical superiority. Root-system architecture (dry matter and projected surface area) and shoot parameters of NIL-7A-B-2 and 'BarNir' were evaluated at 40, 62, and 82 days after planting (DAP) in a sand-tube experiment, and root tip number was assessed in a 'cigar-roll' seedling experiment, both under well-watered and water-limited (WL) treatments. At 82 DAP, under WL treatment, NIL-7A-B-2 presented greater investment in deep roots (depth 40-100 cm) than 'BarNir,' with the most pronounced effect recorded in the 60-80 cm soil depth (60 and 40% increase for root dry matter and surface area, respectively). NIL-7A-B-2 had significantly higher root-tip numbers (∼48%) per plant than 'BarNir' under both treatments. These results suggest that the introgression of 7AS QTL from wild emmer wheat induced a deeper root system under progressive water stress, which may enhance abiotic stress resistance and productivity of domesticated wheat.

  19. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  20. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations

    PubMed Central

    Curnow, Alison; Owen, Sara J.

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations. PMID:26953144

  1. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations.

    PubMed

    Curnow, Alison; Owen, Sara J

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations.

  2. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  3. Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor.

    PubMed

    Ljubic, Darko; Smithson, Chad S; Wu, Yiliang; Zhu, Shiping

    2016-02-17

    The influence of polymer binders on the UV response of organic thin-film phototransistors (OTF-PTs) is reported. The active channel of the OTF-PTs was fabricated by blending a UV responsive 2,7-dipenty-[1]benzothieno[2,3-b][1]benzothiophene (C5-BTBT) as small molecule semiconductor and a branched unsaturated polyester (B-upe) as dielectric binder (ratio 1:1). To understand the influence of the polymer composition on the photoelectrical properties and UV response of C5-BTBT, control blends were prepared using common dielectric polymers, namely, poly(vinyl acetate) (PVAc), polycarbonate (PC), and polystyrene (PS), for comparison. Thin-film morphology and nanostructure of the C5-BTBT/polymer blends were investigated by means of optical and atomic force microscopy, and powder X-ray diffraction, respectively. Electrical and photoelectrical characteristics of the studied OTF-PTs were evaluated in the dark and under UV illumination with a constant light intensity (P = 3 mW cm(-2), λ = 365 nm), respectively, using two- and three-terminal I-V measurements. Results revealed that the purposely chosen B-upe polymer binder strongly affected the UV response of OTF-PTs. A photocurrent increase of more than 5 orders of magnitude in the subthreshold region was observed with a responsivity as high as 9.7 AW(-1), at VG = 0 V. The photocurrent increase and dramatic shift of VTh,average (∼86 V) were justified by the high number of photogenerated charge carriers upon the high trap density in bulk 8.0 × 10(12) cm(-2) eV(-1) generated by highly dispersed C5-BTBT in B-upe binder. Compared with other devices, the B-upe OTF-PTs had the fastest UV response times (τr1/τr2 = 0.5/6.0) reaching the highest saturated photocurrent (>10(6)), at VG = -5 V and VSD = -60 V. The enhanced UV sensing properties of B-upe based OTF-PTs were attributed to a self-induced thin-film morphology. The enlarged interface facilitated the electron withdrawing/donating functional groups in the polymer chains in influencing the photocharge separation, trapping and recombination.

  4. Proteomic and Metabolomic Analyses of Leaf from Clematis terniflora DC. Exposed to High-Level Ultraviolet-B Irradiation with Dark Treatment.

    PubMed

    Yang, Bingxian; Wang, Xin; Gao, Cuixia; Chen, Meng; Guan, Qijie; Tian, Jingkui; Komatsu, Setsuko

    2016-08-05

    Clematis terniflora DC. has potential pharmaceutical value; on the contrary, high-level UV-B irradiation with dark treatment led to the accumulation of secondary metabolites. Metabolomic and proteomic analyses of leaf of C. terniflora were performed to investigate the systematic response mechanisms to high-level UV-B irradiation with dark treatment. Metabolites related to carbohydrates, fatty acids, and amino acids and/or proteins related to stress, cell wall, and amino acid metabolism were gradually increased in response to high-level UV-B irradiation with dark treatment. On the basis of cluster analysis and mapping of proteins related to amino acid metabolism, the abundances of S-adenosylmethionine synthetase and cysteine synthase as well as 1,1-diphenyl-2-picrylhydrazyl scavenging activity were gradually increased in response to high-level UV-B irradiation with dark treatment. Furthermore, the abundance of dihydrolipoyl dehydrogenase/glutamate dehydrogenase and the content of γ-aminobutyric acid were also increased following high-level UV-B irradiation with dark treatment. Taken together, these results suggest that high-level UV-B irradiation with dark treatment induces the activation of reactive oxygen species scavenging system and γ-aminobutyric acid shunt pathway in leaf of C. terniflora.

  5. Identification and Characterization of uvrA, a DNA Repair Gene of Deinococcus radiodurans

    DTIC Science & Technology

    1996-01-01

    and Classificalion I 2 . TheCellWall 4 3. Intracellular Molecules 7 4. Genetics _ _ _ _ _.. 8 a. DNA COntent. 8 b. Chromosomes 8 c. Plasmids 10 d...Summary 11 B. DNA Damaging Agenls 12 I. Visible Light and Low-Frequency UV Radiation 12 2 . High-frequency UV Radiation 13 a. Pyrimidine DiIners 13 b. The...23 a. Photoreactivation Repair 23 b. Repair of Spore Pholoproducts 27 2 . Repair by Methods Involving Single Proteins 27 a. Repair of

  6. Graviresponsiveness and the Development of Columella Tissue in Primary and Lateral Roots of Ricinus communis1

    PubMed Central

    Moore, Randy; Pasieniuk, John

    1984-01-01

    Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots. Images Fig. 1 PMID:11540818

  7. Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Sack, F. D.

    1989-01-01

    Gravitropism was studied in seedlings of Nicotiana sylvestris Speg. et Comes wild-type (WT) and mutant NS 458 which has a defective plastid phosphoglucomutase (EC 2.7.5.1.). Starch was greatly reduced in NS 458 compared to the WT, but small amounts of starch were detected in rootcap columella cells in NS 458 by light and electron microscopy. The roots of WT are more sensitive to gravity than mutant NS 458 roots since: (1) in mutant roots, curvature was reduced and delayed in the time course of curvature; (2) curvature of mutant roots was 24-56% that of WT roots over the range of induction periods tested; (3) in intermittent-stimulation experiments, curvature of mutant roots was 37% or less than that of WT roots in all treatments tested. The perception time, determined by intermittent-stimulation experiments, was < or = 5 s for WT roots and 30-60 s for mutant roots. The growth rates for WT and NS 458 roots were essentially equal. These results and our previous results with WT and starchless mutant Arabidopsis roots (Kiss et al. 1989, Planta 177, 198-206) support the conclusions that a full complement of starch is necessary for full gravitropic sensitivity and that amyloplasts function in gravity perception. Since a presumed relatively small increase in plastid buoyant mass (N. sylvestris mutant versus Arabidopsis mutant) significantly improves the orientation of the N. sylvestris mutant roots, we suggest that plastids are the likeliest candidates to be triggering gravity perception in roots of both mutants.

  8. Early induced protein 1 (PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in Pinus radiata D. don UV-B radiation response.

    PubMed

    Valledor, Luis; Cañal, María Jesús; Pascual, Jesús; Rodríguez, Roberto; Meijón, Mónica

    2012-11-01

    The continuous atmospheric and environmental deterioration is likely to increase, among others, the influx of ultraviolet B (UV-B) radiation. The plants have photoprotective responses, which are complex mechanisms involving different physiological responses, to avoid the damages caused by this radiation that may lead to plant death. We have studied the adaptive responses to UV-B in Pinus radiata, given the importance of this species in conifer forests and reforestation programs. We analyzed the photosynthetic activity, pigments content, and gene expression of candidate genes related to photosynthesis, stress and gene regulation in needles exposed to UV-B during a 96 h time course. The results reveal a clear increase of pigments under UV-B stress while photosynthetic activity decreased. The expression levels of the studied genes drastically changed after UV-B exposure, were stress related genes were upregulated while photosynthesis (RBCA and RBCS) and epigenetic regulation were downregulated (MSI1, CSDP2, SHM4). The novel gene PrELIP1, fully sequenced for this work, was upregulated and expressed mainly in the palisade parenchyma of needles. This gene has conserved domains related to the dissipation of the UV-B radiation that give to this protein a key role during photoprotection response of the needles in Pinus radiata. Copyright © Physiologia Plantarum 2012.

  9. Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Anken, Ralf H.; Lu, Jinying; Liu, Yongding

    2010-04-01

    The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.

  10. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.

    PubMed

    Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar

    2018-06-01

    Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.

  11. Virus Sensitivity Index of UV disinfection.

    PubMed

    Tang, Walter Z; Sillanpää, Mika

    2015-01-01

    A new concept of Virus Sensitivity Index (VSI) is defined as the ratio between the first-order inactivation rate constant of a virus, ki, and that of MS2-phage during UV disinfection, kr. MS2-phage is chosen as the reference virus because it is recommended as a virus indicator during UV reactor design and validation by the US Environmental Protection Agency. VSI has wide applications in research, design, and validation of UV disinfection systems. For example, it can be used to rank the UV disinfection sensitivity of viruses in reference to MS2-phage. There are four major steps in deriving the equation between Hi/Hr and 1/VSI. First, the first-order inactivation rate constants are determined by regression analysis between Log I and fluence required. Second, the inactivation rate constants of MS2-phage are statistically analysed at 3, 4, 5, and 6 Log I levels. Third, different VSI values are obtained from the ki of different viruses dividing by the kr of MS2-phage. Fourth, correlation between Hi/Hr and 1/VSI is analysed by using linear, quadratic, and cubic models. As expected from the theoretical analysis, a linear relationship adequately correlates Hi/Hr and 1/VSI without an intercept. VSI is used to quantitatively predict the UV fluence required for any virus at any log inactivation (Log I). Four equations were developed at 3, 4, 5, and 6 Log I. These equations have been validated using external data which are not used for the virus development. At Log I less than 3, the equation tends to under-predict the required fluence at both low Log I such as 1 and 2 Log I. At Log I greater than 3 Log I, the equation tends to over-predict the fluence required. The reasons for these may very likely be due to the shoulder at the beginning and the tailing at the end of the collimated beam test experiments. At 3 Log I, the error percentage is less than 6%. The VSI is also used to predict inactivation rate constants under two different UV disinfection scenarios such as under sunlight and different virus aggregates. The correlation analysis shows that viruses will be about 40% more sensitive to sunlight than to UV254. On the other hand, virus size of 500 nm will reduce their VSI by 10%. This is the first attempt to use VSI to predict the required fluence at any given Log I. The equation can be used to quantitatively evaluate other parameters influencing UV disinfection. These factors include environmental species, antibiotic-resistant bacteria or genes, photo and dark repair, water quality such as suspended solids, and UV transmittance.

  12. Association of Diet With Skin Histological Features in UV-B–Exposed Mice

    PubMed Central

    Hsia, Yvonne; Weeks, David M.; Dixon, Tatiana K.; Lepe, Jessica; Thomas, J. Regan

    2017-01-01

    Importance Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. Objectives To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. Design, Setting, and Participants In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Main Outcomes and Measures Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Results Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B–exposed animals who received the obesity diet. Conclusions and Relevance Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. Level of Evidence NA. PMID:28418519

  13. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana

    PubMed Central

    Cvrčková, Fatima

    2013-01-01

    Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin–microtubule cross-talk. PMID:23202131

  14. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana.

    PubMed

    Rosero, Amparo; Žársky, Viktor; Cvrčková, Fatima

    2013-01-01

    Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.

  15. Construction of uniformly sized pseudo template imprinted polymers coupled with HPLC-UV for the selective extraction and determination of trace estrogens in chicken tissue samples.

    PubMed

    Wang, Shu; Li, Yun; Wu, Xiaoli; Ding, Meijuan; Yuan, Lihua; Wang, Ruoyu; Wen, Tingting; Zhang, Jun; Chen, Lina; Zhou, Xuemin; Li, Fei

    2011-02-28

    To assess the potential risks associated with the environmental exposure of steroid estrogens, a novel highly efficient and selective estrogen enrichment procedure based on the use of molecularly imprinted polymer has been developed and evaluated. Herein, analogue of estrogens, namely 17-ethyl estradiol (EE(2)) was used as the pseudo template, to avoid the leakage of a trace amount of the target analytes. The resulting pseudo molecularly imprinted polymers (PMIPs) showed large sorption capacity, high recognition ability and fast binding kinetics for estrogens. Moreover, using these imprinted particles as dispersive solid-phase extraction (DSPE) materials, the amounts of three estrogens (E(1), E(2) and E(3)) which were detected by HPLC-UV from the chicken tissue samples were 0.28, 0.31 and 0.17 μg g(-1), and the recoveries were 72.5-78.7%, 90.3-95.2% and 80.5-83.6% in spiked chicken tissue samples with RSD <7%, respectively. All these results reveal that EE(2)-PMIPs as DSPE materials coupled with HPLC-UV could be applied to the highly selective separation and sensitive determination of trace estrogens in chicken tissue samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Suppression of cucumber powdery mildew by UV-B is affected by background light quality

    USDA-ARS?s Scientific Manuscript database

    Brief (5-10 min) exposure to UV-B radiation (280-300 nm) suppressed powdery mildew (Podosphaera xanthii) on Cucumis sativus. The effect was enhanced by red light (600-660 nm), but offset by blue light (420-500 nm) and UV-A (300-420 nm). Compared to untreated controls, 2 h red light from specific lig...

  17. Study of acoustic fingerprinting of nitromethane and some triazole derivatives using UV 266 nm pulsed photoacoustic pyrolysis technique.

    PubMed

    Rao, K S; Chaudhary, A K; Yehya, F; Kumar, A Sudheer

    2015-08-05

    We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO₂ bond to produce free NO, NO₂ and other by product gases due to π(∗)←n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effectiveness of DIAGNOdent in Detecting Root Caries Without Dental Scaling Among Community-dwelling Elderly.

    PubMed

    Zhang, Wen; McGrath, Colman; Lo, Edward C M

    The purpose of this clinical research was to analyze the effectiveness of DIAGNOdent in detecting root caries without dental scaling. The status of 750 exposed, unfilled root surfaces was assessed by visual-tactile examination and DIAGNOdent before and after root scaling. The sensitivity and specificity of different cut-off DIAGNOdent values in diagnosing root caries with reference to visual-tactile criteria were evaluated on those root surfaces without visible plaque/calculus. The DIAGNOdent values from sound and carious root surfaces were compared using the nonparametric Mann-Whitney U-test. The level of statistical significance was set at 0.05. On root surfaces without plaque/calculus, significantly different (p < 0.05) DIAGNOdent readings were obtained from sound root surfaces (12.2 ± 11.1), active carious root surfaces (37.6 ± 31.7) and inactive carious root surfaces (20.9 ± 10.5) before scaling. On root surfaces with visible plaque, DIAGNOdent readings obtained from active carious root surfaces (29.6 ± 20.8) and inactive carious root surfaces (27.0 ± 7.2) were not statistically significantly different (p > 0.05). Furthermore, on root surfaces with visible calculus, all DIAGNOdent readings obtained from sound root surfaces were > 50, which might be misinterpreted as carious. After scaling, the DIAGNOdent readings obtained from sound root surfaces (8.1 ± 11.3), active carious root surfaces (37.9 ± 31.9) and inactive carious root surfaces (24.9 ± 11.5) presented significant differences (p < 0.05). A cut-off value between 10 and 15 yielded the highest combined sensitivity and specificity in detecting root caries on root surfaces without visible plaque/calculus before scaling, but the combined sensitivity and specificity are both around 70%. These findings suggest that on exposed, unfilled root surfaces without visible plaque/calculus, DIAGNOdent can be used as an adjunct to the visual-tactile criteria in detecting root-surface status without pre-treatment by dental scaling.

  19. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies.

    PubMed

    Omotade, T O; Bernhards, R C; Klimko, C P; Matthews, M E; Hill, A J; Hunter, M S; Webster, W M; Bozue, J A; Welkos, S L; Cote, C K

    2014-12-01

    Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Diverse Responses to UV-B Radiation and Repair Mechanisms of Bacteria Isolated from High-Altitude Aquatic Environments▿

    PubMed Central

    Fernández Zenoff, V.; Siñeriz, F.; Farías, M. E.

    2006-01-01

    Acinetobacter johnsonii A2 isolated from the natural community of Laguna Azul (Andean Mountains at 4,560 m above sea level), Serratia marcescens MF42, Pseudomonas sp. strain MF8 isolated from the planktonic community, and Cytophaga sp. strain MF7 isolated from the benthic community from Laguna Pozuelos (Andean Puna at 3,600 m above sea level) were subjected to UV-B (3,931 J m−2) irradiation. In addition, a marine Pseudomonas putida strain, 2IDINH, and a second Acinetobacter johnsonii strain, ATCC 17909, were used as external controls. Resistance to UV-B and kinetic rates of light-dependent (UV-A [315 to 400 nm] and cool white light [400 to 700 nm]) and -independent reactivation following exposure were determined by measuring the survival (expressed as CFU) and accumulation of cyclobutane pyrimidine dimers (CPD). Significant differences in survival after UV-B irradiation were observed: Acinetobacter johnsonii A2, 48%; Acinetobacter johnsonii ATCC 17909, 20%; Pseudomonas sp. strain MF8, 40%; marine Pseudomonas putida strain 2IDINH, 12%; Cytophaga sp. strain MF7, 20%; and Serratia marcescens, 21%. Most bacteria exhibited little DNA damage (between 40 and 80 CPD/Mb), except for the benthic isolate Cytophaga sp. strain MF7 (400 CPD/Mb) and Acinetobacter johnsonii ATCC 17909 (160 CPD/Mb). The recovery strategies through dark and light repair were different in all strains. The most efficient in recovering were both Acinetobacter johnsonii A2 and Cytophaga sp. strain MF7; Serratia marcescens MF42 showed intermediate recovery, and in both Pseudomonas strains, recovery was essentially zero. The UV-B responses and recovery abilities of the different bacteria were consistent with the irradiation levels in their native environment. PMID:17056692

  1. The effects of UV light on calcium metabolism in ball pythons (Python regius).

    PubMed

    Hedley, J; Eatwell, K

    2013-10-12

    Despite the popularity of keeping snakes in captivity, there has been limited investigation into the effects of UV radiation on vitamin D levels in snakes. The aim of this study was to investigate the effects of UV-b radiation on plasma 25-hydroxyvitamin D3 levels and ionised calcium concentrations in ball pythons (Python regius). Blood samples were taken from 14 ball pythons, which had never been exposed to UV-b light, to obtain baseline 25-hydroxyvitamin D3 levels and ionised calcium concentrations. Blood samples were then taken again from the same snakes 70 days later after one group (Group 1, n=6 females) were exposed to UV-b radiation daily, and the other group (Group 2, n=5 males and 3 females) were exposed to no UV-b radiation. Mean±sd 25-hydroxyvitamin D3 levels on day 0 in Group 1 were 197±35 nmol/l, and on day 70 were 203.5±13.8 nmol/l. Mean±sd 25-hydroxyvitamin D3 levels in Group 2 on day 0 were 77.7±41.5 nmol/l, and on day 70 were 83.0±41.9 nmol/l. Mean±sd ionised calcium levels at day 0 were 1.84±0.05 mmol/l for Group 1, and on day 70 were 1.78±0.07 mmol/l. Mean±sd ionised calcium levels at day 0 were 1.79±0.07 mmol/l for Group 2, and on day 70 were 1.81±0.05 mmol/l. No association was demonstrated between exposure to UV-b radiation and plasma 25-hydroxyvitamin D3 and ionised calcium concentrations. These results may provide baseline parameters for future studies in this and other snake species to determine ability to utilise UV-b light for vitamin D production.

  2. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency.

    PubMed

    Yan, Feng; Zhu, Yiyong; Müller, Caroline; Zörb, Christian; Schubert, Sven

    2002-05-01

    White lupin (Lupinus albus) is able to adapt to phosphorus deficiency by producing proteoid roots that release a huge amount of organic acids, resulting in mobilization of sparingly soluble soil phosphate in rhizosphere. The mechanisms responsible for the release of organic acids by proteoid root cells, especially the trans-membrane transport processes, have not been elucidated. Because of high cytosolic pH, the release of undissociated organic acids is not probable. In the present study, we focused on H+ export by plasma membrane H+ ATPase in active proteoid roots. In vivo, rhizosphere acidification of active proteoid roots was vanadate sensitive. Plasma membranes were isolated from proteoid roots and lateral roots from P-deficient and -sufficient plants. In vitro, in comparison with two types of lateral roots and proteoid roots of P-sufficient plants, the following increase of the various parameters was induced in active proteoid roots of P-deficient plants: (a) hydrolytic ATPase activity, (b) Vmax and Km, (c) H+ ATPase enzyme concentration of plasma membrane, (d) H+-pumping activity, (e) pH gradient across the membrane of plasmalemma vesicles, and (f) passive H+ permeability of plasma membrane. In addition, lower vanadate sensitivity and more acidic pH optimum were determined for plasma membrane ATPase of active proteoid roots. Our data support the hypothesis that in active proteoid root cells, H+ and organic anions are exported separately, and that modification of plasma membrane H+ ATPase is essential for enhanced rhizosphere acidification by active proteoid roots.

  3. A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu2 + in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhang, Jing; Lv, Yuan-Zheng; Huang, Xiao-Huan; Hu, Sheng-li

    2016-03-01

    A new colorimetric probe 1 based on rhodamine B lactam was developed for naked-eye detection of Cu2 +. The optical feature of 1 for Cu2 + was investigated by UV-vis absorption spectroscopy. Upon the addition of Cu2 +, the 1 displayed a distinct color change from colorless to pink, which can be directly detected by the naked eye. The stoichiometry of 1 to Cu2 + complex was found to be 1:1 and the naked-eye detection limit was determined as low as 2 μM. The results suggest that the probe 1 may provide a convenient method for visual detection of Cu2 + with high sensitivity.

  4. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein

    PubMed Central

    Cloix, Catherine; Kaiserli, Eirini; Heilmann, Monika; Baxter, Katherine J.; Brown, Bobby A.; O’Hara, Andrew; Smith, Brian O.; Christie, John M.; Jenkins, Gareth I.

    2012-01-01

    UV-B light initiates photomorphogenic responses in plants. Arabidopsis UV RESISTANCE LOCUS8 (UVR8) specifically mediates these responses by functioning as a UV-B photoreceptor. UV-B exposure converts UVR8 from a dimer to a monomer, stimulates the rapid accumulation of UVR8 in the nucleus, where it binds to chromatin, and induces interaction of UVR8 with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 to control photomorphogenic UV-B responses. Although the crystal structure of UVR8 reveals the basis of photoreception, it does not show how UVR8 initiates signaling through interaction with COP1. Here we report that a region of 27 amino acids from the C terminus of UVR8 (C27) mediates the interaction with COP1. The C27 region is necessary for UVR8 function in the regulation of gene expression and hypocotyl growth suppression in Arabidopsis. However, UVR8 lacking C27 still undergoes UV-B–induced monomerization in both yeast and plant protein extracts, accumulates in the nucleus in response to UV-B, and interacts with chromatin at the UVR8-regulated ELONGATED HYPOCOTYL5 (HY5) gene. The UV-B–dependent interaction of UVR8 and COP1 is reproduced in yeast cells and we show that C27 is both necessary and sufficient for the interaction of UVR8 with the WD40 domain of COP1. Furthermore, we show that C27 interacts in yeast with the REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins, RUP1 and RUP2, which are negative regulators of UVR8 function. Hence the C27 region has a key role in UVR8 function. PMID:22988111

  5. EFFECTS OF ULTRAVIOLET-B IRRADIANCE IN SOYBEAN. 6. INFLUENCE OF PHOSPHORUS NUTRITION ON GROWTH AND FLAVONIID CONTENT

    EPA Science Inventory

    Soybeans Glycine max Essex were hydroponically grown in a greenhouse at 2 levels of ultraviolet-B(UV-B) radiation and 4 levels of P. Plants were grown in each treatment combination to the complete expansion of the 4th trifoliolate leaf. UV-B radiation and reduced P supply general...

  6. Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and pattern.

    PubMed

    Feigl, Gábor; Kolbert, Zsuzsanna; Lehotai, Nóra; Molnár, Árpád; Ördög, Attila; Bordé, Ádám; Laskay, Gábor; Erdei, László

    2016-03-01

    Zinc is an essential microelement, but its excess exerts toxic effects in plants. Heavy metal stress can alter the metabolism of reactive oxygen (ROS) and nitrogen species (RNS) leading to oxidative and nitrosative damages; although the participation of these processes in Zn toxicity and tolerance is not yet known. Therefore this study aimed to evaluate the zinc tolerance of Brassica organs and the putative correspondence of it with protein nitration as a relevant marker for nitrosative stress. Both examined Brassica species (B. juncea and B. napus) proved to be moderate Zn accumulators; however B. napus accumulated more from this metal in its organs. The zinc-induced damages (growth diminution, altered morphology, necrosis, chlorosis, and the decrease of photosynthetic activity) were slighter in the shoot system of B. napus than in B. juncea. The relative zinc tolerance of B. napus shoot was accompanied by moderate changes of the nitration pattern. In contrast, the root system of B. napus suffered more severe damages (growth reduction, altered morphology, viability loss) and slighter increase in nitration level compared to B. juncea. Based on these, the organs of Brassica species reacted differentially to excess zinc, since in the shoot system modification of the nitration pattern occurred (with newly appeared nitrated protein bands), while in the roots, a general increment in the nitroproteome could be observed (the intensification of the same protein bands being present in the control samples). It can be assumed that the significant alteration of nitration pattern is coupled with enhanced zinc sensitivity of the Brassica shoot system and the general intensification of protein nitration in the roots is attached to relative zinc endurance. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  8. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  9. UV dose measurements of photosensitive dermatosis patients by polycrystalline GaN-based portable self-data-acquisition UV monitors.

    PubMed

    Yagi, Shigeru; Iwanaga, Takeshi; Kojima, Hiroshi; Shoji, Yoshio; Suzuki, Seiji; Seno, Kunihiro; Mori, Hisayoshi; Tokura, Yoshiki; Takigawa, Masahiro; Moriwaki, Shin-Ichi

    2002-12-01

    We have developed a UV monitor with polycrystalline (poly-) gallium nitride (GaN) UV sensors and evaluated its performance from the viewpoint of its effectiveness for use with photosensitive dermatosis patients. The poly-GaN UV sensor is sensitive to UV light from 280 to 410 nm even without optical filters. The UV monitor is a portable self-data-acquisition instrument with a minimum detection level (defined as average UV intensity over 290 to 400 nm) of 2 microW/cm2 and can store UV dose data for 128 days. It allows easy measurement of four orders of magnitude of ambient UV intensity and dose from indoor light to direct solar radiation in summer. Trial use of the UV monitor by five xeroderma pigmentosum patients started in June 2000 and was carried out for 1 year. It was demonstrated that the UV monitor was useful in improving their quality of life.

  10. [Effects of chlorobenzene stress on seedling growth and cell division of Vicia faba].

    PubMed

    Liu, Wan; Zhou, Qixing; Li, Peijun; Sun, Tieheng; Tai, Peidong; Xu, Huaxia; Zhang, Chungui; Zhang, Hairong

    2003-04-01

    Effects of 1, 2, 4-trichlorobenzene (TCB) stress on seedling growth, cell division and chromosomal aberration frequency of root-tip cells of Vicia faba were studied. The results indicated that the growth of the root length and mitotic index of root tip cells were successively decreased and even stopped with the increase of TCB concentrations and treatment duration. Numerical and structural chromosomal aberrations at metaphase and anaphase of root-tip cells in Vicia faba seedlings were produced by 50-300 micrograms.g-1 TCB treatment for 12-96 h. The percentage of c-mitosis, chromosomal bridge and chromosomal asymmetry array in root tip cells exposed to 50-100 micrograms.g-1 TCB for 12-24 h was up to 1.0-10.3%. The percentage of chromosomal stickness (S), chromosomal stickiness + chromosomal breakage (S + B), chromosomal stickness + chromosomal ring (S + R), chromosomal stickiness + chromosomal asymmetry array (S + A) and chromosomal stickness + chromosomal bridge (S + Be) in root tip cells reached 47.9-88.9%, and 18.1-29.6% for different kinds of chromosomal breakage at 300 micrograms.g-1 TCB for 12-96 h. Thus, the chromosomal aberration of root tip cells in Vicia faba seedlings could be used as a sensitive biomarker of monitoring soil contaminated with TCB.

  11. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.

    PubMed

    Shimizu, Hisashi; Miyawaki, Naoya; Asano, Yoshihiro; Mawatari, Kazuma; Kitamori, Takehiko

    2017-06-06

    The expansion of microfluidics research to nanofluidics requires absolutely sensitive and universal detection methods. Photothermal detection, which utilizes optical absorption and nonradiative relaxation, is promising for the sensitive detection of nonlabeled biomolecules in nanofluidic channels. We have previously developed a photothermal optical phase shift (POPS) detection method to detect nonfluorescent molecules sensitively, while a rapid decrease of the sensitivity in nanochannels and the introduction of an ultraviolet (UV) excitation system were issues to be addressed. In the present study, our primary aim is to characterize the POPS signal in terms of the thermo-optical properties and quantitatively evaluate the causes for the decrease in sensitivity. The UV excitation system is then introduced into the POPS detector to realize the sensitive detection of nonlabeled biomolecules. The UV-POPS detection system is designed and constructed from scratch based on a symmetric microscope. The results of simulations and experiments reveal that the sensitivity decreases due to a reduction of the detection volume, dissipation of the heat, and cancellation of the changes in the refractive indices. Finally, determination of the concentration of a nonlabeled protein (bovine serum albumin) is performed in a very thin 900 nm deep nanochannel. As a result, the limit of detection (LOD) is 2.3 μM (600 molecules in the 440 attoliter detection volume), which is as low as that previously obtained for our visible POPS detector. UV-POPS detection is thus expected be a powerful technique for the study of biomolecules, including DNAs and proteins confined in nanofluidic channels.

  12. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  13. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE PAGES

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; ...

    2016-06-01

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  14. The Response of Human Skin Commensal Bacteria as a Reflection of UV Radiation: UV-B Decreases Porphyrin Production

    PubMed Central

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis of radiation risk in a battlefield exposure, nuclear accidents, terrorist attacks, or cancer imaging/therapy. PMID:23133525

  15. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    PubMed

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis of radiation risk in a battlefield exposure, nuclear accidents, terrorist attacks, or cancer imaging/therapy.

  16. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    PubMed Central

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  17. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  18. Bioactive and UV protective silk materials containing baicalin - The multifunctional plant extract from Scutellaria baicalensis Georgi.

    PubMed

    Zhou, Yuyang; Yang, Zhi-Yi; Tang, Ren-Cheng

    2016-10-01

    There has been a phenomenal increase in the research and development of new health and hygiene-related textile products. This work reports a novel approach to develop antibacterial, antioxidant and UV-protective silk using an adsorption technique of baicalin (a bioactive ingredient from the root of Scutellaria baicalensis Georgi). Baicalin displayed high adsorption capability at pH2.75, contributing to the sufficient functionalities on silk. The equilibrium adsorption research showed that the Langmuir isotherm was able to describe the behavior of baicalin, indicating the electrostatic interactions between the ionized carboxyl groups in baicalin and the positively charged amino groups in silk. The treated silk with 2% owf (on the weight of fiber) baicalin exhibited excellent antioxidant activity, high antibacterial activities against Escherichia coli and Staphylococcus aureus, and very good ultraviolet protection ability comparable to that of the commercial benzotriazole ultraviolet absorber. The baicalin treatment had no obvious impact on the functional groups, crystal structure and surface morphology of silk. The functionalities of the treated silk obviously declined after first laundering cycle and slowly decreased in the following washing cycles. Encouraging results demonstrate that the baicalin-functionalized silk is a promising material for protective clothing and medical textiles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).

    PubMed

    Moresco, Rodolfo; Uarrota, Virgílio Gavicho; Pereira, Aline; Tomazzoli, Maíra Maciel; Nunes, Eduardo da C; Peruch, Luiz Augusto Martins; Gazzola, Jussara; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-10-21

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis-β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (red-fleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

  20. UV-visible scanning spectrophotometry and chemometric analysis as tools for carotenoids analysis in cassava genotypes (Manihot esculenta Crantz).

    PubMed

    Moresco, Rodolfo; Uarrota, Virgílio G; Pereira, Aline; Tomazzoli, Maíra; Nunes, Eduardo da C; Martins Peruch, Luiz Augusto; Gazzola, Jussara; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-12-01

    In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in β-carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis- β-carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (redfleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

Top