Science.gov

Sample records for root zone soil

  1. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    de Boer-Euser, Tanja; McMillan, Hilary; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2016-04-01

    The catchment representative root zone storage capacity (Sr), i.e. the plant available soil water, is an important parameter of hydrological systems. It does not only influence the runoff from catchments, by controlling the partitioning of water fluxes but it also influences the local climate, by providing the source for transpiration. Sr is difficult to observe at catchment scale, due to heterogeneities in vegetation and soils. Sr estimates are traditionally derived from soil characteristics and estimates of root depths. In contrast, a recently suggested method allows the determination of Sr based on climate data, i.e. precipitation and evaporation, alone (Gao et al., 2014). By doing so, the time-variable size of Sr, is explicitly accounted for, which is not the case for traditional soil based methods. The time-variable size of Sr reflects root growth and thus the vegetation's adaption to medium-term fluctuations in the climate. Thus, we tested and compared Sr estimates from this 'climate based method' with estimates from soil data for 32 catchments in New Zealand. The results show a larger range in climate derived Sr than in soil derived Sr. Using a model experiment, we show that a model using the climate derived Sr is more accurately able to reproduce a set of hydrological regime signatures, in particular for humid catchments. For more arid catchments, the two methods provide similar model results. This implies that, although soil database information has some predictive power for model soil storage capacity, climate has a similar or greater control on Sr, as climate affects the evolving hydrological functioning of the root zone at the time scale of hydrological interest. In addition, Sr represents the plant available water and thus root surface, volume and density, and is therefore a more complete descriptor of vegetation influence on water fluxes than mere root depth. On balance, the results indicate that climate has a higher explanatory power than soils for

  2. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    de Boer-Euser, T.; McMillan, H.; Hrachowitz, M.; Winsemius, H.; Savenije, H.

    2015-12-01

    The catchment representative root zone storage capacity (Sr), i.e. the plant available soil water, is an important parameter of hydrological systems. It does not only influence the runoff from catchments, by controlling the partitioning of water fluxes but it also influences the local climate, by providing the source for transpiration. Sr is difficult to observe at catchment scale, due to heterogeneities in vegetation and soils. Sr estimates are traditionally derived from soil characteristics and estimates of root depths. In contrast, a recently suggested method allows the determination of Sr based on climate data, i.e. precipitation and evaporation, alone (Gao et al., 2014). By doing so, the time-variable size of Sr, is explicitly accounted for, which is not the case for traditional soil based methods. The time-variable size of Sr reflects root growth and thus the vegetation's adaption to medium-term fluctuations in the climate. Thus, we tested and compared Sr estimates from this 'climate based method' with estimates from soil data for 32 catchments in New Zealand. The results show a larger range in climate derived Sr than in soil derived Sr. Using a model experiment, we show that a model using the climate derived Sr is more accurately able to reproduce a set of hydrological regime signatures, in particular for humid catchments. For more arid catchments, the two methods provide similar model results. This implies that, although soil information has some predictive power for Sr, climate has a similar or greater control on Sr, as climate affects the evolving hydrological functioning of the root zone at the time scale of hydrological interest. In addition, Sr represents the plant available water and thus root surface, volume and density, and is therefore a more complete descriptor of vegetation influence on water fluxes than mere root depth. On balance, the results indicate that climate has a higher explanatory power than soils for catchment representative Sr.

  3. Soil moisture dynamics modeling considering multi-layer root zone.

    PubMed

    Kumar, R; Shankar, V; Jat, M K

    2013-01-01

    The moisture uptake by plant from soil is a key process for plant growth and movement of water in the soil-plant system. A non-linear root water uptake (RWU) model was developed for a multi-layer crop root zone. The model comprised two parts: (1) model formulation and (2) moisture flow prediction. The developed model was tested for its efficiency in predicting moisture depletion in a non-uniform root zone. A field experiment on wheat (Triticum aestivum) was conducted in the sub-temperate sub-humid agro-climate of Solan, Himachal Pradesh, India. Model-predicted soil moisture parameters, i.e., moisture status at various depths, moisture depletion and soil moisture profile in the root zone, are in good agreement with experiment results. The results of simulation emphasize the utility of the RWU model across different agro-climatic regions. The model can be used for sound irrigation management especially in water-scarce humid, temperate, arid and semi-arid regions and can also be integrated with a water transport equation to predict the solute uptake by plant biomass. PMID:23579833

  4. A minimalist probabilistic description of root zone soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    2001-01-01

    The probabilistic response of depth-integrated soil water to given climatic forcing can be described readily using an existing supply-demand-storage model. An apparently complex interaction of numerous soil, climate, and plant controls can be reduced to a relatively simple expression for the equilibrium probability density function of soil water as a function of only two dimensionless parameters. These are the index of dryness (ratio of mean potential evaporation to mean precipitation) and a dimensionless storage capacity (active root zone soil water capacity divided by mean storm depth). The first parameter is mainly controlled by climate, with surface albedo playing a subsidiary role in determining net radiation. The second is a composite of soil (through moisture retention characteristics), vegetation (through rooting characteristics), and climate (mean storm depth). This minimalist analysis captures many essential features of a more general probabilistic analysis, but with a considerable reduction in complexity and consequent elucidation of the critical controls on soil water variability. In particular, it is shown that (1) the dependence of mean soil water on the index of dryness approaches a step function in the limit of large soil water capacity; (2) soil water variance is usually maximized when the index of dryness equals 1, and the width of the peak varies inversely with dimensionless storage capacity; (3) soil water has a uniform probability density function when the index of dryness is 1 and the dimensionless storage capacity is large; and (4) the soil water probability density function is bimodal if and only if the index of dryness is <1, but this bimodality is pronounced only for artificially small values of the dimensionless storage capacity.

  5. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  6. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    Boer-Euser, Tanja; McMillan, Hilary K.; Hrachowitz, Markus; Winsemius, Hessel C.; Savenije, Hubert H. G.

    2016-03-01

    Root zone storage capacity (Sr) is an important variable for hydrology and climate studies, as it strongly influences the hydrological functioning of a catchment and, via evaporation, the local climate. Despite its importance, it remains difficult to obtain a well-founded catchment representative estimate. This study tests the hypothesis that vegetation adapts its Sr to create a buffer large enough to sustain the plant during drought conditions of a certain critical strength (with a certain probability of exceedance). Following this method, Sr can be estimated from precipitation and evaporative demand data. The results of this "climate-based method" are compared with traditional estimates from soil data for 32 catchments in New Zealand. The results show that the differences between catchments in climate-derived catchment representative Sr values are larger than for soil-derived Sr values. Using a model experiment, we show that the climate-derived Sr can better reproduce hydrological regime signatures for humid catchments; for more arid catchments, the soil and climate methods perform similarly. This makes the climate-based Sr a valuable addition for increasing hydrological understanding and reducing hydrological model uncertainty.

  7. Effects of partial root-zone irrigation on hydraulic conductivity in the soil-root system of maize plants.

    PubMed

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-08-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil-root system (L(sr)) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with L(sr) in both the whole and irrigated root zones for all three irrigation methods but not with L(sr) in the non-irrigated root zone of FPRI. The total L(sr) in the irrigated root zone of two PRIs was increased by 49.0-92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of L(sr) in a half root zone to L(sr) in the whole root zone was ∼50%. For FPRI, the L(sr) in the irrigated root zone was close to that of the whole root zone. As for APRI, the L(sr) in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the L(sr) in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The L(sr) in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency.

  8. Improving root-zone soil moisture estimations using dynamic root growth and crop phenology

    NASA Astrophysics Data System (ADS)

    Hashemian, Minoo; Ryu, Dongryeol; Crow, Wade T.; Kustas, William P.

    2015-12-01

    Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observations into WEB-SVAT to improve the results has been proposed. However, the efficacy of the model-observation integration relies on the model's realistic representation of soil water processes. Here, we explore methods to improve the soil water processes of a simple WEB-SVAT model by adopting and incorporating an exponential root water uptake model with water stress compensation and establishing a more appropriate soil-biophysical linkage between root-zone moisture content, above-ground states and biophysical indices. The existing WEB-SVAT model is extended to a new Multi-layer WEB-SVAT with Dynamic Root distribution (MWSDR) that has five soil layers. Impacts of plant root depth variations, growth stages and phenological cycle of the vegetation on transpiration are considered in developing stages. Hydrometeorological and biogeophysical measurements collected from two experimental sites, one in Dookie, Victoria, Australia and the other in Ponca, Oklahoma, USA, are used to validate the new model. Results demonstrate that MWSDR provides improved soil moisture, transpiration and evaporation predictions which, in turn, can provide an improved physical basis for assimilating remotely sensed data into the model. Results also show the importance of having an adequate representation of vegetation-related transpiration process for an appropriate simulation of water transfer in a complicated system of soil, plants and atmosphere.

  9. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.

    PubMed

    Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C

    2013-08-01

    To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques.

  10. [Dynamic variations of soil moisture in Haloxylon ammodendron root zone in Gurbantunggut Desert].

    PubMed

    Yang, Yan-feng; Zhou, Hong-fei; Xu, Li-gang

    2011-07-01

    To understand the dynamic variations of soil moisture in the root zone of original Haloxylon ammodendron land is of significance for further understanding the interactions between hydrological processes and vegetations in the Gurbantunggut Desert. By using TDR probes system, this paper measured the volumetric soil moisture content in H. ammodendron land in the southern edge of Gurbantunggut Desert, and analyzed the spatiotemporal distribution of soil moisture in the root zone of H. ammodendron in August 2007-July 2008. There existed 'wet island' effect in H. ammodendron root zone. The 0-60 cm soil water storage in the root zone was 1.49 times of that in bare land. Such a difference was greater in summer than in spring and after rainfall than before rainfall. The soil moisture content in the Desert was the richest in spring after snow melting and the lowest in winter, and its annual variation could be divided into three periods, i.e., quick supplement-consumption period in spring (from March to May), slow consumption period in summer and autumn (from June to September), and stable period in winter (form October to next February). Based on wavelet analysis, the soil moisture variation in H. ammodendron root zone and bare land had a short cycle of 43 and 40 days and a long cycle of 110 and 103 days, respectively. The relatively rich soil moisture content in H. ammodendron root zone could be mainly due to the stem flow water collection, tree canopy shading, and the better water percolating capacity in root zone. PMID:22007445

  11. [Dynamic variations of soil moisture in Haloxylon ammodendron root zone in Gurbantunggut Desert].

    PubMed

    Yang, Yan-feng; Zhou, Hong-fei; Xu, Li-gang

    2011-07-01

    To understand the dynamic variations of soil moisture in the root zone of original Haloxylon ammodendron land is of significance for further understanding the interactions between hydrological processes and vegetations in the Gurbantunggut Desert. By using TDR probes system, this paper measured the volumetric soil moisture content in H. ammodendron land in the southern edge of Gurbantunggut Desert, and analyzed the spatiotemporal distribution of soil moisture in the root zone of H. ammodendron in August 2007-July 2008. There existed 'wet island' effect in H. ammodendron root zone. The 0-60 cm soil water storage in the root zone was 1.49 times of that in bare land. Such a difference was greater in summer than in spring and after rainfall than before rainfall. The soil moisture content in the Desert was the richest in spring after snow melting and the lowest in winter, and its annual variation could be divided into three periods, i.e., quick supplement-consumption period in spring (from March to May), slow consumption period in summer and autumn (from June to September), and stable period in winter (form October to next February). Based on wavelet analysis, the soil moisture variation in H. ammodendron root zone and bare land had a short cycle of 43 and 40 days and a long cycle of 110 and 103 days, respectively. The relatively rich soil moisture content in H. ammodendron root zone could be mainly due to the stem flow water collection, tree canopy shading, and the better water percolating capacity in root zone.

  12. Estimating field-scale root zone soil moisture using the cosmic-ray neutron probe

    NASA Astrophysics Data System (ADS)

    Peterson, Amber M.; Helgason, Warren D.; Ireson, Andrew M.

    2016-04-01

    Many practical hydrological, meteorological, and agricultural management problems require estimates of soil moisture with an areal footprint equivalent to field scale, integrated over the entire root zone. The cosmic-ray neutron probe is a promising instrument to provide field-scale areal coverage, but these observations are shallow and require depth-scaling in order to be considered representative of the entire root zone. A study to identify appropriate depth-scaling techniques was conducted at a grazing pasture site in central Saskatchewan, Canada over a 2-year period. Area-averaged soil moisture was assessed using a cosmic-ray neutron probe. Root zone soil moisture was measured at 21 locations within the 500 m × 500 m study area, using a down-hole neutron probe. The cosmic-ray neutron probe was found to provide accurate estimates of field-scale surface soil moisture, but measurements represented less than 40 % of the seasonal change in root zone storage due to its shallow measurement depth. The root zone estimation methods evaluated were: (a) the coupling of the cosmic-ray neutron probe with a time-stable neutron probe monitoring location, (b) coupling the cosmic-ray neutron probe with a representative landscape unit monitoring approach, and (c) convolution of the cosmic-ray neutron probe measurements with the exponential filter. The time stability method provided the best estimate of root zone soil moisture (RMSE = 0.005 cm3 cm-3), followed by the exponential filter (RMSE = 0.014 cm3 cm-3). The landscape unit approach, which required no calibration, had a negative bias but estimated the cumulative change in storage reasonably. The feasibility of applying these methods to field sites without existing instrumentation is discussed. Based upon its observed performance and its minimal data requirements, it is concluded that the exponential filter method has the most potential for estimating root zone soil moisture from cosmic-ray neutron probe data.

  13. Distribution of Pseudomonas fluorescent bacteria in soils and in the root zone of plants.

    PubMed

    Sorokina, T A; Mishustin, E N

    1978-01-01

    The authors studied the ecology of fluorescent bacteria of the genus Pesudomonas. These were found to proliferate most actively in soils very high in fresh organic matter. In grassy and woody residue their numbers attained 30--60%, depending on the specific methods of bacterial sowing. Pseudomonas was particularly numerous in the root zone of plants fertilized by external metabolites of roots and decomposed roots and leaves. PMID:754809

  14. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    PubMed

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site. PMID:21548283

  15. Predicting root zone soil moisture with satellite near-surface moisture data in semiarid environments

    NASA Astrophysics Data System (ADS)

    Manfreda, S.; Baldwin, D. C.; Keller, K.; Smithwick, E. A. H.; Caylor, K. K.

    2015-12-01

    One of the most critical variables in semiarid environment is the soil water content that represents a controlling factor for both ecological and hydrological processes. Soil moisture monitoring over large scales may be extremely useful, but it is limited by the fact that most of the available tools provides only surface measurements not representative of the effective amount of water stored in the subsurface. Therefore, a methodology able to infer root-zone soil moisture starting from surface measurements is highly desirable. Recently a new simplified formulation has been introduced to provide a formal description of the mathematical relationship between surface measurements and root-zone soil moisture (Manfreda et al., HESS 2014). This is a physically based approach derived from the soil water balance equation, where different soil water loss functions have been explored in order to take into account for the non-linear processes governing soil water fluxes. The study highlighted that the soil loss function is the key for such relationship that is therefore strongly influenced by soil type and physiological plant types. The new formulation has been tested on soil moisture based on measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The method sheds lights on the physical controls for soil moisture dynamics and on the possibility to use such a simplified method for the description of root-zone soil moisture. Furthermore, the method has been also couple with an Enasamble Kalman Filter (EnKF) in order to optimize its performances for the large scale monitoring based the new satellite near-surface moisture data (SMAP). The optimized SMAR-EnKF model does well in both wet and dry climates and across many different soil types (51 SCAN locations) providing a strategy for real-time soil moisture monitoring.

  16. Evaluation of a root zone TDR sensor for soil water content measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time domain reflectometry (TDR) is a well-established dielectric technique of measuring the soil volumetric water content (VWC). However, it is expensive and difficult to determine the depth-averaged VWC in the root zone using conventional TDR probes. The objectives of this study are to develop a lo...

  17. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  18. Application of Data Assimilation with the Root Zone Water Quality Model for Soil Moisture Profile Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for non-linear systems was applied to the Root Zone Water Quality Model. Measured soil moisture data at four different depths (5cm, 20cm, 40cm and 60cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were us...

  19. Modeling and Assimilation of Root Zone Soil Moisture Using Remote Sensing Observations in Walnut Gulch Watershed During SMEX04

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was in...

  20. Time-lapse ERT for the monitoring of soil-plant interactions in the root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Rossi, M.; D'Alpaos, A.; Fadda, G.; Putti, M.; Marani, M.

    2011-12-01

    The application of time-lapse non invasive 3D micro-scale electrical resistivity tomography (ERT) has been proven to be an efficient tool to monitor the soil-plant interactions and particularly the root zone activity. This information can support water balance modeling in the upper subsoil critical zone. Here we present the results of two field experiments in very different environments: the case of a single apple tree in an orchard located in the Trentino region (Northern Italy), and the case of salt-marshes plants in the Venice Lagoon. The micro-scale ERT apparatus consists of buried electrodes installed on micro boreholes, plus mini-electrodes on the ground surface. We collected repeated ERT, TDR and tensiometer data. For the apple orchard site test we adopted controlled irrigation tests in different seasons, while in the lagoon salt-marshes we monitored the root-plant activity during tidal flooding. The results demonstrate that micro-scale ERT is a very effective tool to characterize subsoil conditions and monitor root zone activities, especially in terms of root zone suction regions. Micro-scale ERT can detect the main suction zones caused by the tree root activity, as demonstrated in the case of the apple orchard, while ERT and moisture measurements in the lagoon environment show a high resistivity suction layer located at root depth even during marsh flooding. Both observations will be important pieces of information for the comprehension of relevant eco- hydrological dynamics.

  1. Time-lapse ERT for the monitoring of soil-plant interactions in the root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Rossi, M.; D'Alpaos, A.; Fadda, G.; Putti, M.; Marani, M.

    2013-12-01

    The application of time-lapse non invasive 3D micro-scale electrical resistivity tomography (ERT) has been proven to be an efficient tool to monitor the soil-plant interactions and particularly the root zone activity. This information can support water balance modeling in the upper subsoil critical zone. Here we present the results of two field experiments in very different environments: the case of a single apple tree in an orchard located in the Trentino region (Northern Italy), and the case of salt-marshes plants in the Venice Lagoon. The micro-scale ERT apparatus consists of buried electrodes installed on micro boreholes, plus mini-electrodes on the ground surface. We collected repeated ERT, TDR and tensiometer data. For the apple orchard site test we adopted controlled irrigation tests in different seasons, while in the lagoon salt-marshes we monitored the root-plant activity during tidal flooding. The results demonstrate that micro-scale ERT is a very effective tool to characterize subsoil conditions and monitor root zone activities, especially in terms of root zone suction regions. Micro-scale ERT can detect the main suction zones caused by the tree root activity, as demonstrated in the case of the apple orchard, while ERT and moisture measurements in the lagoon environment show a high resistivity suction layer located at root depth even during marsh flooding. Both observations will be important pieces of information for the comprehension of relevant eco- hydrological dynamics.

  2. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    USGS Publications Warehouse

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  3. Root-zone plant available water estimation using the SMOS-derived soil water index

    NASA Astrophysics Data System (ADS)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Wagner, Wolfgang

    2016-10-01

    Currently, there are several space missions capable of measuring surface soil moisture, owing to the relevance of this variable in meteorology, hydrology and agriculture. However, the Plant Available Water (PAW), which in some fields of application could be more important than the soil moisture itself, cannot be directly measured by remote sensing. Considering the root zone as the first 50 cm of the soil, in this study, the PAW at 25 cm and 50 cm and integrated between 0 and 50 cm of soil depth was estimated using the surface soil moisture provided by the Soil Moisture Ocean Salinity (SMOS) mission. For this purpose, the Soil Water Index (SWI) has been used as a proxy of the root-zone soil moisture, involving the selection of an optimal T (Topt), which can be interpreted as a characteristic soil water travel time. In this research, several tests using the correlation coefficient (R), the Nash-Sutcliffe score (NS), several error estimators and bias as predictor metrics were applied to obtain the Topt, making a comprehensive study of the T parameter. After analyzing the results, some differences were found between the Topt obtained using R and NS as decision metrics, and that obtained using the errors and bias, but the SWI showed good results as an estimator of the root-zone soil moisture. This index showed good agreement, with an R between 0.60 and 0.88. The method was tested from January 2010 to December 2014, using the database of the Soil Moisture Measurements Stations Network of the University of Salamanca (REMEDHUS) in Spain. The PAW estimation showed good agreement with the in situ measurements, following closely the dry-downs and wetting-up events, with R ranging between 0.60 and 0.92, and error values lower than 0.05 m3m-3. A slight underestimation was observed for both the PAW and root-zone soil moisture at the different depths; this could be explained by the underestimation pattern observed with the SMOS L2 soil moisture product, in line with previous

  4. Investigating Root Zone Soil Moisture Using Electrical Resistivity and Crop Modeling

    NASA Astrophysics Data System (ADS)

    Diker, K.; Van Dam, R. L.; Hyndman, D. W.; Kendall, A. D.; Bhardwaj, A. K.; Hamilton, S. K.; Basso, B.

    2011-12-01

    An accurate understanding of soil moisture variability is critical for agroecological modeling and for understanding the implications of climate change for agriculture. In recent years, electrical resistivity (ER) methods have successfully been used to characterize soil moisture in a range of environments, but there remains a need to better link these data to climate variability, soil textural properties, and vegetation and root dynamics. We present results for a novel ER measurement system at the Great Lakes Bioenergy Research Center (GLBRC) in southwest Michigan. Permanent multi-electrode arrays were installed beneath a range of annual and perennial biofuel crop types including corn, soybean, various grasses, and poplars. The ER arrays provide both high spatial resolution 2D and high temporal resolution 1D apparent resistivity data (4 week and 2 hour intervals, respectively). These data, along with a forward simulation of electrical resistivity in the soil column, are used to calibrate and refine root growth dynamics modules within the crop growth and soil hydrologic model SALUS (System Approach to Land Use Sustainability). Simulations are compared to 1D TDR-inferred soil moisture data. Variability in root zone dynamics among different biofuel cropping systems is explored. Total water use and efficiency, along with profile root water extraction, vary considerably among the crops.

  5. Modeling Transient Root-zone Soil Moisture Dichotomies in Landscapes with Intermixed Land Covers

    NASA Astrophysics Data System (ADS)

    Patrignani, A.; Ochsner, T. E.

    2015-12-01

    Although large-scale in situ soil moisture monitoring networks are becoming increasingly valuable research tools, deficiencies of many existing networks include the small spatial support of each station, the low spatial density of stations, and the almost exclusive deployment of stations in grassland vegetation. These grassland soil moisture observations may not adequately represent the real soil moisture patterns in landscapes with intermixed land cover types. The objectives of this study were i) to compare root-zone soil moisture dynamics of two dominant vegetation types across Oklahoma, grassland (observed) and winter wheat cropland (simulated); ii) to relate the soil moisture dynamics of grassland and cropland vegetation using an artificial neural network (ANN) as a transfer function; and iii) to use the resulting ANN to estimate the soil moisture spatial patterns for a landscape of intermixed grassland and wheat cropland. Root-zone soil moisture was represented by plant available water (PAW) in the top 0.8 m of the soil profile. PAW under grassland was calculated from 18 years of soil moisture observations at 78 stations of the Oklahoma Mesonet, whereas PAW under winter wheat was simulated for the same 78 locations using a soil water balance model. Then, we trained an ANN to reproduce the simulated PAW under winter wheat using only seven inputs: day of the year, latitude and longitude, measured PAW under grassland, and percent sand, silt, and clay. The resulting ANN was used, along with grassland soil moisture observations, to estimate the detailed soil moisture pattern for a 9x9 km2 Soil Moisture Active Passive (SMAP) grid cell. The seasonal dynamics of root-zone PAW for grassland and winter wheat were strongly asynchronous, so grassland soil moisture observations rarely reflect cropland soil moisture conditions in the region. The simple ANN approach facilitated efficient and accurate prediction of the simulated PAW under winter wheat, RMSE = 24 mm, using

  6. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    PubMed

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous

  7. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    PubMed

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous

  8. Persistence and memory timescales in root-zone soil moisture dynamics

    NASA Astrophysics Data System (ADS)

    Ghannam, Khaled; Nakai, Taro; Paschalis, Athanasios; Oishi, Christopher A.; Kotani, Ayumi; Igarashi, Yasunori; Kumagai, Tomo'omi; Katul, Gabriel G.

    2016-02-01

    The memory timescale that characterizes root-zone soil moisture remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g., evapotranspiration) from the soil column and is often interpreted as persistence in soil moisture states. Persistence, however, represents a distribution of time periods where soil moisture resides above or below some prescribed threshold and is therefore inherently probabilistic. Using multiple soil moisture data sets collected at high resolution (subhourly) across different biomes and climates, this paper explores the differences, underlying dynamics, and relative importance of memory and persistence timescales in root-zone soil moisture. A first-order Markov process, commonly used to interpret soil moisture fluctuations derived from climate simulations, is also used as a reference model. Persistence durations of soil moisture below the plant water-stress level (chosen as the threshold), and the temporal spectrum of upcrossings and downcrossings of this threshold, are compared to the memory timescale and spectrum of the full time series, respectively. The results indicate that despite the differences between meteorological drivers, the spectrum of threshold-crossings is similar across sites, and follows a unique relation with that of the full soil moisture series. The distribution of persistence times exhibits an approximate stretched exponential type and reflects a likelihood of exceeding the memory at all sites. However, the rainfall counterpart of these distributions shows that persistence of dry atmospheric periods is less likely at sites with long soil moisture memory. The cluster exponent, a measure of the density of threshold-crossings in a time frame, reveals that the clustering tendency in rainfall events (on-off switches) does not translate directly to clustering in soil moisture. This is particularly the case in climates where

  9. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  10. High-resolution prediction of soil available water content within the crop root zone

    NASA Astrophysics Data System (ADS)

    Haghverdi, Amir; Leib, Brian G.; Washington-Allen, Robert A.; Ayers, Paul D.; Buschermohle, Michael J.

    2015-11-01

    A detailed understanding of soil hydraulic properties, particularly soil available water content (AWC) within the effective root zone, is needed to optimally schedule irrigation in fields with substantial spatial heterogeneity. However, it is difficult and time consuming to directly measure soil hydraulic properties. Therefore, easily collected and measured soil properties, such as soil texture and/or bulk density, that are well correlated with hydraulic properties are used as proxies to develop pedotransfer functions (PTF). In this study, multiple modeling scenarios were developed and evaluated to indirectly predict high resolution AWC maps within the effective root zone. The modeling techniques included kriging, co-kriging, regression kriging, artificial neural networks (NN) and geographically weighted regression (GWR). The efficiency of soil apparent electrical conductivity (ECa) as proximal data in the modeling process was assessed. There was a good agreement (root mean square error (RMSE) = 0.052 cm3 cm-3 and r = 0.88) between observed and point prediction of water contents using pseudo continuous PTFs. We found that both GWR (mean RMSE = 0.062 cm3 cm-3) and regression kriging (mean RMSE = 0.063 cm3 cm-3) produced the best water content maps with these accuracies improved up to 19% when ECa was used as an ancillary soil attribute in the interpolation process. The maps indicated fourfold differences in AWC between coarse- and fine-textured soils across the study site. This provided a template for future investigations for evaluating the efficiency of variable rate irrigation management scenarios in accounting for the spatial heterogeneity of soil hydraulic attributes.

  11. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    SciTech Connect

    Hoylman, A.M.

    1993-01-01

    Plant uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) from soil was investigated to explore plant-microbial interactions in response to a chemical stress in the root zone. Plant uptake of individual PAHs was examined under laboratory conditions which maximized root exposure. White sweetclover, Melilotus alba, was grown in soils dosed with [sup 14]C-naphthalene, -phenanthrene, -pyrene, and -fluoranthene. The highest [sup 14]C concentrations were associated with roots, with decreasing concentrations observed in stems and leaves; however, the greatest percentage of recoverable [sup 14]C remained in the soil ([ge]86%) for all four PAHs. No evidence of bioaccumulation of the individual PAHs was found in M. alba over a 5-day exposure period. Root uptake and translocation of PAHs from soil to aboveground plant tissues proved to be a limited mechanism for PAH transport into terrestrial food chains. However, root surface sorption of PAHs may be important for plants in soils containing elevated concentrations of PAHs. Consequently, the root-soil interface may be important for plant-microbial interactions in response to a chemical stress. [sup 14]CO[sub 2] pulse-labeling studies provide evidence of a shift in [sup 14]C-allocation from aboveground tissue to the root zone when plants were exposed simultaneously to phenanthrene in soil. In addition, soil respiration and heterotrophic plate counts of rhizosphere microorganisms increased in plants exposed to phenanthrene as compared to controls. This study demonstrates the importance of the root-soil interface for plants growing in PAH contaminated soil and provides supportive evidence for a plant-microbial defense response to chemical toxicants in the root zone. Lipophilic toxicants in soils may reach high concentrations in the root zone, but rhizosphere microbial communities under the influence of the plant may reduce the amount of the compound that is actually taken up by the root.

  12. The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots.

    PubMed

    York, Larry M; Carminati, Andrea; Mooney, Sacha J; Ritz, Karl; Bennett, Malcolm J

    2016-06-01

    Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance. PMID:26980751

  13. Ad Hoc Modeling of Root Zone Soil Water with Landsat Imagery and Terrain and Soils Data

    PubMed Central

    Sankey, Joel B.; Lawrence, Rick L.; Wraith, Jon M.

    2008-01-01

    Agricultural producers require knowledge of soil water at plant rooting depths, while many remote sensing studies have focused on surface soil water or mechanistic models that are not easily parameterized. We developed site-specific empirical models to predict spring soil water content for two Montana ranches. Calibration data sample sizes were based on the estimated variability of soil water and the desired level of precision for the soil water estimates. Models used Landsat imagery, a digital elevation model, and a soil survey as predictor variables. Our objectives were to see whether soil water could be predicted accurately with easily obtainable calibration data and predictor variables and to consider the relative influence of the three sources of predictor variables. Independent validation showed that multiple regression models predicted soil water with average error (RMSD) within 0.04 mass water content. This was similar to the accuracy expected based on a statistical power test based on our sample size (n = 41 and n = 50). Improved prediction precision could be achieved with additional calibration samples, and range managers can readily balance the desired level of precision with the amount of effort to collect calibration data. Spring soil water prediction effectively utilized a combination of land surface imagery, terrain data, and subsurface soil characterization data. Ranchers could use accurate spring soil water content predictions to set stocking rates. Such management can help ensure that water, soil, and vegetation resources are used conservatively in irrigated and non-irrigated rangeland systems.

  14. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  15. Improving root-zone soil properties for Trembling Aspen in a reconstructed mine-site soil

    NASA Astrophysics Data System (ADS)

    Dyck, M. F.; Sabbagh, P.; Bockstette, S.; Landhäusser, S.; Pinno, B.

    2014-12-01

    Surface mining activities have significantly depleted natural tree cover, especially trembling aspen (Populus tremuloides), in the Boreal Forest and Aspen Parkland Natural Regions of Alberta. The natural soil profile is usually destroyed during these mining activities and soil and landscape reconstruction is typically the first step in the reclamation process. However, the mine tailings and overburden materials used for these new soils often become compacted during the reconstruction process because they are subjected to high amounts of traffic with heavy equipment. Compacted soils generally have low porosity and low penetrability through increased soil strength, making it difficult for roots to elongate and explore the soil. Compaction also reduces infiltration capacity and drainage, which can cause excessive runoff and soil erosion. To improve the pore size distribution and water transmission, subsoil ripping was carried out in a test plot at Genesee Prairie Mine, Alberta. Within the site, six replicates with two treatments each, unripped (compacted) and ripped (decompacted), were established with 20-m buffers between them. The main objective of this research was to characterize the effects of subsoil ripping on soil physical properties and the longevity of those effects.as well as soil water dynamics during spring snowmelt. Results showed improved bulk density, pore size distribution and water infiltration in the soil as a result of the deep ripping, but these improvements appear to be temporary.

  16. Prediction of Root Zone Soil Moisture using Remote Sensing Products and In-Situ Observation under Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Singh, G.; Panda, R. K.; Mohanty, B.

    2015-12-01

    Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.

  17. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  18. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    SciTech Connect

    Hoylman, A.M.; Walton, B.T.

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived {sup 14}C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  19. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  20. Improving agricultural drought monitoring in West Africa using root zone soil moisture estimates derived from NDVI

    NASA Astrophysics Data System (ADS)

    McNally, A.; Funk, C. C.; Yatheendradas, S.; Michaelsen, J.; Cappelarere, B.; Peters-Lidard, C. D.; Verdin, J. P.

    2012-12-01

    The Famine Early Warning Systems Network (FEWS NET) relies heavily on remotely sensed rainfall and vegetation data to monitor agricultural drought in Sub-Saharan Africa and other places around the world. Analysts use satellite rainfall to calculate rainy season statistics and force crop water accounting models that show how the magnitude and timing of rainfall might lead to above or below average harvest. The Normalized Difference Vegetation Index (NDVI) is also an important indicator of growing season progress and is given more weight over regions where, for example, lack of rain gauges increases error in satellite rainfall estimates. Currently, however, near-real time NDVI is not integrated into a modeling framework that informs growing season predictions. To meet this need for our drought monitoring system a land surface model (LSM) is a critical component. We are currently enhancing the FEWS NET monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System. Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following questions: What is the relationship between NDVI and in-situ soil moisture measurements over the West Africa Sahel? How can we use this relationship to improve modeled water and energy fluxes over the West Africa Sahel? We investigate soil moisture and NDVI cross-correlation in the time and frequency domain to develop a transfer function model to predict soil moisture from NDVI. This work compares sites in southwest Niger, Benin, Burkina Faso, and Mali to test the generality of the transfer function. For several sites with fallow and millet vegetation in the Wankama catchment in southwest Niger we developed a non-parametric frequency response model, using NDVI inputs and soil moisture outputs, that accurately estimates root zone soil moisture (40-70cm). We extend this analysis by developing a low order parametric transfer function

  1. Calibration of the Root Zone Water Quality Model and Application of Data Assimilation Techniques to Estimate Profile Soil Moisture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of soil moisture has received considerable attention in the areas of hydrology, agriculture, meteorology and environmental studies because of its role in the partitioning water and energy at the land surface. In this study, the USDA, Agricultural Research Service, Root Zone Water Quality ...

  2. Shallow Subsurface Soil Moisture Dynamics in the Root-Zone and Bulk Soil of Sparsely Vegetated Land Surfaces as Impacted by Near-Surface Atmospheric State

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Illangasekare, T. H.; Tilton, N.

    2015-12-01

    Soil moisture is a fundamental state variable that provides the water necessary for plant growth and evapotranspiration. Soil moisture has been extensively studied in the context of bare surface soils and root zones. Less attention has focused on the effects of sparse vegetation distributions, such as those typical of agricultural cropland and other natural surface environments, on soil moisture dynamics. The current study explores root zone, bulk soil, and near-surface atmosphere interactions in terms of soil moisture under different distributions of sparse vegetation using multi-scale laboratory experimentation and numerical simulation. This research is driven by the need to advance our fundamental understanding of soil moisture dynamics in the context of improving water conservation and next generation heat and mass transfer numerical models. Experimentation is performed in a two-dimensional 7.3 m long intermediate scale soil tank interfaced with a climate-controlled wind tunnel, both of which are outfitted with current sensor technologies for measuring atmospheric and soil variables. The soil tank is packed so that a sparsely vegetated soil is surrounded by bulk bare soil; the two regions are separated by porous membranes to isolate the root zone from the bulk soil. Results show that in the absence of vegetation, evaporation rates vary along the soil tank in response to longitudinal changes in humidity; soil dries fastest upstream where evaporation rates are highest. In the presence of vegetation, soil moisture in the bulk soil closest to a vegetated region decreases more rapidly than the bulk soil farther away. Evapotranspiration rates in this region are also higher than the bulk soil region. This study is the first step towards the development of more generalized models that account for non-uniformly distributed vegetation and land surfaces exhibiting micro-topology.

  3. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing

    PubMed Central

    Gruber, A.; Wieser, G.; Oberhuber, W.

    2011-01-01

    For assessing the impact of soil temperature on tree growth in remote areas such as the alpine timberline we introduce a new method for soil temperature manipulations. This new approach is based on roofing of the rooting zone and allows either soil cooling or soil warming without significantly influencing soil water availability and the above ground microclimate. PMID:21423859

  4. GLEAM v3: updated land evaporation and root-zone soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko

    2016-04-01

    Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be

  5. Mapping Seasonal Evapotranspiration and Root Zone Soil Moisture using a Hybrid Modeling Approach over Vineyards

    NASA Astrophysics Data System (ADS)

    Geli, H. M. E.

    2015-12-01

    Estimates of actual crop evapotranspiration (ETa) at field scale over the growing season are required for improving agricultural water management, particularly in water limited and drought prone regions. Remote sensing data from multiple platforms such as airborne and Landsat-based sensors can be used to provide these estimates. Combining these data with surface energy balance models can provide ETa estimates at sub- field scale as well as information on vegetation stress and soil moisture conditions. However, the temporal resolution of airborne and Landsat data does not allow for a continuous ETa monitoring over the course of the growing season. This study presents the application of a hybrid ETa modeling approach developed for monitoring daily ETa and root zone available water at high spatial resolutions. The hybrid ETa modeling approach couples a thermal-based energy balance model with a water balance-based scheme using data assimilation. The two source energy balance (TSEB) model is used to estimate instantaneous ETa which can be extrapolated to daily ETa using a water balance model modified to use the reflectance-based basal crop coefficient for interpolating ETa in between airborne and/or Landsat overpass dates. Moreover, since it is a water balance model, the soil moisture profile is also estimated. The hybrid ETa approach is applied over vineyard fields in central California. High resolution airborne and Landsat imagery were used to drive the hybrid model. These images were collected during periods that represented different vine phonological stages in 2013 growing season. Estimates of daily ETa and surface energy balance fluxes will be compared with ground-based eddy covariance tower measurements. Estimates of soil moisture at multiple depths will be compared with measurements.

  6. Simple Ecohydrological Models: Is Average Root Zone Soil Moisture an Adequate Driver in the Functions for Evaporation and Assimilation?

    NASA Astrophysics Data System (ADS)

    Kurc, S. A.; Small, E. E.

    2007-12-01

    Dryland ecosystems are typically characterized by low annual precipitation, much of which is delivered in the form of small rainfall events that may only wet the top portion of the root zone. In these areas, evapotranspiration (ET) is limited by the availability of soil moisture rather than by atmospheric demand, i.e. ET << potential ET. Likewise, when optimal temperatures and soil nutrients are not limiting, the uptake of carbon by vegetation via photosynthesis, i.e. assimilation, is also limited by the availability of soil moisture. Though soil moisture is largely depth dependent, only average root zone soil moisture is used in typical simple models of ecohydrological processes. Here, we show that in semiarid grassland and shrubland, the surface soil layer is the primary source of water for ET, at least throughout the monsoon season. Conversely, we show that only large precipitation events (or series of small events) generate enough soil moisture below the influence of atmospheric demand to trigger carbon assimilation in these dryland ecosystems. From this we hypothesize that a realistic representation of ecohydrological processes in semiarid areas can not be made solely using average root zone soil moisture. In this study we utilize records of ET, assimilation, and soil moisture at several depths collected during 3 summer monsoons at the Sevilleta National Wildlife Refuge in central New Mexico using eddy covariance methods. Additionally we employ a simple bucket model of ecohydrological processes (e.g. Rodriguez-Iturbe et al. 1999, Daly et al. 2004) driven by average root zone soil moisture. We compare bucket model predictions of ET and assimilation to the actual data records. We show that (1) bucket model predictions of ET lack the dynamic temporal variability of actual observations, (2) declines in ET following peaks are significantly steeper in observed than in predicted times series of ET, and (3) peaks in bucket model predictions of assimilation occur

  7. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  8. Ecophysiology of Trembling Aspen in Response to Root-Zone Conditions and Competition on Reclaimed Mine Soil.

    NASA Astrophysics Data System (ADS)

    Bockstette, S.; Landhäusser, S.; Pinno, B.; Dyck, M. F.

    2014-12-01

    Reclaimed soils are typically characterized by increased bulk densities, penetration resistances and poor soil structure as well as associated problems with hydrology and aeration. As a result, available rooting space for planted tree seedlings is often restricted to a shallow layer of topsoil, which is usually of higher quality and is cultivated prior to planting. This may hinder the development of healthy root systems, thus drastically increasing the risk for plant stress by limiting access to soil resources such as water, nutrients and oxygen. These problems are exacerbated when herbaceous plants compete for the same resources within this limited root-zone. To understand how limited rooting space affects the physiology of young trees, we experimentally manipulated soil conditions and levels of competition at a reclaimed mine site in central Alberta, Canada. The site was characterized by heavily compacted, fine textured subsoil (~2.0 Mg ha-1), capped with 15 cm of topsoil (~1.5 Mg ha-1). In a replicated study (n=6) half the plots were treated with a subsoil plow to a depth of about 60 cm to increase available rooting spece. Subsequently, trembling aspen (Populus tremuloides Michx.) and smooth brome (Bromus inermis L.) were planted to create four vegetation covers: aspen (a), brome (b), aspen + brome (ab) and control (c) (no vegetation). Various soil properties, including texture, bulk density, penetration resistance and water availability, in conjunction with plant parameters such as root and shoot growth, leaf area development, sap flow, and stomatal conductance have since been monitored, both in-situ and through destructive sampling. Our results indicate that the soil treatment was effective in lowering bulk densities and penetration resistance, while improving moisture retention characteristics. Tree seedling growth and leaf area development were significantly greater without competition, but did not differ between soil treatments. The soil treatment generally

  9. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  10. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  11. Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Nieswiadomy, Michael; Qian, Shuan

    2015-05-01

    Knowledge of soil moisture in the root zone is critical for crop growth estimation and irrigation scheduling. In this study, a soil moisture diagnostic equation is applied to estimate soil moisture at depths of 0-100 cm (because the majority of crop roots are in the top 100 cm of soil) at four USDA Soil Climate Analysis Network (SCAN) sites in arid and semi-arid regions: TX2105 in northwest Texas, NM2015 and NM2108 in east New Mexico, and AZ2026 in southeast Arizona. At each site, a dataset of 5-6 years of records of daily soil moisture, daily mean air temperature, precipitation and downward solar radiation is compiled and processed. Both the sinusoidal wave function of day of year (DOY) and a linear function of the potential evapotranspiration (PET) are used to approximate the soil moisture loss coefficient. The first four years of data are used to derive the soil moisture loss function and the empirical parameters in the soil moisture diagnostic equation. The derived loss function and empirical parameters are then applied to estimate soil moisture in the last fifth or sixth year at each site. Root mean square errors (RMSEs) of the estimated volumetric soil moistures in five different soil columns (i.e., 5 cm, 10 cm, 20 or 30 cm, 50 cm, and 100 cm) are less than 3.2 (%V/V), and the accuracy of the estimated soil moistures using the sinusoidal soil moisture loss function is slightly better than the PET-based loss functions. In addition to the three advantages of this soil moisture diagnostic equation, i.e., (1) non-cumulative errors in the estimated soil moisture, (2) no regular recalibration is required to correct the cumulative errors, and (3) no numerical iteration and initial moisture inputs are needed since only precipitation data are required, this study also demonstrates that the soil moisture diagnostic equation not only can be used to estimate surface soil moisture, but also the entire root-zone soil moisture.

  12. Root apex transition zone as oscillatory zone.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.

  13. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  14. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    NASA Astrophysics Data System (ADS)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  15. Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress.

    PubMed

    Gucwa-Przepióra, Ewa; Nadgórska-Socha, Aleksandra; Fojcik, Barbara; Chmura, Damian

    2016-03-01

    The objectives of the present field study were to examine the soil enzyme activities in the soil root zones of Plantago lanceolata and Plantago major in different heavy metal contaminated stands. Moreover, the investigations concerned the intensity of root endophytic colonization and metal bioaccumulation in roots and shoots. The investigated Plantago species exhibited an excluder strategy, accumulating higher metal content in the roots than in the shoots. The heavy metal accumulation levels found in the two plantain species in this study were comparable to other plants suggested as phytostabilizers; therefore, the selected Plantago species may be applied in the phytostabilization of heavy metal contaminated areas. The lower level of soil enzymes (dehydrogenase, urease, acid, and alkaline phosphatase) as well as the higher bioavailability of metals in the root zone soil of the two plantain species were found in an area affected by smelting activity, where organic matter content in the soil was also the smallest. Mycorrhizal colonization on both species in the contaminated area was similar to colonization in non-contaminated stands. However, the lowest arbuscule occurrence and an absence of dark septate endophytes were found in the area affected by the smelting activity. It corresponded with the lowest plant cover observed in this stand. The assessment of enzyme activity, mycorrhizal colonization, and the chemical and physical properties of soils proved to be sensitive to differences between sites and between Plantago species.

  16. Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress.

    PubMed

    Gucwa-Przepióra, Ewa; Nadgórska-Socha, Aleksandra; Fojcik, Barbara; Chmura, Damian

    2016-03-01

    The objectives of the present field study were to examine the soil enzyme activities in the soil root zones of Plantago lanceolata and Plantago major in different heavy metal contaminated stands. Moreover, the investigations concerned the intensity of root endophytic colonization and metal bioaccumulation in roots and shoots. The investigated Plantago species exhibited an excluder strategy, accumulating higher metal content in the roots than in the shoots. The heavy metal accumulation levels found in the two plantain species in this study were comparable to other plants suggested as phytostabilizers; therefore, the selected Plantago species may be applied in the phytostabilization of heavy metal contaminated areas. The lower level of soil enzymes (dehydrogenase, urease, acid, and alkaline phosphatase) as well as the higher bioavailability of metals in the root zone soil of the two plantain species were found in an area affected by smelting activity, where organic matter content in the soil was also the smallest. Mycorrhizal colonization on both species in the contaminated area was similar to colonization in non-contaminated stands. However, the lowest arbuscule occurrence and an absence of dark septate endophytes were found in the area affected by the smelting activity. It corresponded with the lowest plant cover observed in this stand. The assessment of enzyme activity, mycorrhizal colonization, and the chemical and physical properties of soils proved to be sensitive to differences between sites and between Plantago species. PMID:26531716

  17. P-band Radar Retrieval of Root-Zone Soil Moisture: AirMOSS Methodology, Progress, and Improvements

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Tabatabaeenejad, A.; Chen, R.

    2015-12-01

    The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE)by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of themajor North American biomes. The radar snapshots are used to generate estimates of RZSM. To retrieve RZSM, weuse a discrete scattering model integrated with layered-soil scattering models. The soil moisture profile is representedas a quadratic function in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to beretrieved. The ancillary data necessary to characterize a pixel are available from various databases. We applythe retrieval method to the radar data acquired over AirMOSS sites including Canada's BERMS, Walnut Gulchin Arizona, MOISST in Oklahoma, Tonzi Ranch in California, and Metolius in Oregon, USA. The estimated soilmoisture profile is validated against in-situ soil moisture measurements. We have continued to improve the accuracyof retrievals as the delivery of the RZSMproducts has progressed since 2012. For example, the 'threshold depth' (thedepth up to which the retrieval is mathematically valid) has been reduced from 100 cm to 50 cm after the retrievalaccuracy was assessed both mathematically and physically. Moreover, we progressively change the implementationof the inversion code and its subroutines as we find more accurate and efficient ways of mathematical operations. Thelatest AirMOSS results (including soil moisture maps, validation plots, and scatter plots) as well as all improvementsapplied to the retrieval algorithm, including the one mentioned above, will be reported at the talk, following a briefdescription of the retrieval methodology. Fig. 1 shows a validation plot for a flight over Tonzi Ranch from September2014 (a) and a scatter plot for various threshold depths using 2012 and 2013 data.

  18. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  19. Root Patterns in Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Dara, A.; Moradi, A. B.; Carminati, A.; Oswald, S. E.

    2010-12-01

    Heterogeneous water availability is a typical characteristic of soils in which plant roots grow. Despite the intrinsic heterogeneity of soil-plant water relations, we know little about the ways how plants respond to local environmental quality. Furthermore, increasing use of soil amendments as partial water reservoirs in agriculture calls for a better understanding of plant response to soil heterogeneity. Neutron radiography is a non-invasive imaging that is highly sensitive to water and root distribution and that has high capability for monitoring spatial and temporal soil-plant water relations in heterogeneous systems. Maize plants were grown in 25 x 30 x 1 cm aluminum slabs filled with sandy soil. On the right side of the compartments a commercial water absorbent (Geohumus) was mixed with the soil. Geohumus was distributed with two patterns: mixed homogeneously with the soil, and arranged as 1-cm diameter aggregates (Fig. 1). Two irrigation treatments were applied: sufficient water irrigation and moderate water stress. Neutron radiography started 10 days after planting and has been performed twice a day for one week. At the end of the experiment, the containers were opened, the root were removed and dry root weight in different soil segments were measured. Neutron radiography showed root growth tendency towards Geohumus treated parts and preferential water uptake from Geohumus aggregates. Number and length of fine lateral roots were lower in treated areas compared to the non-treated zone and to control soil. Although corn plants showed an overall high proliferation towards the soil water sources, they decreased production of branches and fine root when water was more available near the main root parts. However there was 50% higher C allocation in roots grown in Geohumus compartments, as derived by the relative dry weight of root. The preferential C allocation in treated regions was higher when plants grew under water stress. We conclude that in addition to the

  20. PRZM-3, A MODEL FOR PREDICTING PESTICIDE AND NITROGEN FATE IN THE CROP ROOT AND UNSATURATED SOIL ZONES: USER'S MANUAL FOR RELEASE 3.12.2

    EPA Science Inventory

    This publication contains documentation for the PRZM-3 model. PRZM-3 is the most recent version of a modeling system that links two subordinate models, PRZM and VADOFT, in order to predict pesticide transport and transformation down through the crop root and unsaturated soil zone...

  1. Inference of extractable soil moisture in the plant root zone at the Walnut River Watershed.

    SciTech Connect

    Song, J.

    1998-10-05

    Soil moisture content is a crucial variable in studies of hydrology, meteorology, and plant sciences. Soil moisture content influences the ability of land to hold additional water from precipitation and thus affects groundwater levels and runoff. Evapotranspiration rates are strongly influenced by soil moisture content near the surface; evapotranspiration regulates surface air temperature and is a major factor in modifying the water vapor content of the atmosphere. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural management practices. Soil moisture can be measured by a variety of in situ techniques, but such techniques often are inadequate for evaluation over large areas because of strong temporal and spatial variations. Here, a technique using standard surface meteorological observations together with remote sensing data from satellites is discussed.

  2. The SMAP Level 4 surface and root-zone soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2015, the NASA Soil Moisture Active/Passive mission represents a generational advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiome...

  3. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability.

    PubMed

    Romero, Pascual; Dodd, Ian C; Martinez-Cutillas, Adrian

    2012-06-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year(-1)); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year(-1)); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year(-1)). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  4. Effects of long-term irrigation with treated wastewater on the hydraulic properties, and the water and air regime in the root zone of a clayey soil.

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2013-04-01

    With increasing water scarcity, treated wastewater (TW) appears as an attractive alternative source of water for irrigation, especially in arid and semi-arid regions where freshwater is naturally scarce. However, it seems that long-term use of TW for irrigation of orchards planted on heavy soils cause to yield reduction and crop damages. In terms of water quality, TW are characterized by higher concentrations of sodium and dissolved organic content (DOC) that affect soil exchangeable sodium percentage (ESP) on one hand and soil wettability, on the other hand. The working hypothesis of this study is that long-term use of TW for irrigation of clayey soils causes significant changes in the soil hydraulic properties. Such changes might affect the water and air regime in the root zone, and the hydrological balance components at the field scale. High-resolution field sampling determined the spatial distribution of chloride, ESP and DOC below the dripper, revealing higher salinity and sodicity, lower hydraulic conductivity, and possible preferential flow pattern linked to wettability in WW-irrigated soils. Laboratory experiments involving infiltration, evaporation, and swelling pressure measurements provide quantitative estimates of the impact of TW for irrigation on the soil hydraulic properties. The upper soil layer of TW-irrigated plots is more affected by the impact of DOC on soil wettability, while the lower layers are more affected by the impact of the increased ESP on soil hydraulic conductivity. Continuous monitoring of oxygen concentration at 10, 20 and 30 cm depths in the root zone near the trees and at mid-distance between trees revealed that the air regime in the root zone is significantly affected by the TW use as a consequence for the effect on the water regime.

  5. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Feng, S.

    2012-12-01

    This study proposed a new soil water balance model by quantifying drainage out of the root zone with the simplification of the Darcy's law, which combined the advantages of conceptual and physically based models. This model was connected with the Jensen crop water production function to simulate soil water components and relative crop yield. Field experiments with the winter wheat-summer corn cropping system were conducted in Beijing area in the North China Plain (2007-2009) to evaluate the model. The model could give quite reasonable predictions of soil water content in the root zone with the average root mean square error (RMSE), mean relative error (RE) and model efficiency (EF) of 0.02 cm3/cm3, 6.69% and 0.78, respectively. Furthermore, the predicted soil water flux through the bottom of root zone agreed well with the measured ones supported by the values of RMSE (0.10 mm/d) and EF (0.92). The Jensen crop water production function with the calculated actual evapotranspitation from the soil water balance model could satisfactorily evaluate crop yield response to deficit irrigation with the EF values greater than 0.95 and the RE values lower than 6%. As an application, the model was used to obtain the optimal irrigation management schedules for the hydrologic years of 75%, 50% and 25% in the study area. The average amount of irrigation saving and reduction of water losses through drainage under optimal irrigation alternative were about 175 mm and 101.9 mm, respectively. This study indicates that the developed root zone model is more available for agricultural water management as it has minimal input requirement, robust physical meaning and satisfactory simulation performance.

  6. Application of Data Assimilation with the Root Zone Water Quality Model for Soil Moisture Profile Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of soil moisture has received considerable attention in the areas of hydrology, agriculture, meteorology and environmental studies because of its role in the partitioning water and energy at the land surface. In this study, the Ensemble Kalman Filter (EnKF), a popular data assimilation te...

  7. Variations in Soil Properties and Herbicide Sorption Coefficients with Depth in Relation to PRZM (Pesticide Root Zone Model) Calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...

  8. Estimating root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, the vertical support of microwave-based surface soil moistur...

  9. Microbial weathering of apatite and wollastonite in a forest soil: Evidence from minerals buried in a root-free zone

    NASA Astrophysics Data System (ADS)

    Nezat, C. A.

    2011-12-01

    Mineral weathering is an important process in biogeochemical cycling because it releases nutrients from less labile pools (e.g., rocks) to the food chain. A field experiment was undertaken to determine the degree to which microbes - both fungi and bacteria - are responsible for weathering of Ca-bearing minerals. The experiment was performed at the Hubbard Brook Experimental Forest (HBEF) in the northeastern USA, where acid deposition has leached plant-available calcium from soils for decades. Trees obtain soil nutrients through root uptake as well as through mycorrhizal fungi with which they are symbiotically associated. These fungi extend their hyphae from the tree roots into the soil and exude organic acids that may enhance mineral dissolution. The two most common types of symbiotic fungal-tree associations are ectomycorrhizae, which are associated with spruce (Picea), fir (Abies), and beech (Fagus); and arbuscular mycorrhizae which are commonly associated with angiosperms, such as maples (Acer). To examine the role of fungi and bacteria in weathering of Ca- and/or P-bearing minerals, mesh bags containing sand-sized grains of quartz (as a control), quartz plus 1% wollastonite (CaSiO3), or quartz plus 1% apatite (Ca5(PO4)3F) were buried ~15 cm deep in mineral soil beneath American beech, sugar maple, and mixed spruce and balsam fir stands at the HBEF. Half of the bags were constructed of 50-μm mesh to exclude roots but allow fungal hyphae and bacteria to enter the bags; the remaining bags had 1-μm mesh to exclude fungi and roots but allow bacteria to enter. The bags were retrieved ~ 1, 2 or 4 years after burial. Microbial community composition and biomass in the mesh bags and surrounding soil were characterized and quantified using phospholipid fatty acid (PLFA) analysis. Fungal biomass in the soil and control bags did not differ significantly among stand types. In contrast, the degree of fungal colonization in apatite- and wollastonite-amended bags varied

  10. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    PubMed

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  11. Lessons Learned From Large-Scale Evapotranspiration and Root Zone Soil Moisture Mapping Using Ground Measurements (meteorological, LAS, EC) and Remote Sensing (METRIC)

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Allen, R. G.; Myint, S. W.; Ogden, F. L.

    2015-12-01

    Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.

  12. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  13. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  14. Global root zone storage capacity from satellite-based evaporation

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.

    2016-04-01

    This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.

  15. Root-Zone Redox Dynamics - In Search for the Cause of Damage to Treated-Wastewater Irrigated Orchards in Clay Soils

    NASA Astrophysics Data System (ADS)

    Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge

    2016-04-01

    Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9soil solution and in

  16. Effect of simultaneous state-parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF

    NASA Astrophysics Data System (ADS)

    Monsivais-Huertero, Alejandro; Graham, Wendy D.; Judge, Jasmeet; Agrawal, Divya

    2010-04-01

    In this study, an EnKF-based assimilation algorithm was implemented to estimate root-zone soil moisture (RZSM) using the coupled LSP-DSSAT model during a growing season of corn. Experiments using both synthetic and field observations were conducted to understand effects of simultaneous state-parameter estimation, spatial and temporal update frequency, and forcing uncertainties on RZSM estimates. Estimating the state-parameters simultaneously with every 3-day assimilation of volumetric soil moisture (VSM) observations at 5 depths lowered the average standard deviation (ASD) and the root mean square error (RMSE) for RZSM by approximately 1.77% VSM (78%) and 2.18% VSM (93%), respectively, compared to the open-loop ASD where as estimating only states lowered the ASD by approximately 1.26% VSM (56%) and the RMSE by 1.66% VSM (71%). The synthetic case obtained RZSM estimates closer to the observations than the MicroWEX-2 case, particularly after precipitation/irrigation events. The differences in EnKF performance between MicroWEX-2 and synthetic observations may indicate other sources of errors in addition to those in parameters and forcings, such as errors in model biophysics.

  17. Root Zone Soil Moisture (RZSM) Estimates Using VHF (240-270 MHZ) Antenna for SoOp (Signal of Opportunity) Receiver for 6U CubeSat Platforms

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.

    2015-12-01

    The main goal of this research is to develop VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. This study provides a strong foundation for establishing a path for maturing truly global direct surface soil moisture (SM) and RZSM measurement system over a variety of land covers with limited density restrictions. In SoOp methodology, signals transmitted by already existing transmitters, in this case the Military Satellite Communication (MilSatCom) System's UHF Follow-On program, are utilized to measure properties of reflecting targets by recording reflected signals using a simple passive microwave receiver. We developed and will test VHF (240-270 MHz) antenna technology for SoOp receivers for 6U Cubesat platforms and perform measurement of SM and RZSM using the proposed antennas deployed on a ground-based Soil Moisture Active Passive (SMAP) simulator boom truck. We will validate the RZSM and SM estimation algorithms from measured data (where RZSM is defined as the volumetric SM contained in the top 1 m of the soil column). Knowledge of RZSM up to a depth of 1 m and surface SM up to a depth of 0.05 m on a global scale, at a spatial resolution of 1-10 km through moderate-to-heavy vegetation, is critical to understanding global water resources and the vertical moisture gradient in the Earth's surface layer which controls moisture interactions between the soil, vegetation, and atmosphere. Current observations of surface SM from space by L-band radiometers and radars are limited to measurements of surface SM up to a depth of ~0.05 m through moderate amounts of vegetation. Developing bi-static reflectometry using VHF geostationary satellite SoOp creates the potential of directly observing SM and RZSM on a truly global basis from a constellation of small satellite-based receivers in low earth orbit. The technique provides the

  18. Using Cosmic-rays to Evaluate Estimates of Root-zone Soil Water from an Agro-ecosystem Model at a Field Site with a Shallow Water Table

    NASA Astrophysics Data System (ADS)

    Carr, B. D.; Soylu, M. E.; Patton, J. C.; Hornbuckle, B. K.; Kucharik, C. J.

    2013-12-01

    Agro-IBIS with a new field-scale ( 700 m) measurement of soil moisture obtained with a cosmic-ray detector (part of the COSMOS, the Cosmic-ray Soil Moisture Observing System) that is sensitive to water in the upper 20 cm of the root zone. Observations of latent heat flux will come from an eddy-covariance system. All observations are from a central Iowa agricultural field that is maintained in a corn-soybean rotation. Benjamin Carr with the cosmic-ray sensor on the left, part of the COSMOS, COsmic-ray Soil Moisture Observing System, and a GPS sensor on the right.

  19. Effects of partial root-zone irrigation on hydraulic conductivity in the soil–root system of maize plants

    PubMed Central

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-01-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627

  20. Using SMOS obervations for science development of the SMAP level 4 surface and root zone soil moisture algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active and Passive (SMAP) mission is targeted for launch in October 2014. The soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Oc...

  1. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  2. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  3. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model.

    PubMed

    Jégo, G; Martínez, M; Antigüedad, I; Launay, M; Sanchez-Pérez, J M; Justes, E

    2008-05-15

    The quaternary aquifer of Vitoria-Gasteiz (Basque Country, Northern Spain) is characterised by a shallow water table mainly fed by drainage water, and thus constitutes a vulnerable zone in regards to nitrate pollution. Field studies were performed with a potato crop in 1993 and a sugar beet crop in 2002 to evaluate their impact on nitrate leaching. The overall predictive quality of the STICS soil-crop model was first evaluated using field data and then the model was used to analyze dynamically the impacts of different crop management practices on nitrate leaching. The model was evaluated (i) on soil nitrate concentrations at different depths and (ii) on crop yields. The simulated values proved to be in satisfactory agreement with measured values. Nitrate leaching was more pronounced with the potato crop than with the sugar beet experiment due to i) greater precipitation, ii) lower N uptake of the potato crop due to shallow root depth, and iii) a shorter period of growth. The potato experiment showed that excessive irrigation could significantly increase nitrate leaching by increasing both drainage and nitrate concentrations. The different levels of N-fertilization examined in the sugar beet study had no notable effects on nitrate leaching due to its high N uptake capacity. Complementary virtual experiments were carried out using the STICS model. Our study confirmed that in vulnerable zones agricultural practices must be adjusted, that is to say: 1) N-fertilizer should not be applied in autumn before winter crops; 2) crops with low N uptake capacity (e.g. potatoes) should be avoided or should be preceded and followed by nitrogen catch crops or cover crops; 3) the nitrate concentration of irrigation water should be taken into account in calculation of the N-fertilization rate, and 4) N-fertilization must be precisely adjusted in particular for potato crops.

  4. Root tips moving through soil

    PubMed Central

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  5. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  6. Estimating root-zone soil moisture in the West Africa Sahel using remotely sensed rainfall and vegetation

    NASA Astrophysics Data System (ADS)

    McNally, Amy L.

    Agricultural drought is characterized by shortages in precipitation, large differences between actual and potential evapotranspiration, and soil water deficits that impact crop growth and pasture productivity. Rainfall and other agrometeorological gauge networks in Sub-Saharan Africa are inadequate for drought early warning systems and hence, satellite-based estimates of rainfall and vegetation greenness provide the main sources of information. While a number of studies have described the empirical relationship between rainfall and vegetation greenness, these studies lack a process based approach that includes soil moisture storage. In Chapters I and II, I modeled soil moisture using satellite rainfall inputs and developed a new method for estimating soil moisture with NDVI calibrated to in situ and microwave soil moisture observations. By transforming both NDVI and rainfall into estimates of soil moisture I was able to easily compare these two datasets in a physically meaningful way. In Chapter II, I also show how the new NDVI derived soil moisture can be assimilated into a water balance model that calculates an index of crop water stress. Compared to the analogous rainfall derived estimates of soil moisture and crop stress the NDVI derived estimates were better correlated with millet yields. In Chapter III, I developed a metric for defining growing season drought events that negatively impact millet yields. This metric is based on the data and models used in the Chapters I and II. I then use this metric to evaluate the ability of a sophisticated land surface model to detect drought events. The analysis showed that this particular land surface model's soil moisture estimates do have the potential to benefit the food security and drought early warning communities. With a focus on soil moisture, this dissertation introduced new methods that utilized a variety of data and models for agricultural drought monitoring applications. These new methods facilitate a more

  7. [Effects of controlled alternate partial root-zone drip irrigation on apple seedling morphological characteristics and root hydraulic conductivity].

    PubMed

    Yang, Qi-Liang; Zhang, Fu-Cang; Liu, Xiao-Gang; Ge, Zhen-Yang

    2012-05-01

    To investigate the effects of alternate partial root-zone drip irrigation (ADI) on the morphological characteristics and root hydraulic conductivity of apple seedlings, three irrigation modes, i.e., fixed partial root-zone drip irrigation (FDI, fixed watering on one side of the seedling root zone), controlled alternate partial root-zone drip irrigation (ADI, alternate watering on both sides of the seedling root zone), and conventional drip irrigation (CDI, watering cling to the seedling base), and three irrigation quotas, i. e., each irrigation amount of FDI and ADI was 10, 20 and 30 mm, and that of CDI was 20, 30 and 40 mm, respectively, were designed. In treatment ADI, the soil moisture content on the both sides of the root zone appeared a repeated alternation of dry and wet process; while in treatment CDI, the soil moisture content had less difference. At the same irrigation quotas, the soil moisture content at the watering sides had no significant difference under the three drip irrigation modes. At irrigation quota 30 mm, the root-shoot ratio, healthy index of seedlings, and root hydraulic conductivity in treatment ADI increased by 31.6% and 47.1%, 34.2% and 53.6%, and 9.0% and 11.0%, respectively, as compared with those in treatments CDI and FDI. The root dry mass and leaf area had a positive linear correlation with root hydraulic conductivity. It was suggested that controlled alternate partial root-zone drip irrigation had obvious compensatory effects on the root hydraulic conductivity of apple seedlings, improved the soil water use by the roots, benefited the equilibrated dry matter allocation in seedling organs, and markedly enhanced the root-shoot ratio and healthy index of the seedlings.

  8. [Effects of controlled alternate partial root-zone drip irrigation on apple seedling morphological characteristics and root hydraulic conductivity].

    PubMed

    Yang, Qi-Liang; Zhang, Fu-Cang; Liu, Xiao-Gang; Ge, Zhen-Yang

    2012-05-01

    To investigate the effects of alternate partial root-zone drip irrigation (ADI) on the morphological characteristics and root hydraulic conductivity of apple seedlings, three irrigation modes, i.e., fixed partial root-zone drip irrigation (FDI, fixed watering on one side of the seedling root zone), controlled alternate partial root-zone drip irrigation (ADI, alternate watering on both sides of the seedling root zone), and conventional drip irrigation (CDI, watering cling to the seedling base), and three irrigation quotas, i. e., each irrigation amount of FDI and ADI was 10, 20 and 30 mm, and that of CDI was 20, 30 and 40 mm, respectively, were designed. In treatment ADI, the soil moisture content on the both sides of the root zone appeared a repeated alternation of dry and wet process; while in treatment CDI, the soil moisture content had less difference. At the same irrigation quotas, the soil moisture content at the watering sides had no significant difference under the three drip irrigation modes. At irrigation quota 30 mm, the root-shoot ratio, healthy index of seedlings, and root hydraulic conductivity in treatment ADI increased by 31.6% and 47.1%, 34.2% and 53.6%, and 9.0% and 11.0%, respectively, as compared with those in treatments CDI and FDI. The root dry mass and leaf area had a positive linear correlation with root hydraulic conductivity. It was suggested that controlled alternate partial root-zone drip irrigation had obvious compensatory effects on the root hydraulic conductivity of apple seedlings, improved the soil water use by the roots, benefited the equilibrated dry matter allocation in seedling organs, and markedly enhanced the root-shoot ratio and healthy index of the seedlings. PMID:22919832

  9. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  10. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  11. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  12. Monitoring and Modelling of Soil-Plant Interactions: the Joint Use of ERT, Sap Flow and Eddy Covariance to Define the Volume of Orange Tree Active Root Zones.

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M. T.; Consoli, S.

    2014-12-01

    Mass and energy exchanges between soil, plants and atmosphere are key factors controlling a number of environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes such as precision agriculture. In this contribution we present a methodology based on coupling innovative data collection and models. In particular we propose the use of hydro-geophysical monitoring via 4D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Correlation (EC). This abundance of data are to be fed in spatially distributed soil models in order to comprehend the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy). We installed a 3D electrical tomography apparatus consisting of 4 instrumented micro boreholes placed at the corners of a square (about 1.3 m in side) surrounding an orange tree. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water sampling, sap flow measurements from the orange tree and EC data. Irrigation, precipitation, sap flow and ET data are available for a long period of time allowing knowledge of the long term forcing conditions on the system. This wealth of information was used to calibrate a 1D Richards' equation model representing the dynamics of the volume monitored via 3D ERT. Information on the soil hydraulic properties was collected from laboratory experiments as well as by time-lapse ERT monitoring of irrigation a few months after the main experiment, when the orange tree had been cut. The results of the calibrated modeling exercise allow the quantification of the soil volume interested by root water uptake. This volume is much smaller (an area less than 2 square meters, 40 cm thick) than generally believed and assumed in the design of classical drip irrigation schemes.

  13. Modelling root exploration of structured soils

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Bengough, Glyn; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    To overcome dry spells, plant roots can use macroscopic structures in the soil to reach deeper water reservoirs. We used R-SWMS, an explicit soil- and root water uptake model and integrated different kinds of macropores within the soil domain. Root growth is based on vector addition and influenced by the local soil parameters, e.g. penetrometer resistance or nutrient availability, around a growing root tip. Root water uptake from the macropore-bulk soil interface was simulated with respect to the contact area between roots and bulk soil. The macropore was assumed to be air-filled. A sensitivity analysis with a small domain containing a single macropore showed the influence of macropore inclination, bulk soil density, and root growth parameterisation on root system architecture. A simulation setup with a larger soil domain and a macropore structure derived from a previously grown tap-root system, showed the influence on water uptake. We could compare the simulation results with previously described experimental data from a field study. The simulations could show the feasibility of modelling root growth and water uptake in macroporous soil structures and could give an insight in the impact on the plant water status. Furthermore we were able to show the conditions under which root growth in macropores is useful for plants. As biopores are often coated with nutrient rich material, this modelling approach can also be useful to investigate the benefits of macropores for plant nutrient uptake.

  14. Tree root systems competing for soil moisture in a 3D soil-plant model

    NASA Astrophysics Data System (ADS)

    Manoli, Gabriele; Bonetti, Sara; Domec, Jean-Christophe; Putti, Mario; Katul, Gabriel; Marani, Marco

    2014-04-01

    Competition for water among multiple tree rooting systems is investigated using a soil-plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The stomatal conductance is determined by combining a conventional biochemical demand formulation for photosynthesis with an optimization hypothesis that selects stomatal aperture so as to maximize carbon gain for a given water loss. Model results compare well with measurements of soil moisture throughout the rooting zone, of total sap flow in the trunk xylem, as well as of leaf water potential collected in a Loblolly pine forest. The model is then used to diagnose plant responses to water stress in the presence of competing rooting systems. Unsurprisingly, the overlap between rooting zones is shown to enhance soil drying. However, the 3D spatial model yielded transpiration-bulk root-zone soil moisture relations that do not deviate appreciably from their proto-typical form commonly assumed in lumped eco-hydrological models. The increased overlap among rooting systems primarily alters the timing at which the point of incipient soil moisture stress is reached by the entire soil-plant system.

  15. Geophysical imaging of root-zone, trunk, and moisture heterogeneity.

    PubMed

    Attia Al Hagrey, Said

    2007-01-01

    The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.

  16. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  17. Global root zone storage capacity from satellite-based evaporation data

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert

    2016-04-01

    We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.

  18. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  19. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  20. Calculation of available water supply in crop root zone and the water balance of crops

    NASA Astrophysics Data System (ADS)

    Haberle, Jan; Svoboda, Pavel

    2015-12-01

    Determination of the water supply available in soils for crops is important for both the calculation of water balance and the prediction of water stress. An approach to calculations of available water content in layers of the root zone, depletion of water during growth, and water balance, with limited access to data on farms, is presented. Soil water retention was calculated with simple pedotransfer functions from the texture of soil layers, root depth, and depletion function were derived from observed data; and the potential evapotranspiration was calculated from the temperature. A comparison of the calculated and experimental soil water contents showed a reasonable fit.

  1. Visualizing Rhizosphere Soil Structure Around Living Roots

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  2. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  3. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  4. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  5. The role of the soil-root interface for transport processes in soils.

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Schröder, N.; Garre, S.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Vereecken, H.

    2011-12-01

    Transport processes in soils are known to be strongly influenced by soil heterogeneity, which leads to a spatially variable flow field. Also plants, which take up water from the root zone, have an important impact on the flow field and therefore on solute transport processes. In order to describe the impact of plant water uptake on the flow field, water flow in the soil-plant system has to be simulated in an integrated way. The simulation models R-SWMS and PARTRACE (Javaux et al., 2008) couple 3-D water flow in the soil with flow in a plant root network and simulate solute transport using particle tracking. Using this model, the impact of root architecture, plant solute uptake mechanisms: passive, active and solute exclusion, and plant transpiration rate, on the water flow field in the soil and on solute dispersion was simulated. Root water uptake induces small-scale variations in the water flow field which increases solute dispersion. For the case that solutes are not taken up by plant roots but excluded, the simulations suggest that part of the applied solute mass is immobilized at the soil-root interface. This immobilisation results in lower effluent concentrations than would be expected from simulations with a 1-D transport model. Tracer experiments at two different scales: the small column scale with a single plant in packed sand and the lysimeter scale with a set of plants in an undisturbed large soil monolith, were conducted to validate the simulation studies. At the small column scale, transport of a Gd tracer and the root network were imaged using MRI. At the lysimeter scale, transport of a salt tracer was monitored by measuring tracer concentrations in the effluent of the lysimeter. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115.

  6. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).

    PubMed

    Wang, Kairong; Song, Ningning; Zhao, Qiaoqiao; van der Zee, S E A T M

    2016-01-01

    Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation

  7. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency.

    PubMed

    Kang, Shaozhong; Zhang, Jianhua

    2004-11-01

    Controlled alternate partial root-zone irrigation (CAPRI), also called partial root-zone drying (PRD) in other literature, is a new irrigation technique and may improve the water use efficiency of crop production without significant yield reduction. It involves part of the root system being exposed to drying soil while the remaining part is irrigated normally. The wetted and dried sides of the root system are alternated with a frequency according to soil drying rate and crop water requirement. The irrigation system is developed on the basis of two theoretical backgrounds. (i) Fully irrigated plants usually have widely opened stomata. A small narrowing of the stomatal opening may reduce water loss substantially with little effect on photosynthesis. (ii) Part of the root system in drying soil can respond to the drying by sending a root-sourced signal to the shoots where stomata may be inhibited so that water loss is reduced. In the field, however, the prediction that reduced stomatal opening may reduce water consumption may not materialize because stomatal control only constitutes part of the total transpirational resistance. The boundary resistance from the leaf surface to the outside of the canopy may be so substantial that reduction in stomatal conductance is small and may be partially compensated by the increase in leaf temperature. It is likely that densely populated field crops, such as wheat and maize, may have a different stomatal control over transpiration from that of fruit trees which are more sparsely separated. It was discussed how long the stomata can keep 'partially' closed when a prolonged and repeated 'partial' soil drying is applied and what role the rewatering-stimulated new root growth may play in sensing the repeated soil drying. The physiological and morphological alternation of plants under partial root-zone irrigation may bring more benefits to crops than improved water use efficiency where carbon redistribution among organs is crucial to the

  8. [Effects of root zone hypoxia on respiratory metabolism of cucumber seedlings roots].

    PubMed

    Kang, Yun-Yan; Guo, Shi-Rong; Duan, Jiu-Ju

    2008-03-01

    With the seedlings of Lübachun No. 4, a hypoxia-resistant cultivar, and Zhongnong No. 8, a hypoxia-sensitive cultivar, as test materials, and by the method of solution culture, this paper studied the effects of root zone hypoxia on their roots' respiratory metabolism. The results showed that root zone hypoxia inhibited the tricarboxylic acid (TCA) cycle significantly, But accelerated the anaerobic respiration of cucumber roots. Under root zone hypoxia stress, the decrement of succinic dehydrogenase (SDH) and isocitric dehydrogenase (IDH) activities and the increment of lactate dehydrogenase (LDH) activity and lactate and pyruvate contents were lesser in Lübachun No. 4 than in Zhongnong No. 8 seedlings roots, but conversely, the increment of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities and alcohol and alanine contents in Lübachun No. 4 seedlings roots were higher than those in Zhongnong No. 8 seedlings roots. On the 8th day of hypoxia stress, the ADH activity and alcohol and alanine contents increased by 409.30%, 112.13% and 30.64% in Lübachun No. 4 roots and by 110.42%, 31.84% and 4.78% in Zhongnong No. 8 roots, respectively, compared with the control. No significant differences in the alanine aminotransferase (AlaAT) activity and acetaldehyde content were observed between the two cultivars. It was concluded that the acceleration of alcohol fermentation and the accumulation of alanine were in favor of the enhancement of root zone hypoxia tolerance of cucumber roots.

  9. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  10. A Root Zone Water Balance Algorithm for Educational Settings.

    ERIC Educational Resources Information Center

    Cahoon, Joel E.; Ferguson, Richard B.

    1995-01-01

    Describes a simple technique for monitoring root zone water status on demonstration project fields and incorporating the demonstration site results into workshop-type educational settings. Surveys indicate the presentation was well received by demonstration project cooperators and educators. (LZ)

  11. [Modeling of Cs-137 vertical soil transfer by a tree root system].

    PubMed

    Bulgakov, A A; Konoplev, A V

    2002-01-01

    A model of 137Cs vertical soil transport by a tree root system is presented. As distinct from other models the radionuclide root uptake is described as a reversible process and depth distribution of roots is given as a function of time. The model was used for prediction of 137Cs release from a surface disposal site located in a territory with conditions similar to that in the Chernobyl NPP exclusion zone. Prediction indicates that during several decades 137Cs transport from the waste layer by the root system of pine can lead to significant contamination of the soil surface due to needles fallout and, probably, ionic leakage from roots. PMID:12449825

  12. Root distributions of Eurotia lanata in association with two species of agropyron on disturbed soils

    SciTech Connect

    Bonham, C.D.; Mack, S.E. )

    1990-12-01

    Root distributions of Eurotia lanata in association with Agropyron inerme and A. smithii on soils that were mechanically disturbed were studied. Root diagrams and measurements were made for plants in competitive pairs from soils representing two depths of soil disturbance (30 cm and 1 m) and control areas. Soil disturbance was observed to reduce significantly depth of root penetration and root concentration of E. lanata. Root depth, maximum lateral spread of roots, and zone of root concentration of E. lanata plants were greatest in pure stand pairs. Eurotia lanata associated with A. inerme had the smallest root concentration. The area occupied by E. lanata roots was 59% greater in pure stands than when found adjacent to A. inerme. Agropyron inerme apparently used more available soil water in the top 20 cm of soil than did the shrub and resulted in reduced root growth for E. lanata. On the other hand, the asexual reproductive strategy of A. smithii, where roots and rhizomes were distributed both vertically and laterally, enables the grass species to minimize detrimental effects of its association with E. lanata. The results have important implications for selection of species combinations to reseed disturbed soils in semiarid or arid environments. In particular, attention should be given to use of species that have differing specializations as indicated by their growth and morphology.

  13. Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.

    2015-12-01

    Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.

  14. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia.

    PubMed

    McKee, Karen L.

    1996-01-01

    Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology. PMID:14871780

  15. Understanding plant root system influences on soil strength and stability

    NASA Astrophysics Data System (ADS)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  16. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey.

    PubMed

    Trevisan, Sara; Manoli, Alessandro; Ravazzolo, Laura; Botton, Alessandro; Pivato, Micaela; Masi, Antonio; Quaggiotti, Silvia

    2015-07-01

    Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global gene expression in plants, and the root tip has been proposed as the sensory organ. A set of genome-wide studies has demonstrated several nitrate-regulated genes in the roots of many plants, although only a few studies have been carried out on distinct root zones. To unravel new details of the transcriptomic and proteomic responses to nitrate availability in a major food crop, a double untargeted approach was conducted on a transition zone-enriched root portion of maize seedlings subjected to differing nitrate supplies. The results highlighted a complex transcriptomic and proteomic reprogramming that occurs in response to nitrate, emphasizing the role of this root zone in sensing and transducing nitrate signal. Our findings indicated a relationship of nitrate with biosynthesis and signalling of several phytohormones, such as auxin, strigolactones, and brassinosteroids. Moreover, the already hypothesized involvement of nitric oxide in the early response to nitrate was confirmed with the use of nitric oxide inhibitors. Our results also suggested that cytoskeleton activation and cell wall modification occurred in response to nitrate provision in the transition zone.

  17. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey

    PubMed Central

    Trevisan, Sara; Manoli, Alessandro; Ravazzolo, Laura; Botton, Alessandro; Pivato, Micaela; Masi, Antonio; Quaggiotti, Silvia

    2015-01-01

    Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global gene expression in plants, and the root tip has been proposed as the sensory organ. A set of genome-wide studies has demonstrated several nitrate-regulated genes in the roots of many plants, although only a few studies have been carried out on distinct root zones. To unravel new details of the transcriptomic and proteomic responses to nitrate availability in a major food crop, a double untargeted approach was conducted on a transition zone-enriched root portion of maize seedlings subjected to differing nitrate supplies. The results highlighted a complex transcriptomic and proteomic reprogramming that occurs in response to nitrate, emphasizing the role of this root zone in sensing and transducing nitrate signal. Our findings indicated a relationship of nitrate with biosynthesis and signalling of several phytohormones, such as auxin, strigolactones, and brassinosteroids. Moreover, the already hypothesized involvement of nitric oxide in the early response to nitrate was confirmed with the use of nitric oxide inhibitors. Our results also suggested that cytoskeleton activation and cell wall modification occurred in response to nitrate provision in the transition zone. PMID:25911739

  18. Modelling field-scale cadmium transport below the root zone of a sewage sludge amended soil in an arid region in Central Iran.

    PubMed

    Moradi, A; Abbaspour, K C; Afyuni, M

    2005-10-01

    Addition of trace metals such as cadmium to soils in metal-rich sewage sludge may result in contamination of soil and groundwater. This study addresses the plot-scale transport of Cd derived from sewage sludge in a layered clay soil in an arid region of central Iran. Sewage sludge was enriched by Cd at rates of 38 and 80 mg kg(-1) and applied to experimental soil plots using a complete random block design with three replicates. Cadmium concentration was measured as a function of depth after 185 and 617 days. HYDRUS-1D and MACRO codes were calibrated for Cd transport in the site treated with 80 mg kg(-1) sewage sludge. Model parameters were estimated by inverse modelling using the SUFI-2 procedure. The site treated with 38 mg kg(-1) cadmium was used to test the calibrated models. Both convection-dispersion equation (CDE) and non-equilibrium CDE in HYDRUS-1D produced reasonable calibration results. However, the estimated Freundlich sorption constants were significantly smaller than those measured in a batch study. A site tracer experiment revealed the existence of substantial macropore flow. For this reason we applied MACRO to account for this process. The calibration and test results with MACRO were as good as those obtained by HYDRUS-1D with the difference that adsorption constants were much closer to the measured ones. This indicates that in HYDRUS-1D, the adsorption parameters were underestimated in order to allow a deeper transport of Cd which had actually occurred due to macropore flow. A 20-year simulation scenario depicting the long-term effect of sludge application indicated small risk of groundwater contamination. However, high concentration of Cd near the soil surface raises a concern about the crop Cd uptake which should be further investigated. PMID:16112250

  19. Modelling field-scale cadmium transport below the root zone of a sewage sludge amended soil in an arid region in Central Iran.

    PubMed

    Moradi, A; Abbaspour, K C; Afyuni, M

    2005-10-01

    Addition of trace metals such as cadmium to soils in metal-rich sewage sludge may result in contamination of soil and groundwater. This study addresses the plot-scale transport of Cd derived from sewage sludge in a layered clay soil in an arid region of central Iran. Sewage sludge was enriched by Cd at rates of 38 and 80 mg kg(-1) and applied to experimental soil plots using a complete random block design with three replicates. Cadmium concentration was measured as a function of depth after 185 and 617 days. HYDRUS-1D and MACRO codes were calibrated for Cd transport in the site treated with 80 mg kg(-1) sewage sludge. Model parameters were estimated by inverse modelling using the SUFI-2 procedure. The site treated with 38 mg kg(-1) cadmium was used to test the calibrated models. Both convection-dispersion equation (CDE) and non-equilibrium CDE in HYDRUS-1D produced reasonable calibration results. However, the estimated Freundlich sorption constants were significantly smaller than those measured in a batch study. A site tracer experiment revealed the existence of substantial macropore flow. For this reason we applied MACRO to account for this process. The calibration and test results with MACRO were as good as those obtained by HYDRUS-1D with the difference that adsorption constants were much closer to the measured ones. This indicates that in HYDRUS-1D, the adsorption parameters were underestimated in order to allow a deeper transport of Cd which had actually occurred due to macropore flow. A 20-year simulation scenario depicting the long-term effect of sludge application indicated small risk of groundwater contamination. However, high concentration of Cd near the soil surface raises a concern about the crop Cd uptake which should be further investigated.

  20. An index for plant water deficit based on root-weighted soil water content

    NASA Astrophysics Data System (ADS)

    Shi, Jianchu; Li, Sen; Zuo, Qiang; Ben-Gal, Alon

    2015-03-01

    Governed by atmospheric demand, soil water conditions and plant characteristics, plant water status is dynamic, complex, and fundamental to efficient agricultural water management. To explore a centralized signal for the evaluation of plant water status based on soil water status, two greenhouse experiments investigating the effect of the relative distribution between soil water and roots on wheat and rice were conducted. Due to the significant offset between the distributions of soil water and roots, wheat receiving subsurface irrigation suffered more from drought than wheat under surface irrigation, even when the arithmetic averaged soil water content (SWC) in the root zone was higher. A significant relationship was found between the plant water deficit index (PWDI) and the root-weighted (rather than the arithmetic) average SWC over root zone. The traditional soil-based approach for the estimation of PWDI was improved by replacing the arithmetic averaged SWC with the root-weighted SWC to take the effect of the relative distribution between soil water and roots into consideration. These results should be beneficial for scheduling irrigation, as well as for evaluating plant water consumption and root density profile.

  1. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  2. Fruit removal increases root-zone respiration in cucumber

    PubMed Central

    Kläring, H.-P.; Hauschild, I.; Heißner, A.

    2014-01-01

    Background and Aims Many attempts have been made to avoid the commonly observed fluctuations in fruit initiation and fruit growth in crop plants, particularly in cucumber (Cucumis sativus). Weak sinks of the fruit have been assumed to result in low sink/source ratios for carbohydrates, which may inhibit photosynthesis. This study focuses on the effects of low sink–source ratios on photosynthesis and respiration, and in particular root-zone respiration. Methods Mature fruit-bearing cucumber plants were grown in an aerated nutrient solution. The root containers were designed as open chambers to allow measurement of CO2 gas exchange in the root zone. A similar arrangement in a gas-exchange cuvette enabled simultaneous measurements of CO2 exchange in the shoot and root zones. Key Results Reducing the sinks for carbohydrates by removing all fruit from the plants always resulted in a doubling of CO2 exchange in the root zone within a few hours. However, respiration of the shoot remained unaffected and photosynthesis was only marginally reduced, if at all. Conclusions The results suggest that the increased level of CO2 gas exchange in the root zone after removing the carbon sinks in the shoot is due primarily to the exudation of organic compounds by the roots and their decomposition by micro-organisms. This hypothesis must be tested in further experiments, but if proved correct it would make sense to include carbon leakage by root exudation in cucumber production models. In contrast, inhibition of photosynthesis was measurable only at zero fruit load, a situation that does not occur in cucumber production systems, and models that estimate production can therefore ignore (end-product) inhibition of photosynthesis. PMID:25301817

  3. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  4. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  5. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Busato, L.; Vanella, D.; Consoli, S.; Binley, A. M.

    2015-12-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  6. Electrical impedance imaging of water distribution in the root zone

    NASA Astrophysics Data System (ADS)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  7. Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone.

    PubMed

    Goron, Travis L; Watts, Sophia; Shearer, Charles; Raizada, Manish N

    2015-04-12

    In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface® clay alongside fertigation. This system allowed for root hairs to be easily visualized along the entire lengths of crown roots in three different cereal crops (maize, wheat, and finger millet). Surprisingly, we observed that the root hairs in these crops continued to grow beyond the canonical root hair zone, with the most root hair growth occurring on older crown root segments. We suggest that the Turface® fertigation system may permit a better understanding of the changing dynamics of root hairs as they age in large plants, and may facilitate new avenues for crop improvement below ground. However, the relevance of this system to field conditions must be further evaluated in other crops.

  8. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  9. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  10. Degradation of Surfactants in Hydroponic Wheat Root Zones

    NASA Astrophysics Data System (ADS)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  11. Circadian Variability in Methane Oxidation Activity in the Root Zone of Rice Plants

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Cho, R.; Zeyer, J.

    2009-12-01

    Methane is an important greenhouse gas with a warming potential about 20 times stronger than that of carbon dioxide. A main source of biogenic methane are rice-paddy soils. Methane is produced in flooded rice fields under anaerobic conditions. Conversely, methanotrophic microorganisms oxidize methane to carbon dioxide in the root zone of rice plants in the presence of molecular oxygen supplied to the roots through the plants’ aerenchyma, thus reducing overall methane emissions to the atmosphere. To quantify methane oxidation we adapted push-pull tests (PPTs), a technique originally developed for aquifer testing, in combination with a suitable microbial inhibitor for application in the root zone of rice plants. During a PPT, 70 ml of a test solution containing dissolved substrates (methane, oxygen), nonreactive tracers (argon, chloride) and the methanogenesis inhibitor 2-Bromoethane sulfonate was injected into the plant’s root zone, and after a rest period of two hours extracted from the same location. Reaction rate constants were calculated from extraction-phase breakthrough curves of substrates and tracers. We conducted a set of three different laboratory PPTs to quantify methane oxidation at day time, directly after dawn, and at night in the root zone of four different potted rice plants each. High diurnal methane oxidation rate constants (up to 23 h-1) were obtained for all rice plants. Methane oxidation potential decreased soon after nightfall. At night, rate constants were usually below 1 h-1. Methane oxidation rates were apparently independent of additional oxygen supplied via the injected test solutions, but strongly dependent on photosynthetically produced oxygen transported to the roots through the plants’ aerenchyma. Additional PPTs utilizing 13C-labeled methane are currently being conducted to corroborate these findings. Ultimately, this novel tool shall support efforts to quantitatively understand the controlling mechanisms of methane turnover in

  12. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. PMID:25912633

  13. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand.

  14. Rhizogenesis: Exploring the physical development of the emerging root:soil interface

    NASA Astrophysics Data System (ADS)

    Mooney, Sacha; Helliwell, Jon; Sturrock, Craig; Whalley, Richard; Miller, Tony

    2015-04-01

    The rhizosphere is a distinct zone of soil directly influenced by a plant root, with all below ground resources passing through this dynamic zone prior to capture by plants. Therefore the physical nature of the interface between the rhizosphere and the bulk soil is crucial for plant development. It is well known that the soil microbial community play a significant role in the evolution of the rhizosphere and some studies have shown that it is structurally a very different environment to the surrounding bulk soil. However how this evolution or genesis is influenced by the underlying soil physical properties and how this interacts with different plant species is less well understood. Actually examining the undisturbed rhizosphere has represented a major obstacle to research, due to its microscopic size and often fragile nature. Here we have employed high resolution X-ray Computed Tomography (CT) to successfully map the physical architecture of the developing rhizosphere in natural soils for the first time. We compared the temporal changes to the intact porous structure of the rhizosphere during the emergence of a developing root system, by assessing changes to the soil porous architecture across a range of soil textures and plant species. Our results indicate the physical zone of influence of a root at an early stage is more localised than previously thought possible (at the µm rather than mm scale). Soil porosity increases at the immediate root surface due to localised crack formation in both fine and coarse textured soils. As such the soil porous architecture at the root interface is enhanced and not compacted as previously considered. Subsequent densification of the soil system in response to an expanding root diameter was still observed, however this at some distance away from the root, and is primarily governed by soil particle size, soil bulk density and root diameter. This 'rhizosphere structure' and associated dynamics have important consequences for several

  15. How and why do root apices sense light under the soil surface?

    PubMed Central

    Mo, Mei; Yokawa, Ken; Wan, Yinglang; Baluška, František

    2015-01-01

    Light can penetrate several centimeters below the soil surface. Growth, development and behavior of plant roots are markedly affected by light despite their underground lifestyle. Early studies provided contrasting information on the spatial and temporal distribution of light-sensing cells in the apical region of root apex and discussed the physiological roles of plant hormones in root responses to light. Recent biological and microscopic advances have improved our understanding of the processes involved in the sensing and transduction of light signals, resulting in subsequent physiological and behavioral responses in growing root apices. Here, we review current knowledge of cellular distributions of photoreceptors and their signal transduction pathways in diverse root tissues and root apex zones. We are discussing also the roles of auxin transporters in roots exposed to light, as well as interactions of light signal perceptions with sensing of other environmental factors relevant to plant roots. PMID:26442084

  16. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  17. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

  18. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    PubMed

    Rodrigues, Richard R; Pineda, Rosana P; Barney, Jacob N; Nilsen, Erik T; Barrett, John E; Williams, Mark A

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  19. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    PubMed

    Rodrigues, Richard R; Pineda, Rosana P; Barney, Jacob N; Nilsen, Erik T; Barrett, John E; Williams, Mark A

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  20. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity

    PubMed Central

    Rodrigues, Richard R.; Pineda, Rosana P.; Barney, Jacob N.; Nilsen, Erik T.; Barrett, John E.; Williams, Mark A.

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  1. Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model

    NASA Astrophysics Data System (ADS)

    Sriwongsitanon, Nutchanart; Gao, Hongkai; Savenije, Hubert H. G.; Maekan, Ekkarin; Saengsawang, Sirikanya; Thianpopirug, Sansarith

    2016-08-01

    With remote sensing we can readily observe the Earth's surface, but direct observation of the sub-surface remains a challenge. In hydrology, but also in related disciplines such as agricultural and atmospheric sciences, knowledge of the dynamics of soil moisture in the root zone of vegetation is essential, as this part of the vadose zone is the core component controlling the partitioning of water into evaporative fluxes, drainage, recharge, and runoff. In this paper, we compared the catchment-scale soil moisture content in the root zone of vegetation, computed by a lumped conceptual model, with the remotely sensed Normalized Difference Infrared Index (NDII) in the Upper Ping River basin (UPRB) in northern Thailand. The NDII is widely used to monitor the equivalent water thickness (EWT) of leaves and canopy. Satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used to determine the NDII over an 8-day period, covering the study area from 2001 to 2013. The results show that NDII values decrease sharply at the end of the wet season in October and reach lowest values near the end of the dry season in March. The values then increase abruptly after rains have started, but vary in an insignificant manner from the middle to the late rainy season. This paper investigates if the NDII can be used as a proxy for moisture deficit and hence for the amount of moisture stored in the root zone of vegetation, which is a crucial component of hydrological models. During periods of moisture stress, the 8-day average NDII values were found to correlate well with the 8-day average soil moisture content (Su) simulated by the lumped conceptual hydrological rainfall-runoff model FLEX for eight sub-catchments in the Upper Ping basin. Even the deseasonalized Su and NDII (after subtracting the dominant seasonal signal) showed good correlation during periods of moisture stress. The results illustrate the potential of the NDII as a proxy for catchment-scale root zone

  2. Is Regional Root Reinforcement Controlled by Soil Moisture Variability?

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C. R.

    2011-12-01

    Climate change will alter the amount, type (i.e., snow vs. rain), and timing of precipitation that controls many hazardous Earth surface processes, including debris flows. Most GCMs agree that as climate warms the frequency of extreme precipitation will increase across the globe. Debris flow events triggered by heavy precipitation will likely also increase. Precipitation also affects the resistance to debris flow initiation by controlling belowground plant hydraulic architecture (e.g. root frequency, diameter distribution, tensile strength). Quantifying the links between precipitation, below ground properties, and the processes that initiate debris flows are therefore critical to understanding future hazard. To explore these links, we conducted a field experiment in the Coweeta Hydrologic Laboratory by excavating 12 soil pits (~1 m3), from two topographies (noses, hollows), and two tree species (Liriodendron tulipifera and Betula lenta). For each species and topography, we collected all biomass from five soil depths and measured soil moisture at 30, 60, and 90cm depth. For each depth we also measured root tensile strength, root cellulose content. Where we collected soil moisture data, we also measured root and soil hydraulic conductivity. Our data show a link between soil moisture content and root biomass distribution; root biomass is more evenly distributed through the soil column in hollows compared to noses. This relationship is consistent with the hypothesis that more consistent soil moisture in hollows allows plant roots to access resources from deeper within the soil column. This physiologic control has a significant effect on root cohesion, with trees on noses (or lower average soil moisture) providing greater root cohesion close to the surface, but considerably less cohesion at depth. Root tensile strength correlated with local daily soil moisture rather than the long term differences represented by noses and hollows. Daily soil moisture affected the amount

  3. Bayesian Calibration of a Soil-Root-Plant-Atmosphere Continuum Model Using Soil Moisture and Leaf Water Potential Data

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Hopmans, Jan; Hartsough, Pete; Simunek, Jirka; Nasta, Paolo

    2010-05-01

    The current need to better understand plant health in water-limited ecosystems justifies the increasing need for combining soil knowledge with plant expertise, in particular as related to root development and functioning. We will present a numerical modeling approach that simulates the soil-root-plant-atmosphere continuum as a single integrated numerical system, using the HYDRUS model. In this approach, we approximate both the soil and plant conducting tissues by a porous medium, each with conductive and capacitive properties that are a function of water potential. Our modeling system is especially designed to directly link the atmosphere to soil moisture uptake and stress. The model will be tested using data collected for a single white fir tree (CZO-TREE 1) at the Kings River Experimental Watershed, as part of the Critical Zone Observatory (CZO) project in the Southern Sierra mountains in California. Data include soil water content and water potential in 3 spatial dimensions in the root zone, tree stem water content and sap flux, canopy water potential, and atmospheric variables such as net radiation, air temperature and humidity. Our initial results show that our Bayesian calibration of soil, xylem, and root system properties results in fairly accurate simulations of measured soil moisture dynamics. Moreover, our calibrated HYDRUS model predicts independently measured sapflow data quite well.

  4. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  5. Crop systems and plant roots can modify the soil water holding capacity

    NASA Astrophysics Data System (ADS)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    At the interface between atmosphere and deep sub-soil, the root zone plays a major role in regulating the flow of water between major compartments: groundwater / surface / atmosphere (drainage, runoff, evapotranspiration). This role of soil as regulator/control of water fluxes, but also as a supporting medium to plant growth, is strongly dependent on the hydric properties of the soil. In turn, the plant roots growing in the soil can change its structure; both in the plow layer and in the deeper horizons and, therefore, could change the soil properties, particularly hydric properties. Such root-related alteration of soil properties can be linked to direct effect of roots such as soil perforation during growth, aggregation of soil particles or indirect effects such as the release of exudates by roots that could modify the properties of water or of soil particles. On an another hand, the rhizosphere, the zone around roots influenced by the activity of root and associated microorganisms, could have a high influence on hydric properties, particularly the water retention. To test if crops and plant roots rhizosphere may have a significant effect on water retention, we conducted various experiment from laboratory to field scales. In the lab, we tested different soil and species for rhizospheric effect on soil water retention. Variation in available water content (AWC) between bulk and rhizospheric soil varied from non-significant to a significant increase (to about 16% increase) depending on plant species and soil type. In the field, the alteration of water retention by root systems was tested in different pedological settings for a Maize crop inoculated or not with the bacteria Azospirillum spp., known to alter root structure, growth and morphology. Again, a range of variation in AWC was evidenced, with significant increase (~30%) in some soil types, but more linked to innoculated/non-innoculated plants rather than to a difference between rhizospheric and bulk soil

  6. Modeling root water uptake in soils: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Javaux, Mathieu; Couvreur, Valentin; Huber, Katrin; Meunier, Félicien; Vanderborght, Jan; Vereecken, Harry

    2016-04-01

    Root water uptake modeling concepts have evolved over time. On one hand, mesoscopic models have been developed, which explicitly represent the fluxes at the soil root interfaces. On the other hand macroscopic approaches were proposed, which embedded root water uptake into a sink term in the macroscopic mass balance equation. Today, new techniques for imaging root architecture, water fluxes and soil properties open new possibilities to the understanding of water depletion in planted soils. Amongst others, architectural hydraulic root and soil models can be used to bridge the scale gap between single root and plant scales. In this talk, several new promising experimental approaches will be presented together with new models and upscaling procedures, possibly paving the way for the future models of root water uptake. Furthermore, open challenges will also be presented.

  7. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots

    NASA Astrophysics Data System (ADS)

    Yu, Kailiang; D'Odorico, Paolo

    2014-04-01

    Hydraulic redistribution defined as the translocation of soil moisture by plant root systems in response to water potential gradients is a phenomenon widely documented in different climate, vegetation, and soil conditions. Past research has largely focused on hydraulic redistribution in deep tree roots with access to groundwater and/or winter rainfall, while the case of relatively shallow (i.e., ≈1-2 m deep) tree roots has remained poorly investigated. In fact, it is not clear how hydraulic redistribution in shallow root zones is affected by climate, vegetation, and soil properties. In this study, we developed a model to investigate the climate, vegetation, and soil controls on the net direction and magnitude of hydraulic redistribution in shallow tree root systems at the growing season to yearly timescale. We used the model to evaluate the effect of hydraulic redistribution on the water stress of trees and grasses. We found that hydraulic lift increases with decreasing rainfall frequency, depth of the rooting zone, root density in the deep soil and tree leaf area index; at the same time for a given rainfall frequency, hydraulic lift increases with increasing average rainstorm depth and soil hydraulic conductivity. We propose that water drainage into deeper soil layers can lead to the emergence of vertical water potential gradients sufficient to explain the occurrence of hydraulic lift in shallow tree roots without invoking the presence of a shallow water table or winter precipitation. We also found that hydraulic descent reduces the water stress of trees and hydraulic lift reduces the water stress of grass with important implications on tree-grass interactions.

  8. Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and Eddy Covariance data to characterize the volume of an orange tree root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M. T.; Consoli, S.

    2014-12-01

    Mass and energy exchanges between soil, plants and atmosphere control a number of key environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes e.g. in precision agriculture. In this paper we present a methodology based on coupling innovative data collection and models in order to obtain quantitative estimates of the key parameters of such complex flow system. In particular we propose the use of hydro-geophysical monitoring via 4-D Electrical Resistivity Tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration from Eddy Covariance (EC). This abundance of data is fed to a spatially distributed soil model in order to characterize the distribution of active roots. We conducted experiments in an orange orchard in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, were characterized mainly by the ERT setup, consisting of 48 buried electrodes on 4 instrumented micro boreholes (about 1.2 m deep) placed at the corners of a square (about 1.3 m in side) surrounding the orange tree, plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, soil water samples, sap flow measurements from the orange tree and EC data. We conducted a laboratory calibration of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Irrigation, precipitation, sap flow and ET data are available allowing knowledge of the system's long term forcing conditions on the system. This information was used to calibrate a 1-D Richards' equation model representing the dynamics of the volume monitored via 3-D ERT. Information on the soil hydraulic properties was collected from laboratory and field experiments. The

  9. Monitoring and modelling of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to characterize the volume of an orange tree root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Vanella, D.; Perri, M. T.; Consoli, S.

    2015-05-01

    Mass and energy exchanges between soil, plants and atmosphere control a number of key environmental processes involving hydrology, biota and climate. The understanding of these exchanges also play a critical role for practical purposes e.g. in precision agriculture. In this paper we present a methodology based on coupling innovative data collection and models in order to obtain quantitative estimates of the key parameters of such complex flow system. In particular we propose the use of hydro-geophysical monitoring via "time-lapse" electrical resistivity tomography (ERT) in conjunction with measurements of plant transpiration via sap flow and evapotranspiration (ET) from eddy covariance (EC). This abundance of data is fed to spatially distributed soil models in order to characterize the distribution of active roots. We conducted experiments in an orange orchard in eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, were characterized mainly by the ERT set-up, consisting of 48 buried electrodes on 4 instrumented micro-boreholes (about 1.2 m deep) placed at the corners of a square (with about 1.3 m long sides) surrounding the orange tree, plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and time domain reflectometry (TDR) soil moisture measurements, soil water sampling, sap flow measurements from the orange tree and EC data. We conducted a laboratory calibration of the soil electrical properties as a function of moisture content and porewater electrical conductivity. Irrigation, precipitation, sap flow and ET data are available allowing for knowledge of the system's long-term forcing conditions on the system. This information was used to calibrate a 1-D Richards' equation model representing the dynamics of the volume monitored via 3-D ERT. Information on the soil hydraulic properties was

  10. Differential Responsiveness of Cortical Microtubule Orientation to Suppression of Cell Expansion among the Developmental Zones of Arabidopsis thaliana Root Apex

    PubMed Central

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S.; Daras, Gerasimos; Hatzopoulos, Polydefkis; Rigas, Stamatis

    2013-01-01

    Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone. PMID:24324790

  11. Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Hatzopoulos, Polydefkis; Rigas, Stamatis

    2013-01-01

    Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone. PMID:24324790

  12. Mucilage: The hydraulic bridge between roots and soil

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarabanadkouki, Mohsen; Kroener, Eva; Ahmed, Mutez A. A.

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the soil near the roots, the so called rhizosphere. Ultimately, as the soil hydraulic conductivity drops and the soil cannot sustain the transpiration demand, roots shrink and lose contact to the soil. Both, water depletion in the rhizosphere and formation of air-filled gaps at the root-soil interface potentially limit the availability of water to plants. How can plants overcome these potential hydraulic barriers at the root-soil interface? One strategy consists in the exudation of mucilage from the root tips. Mucilage is a polymeric gel that is capable of holding large volumes of water. When exuded into the soil, mucilage remains in the vicinity of roots thanks to its relatively high viscosity and reduced surface tension. As mucilage is mainly made of water, its slow penetration into the soil results in higher water content and hydraulic conductivity of the rhizosphere compared to the adjacent bulk soil. Recent measurements with a root pressure probe technique demonstrated that mucilage exudation facilitates the water flow in dry soils. Additionally, mucilage increases the adhesion of soil particles to the roots, reducing the formation of gaps at the root-soil interface. Based on these observations, it is very tempting to conclude that mucilage acts as an optimal hydraulic bridge across the root-soil interface. However, as mucilage dries and ages, it turns hydrophobic. Consequently, the rhizosphere becomes water repellent and its rewetting time increases. Our former experiments showed that after irrigation subsequent to a drying cycle, the rhizosphere of lupines remained markedly dry for 2 days. Recently, we demonstrated that the rhizosphere water repellency is concomitant with a decrease in local water uptake of 4-8 times. We conclude that after drying and rewetting, the rhzisophere temporarily limits root water uptake. In summary, the hydraulic properties of the root-soil

  13. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-03-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We clearly demonstrate the importance of root system architecture for the control of soil erosion. We also demonstrate that some plant species respond to nutrient enriched patches by increasing lateral root proliferation. The soil response to root proliferation will depend upon its location: at the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff and thus erosion; whereas at depth local increases in shear strength may reinforce soils against structural failure at the shear plane. Additionally, in nutrient deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilising nutrient placement at depth may represent a potentially new, easily implemented, management strategy on nutrient poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  14. Simulation of carbonfuran and hexazinone movement into groundwater in central Florida using PRZM (Pesticide) Root Zone Model)

    SciTech Connect

    Neary, D.G.; Bush, P.B.; Smith, C.S.; Carsel, R.F.; Phillips, M.J.

    1985-01-01

    PRZM (Pesticide Root Zone Model) was developed to predict movement of pesticides within the plant root zone of soils and below to a depth of 7 m. The model, developed for surface-applied or soil incorporated pesticides, consists of 1) a hydrology component for calculating removal of precipitation by runoff, evapotranspiration, and crop interception, and 2) a chemical transport component for calculating uptake by plants, volatolization, decay, leaching, dispersion, concentration in runoff, retardation, soil solution and solid phase concentrations. Simulations were run for carbofuran, a moderately soluble, highly toxic carbamate insecticide, and hexazinone, a highly soluble, low toxicity triazine herbicide. Simulations and validation field experiments were done on forest sites with deep Typic Quartzipsamment soils overlying the Floridan Aquifer in Central Florida. Implications on use of predicting groundwater contamination and the risks of pesticide use are discussed.

  15. How rice roots form their surrounding: Distinctive sub-zones of oxides, silicates and organic matter

    NASA Astrophysics Data System (ADS)

    Koelbl, Angelika; Mueller, Carsten; Hoeschen, Carmen; Lugmeier, Johann; Said-Pullicino, Daniel; Romani, Marco; Koegel-Knabner, Ingrid

    2016-04-01

    mineral particles (e.g. oxides, clay minerals). Beside single 40 x 40 μm sized spots, mosaics of 20 x 20 μm sized images were combined to investigate the region from the surface of the root channels into the soil matrix. The image data of all detected secondary ions was analysed using line scans and designation of regions of interest (ROI) to evaluate relative occurrences and spatial distributions. The results revealed that the oxic zone around rice roots can be subdivided in distinctive sub-zones. We identified a distinctive zone of approx. 20 μm around the root channels, where exclusively oxide-associated organic matter occurred. This zone can be clearly distinguished from a clay mineral-dominated zone. In addition, oxide-incrusted root cells revealed coexisting regions of Fe (hydr)oxides and Al-organic complexes.

  16. How rice roots form their surrounding: Distinctive sub-zones of oxides, silicates and organic matter

    NASA Astrophysics Data System (ADS)

    Koelbl, Angelika; Mueller, Carsten; Hoeschen, Carmen; Lugmeier, Johann; Said-Pullicino, Daniel; Romani, Marco; Koegel-Knabner, Ingrid

    2016-04-01

    different mineral particles (e.g. oxides, clay minerals). Beside single 40 x 40 μm sized spots, mosaics of 20 x 20 μm sized images were combined to investigate the region from the surface of the root channels into the soil matrix. The image data of all detected secondary ions was analysed using line scans and designation of regions of interest (ROI) to evaluate relative occurrences and spatial distributions. The results revealed that the oxic zone around rice roots can be subdivided in distinctive sub-zones. We identified a distinctive zone of approx. 20 μm around the root channels, where exclusively oxide-associated organic matter occurred. This zone can be clearly distinguished from a clay mineral-dominated zone. In addition, oxide-incrusted root cells revealed coexisting regions of Fe (hydr)oxides and Al-organic complexes.

  17. Designing sustainable soils in Earth's critical zone

    NASA Astrophysics Data System (ADS)

    Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline

    2014-05-01

    The demographic drivers of increasing human population and wealth are creating tremendous environmental pressures from growing intensity of land use, resulting in soil and land degradation worldwide. Environmental services are provided through multiple soil functions that include biomass production, water storage and transmission, nutrient transformations, contaminant attenuation, carbon and nitrogen storage, providing habitat and maintaining the genetic diversity of the land environment. One of the greatest challenges of the 21st century is to identify key risks to soil, and to design mitigation strategies to manage these risks and to enhance soil functions that can last into the future. The scientific study of Earth's Critical Zone (CZ), the thin surface layer that extends vertically from the top of the tree canopy to the bottom of aquifers, provides an essential integrating scientific framework to study, protect and enhance soil functions. The research hypothesis is that soil structure, the geometric architecture of solids, pores and biomass, is a critical indicator and essential factor of productive soil functions. The experimental design selects a network of Critical Zone Observatories (CZOs) as advanced field research sites along a gradient of land use intensity in order to quantify soil structure and soil processes that dictate the flows and transformations of material and energy as soil functions. The CZOs focus multidisciplinary expertise on soil processes, field observation and data interpretation, management science and ecological economics. Computational simulation of biophysical processes provides a quantitative method of integration for the range of theory and observations that are required to quantify the linkages between changes in soil structure and soil functions. Key results demonstrate that changes in soil structure can be quantified through the inputs of organic carbon and nitrogen from plant productivity and microbial activity, coupled with

  18. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics.

    PubMed

    Stevens, Glen N; Jones, Robert H

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8-9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (< 1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P < 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P < 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  19. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  20. Can we manipulate root system architecture to control soil erosion?

    NASA Astrophysics Data System (ADS)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  1. Root growth and soil water utilization of winter wheat in the North China Plain

    NASA Astrophysics Data System (ADS)

    Zhang, Xiying; Pei, Dong; Chen, Suying

    2004-08-01

    Winter wheat (Triticum aestivum L.) is the major crop in the North China Plain (NCP). The monsoon climate in this region causes most rain to fall in the summer season, but during the winter-wheat growing season (October-May) the rainfall is far less than the water requirements for the crop. The efficiency of soil water use by winter wheat needs to be improved to reduce the need for irrigation. In this paper, we report the results of two seasons' work on soil water utilization, root growth and distribution, root water uptake by the crop under different irrigation treatments, and possible ways to improve soil water-use efficiency. The field experiments were carried out at Luancheng Station (37° 53N, 114° 41E) from 1996 to 1997 and 1998 to 1999, two growing seasons of winter wheat. Five treatments for each season: rain-fed and irrigated winter wheat with different irrigation numbers from 1 up to 4, were set up in a randomized plot design. Soil available water-holding capacity at the experimental site was about 454 mm for the top 2 m soil profile. Root sampling results showed that winter wheat had a prolific root system with an average maximum rooting depth of 2 m. Most of the root system was concentrated in the upper 40 cm of soil. Root length density in the top layer of soil (0-20 cm) was very high, with values over 5 cm cm-3. The distribution of water uptake from the soil profile under high soil moisture conditions was the same as the distribution of root length density. The roots in the top layer of soil played an important role in soil water uptake. When root length density was less than 0.8 cm cm-3, the root was the main factor limiting the complete utilization of soil water by crops. The scarcity of roots in the deep soil layers restricted the full utilization of soil water by the crops. Thus, at maturity, over 100 mm of available water remained in the root zone for the rain-fed treatment, although the upper layers had already entered water deficit. The crop

  2. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones.

    PubMed

    Isaac, Marney E; Anglaaere, Luke C N

    2013-05-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite-granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ(18)O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ(18)O isotopic signature declined with depth, providing conditions for plant-soil δ(18)O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10-20 cm depth but broader under phyllite-granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  3. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones.

    PubMed

    Isaac, Marney E; Anglaaere, Luke C N

    2013-05-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite-granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ(18)O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ(18)O isotopic signature declined with depth, providing conditions for plant-soil δ(18)O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10-20 cm depth but broader under phyllite-granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes.

  4. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    PubMed Central

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  5. Root zone salinity and sodicity under seasonal rainfall due to feedback of decreasing hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    van der Zee, S. E. A. T. M.; Shah, S. H. H.; Vervoort, R. W.

    2014-12-01

    Soil sodicity, where the soil cation exchange complex is occupied for a significant fraction by Na+, may lead to vulnerability to soil structure deterioration. With a root zone flow and salt transport model, we modeled the feedback effects of salt concentration (C) and exchangeable sodium percentage (ESP) on saturated hydraulic conductivity Ks(C, ESP) for different groundwater depths and climates, using the functional approach of McNeal (1968). We assume that a decrease of Ks is practically irreversible at a time scale of decades. Representing climate with a Poisson rainfall process, the feedback hardly affects salt and sodium accumulation compared with the case that feedback is ignored. However, if salinity decreases, the much more buffered ESP stays at elevated values, while Ks decreases. This situation may develop if rainfall has a seasonal pattern where drought periods with accumulation of salts in the root zone alternate with wet rainfall periods in which salts are leached. Feedback that affects both drainage/leaching and capillary upward flow from groundwater, or only drainage, leads to opposing effects. If both fluxes are affected by sodicity-induced degradation, this leads to reduced salinity (C) and sodicity (ESP), which suggests that the system dynamics and feedback oppose further degradation. Experiences in the field point in the same direction.

  6. Modelling Rooting Depth and Soil Strength in a Drying Soil Profile

    PubMed

    Bengough

    1997-06-01

    A combined root growth and water extraction model is described that simulates the affects of mechanical impedance on root elongation in soil. The model simulates the vertical redistribution of water in the soil profile, water uptake by plant roots, and the effects of decreasing water content on increasing soil strength and decreasing the root elongation rate. The modelling approach is quite general and can be applied to any soil for which a relation can be defined between root elongation and penetrometer resistance. By definition this excludes soils that contain a large proportion of continuous channels through which roots can grow unimpeded. Root elongation rate is calculated as a function of the penetrometer resistance which is determined by the soil water content. Use of the model is illustrated using input data for a sandy loam soil. The results confirm reports in the literature that the depth of water extraction can exceed the rooting depth. The increase in mechanical impedance to root growth due to this water extraction restricted the maximum rooting depth attained, and this limited the depth of soil from which a crop could extract water and nutrients. This study highlighted the lack of published data sets for single crop/soil combinations containing both the strength/root growth information and the hydraulic conductivity characteristics necessary for this type of model. Copyright 1997 Academic Press Limited PMID:9344728

  7. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  8. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  9. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  10. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  11. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    PubMed

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (<1 mm) respiration in a sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil. PMID:24052568

  12. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil.

    PubMed

    Jarvi, Mickey P; Burton, Andrew J

    2013-09-01

    The response of root respiration to warmer soil can affect ecosystem carbon (C) allocation and the strength of positive feedbacks between climatic warming and soil CO2 efflux. This study sought to determine whether fine-root (<1 mm) respiration in a sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forest would adjust to experimentally warmed soil, reducing C return to the atmosphere at the ecosystem scale to levels lower than that would be expected using an exponential temperature response function. Infrared heating lamps were used to warm the soil (+4 to +5 °C) in a mature sugar maple forest in a fully factorial design, including water additions used to offset the effects of warming-induced dry soil. Fine-root-specific respiration rates, root biomass, root nitrogen (N) concentration, soil temperature and soil moisture were measured from 2009 to 2011, with experimental treatments conducted from late 2010 to 2011. Partial acclimation of fine-root respiration to soil warming occurred, with soil moisture deficit further constraining specific respiration rates in heated plots. Fine-root biomass and N concentration remained unchanged. Over the 2011 growing season, ecosystem root respiration was not significantly greater in warmed soil. This result would not be predicted by models that allow respiration to increase exponentially with temperature and do not directly reduce root respiration in drier soil.

  13. Selective progressive response of soil microbial community to wild oat roots

    SciTech Connect

    DeAngelis, K.M.; Brodie, E.L.; DeSantis, T.Z.; Andersen, G.L.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Roots moving through soil enact physical and chemical changes that differentiate rhizosphere from bulk soil, and the effects of these changes on soil microorganisms have long been a topic of interest. Use of a high-density 16S rRNA microarray (PhyloChip) for bacterial and archaeal community analysis has allowed definition of the populations that respond to the root within the complex grassland soil community; this research accompanies previously reported compositional changes, including increases in chitinase and protease specific activity, cell numbers and quorum sensing signal. PhyloChip results showed a significant change in 7% of the total rhizosphere microbial community (147 of 1917 taxa); the 7% response value was confirmed by16S rRNA T-RFLP analysis. This PhyloChip-defined dynamic subset was comprised of taxa in 17 of the 44 phyla detected in all soil samples. Expected rhizosphere-competent phyla, such as Proteobacteria and Firmicutes, were well represented, as were less-well-documented rhizosphere colonizers including Actinobacteria, Verrucomicrobia and Nitrospira. Richness of Bacteroidetes and Actinobacteria decreased in soil near the root tip compared to bulk soil, but then increased in older root zones. Quantitative PCR revealed {beta}-Proteobacteria and Actinobacteria present at about 10{sup 8} copies of 16S rRNA genes g{sup -1} soil, with Nitrospira having about 10{sup 5} copies g{sup -1} soil. This report demonstrates that changes in a relatively small subset of the soil microbial community are sufficient to produce substantial changes in function in progressively more mature rhizosphere zones.

  14. Responses of canopy transpiration and canopy conductance of peach (Prunus persica) trees to alternate partial root zone drip irrigation

    NASA Astrophysics Data System (ADS)

    Gong, Daozhi; Kang, Shaozhong; Zhang, Jianhua

    2005-08-01

    We investigated canopy transpiration and canopy conductance of peach trees under three irrigation patterns: fixed 1/2 partial root zone drip irrigation (FPRDI), alternate 1/2 partial root zone drip irrigation (APRDI) and full root zone drip irrigation (FDI). Canopy transpiration was measured using heat pulse sensors, and canopy conductance was calculated using the Jarvis model and the inversion of the Penman-Monteith equation. Results showed that the transpiration rate and canopy conductance in FPRDI and APRDI were smaller than those in FDI. More significantly, the total irrigation amount was greatly reduced, by 34.7% and 39.6%, respectively for APRDI and FPRDI in the PRDI (partial root zone drip irrigation) treatment period. The daily transpiration was linearly related to the reference evapotranspiration in the three treatments, but daily transpiration of FDI is more than that of APRDI and FPRDI under the same evaporation demand, suggesting a restriction of transpiration water loss in the APRDI and FPRDI trees. FDI needed a higher soil water content to carry the same amount of transpiration as the APRDI and FPRDI trees, suggesting the hydraulic conductance of roots of APRDI and FPRDI trees was enhanced, and the roots had a greater water uptake than in FDI when the average soil water content in the root zone was the same. By a comparison between the transpiration rates predicted by the Penman-Monteith equation and the measured canopy transpiration rates for 60 days during the experimental period, an excellent correlation along the 1:1 line was found for all the treatments (R2 > 0.80), proving the reliability of the methodology.

  15. Phosphorus-32 absorption and translocation to host plants by arbuscular mycorrhizal fungi at low root-zone temperature.

    PubMed

    Wang, B; Funakoshi, D M; Dalpé, Y; Hamel, C

    2002-04-01

    Arbuscular mycorrhizal (AM) mycelia persist in soil over winter. Functioning of the AM symbiosis very early in the spring when the soil temperature is low may be of ecological significance for perennial and biannual plants in cool climates. An indoor experiment was conducted to investigate the effects of low root-zone temperatures on 32P uptake by 10-week-old leek plants (Allium porrum L.) inoculated or not with the AM fungus Glomus intraradices Schenck & Smith. Plants were grown in a greenhouse at approximately 23 degrees C prior to exposing their roots to 23 degrees C, 15 degrees C or 0 degree C. Mycorrhizal colonization increased 32P activity of leek leaves at a root-zone temperature of 23 degrees C seven days after injection of 32P into the soil, whereas 14 days after injection, 32P increases were measured at both 23 degrees C and 15 degrees C. The lack of difference in 32P activity between AM and non-AM plants at 0 degree C, both 7 and 14 days after injection, suggests that the AM fungus is not functional at this low root-zone temperature. PMID:12035733

  16. Water and Heat Balance Model for Predicting Drainage Below the Plant Root Zone

    1989-11-01

    UNSAT-H Version 2.0 is a one-dimensional model that simulates the dynamic processes of infiltration, drainage, redistribution, surface evaporation, and the uptake of water from soil by plants. The model was developed for assessing the water dynamics of arid sites used or proposed for near-surface waste disposal. In particular, the model is used for simulating the water balance of cover systems over buried waste and for estimating the recharge rate (i.e., the drainage rate beneath themore » plant root zone when a sizable vadose zone is present). The mathematical base of the model are Richards'' equation for water flow, Ficks'' law for vapor diffusion, and Fouriers law for heat flow. The simulated profile can be homogeneous or layered. The boundary conditions can be controlled as either constant (potential or temperature) or flux conditions to reflect actual conditions at a given site.« less

  17. Calcite mylonites in the Central Alpine ``root zone''

    NASA Astrophysics Data System (ADS)

    Heitzmann, Peter

    1987-04-01

    North of the Insubric line, in the Central Alpine "root zone", carbonate rocks are concentrated in very narrow zones and have been metamorphosed under amphibolite facies conditions by the Tertiary Lepontine metamorphism (grain size ~1 mm). Post-metamorphic deformation under greenschist facies conditions produced calcite mylonite bands a few millimeters to tens of meters wide in these marble zones. Microstructural development begins with twin formation, bending of twin boundaries, grain and twin boundary migration and recrystallization in high stress regions. Progressive mylonitization—by dynamic recrystallization—results in a microstructure with elongated calcite crystals (long axis 20-50 μm, axial ration 1:4). In this fine-grained matrix, porphyroclasts of calcite, quartz, white mica, biotite, diopside, tremolite, scapolite and plagioclase are preserved. Ultra-mylonite bands in pure calcite rocks show an even finer grain size of 5-10 μm. Lattice preferred orientation is not present in the undeformed marbles, but it develops during mylonitization. The c-axis orientation in the mylonites forms an asymmetric point maximum. In the ultra-mylonite no preferred orientation is left. It is concluded from microstructural and textural aspects, that during mylonitization, dislocation creep accompanied by dynamic recrystallization were the most important processes, whilst grain-boundary sliding was the dominant mechanism during the formation of the ultra-mylonites. Shear-sense determinations indicate a horizontal right-lateral strike-slip shear system. This is in good agreement with evidence regarding other movements along the Insubric line which can be observed in ductile and brittle shear zones.

  18. Movement of endogenous calcium in the elongating zone of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Smith, N. K.

    1989-01-01

    Endogenous calcium (Ca) accumulates along the lower side of the elongating zone of horizontally oriented roots of Zea mays cv. Yellow Dent. This accumulation of Ca correlates positively with the onset of gravicurvature, and occurs in the cytoplasm, cell walls and mucilage of epidermal cells. Corresponding changes in endogenous Ca do not occur in cortical cells of the elongating zone of intact roots. These results indicate that the calcium asymmetries associated with root gravicurvature occur in the outermost layers of the root.

  19. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  20. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    PubMed

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  1. Distribution of 152Eu and 154Eu in the 'alluvial soil-rhizosphere-plant roots' system.

    PubMed

    Kropatcheva, Marya; Chuguevsky, Alexei; Melgunov, Mikhail

    2012-04-01

    Accumulation of (152)Eu and (15)(4)Eu isotopes in bulk soil and rhizosphere soil in the near-field zone of influence of the Krasnoyarsk Mining and Chemical Combine was studied. An uneven distribution of specific activity of Eu isotopes was observed, with the gross specific activities of the isotopes in the bulk soil exceeding those of the rhizosphere. In the most contaminated locations the fine and the coarse granulometric fractions are enriched with the isotopes. A laboratory experiment indicated potential removal of soluble Eu isotopes by river flood waters may amount to 3% of the total Eu in both bulk and rhizosphere soils. The root system of plants growing in the contaminated territory accumulates (152)Eu and (154)Eu, although the isotopes were not discovered in aboveground parts of plants. Root-hairs were found to be the most contaminated.

  2. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  3. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. PMID:26287479

  4. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    PubMed

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch. PMID:26685608

  5. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils

    PubMed Central

    Valentine, Tracy A.; Hallett, Paul D.; Binnie, Kirsty; Young, Mark W.; Squire, Geoffrey R.; Hawes, Cathy; Bengough, A. Glyn

    2012-01-01

    Background and Aims Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Methods Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1·0 g cm−3 to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (–20 kPa matric potential). Key Results Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0·2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65·7 % of the variation in the elongation rates. Conclusions Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce. PMID:22684682

  6. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport. PMID:27446144

  7. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport.

  8. Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots

    PubMed Central

    Foster, Kylie J.; Miklavcic, Stanley J.

    2016-01-01

    We extend a model of ion and water transport through a root to describe transport along and through a root exhibiting a complexity of differentiation zones. Attention is focused on convective and diffusive transport, both radially and longitudinally, through different root tissue types (radial differentiation) and root developmental zones (longitudinal differentiation). Model transport parameters are selected to mimic the relative abilities of the different tissues and developmental zones to transport water and ions. For each transport scenario in this extensive simulations study, we quantify the optimal 3D flow path taken by water and ions, in response to internal barriers such as the Casparian strip and suberin lamellae. We present and discuss both transient and steady state results of ion concentrations as well as ion and water fluxes. We find that the peak in passive uptake of ions and water occurs at the start of the differentiation zone. In addition, our results show that the level of transpiration has a significant impact on the distribution of ions within the root as well as the rate of ion and water uptake in the differentiation zone, while not impacting on transport in the elongation zone. From our model results we infer information about the active transport of ions in the different developmental zones. In particular, our results suggest that any uptake measured in the elongation zone under steady state conditions is likely to be due to active transport. PMID:27446144

  9. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    NASA Astrophysics Data System (ADS)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing

  10. Root tips moving through soil: an intrinsic vulnerability.

    PubMed

    Curlango-Rivera, Gilberto; Hawes, Martha C

    2011-05-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1-2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. 

  11. Responses of Leaf-level Carbon Assimilation and Transpiration to Root-zone Water Potential Changes in a Subtropical Tree Species

    NASA Astrophysics Data System (ADS)

    Cicheng, Z.; Guan, H.; Han, G.; Zhang, X.

    2013-12-01

    Photosynthetic carbon assimilation in terrestrial ecosystems significantly contributes to global carbon balance in the atmosphere. While vegetation photosynthesizes to fix CO2, it simultaneously transpires H2O. These two interdependent processes are regulated by leaf stomata which are sensitive to environmental conditions (such as root zone soil moisture). Knowledge of the responses of leaf-level transpiration and carbon assimilation to a change of root-zone soil moisture condition is important to understand how these processes influence water balance and carbon sequestration in terrestrial ecosystems, and to understand the capacity of trees to cope with future climate changes.We will present the results of a one-year observational study on a subtropical evergreen broadleaf tree species (Osmanthus fragrans) in the central south China. The observations were carried out on two 8-year Osmanthus fragrans trees in a plantation site from 1 Sep, 2012 to 31 Aug, 2013. A portable infrared gas exchange analyzer (Li-6400, Li-COR, Inc., Lincoln, Nebraska, USA) was used to measure leaf photosynthesis and leaf transpiration on clear days. Root zone soil water potential was estimated from predawn stem water potential using stem psychrometers (ICT, Australia). Sap flow and micrometeorological data were also collected. The results show that the average leaf carbon assimilation rate at light saturation decreases quickly with the root zone water potential from 0 to -1 MPa, and slowly after the root zone water potential falls below -1 MPa. The average leaf transpiration at light saturation shows a similar pattern. Leaf-level water use efficiency increases slowly with a decrease of root-zone water potential from 0 to -1 MPa, and keeps constant when the root zone gets drier. This relationship provides a potential to estimate whole-tree carbon assimilation from sap flow measurements. Leaf assimilation rates at light saturation in early morning vs. root-zone water potential for Osmanthus

  12. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled.

  13. Soil erosion, policy and management in China coastal zone

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Chen, Qiao; Ning, Jicai; Shi, Runhe; Gao, Wei

    2013-09-01

    The coastal zone is very important in the world. China coastal zone was granted the first priority of developing economy in the late 1980s. Since then, high population density and rapid economic development hace caused intensive changes of LUCC in this zone. Those changes have lead to land degradation. Besides, China governments launched series of projects and policy to improve such problems. Those will inevitably cause to diverse spatial dynamics of land degradtion. However, the state of land degradation in certain time is still unknown. Soil erosion is an important indicator of land degradation.Therefore, we use RS images,RUSLE model to anlyze the spatial pattern of soil erosion for 2000. By spatial analysis, we found that soil erosion in China coastal zone is not serious. Widespread soil erosion is only occurred on coastal zones in Shandong, Hainan and werstern Guangdong Province. Although rainfall eosivity factor(R) is higher in southern coastal zone, erosion tends to occur on the slopes with lower LS values in northern coastal zone than southern coastal zone. Goevernments have enforced some policy to reduce the extent of soil erosion by conversion of farmland to woodland and barren mountains to woodland. But the difference between southern and northern coastal zone is still not realized. To improve soil eorosion in those areas, we should let governments put more funds to increase vegetation cover in north. Such study will provide helpful suggestions for governments to prevent soil erosion in coastal zone.

  14. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  15. The root as a drill: an ethylene-auxin interaction facilitates root penetration in soil.

    PubMed

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-02-01

    Plant roots forage the soil for water and nutrients and overcome the soil's physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1-2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants.

  16. Integration of root phenes for soil resource acquisition

    PubMed Central

    York, Larry M.; Nord, Eric A.; Lynch, Jonathan P.

    2013-01-01

    Suboptimal availability of water and nutrients is a primary limitation to plant growth in terrestrial ecosystems. The acquisition of soil resources by plant roots is therefore an important component of plant fitness and agricultural productivity. Plant root systems comprise a set of phenes, or traits, that interact. Phenes are the units of the plant phenotype, and phene states represent the variation in form and function a particular phene may take. Root phenes can be classified as affecting resource acquisition or utilization, influencing acquisition through exploration or exploitation, and in being metabolically influential or neutral. These classifications determine how one phene will interact with another phene, whether through foraging mechanisms or metabolic economics. Phenes that influence one another through foraging mechanisms are likely to operate within a phene module, a group of interacting phenes, that may be co-selected. Examples of root phene interactions discussed are: (1) root hair length × root hair density, (2) lateral branching × root cortical aerenchyma (RCA), (3) adventitious root number × adventitious root respiration and basal root growth angle (BRGA), (4) nodal root number × RCA, and (5) BRGA × root hair length and density. Progress in the study of phenes and phene interactions will be facilitated by employing simulation modeling and near-isophenic lines that allow the study of specific phenes and phene combinations within a common phenotypic background. Developing a robust understanding of the phenome at the organismal level will require new lines of inquiry into how phenotypic integration influences plant function in diverse environments. A better understanding of how root phenes interact to affect soil resource acquisition will be an important tool in the breeding of crops with superior stress tolerance and reduced dependence on intensive use of inputs. PMID:24062755

  17. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    PubMed

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  18. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone.

    PubMed

    Feng, Huan; Zhang, Weiguo; Qian, Yu; Liu, Wenliang; Yu, Lizhong; Yoo, Shinjae; Wang, Jun; Wang, Jia Jun; Eng, Christopher; Liu, Chang Jun; Tappero, Ryan

    2016-07-01

    This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.

  19. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone

    DOE PAGESBeta

    Feng, Huan; Zhang, Weiguo; Qian, Yu; Liu, Wenliang; Yu, Lizhong; Yoo, Shinjae; Wang, Jun; Wang, Jia -Jun; Eng, Christopher; Liu, Chang -Jun; et al

    2016-06-15

    This paper investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in themore » root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.« less

  20. Physical effects of soil drying on roots and crop growth.

    PubMed

    Whitmore, Andrew P; Whalley, W Richard

    2009-01-01

    The nature and effect of the stresses on root growth in crops subject to drying is reviewed. Drought is a complex stress, impacting on plant growth in a number of interacting ways. In response, there are a number of ways in which the growing plant is able to adapt to or alleviate these stresses. It is suggested that the most significant opportunity for progress in overcoming drought stress and increasing crop yields is to understand and exploit the conditions in soil by which plant roots are able to maximize their use of resources. This may not be straightforward, with multiple stresses, sometimes competing functions of roots, and conditions which impact upon roots very differently depending upon what soil, what depth or what stage of growth the root is at. Several processes and the interaction between these processes in soil have been neglected. It is our view that drought is not a single, simple stress and that agronomic practice which seeks to adapt to climate change must take account of the multiple facets of both the stress induced by insufficient water as well as other interacting stresses such as heat, disease, soil strength, low nutrient status, and even hypoxia. The potential for adaptation is probably large, however. The possible changes in stress as a result of the climate change expected under UK conditions are assessed and it appears possible that wet warm winters will impact on root growth as much if not more than dry warm summers. PMID:19584120

  1. Root-soil friction: quantification provides evidence for measurable benefits for manipulation of root-tip traits.

    PubMed

    McKenzie, Blair M; Mullins, Christopher E; Tisdall, Judith M; Bengough, A Glyn

    2013-06-01

    To penetrate soil, a root requires pressure both to expand the cavity it is to occupy, σn , and to overcome root-soil friction, σf . Difficulties in estimating these two pressures independently have limited our ability to estimate the coefficient of soil-root friction, μsr . We used a rotated penetrometer probe, of similar dimensions to a root, and for the first time entering the soil at a similar rate to a root tip, to estimate σn . Separately we measured root penetration resistance (PR) Qr . Root PR was between two to four times σn . We estimated that the coefficient of root-soil friction (μsr ) was 0.21-0.26, based on the geometry of the root tip. This is slightly larger than the 0.05-0.15 characteristic of boundary lubricants. Scanning electron microscopy showed that turgid border cells lined the root channel, supporting our hypothesis that the lubricant consisted of mucilage sandwiched between border cells and the surface of the root cap and epidermis. This cell-cell lubrication greatly decreased the friction that would otherwise be experienced had the surface of the root proper slid directly past unlubricated soil particles. Because root-soil friction can be a substantial component of root PR, successful manipulation of friction represents a promising opportunity for improving plant performance.

  2. A Lumped, Macroscopic Approach to Modeling Soil Moisture, CO2 Transport, and Chemical Weathering in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Parolari, A.

    2015-12-01

    Ecohydrological processes in the root zone act as a dynamic interface between the atmosphere and the deeper soil layers, modulating the conditions that drive chemical weathering along the soil profile. Among these processes, soil moisture dynamics respond to intermittent rainfall pulses and to runoff and evapotranspiration losses. In addition, carbon dioxide (CO2) and its associated acidity are introduced into the soil moisture via root and microbial respiration. The coupling of soil moisture and CO2 dynamics in the root zone acts as an important controller of the critical zone development through the chemical weathering and water chemistry exported through runoff and percolation. Due to spatial and temporal variability and non-linearity, modeling these coupled root zone soil moisture and CO2 dynamics presents a number of challenges. In this talk, a lumped, macroscopic approach to modeling soil moisture, CO2 transport, and chemical weathering in the critical zone is introduced. The model considers a homogeneous soil column, therefore simplifying known spatial heterogeneities, and focuses on temporal variability resulting from non-linear processes and stochastic rainfall forcing. First, at short time-scales, the deterministic temporal evolution of soil moisture, dissolved inorganic carbon, pH, and alkalinity is analyzed using a dynamical system approach. Second, at longer inter-annual time-scales where rainfall stochasticity becomes an important driver of the system behavior, the system is analyzed probabilistically and its average behavior described using a novel macroscopic approach. This averaging of the nonlinear stochastic dynamics results in a closure problem that is addressed through a first-order approximation of non-linear fluxes, including the correlation between soil moisture and solutes. The model provides a method to assess how changes in external forcing or system properties propagate into and alter critical zone structure and function, and to isolate

  3. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    NASA Astrophysics Data System (ADS)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  4. [Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities].

    PubMed

    Liu, Yi-Ling; Li, Tian-Lai; Sun, Zhou-Ping; Chen, Ya-Dong

    2010-06-01

    By using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress. Under hypoxic conditions, the lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the malondialdehyde (MDA) content were significantly higher than the control. The increment of antioxidative enzyme activities under 10% O2 stress was significantly higher than that under 5% O2 stress, while the MDA content was higher under 5% O2 stress than under 10% O2 stress, suggesting that when the root-zone oxygen concentration was below 10%, the aerobic respiration of muskmelon at its fruit development stage was obviously inhibited while the anaerobic respiration was accelerated, and the root antioxidative enzymes induced defense reaction. With the increasing duration of hypoxic stress, the lipid peroxidation would be aggravated, resulting in the damages on muskmelon roots, inhibition of plant growth, and decrease of fruit yield and quality. PMID:20873618

  5. [Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities].

    PubMed

    Liu, Yi-Ling; Li, Tian-Lai; Sun, Zhou-Ping; Chen, Ya-Dong

    2010-06-01

    By using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress. Under hypoxic conditions, the lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the malondialdehyde (MDA) content were significantly higher than the control. The increment of antioxidative enzyme activities under 10% O2 stress was significantly higher than that under 5% O2 stress, while the MDA content was higher under 5% O2 stress than under 10% O2 stress, suggesting that when the root-zone oxygen concentration was below 10%, the aerobic respiration of muskmelon at its fruit development stage was obviously inhibited while the anaerobic respiration was accelerated, and the root antioxidative enzymes induced defense reaction. With the increasing duration of hypoxic stress, the lipid peroxidation would be aggravated, resulting in the damages on muskmelon roots, inhibition of plant growth, and decrease of fruit yield and quality.

  6. Root adaptations to soils with low fertility and aluminium toxicity

    PubMed Central

    Rao, Idupulapati M.; Miles, John W.; Beebe, Stephen E.; Horst, Walter J.

    2016-01-01

    Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. Scope In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Conclusions Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop–livestock systems, particularly in smallholder systems of the

  7. Nutrient removal by root zone treatment systems: a review.

    PubMed

    Sonavane, P G; Munavalli, G R; Ranade, S V

    2008-07-01

    The Root Zone Treatment System (RZTS) has been used widely for nutrient removal in European countries. In spite of having its more adaptability in tropical region like India its use to address nutrient induced issues in the country is very less. The lack of widely accepted data, non consensus of scientists over nutrient removal mechanism and inability to apply performance standards observed in other countries directly might have hampered the acceptance of this technology in India. A few technology assessment programs are being conducted in collaboration with other countries to engineer this technology but nutrient removal aspects are not essentially focused. In this context, there is need to direct lab scale research to identify potential wetland plants, bed media and comparative study of their combination specific performance under similar conditions. The field application of the data will help to understand variability in performance and disparities in the mechanism. The systems would be amended based on these studies to establish combination specific performance standards for typical Indian conditions. Maintenance strategy and optimization of design will help to foster the technology. The development strategy should give due consideration to the contributions of other countries so as to avoid repetition of work which will save time, money and efforts, and help for the real acceptance of RZTS in Indian conditions.

  8. Polar transport of 45Ca2+ across the elongation zone of gravistimulated roots

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1985-01-01

    The movement of calcium across the elongation zone of gravistimulated primary roots of maize (Zea mays L.) was measured using 45Ca2+. Radioactive calcium was applied to one side of the elongation zone about 4 mm back from the root tip and the distribution of radioactivity across the root in the region of application was determined using scintillation spectrometry. The movement of 45Ca2+ across the elongation zone was non-polar in vertically oriented roots. In gravistimulated roots the movement of label was polarized with about twice as much label moving from top to bottom as from bottom to top. A variety of treatments which interfere with gravitropism was found to eliminate the polar movement of 45Ca2+ across the elongation zone. In maize cultivars which require light for gravitropic competency, dark grown roots exhibited neither gravitropism nor polar movement of 45Ca2+ across the elongation zone. Upon illumination the roots developed but gravitropic competency and gravity-induced polar movement of 45Ca2+ across the elongation zone. Similarly, roots of light-grown seedlings lost both gravitropic competency and 45Ca2+ transport polarity upon transfer to the dark. The results indicate a close correlation between calcium movement and gravitropism in primary roots in maize.

  9. Missing links in the root-soil organic matter continuum.

    SciTech Connect

    O'Brien, S. L.; Iversen, C. M.; Biosciences Division; ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors (Fig. 1). The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models.

  10. On the development of soil-genetic zoning

    NASA Astrophysics Data System (ADS)

    Korolyuk, T. V.; Lebedeva, I. I.; Gerasimova, M. I.; Ovechkin, S. V.; Savin, I. Yu.

    2016-03-01

    The principles of typological soil-genetic zoning based on the substantive-genetic classification of Russian soils (2004) and realized for the State Soil Map of Russia on a scale of 1 : 1 M are considered. Three categories of characteristics are applied to the system of zoning units: taxonomic, process-based, and landscape- indicative characteristics. The relationship between them changes in dependence on the taxonomic level of the zoning unit; at the lower level, the spatial (landscape-indicative) criterion plays the major role. This criterion is also important in the delimitation of soil groups (soil communities) serving as the central taxonomic unit of the zoning. At this level, all the three groups of characteristics are equally important. The definitions of the taxonomic units of the soil-genetic zoning are given, and their characteristic features are described. An algorithm of the zoning procedure is illustrated by the example of the maps developed for the Privolzhskii federal okrug. It is suggested that the soil-genetic zoning can be used as one of the ways to update the State Soil Map.

  11. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  12. Rooting depth and distributions of deep-rooted plants in the 200 Area control zone of the Hanford Site

    SciTech Connect

    Klepper, E.L.; Gano, K.A.; Cadwell, L.L.

    1985-01-01

    This study was conducted to document rooting depths and distributions of deep-rooted plants common to the Hanford Site 200-Area plateau. The effort concentrated on excavating plant species suspected of having deep root systems, and species that have been reported in previous studies to contain radionuclides in above ground parts. The information obtained in this study will be useful in modeling radionuclide transport by plants and in designing covers and barriers for decommissioning low-level radioactive waste burial sites. Fourteen species including 58 individual plants were excavated to measure maximum rooting depth and root density distribution (g dry root/dm/sup 3/) through the root zone. Age and canopy volumes of shrubs were also determined. Eight of the 14 species excavated had average rooting depths of 150 cm or more. The two deepest rooted plants were antelope bitterbrush and sagebrush with average depths of 296 and 200 cm, respectively. Gray rabbitbrush had an average rooting depth of 183 cm. Summer annuals, Russian thistle and bursage, had average rooting depths of 172 and 162 cm, respectively. 7 references, 4 figures, 5 tables.

  13. Root zone water quality model (RZWQM2): Model use, calibration and validation

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  14. Cockchafer Larvae Smell Host Root Scents in Soil

    PubMed Central

    Weissteiner, Sonja; Huetteroth, Wolf; Kollmann, Martin; Weißbecker, Bernhard; Romani, Roberto; Schachtner, Joachim; Schütz, Stefan

    2012-01-01

    In many insect species olfaction is a key sensory modality. However, examination of the chemical ecology of insects has focussed up to now on insects living above ground. Evidence for behavioral responses to chemical cues in the soil other than CO2 is scarce and the role played by olfaction in the process of finding host roots below ground is not yet understood. The question of whether soil-dwelling beetle larvae can smell their host plant roots has been under debate, but proof is as yet lacking that olfactory perception of volatile compounds released by damaged host plants, as is known for insects living above ground, occurs. Here we show that soil-dwelling larvae of Melolontha hippocastani are well equipped for olfactory perception and respond electrophysiologically and behaviorally to volatiles released by damaged host-plant roots. An olfactory apparatus consisting of pore plates at the antennae and about 70 glomeruli as primary olfactory processing units indicates a highly developed olfactory system. Damage induced host plant volatiles released by oak roots such as eucalyptol and anisol are detected by larval antennae down to 5 ppbv in soil air and elicit directed movement of the larvae in natural soil towards the odor source. Our results demonstrate that plant-root volatiles are likely to be perceived by the larval olfactory system and to guide soil-dwelling white grubs through the dark below ground to their host plants. Thus, to find below-ground host plants cockchafer larvae employ mechanisms that are similar to those employed by the adult beetles flying above ground, despite strikingly different physicochemical conditions in the soil. PMID:23049688

  15. Global Prospects Rooted in Soil Science

    SciTech Connect

    Janzen, H. H.; Fixen, P.; Franzluebbers, A. J.; Hattey, J.; Izaurralde, Roberto C.; Ketterings, Q. M.; Lobb, D. A.; Schlesinger, W.

    2010-11-17

    Th e biosphere, our fragile and exquisite home, is changing abruptly and irrevocably, largely from human interference. Most or all of the coming stresses have links to the land, so fi nding hopeful outcomes depend on wide and deep understanding of soils. In this review, we pose eight urgent issues confronting humanity in coming decades: demands for food, water, nutrients, and energy; and challenges of climate change, biodiversity, “waste” reuse, and global equity. We then suggest some steps soil scientists might take to address these questions: a refocusing of research, a broadening of vision, a renewed enticement of emerging scientists, and more lucid telling of past successes and future prospects. Th e questions posed and responses posited are incomplete and not yet fully refi ned. But the conversations they elicit may help direct soil science toward greater relevance in preserving our fragile home on this changing planet.

  16. Can root electrical capacitance be used to predict root mass in soil?

    PubMed Central

    Dietrich, R. C.; Bengough, A. G.; Jones, H. G.; White, P. J.

    2013-01-01

    Background Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. Methods The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Key Results Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. Conclusions The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass. PMID:23493014

  17. Trigeminal root entry zone involvement in neuromyelitis optica and multiple sclerosis.

    PubMed

    Sugiyama, Atsuhiko; Mori, Masahiro; Masuda, Hiroki; Uchida, Tomohiko; Muto, Mayumi; Uzawa, Akiyuki; Ito, Shoichi; Kuwabara, Satoshi

    2015-08-15

    Trigeminal root entry zone abnormality on brain magnetic resonance imaging has been frequently reported in multiple sclerosis patients, but it has not been investigated in neuromyelitis optica patients. Brain magnetic resonance imaging of 128 consecutive multiple sclerosis patients and 46 neuromyelitis optica patients was evaluated. Trigeminal root entry zone abnormality was present in 11 (8.6%) of the multiple sclerosis patients and two (4.3%) of the neuromyelitis optica patients. The pontine trigeminal root entry zone may be involved in both multiple sclerosis and neuromyelitis optica.

  18. Primary glioblastoma of the trigeminal nerve root entry zone: case report.

    PubMed

    Breshears, Jonathan D; Ivan, Michael E; Cotter, Jennifer A; Bollen, Andrew W; Theodosopoulos, Phillip V; Berger, Mitchel S

    2015-01-01

    Gliomas of the cranial nerve root entry zone are rare clinical entities. There have been 11 reported cases in the literature, including only 2 glioblastomas. The authors report the case of a 67-year-old man who presented with isolated facial numbness and was found to have a glioblastoma involving the trigeminal nerve root entry zone. After biopsy the patient completed treatment with conformal radiation and concomitant temozolomide, and at 23 weeks after surgery he demonstrated symptom progression despite the treatment described. This is the first reported case of a glioblastoma of the trigeminal nerve root entry zone. PMID:25380115

  19. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.

  20. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  1. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.

    PubMed

    Gaitnieks, Talis; Klavina, Darta; Muiznieks, Indrikis; Pennanen, Taina; Velmala, Sannakajsa; Vasaitis, Rimvydas; Menkis, Audrius

    2016-07-01

    We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.

  2. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.

    PubMed

    Gaitnieks, Talis; Klavina, Darta; Muiznieks, Indrikis; Pennanen, Taina; Velmala, Sannakajsa; Vasaitis, Rimvydas; Menkis, Audrius

    2016-07-01

    We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils. PMID:26861482

  3. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-ID coupled with a crop growth model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundwater is an important factor that needs to be considered when evaluating the water balance of the soil-plant-atmosphere system and the sustainable water management. However, the impact of shallow groundwater on the root zone water balance and cotton growth is not fully understood. In this stud...

  4. Mineral protection of soil carbon counteracted by root exudates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-06-01

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (`priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals. By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Our results provide insights into the coupled biotic-abiotic mechanisms underlying the `priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.

  5. Influence of soil water stress on evaporation, root absorption, and internal water status of cotton.

    PubMed

    Jordan, W R; Ritchie, J T

    1971-12-01

    Diurnal variations in leaf water potential, diffusion resistance, relative water content, stem diameter, leaf temperature, and energy balance components were measured in cotton (Gossypium hirsutum L. var. Lankart 57) during drought stress under field conditions. A plot of leaf water potential against either relative water content or stem diameter during the 24-hour period yielded a closed hysteresis loop. The relation between cell hydration and evaporation is discussed.Despite low soil water potential in the main root zone, significant plant evaporation rates were maintained. Root absorption rates as a function of soil depth were calculated from water content profiles measured with a neutron probe. The maximal root absorption rate of 3.5 x 10(-3) day(-1) occurred at the 75-centimeter depth, well below the main root zone.Stomatal resistance of individual leaves during the daylight hours remained nearly constant at 2.5 seconds centimeter(-1) even though leaf water potentials approached -30 bars. A growth chamber study indicated stomatal closure occurred at potentials near -16 bars. Possible implications of high soil water stress in relation to stomatal function and growth are discussed. Based on an energy balance method, the actual to potential plant evapotranspiration ratio was 0.43 for the 24-hour period, indicating partial stomatal closure. A surface resistance, r(s), of 4.0 seconds centimeter(-1) was calculated for the incomplete canopy with the use of the energy balance data. Alternatively, a canopy resistance of 1.3 seconds centimeter(-1) was attained from a relationship between leaf area and stomatal resistance of individual leaves. If the soil resistance was assumed to be very large and the canopy resistance was weighted for the fractional ground cover of the crop, the calculated surface resistance was 4.3 seconds centimeter(-1). Under these conditions, the two independent estimates of r(s) were in essential agreement.

  6. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm². The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  7. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  8. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.

    PubMed

    Zarebanadkouki, Mohsen; Kim, Yangmin X; Carminati, Andrea

    2013-09-01

    Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers.

  9. Caspr reveals an aggregation of nodes and flanking node free zones at the rat trigeminal sensory root and dorsal root entry zones.

    PubMed

    Henry, Michael A; Rzasa, Rachael S; Beeler, Joshua J; Levinson, S Rock

    2005-02-01

    The sensory root entry zone demarcates the transition from the peripheral nervous system (PNS) to the central nervous system (CNS). In this study, we describe the organization of nodes of Ranvier at the trigeminal sensory and dorsal root entry zones of the rat. Caspr immunoreactivity (IR) was used to identify the paranodal region of nodes of Ranvier, while L-MAG-IR was used to identify CNS oligodendrocytes. Immunofluorescence confocal microscopy revealed a dense aggregation of nodes precisely at the PNS to CNS transition with prominent node-depleted zones on either side, while L-MAG-IR was confined to ensheathing fibers on the central side of nodes located in this dense band and identified these as transitional nodes. Morphometric analysis of the PNS and CNS sides of the trigeminal and the PNS side of the dorsal root entry zones confirmed the presence of virtually node-free domains flanking the transitional zone. Further, the reappearance of nodes on the far side of the node-free zones strongly correlated with nodal diameter, with small nodes reappearing first. These findings suggest that the PNS/CNS transition may represent the initial site of myelination of the primary afferent axon within this area. PMID:15538752

  10. [Phytoavailability and chemical speciation of cadmium in different Cd-contaminated soils with crop root return].

    PubMed

    Zhang, Jing; Yu, Ling-Ling; Xin, Shu-Zhen; Su, De-Chun

    2013-02-01

    Pot experiments were conducted under greenhouse condition to investigate the effects of crop root return on succeeding crops growth, Cd uptake and soil Cd speciation in Cd-contaminated soil and artificial Cd-contaminated soil. The results showed that the amount of root residue returned to soil by corn and kidney bean growth successive for 3 times was 0.4%-1.1%. The Cd returned to soil by root residue was 1.3%-3.5% to the total soil Cd. There was no significant difference in the shoot dry weights of winter wheat and Chinese cabbage grown on the 2 Cd-contaminated soils with and without root return. While Cd concentration of Chinese cabbage increased significantly in the Cd-contaminated soil with corn or kidney bean root return. Light fraction of soil organic matter increased with root return in both of the Cd-contaminated soils. The percentage of Cd in the light fraction of soil organic matter increased with root return in the artificial Cd-contaminated soil. Soil carbonates-bound Cd concentration decreased significantly with corn root return in the Cd-contaminated soil. Soil exchangeable Cd concentration decreased and soil Fe-Mn oxide-bound Cd concentration increased significantly with kidney bean root return in the artificial Cd-contaminated soil.

  11. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone

    USGS Publications Warehouse

    Katupitiya, A.; Eisenhauer, D.E.; Ferguson, R.B.; Spalding, R.F.; Roeth, F.W.; Bobier, M.W.

    1997-01-01

    Tillage influences the physical and biological environment of soil. Rotation of crops with a legume affects the soil N status. A furrow irrigated site was investigated for long-term tillage and crop rotation effects on leaching of nitrate from the root zone and accumulation in the intermediate vadose zone (IVZ). The investigated tillage systems were disk-plant (DP), ridge-till (RT) and slot-plant (SP). These tillage treatments have been maintained on the Hastings silt loam (Udic Argiustoll) and Crete silt loam (Pachic Argiustoll) soils since 1976. Continuous corn (CC) and corn soybean (CS) rotations were the subtreatments. Since 1984, soybeans have been grown in CS plots in even calendar years. All tillage treatments received the same N rate. The N rate varied annually depending on the root zone residual N. Soybeans were not fertilized with N-fertilizer. Samples for residual nitrate in the root zone were taken in 8 of the 15 year study while the IVZ was only sampled at the end of the study. In seven of eight years, root zone residual soil nitrate-N levels were greater with DP than RT and SP. Residual nitrate-N amounts were similar in RT and SP in all years. Despite high residual nitrate-N with DP and the same N application rate, crop yields were higher in RT and SP except when DP had an extremely high root zone nitrate level. By applying the same N rates on all tillage treatments, DP may have been fertilized in excess of crop need. Higher residual nitrate-N in DP was most likely due to a combination of increased mineralization with tillage and lower yield compared to RT and SP. Because of higher nitrate availability with DP, the potential for nitrate leaching from the root zone was greater with DP as compared to the RT and SP tillage systems. Spring residual nitrate-N contents of DP were larger than RT and SP in both crop rotations. Ridge till and SP systems had greater nitrate-N with CS than CC rotations. Nitrate accumulation in IVZ at the upstream end of the

  12. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  13. Highly resolved imaging at the soil - plant root interface: A combination of fluorescence imaging and neutron radiography

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Lehmann, E.

    2012-12-01

    This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The

  14. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    NASA Astrophysics Data System (ADS)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  15. A Coupled Modeling Approach for Root-Soil Interaction Processes Using DuMuX

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Helmig, R.; Flemisch, B.; Koch, T.

    2015-12-01

    The water and nutrient uptake of plant roots in soils have a crucial influence on soil physical processes. The interacting processes between plant roots and soil are important for several agricultural problems, for example water management or leaching of pesticides. However, the coupled mechanisms of local soil and root water flow, transport of dissolved substances, root growth, and root uptake are difficult to measure and thus experimental data are rare. Numerical models can be used to understand these complex soil-root systems and help to analyze and interpret experimental measurements. The model approach presented here couples a root system and a soil model. Crucial for this approach is the 1D-3D grid coupling which combines a 1D network grid (root system) with the 3D soil grid. Based on that grid coupling, local processes are defined, for instance the local water uptake of a single root segment. Here, the interface conditions between roots and soil play a major role and we use local grid refinement strategies to better resolve these interface processes. This grid refinement of the 3D soil grid is based on the root network (1D grid) and adapts if root growth occurs. It offers the possibility to describe processes in the soil-plant continuum in a more physical manner avoiding empirical descriptions of root water uptake as a function of bulk matric potential, osmotic potential, root length density, and transpiration rate. Our coupling approach is included into the framework of DuMux, an open-source simulator for flow and transport processes in porous media. This implementation combines biological, chemical and physical processes in soil, inside roots, and at root-soil interfaces, and is contained in a sustainable and consistent framework for the implementation. We will show example simulations describing water flow, solute transport and root growth in a soil-root system.

  16. Processing and statistical analysis of soil-root images

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  17. The Evolution of Root Zone Storage Capacity after Land Use Change

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-04-01

    Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the

  18. Controlled Field and Laboratory Experiments to Investigate soil-root Interactions and Streambank Stability.

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2002-12-01

    Riparian vegetation has a number of mechanical and hydrologic effects on streambank stability, some of which are positive and some of which are negative. The mechanical reinforcement provided by root networks is one of the most important stabilizing factors, as roots are strong in tension but weak in compression and conversely soil is strong in compression but weak in tension. A soil that contains roots therefore has increased shear strength due to the production of a reinforced matrix, which is stronger than the soil or roots separately (Thorne, 1990). Quantification and understanding of the way the soil and roots interact individually and as a complete matrix is important if we are to predict the reinforcing effects of different types of riparian vegetation in streambank stabilizing schemes. Previous estimates of the contribution of root networks to soil strength have been attained either by using equations that sum root tensile and the soil shear strengths (eg. Wu et al., 1979), or by carrying out shear tests of root-permeated soils. However, neither of these methods alone allows a full investigation and understanding of the interactions that take place between the soil and the roots as a soil is sheared. These interactions are complex, and the simple addition of root tensile and soil shear strengths may therefore lead to overestimation of the increased strength provided to the soil by the roots, as the rate of mobilization of stress in the roots may not be the same as that of the soil (Waldron and Dakessian, 1981; Pollen et al., 2002). This paper describes a series of experiments that were carried out to test the material properties of roots, and soil samples from a streambank along Goodwin Creek, N. Mississippi. Results from field experiments carried out to measure root-tensile strengths, and stress-displacement characteristics of roots, were compared with laboratory shear tests of soil samples from Goodwin Creek. It was shown that the roots of different

  19. Non-destructive tree root detection with geophysical methods in urban soils

    NASA Astrophysics Data System (ADS)

    Vianden, Mitja Johannes; Weihs, Ulrich; Kuhnke, Falko; Rust, Steffen

    2010-05-01

    Landwehrkanal in Berlin, Germany. At three urban tree sites - one tree group and two solitary trees - GPR and ERT were applied. Differences in the root architecture caused by variations of the groundwater level and site-specific soil as well as tree-specific features of the root architecture could be identified. The course of single coarse roots has been identified by the GPR results while the groundwater level and information about variations in soil properties have been deduced from the measured resistivity data. The results have been verified by excavations with the Air-Spade-technique. Literature Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., Rossi, R., 2008. In situ detection of tree root distribution and biomass by multielectrode resistivity imaging. Tree Physiology 28 (10): 1441-1448. Barton, C.M., Montagu, K.D., 2004. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiology 24: 1323-1331. Butnor, J.R., Doolittle, J.A., Kress, L., Cohen, S., Johnsen, K.H. 2001. Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiology 21: 1269-1278. Cermak, J., Hruska, J., Martinkova, M., Prax, A., 2000. Urban tree root systems and their survival near houses analyzed using ground penetrating radar and sap flow techniques. Plant Soil 219: 103-116. Hagrey, al S.A., 2007. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimantary Botany 58 (4): 839-854. Hruska, J., Cermak, J., Sustek, S., 1999. Mapping tree root systems with ground penetrating radar. Tree Physiology 19(2):125-130.

  20. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  1. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping

    PubMed Central

    Nagel, Kerstin A.; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-01-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall. PMID:26089535

  2. Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping.

    PubMed

    Nagel, Kerstin A; Bonnett, David; Furbank, Robert; Walter, Achim; Schurr, Ulrich; Watt, Michelle

    2015-09-01

    Plants in the field are exposed to varying light and moisture. Agronomic improvement requires knowledge of whole-plant phenotypes expressed in response to simultaneous variation in these essential resources. Most phenotypes, however, have been described from experiments where resources are varied singularly. To test the importance of varying shoot and root resources for phenotyping studies, sister pre-breeding lines of wheat were phenotyped in response to independent or simultaneous exposure to two light levels and soil moisture profiles. The distribution and architecture of the root systems depended strongly on the moisture of the deeper soil layer. For one genotype, roots, specifically lateral roots, were stimulated to grow into moist soil when the upper zone was well-watered and were inhibited by drier deep zones. In contrast, the other genotype showed much less plasticity and responsiveness to upper moist soil, but maintained deeper penetration of roots into the dry layer. The sum of shoot and root responses was greater when treated simultaneously to low light and low soil water, compared to each treatment alone, suggesting the value of whole plant phenotyping in response to multiple conditions for agronomic improvement. The results suggest that canopy management for increased irradiation of leaves would encourage root growth into deeper drier soil, and that genetic variation within closely related breeding lines may exist to favour surface root growth in response to irrigation or in-season rainfall.

  3. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xu, Zongxue; Singh, Vijay P.

    2016-09-01

    The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.

  4. Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits.

    PubMed

    Polverigiani, S; McCormack, M L; Mueller, C W; Eissenstat, D M

    2011-11-01

    In woody plants, pioneer roots are the main roots used to expand the root system horizontally and vertically whereas fibrous 'feeder' roots are chiefly used in the absorption of water and nutrients. Because of their different roles, we expected newly emerged pioneer and fibrous roots to respond differently to restrictions in soil moisture. We hypothesized that fibrous roots would exhibit greater growth plasticity and greater physiological impairment from soil moisture deficits, especially under heterogeneous conditions. We compared the responses of fibrous and pioneer roots of olive seedlings (Olea europaea) to localized and uniform soil moisture deficits in transparent containers in the greenhouse. In comparison with uniformly wet conditions, uniformly dry conditions caused reduced shoot photosynthesis and reduced shoot growth, but no significant effect on root morphology, root respiration (measured in aerated buffer solution using excised roots) or electrolyte leakage as a function of root age. Under heterogeneous soil moisture conditions, root growth tended to preferentially occur in the moist sector, especially in the pioneer roots. In comparison with pioneer roots in the moist sector, pioneer roots in the dry sector had higher tissue density and higher suberin content, but no shift in root respiration, non-structural carbohydrates or electrolyte leakage. In contrast, fibrous roots in the dry sector exhibited evidence of impaired physiology in older (>38 days) roots compared with similar age fibrous roots in the moist sector. While we anticipated that, compared with pioneer roots, fibrous roots would be more sensitive to soil moisture deficits as expressed by higher electrolyte leakage, we did not expect the strong growth plasticity of pioneer roots under heterogeneous soil moisture conditions. Differentiating the responses of these two very different root types can improve our understanding of how different portions of the root system of woody plants cope with

  5. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver.

    PubMed

    Rich, Sarah M; Watt, Michelle

    2013-03-01

    Charles Darwin founded root system architecture research in 1880 when he described a root bending with gravity. Curving, elongating, and branching are the three cellular processes in roots that underlie root architecture. Together they determine the distribution of roots through soil and time, and hence the plants' access to water and nutrients, and anchorage. Most knowledge of these cellular processes comes from seedlings of the model dicotyledon, Arabidopsis, grown in soil-less conditions with single treatments. Root systems in the field, however, face multiple stimuli that interact with the plant genetics to result in the root system architecture. Here we review how soil conditions influence root system architecture; focusing on cereals. Cereals provide half of human calories, and their root systems differ from those of dicotyledons. We find that few controlled-environment studies combine more than one soil stimulus and, those that do, highlight the complexity of responses. Most studies are conducted on seedling roots; those on adult roots generally show low correlations to seedling studies. Few field studies report root and soil conditions. Until technologies are available to track root architecture in the field, soil analyses combined with knowledge of the effects of factors on elongation and gravitropism could be ranked to better predict the interaction between genetics and environment (G×E) for a given crop. Understanding how soil conditions regulate root architecture can be effectively used to design soil management and plant genetics that best exploit synergies from G×E of roots.

  6. How Well Does Zone Sampling Based On Soil Electrical Conductivity Maps Represent Soil Variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zone soil sampling is a method in which a field sampling is based on identifying homogenous areas using an easy to measure ancillary attribute such as apparent soil electrical conductivity (ECa). This study determined if ECa-directed zone sampling in two fields in northeastern Colorado could correc...

  7. Soil moisture controls on phenology and productivity in a semi-arid critical zone.

    PubMed

    Cleverly, James; Eamus, Derek; Restrepo Coupe, Natalia; Chen, Chao; Maes, Wouter; Li, Longhui; Faux, Ralph; Santini, Nadia S; Rumman, Rizwana; Yu, Qiang; Huete, Alfredo

    2016-10-15

    The Earth's Critical Zone, where physical, chemical and biological systems interact, extends from the top of the canopy to the underlying bedrock. In this study, we investigated soil moisture controls on phenology and productivity of an Acacia woodland in semi-arid central Australia. Situated on an extensive sand plain with negligible runoff and drainage, the carry-over of soil moisture content (θ) in the rhizosphere enabled the delay of phenology and productivity across seasons, until conditions were favourable for transpiration of that water to prevent overheating in the canopy. Storage of soil moisture near the surface (in the top few metres) was promoted by a siliceous hardpan. Pulsed recharge of θ above the hardpan was rapid and depended upon precipitation amount: 150mm storm(-1) resulted in saturation of θ above the hardpan (i.e., formation of a temporary, discontinuous perched aquifer above the hardpan in unconsolidated soil) and immediate carbon uptake by the vegetation. During dry and inter-storm periods, we inferred the presence of hydraulic lift from soil storage above the hardpan to the surface due to (i) regular daily drawdown of θ in the reservoir that accumulates above the hardpan in the absence of drainage and evapotranspiration; (ii) the dimorphic root distribution wherein most roots were found in dry soil near the surface, but with significant root just above the hardpan; and (iii) synchronisation of phenology amongst trees and grasses in the dry season. We propose that hydraulic redistribution provides a small amount of moisture that maintains functioning of the shallow roots during long periods when the surface soil layer was dry, thereby enabling Mulga to maintain physiological activity without diminishing phenological and physiological responses to precipitation when conditions were favourable to promote canopy cooling. PMID:27241203

  8. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  9. The Regulation of Growth in the Distal Elongation Zone of Maize Roots

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1998-01-01

    The major goals of the proposed research were 1. To develop specialized software for automated whole surface root expansion analysis and to develop technology for controlled placement of surface electrodes for analysis of relationships between root growth and root pH and electrophysiological properties. 2. To measure surface pH patterns and determine the possible role of proton flux in gravitropic sensing or response, and 3. To determine the role of auxin transport in establishment of patterns of proton flux and electrical gradients during the gravitropic response of roots with special emphasis on the role of the distal elongation zone in the early phases of the gravitropic response.

  10. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    PubMed

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  11. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    PubMed

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress. PMID:27341663

  12. Soil sheaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica

    SciTech Connect

    Huang, B.; North, G.B.; Nobel, P.S. )

    1993-09-01

    Soil sheaths incorporating aggregated soil particles surround young roots of many species, but the effects of such sheaths on water movement between roots and the soil are largely unknown. The quantity and location of root exudates associated with soil sheath along the entire length of its young roots, except within 1.4 cm of the tip. The soil sheaths, which average 0.7 mm in thickness, were composed of soil particles and root hairs, both of which were covered with exuded mucilaginous material. As determined with a [sup 14]C pulse-labeling technique, 2% of newly fixed [sup 14]C-photosynthate was translocated into the roots at 3d, 6% at 9 d, and 8% at 15 d after labeling. The fraction of insoluble [sup 14]C in the roots increased twofold from 3 d to 15 d. Over the same time period, 6%-9% of the [sup 14]C translocated to the roots was exuded into the soil. The soluble [sup 14]C compounds exuded into the soil were greater in the 3-cm segment at the root tip than elsewhere along the root, whereas mucilage was exuded relatively uniformly along roots 15 cm in length. The volumetric efflux of water increase for both sheathed and unsheathed roots as the soil water potential decreased form -0.1 MPa to -1.0 MPa. The efflux rate was greater for unsheathed roots than for sheathed roots, which were more turgid and had a higher water potential, especially at lower soil water potentials. During drying, soil particles in the sheaths aggregate more tightly, making the sheaths less permeable to water and possibly creating air gaps. The soil sheaths of O. ficus-indica thus reduce water loss from the roots to a drying soil. 34 refs., 6 figs., 1 tab.

  13. Precision control of soil N cycling via soil functional zone management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managing the soil nitrogen (N) cycle is a major component of agricultural sustainability. Soil functional zone management (SFZM), a novel framework of agroecosystem management, may improve soil N management compared with conventional and no-tillage approaches by focusing on the timing and location (...

  14. Can we use Electrical Resistivity Tomography to measure root zone moisture dynamics in fields with multiple crops?

    NASA Astrophysics Data System (ADS)

    Garre, S.; Coteur, I.; Wongleecharoen, C.; Diels, J.; Vanderborght, J.

    2012-12-01

    Agriculture on shallow or steep soils in the humid tropics often leads to low resource use efficiency. Contour hedgerow intercropping systems have been proposed to reduce run-off and control soil erosion. However, competition for water and nutrients between crops and associated hedgerows may reduce the overall performance of contour hedgerow systems. Electrical resistivity tomography (ERT) is a valuable technique to assess the distribution and dynamics of soil moisture non-invasively. Root water uptake is a spatially variable and small-scale process, which requires at least decimeter resolution and a high sensitivity in order to be able to monitor changes in time and space. Careful experimental design is of uttermost importance in order to maximize the information content of the ERT survey and to gain insights in the possibilities and limitations of the survey. Virtual experiments in combination with absolute and spatial performance measures provide a way to optimize the information that can be retrieved from an ERT experiment. We used this approach to identify a suitable measurement methodology to monitor water fluxes in a contour hedgerow intercropping system in Ratchaburi province, Thailand. The virtual experiment showed that there are important differences between the tested measurement configurations. We saw that the optimal ERT array was capable of recognizing distinct water depletion zones under the different crops. However, sharp contrasts in the 1-D water depletion profile are smoothened. ERT measurements conducted in Thailand showed that the soils of our experimental plots were very heterogeneous both along the slope as with depth. This observation highlighted some constraints of the ERT method for soil moisture monitoring in the field, such as the difficulty to define a relationship between electrical conductivity and soil moisture in very heterogeneous soils. Nevertheless, the data indeed revealed contrasting water depletion patterns under monocropping

  15. Identifying root exudates in field contaminated soil systems

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2012-12-01

    Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil

  16. Microfungal-community diversity in Zygophyllum dumosum and Hammada scoparia root zones in the northern Negev Desert.

    PubMed

    Yu, Jun; Grishkan, Isabella; Steinberger, Yosef

    2013-04-01

    The soil dilution plate method was used to determine the influences of perennial shrubs on the species diversity and density of cultivable microfungal communities inhabiting the root zones of two perennial shrubs, Zygophyllum dumosum and Hammada scoparia, in the northern Negev Desert, Israel. Soil samples were collected under the canopies of shrubs and the open spaces between them (serving as control) from five depths (0-10, 10-20, 20-30, 30-40, and 40-50 cm) during the wet and dry seasons of 2010. Fifty-one species belonging to 31 genera were identified from Zygomycota, teleomorphic and anamorphic Ascomycota, including Coelomycetes. During the wet and dry seasons, 4-10 and 2-6 species were identified at different soil depths beneath perennial shrubs and in the open spaces, while the corresponding colony-forming units (CFUs) varied from 3071 to 27687 and from 3201 to 15247 g(-1) dry soil. More diverse microfungal communities were collected in the vicinity of perennial shrubs compared to the open spaces during the wet season, while a reverse trend was observed during the dry season. Further study is needed to provide insights into the correlation between compounds of litter and root exudates of perennial shrubs and microfungal-community structure by a combination of molecular and physiological tools. PMID:22736431

  17. Soil-to-plant halogens transfer studies 1. Root uptake of radioiodine by plants.

    PubMed

    Kashparov, V; Colle, C; Zvarich, S; Yoschenko, V; Levchuk, S; Lundin, S

    2005-01-01

    Long-term controlled experiments under natural conditions in the field have been carried out in the Chernobyl Exclusion zone in order to determine the parameters governing radioiodine transfer to plants from four types of soils (podzoluvisol, greyzem and typical and meadow chernozem) homogeneously contaminated in the 20-cm upper layer with an addition of (125)I. An absence of (125)I depletion in arable soil layers due to volatilization was noted up to one year after contamination. During one year, depletion due to the vertical migration of radioiodine from the arable layer of each of the soils did not exceed 4% of the total (125)I content. Radioiodine concentration ratios (CR) were obtained in radish roots, lettuce leaves, bean pods, and wheat grain and straw. The highest CR values were observed in podzoluvisol: 0.01-0.03 for radish roots and lettuce leaves, 0.003-0.004 for bean pods and 0.001 for wheat grains. In the other three soils, these values were one order of magnitude lower. The parameters relating to changes in radioiodine bioavailability were determined, based on the contamination dynamics of plants in field conditions. PMID:15603907

  18. Denitrification Potential, Root Biomass and Organic Matter in Degraded and Restored Urban Riparian Zones

    EPA Science Inventory

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitroge...

  19. Denitrification Potential, Root Biomass, and Organic Matter in Degraded and Restored Urban Riparian Zones

    EPA Science Inventory

    Hydrologic changes associated with urbanization often lead to lower water tables and drier, more aerobic soils in riparian zones. These changes reduce the potential for denitrification, an anaerobic microbial process that converts nitrate, a common water pollutant, into nitrogen...

  20. Critical Zone Experimental Design to Assess Soil Processes and Function

    NASA Astrophysics Data System (ADS)

    Banwart, Steve

    2010-05-01

    Through unsustainable land use practices, mining, deforestation, urbanisation and degradation by industrial pollution, soil losses are now hypothesized to be much faster (100 times or more) than soil formation - with the consequence that soil has become a finite resource. The crucial challenge for the international research community is to understand the rates of processes that dictate soil mass stocks and their function within Earth's Critical Zone (CZ). The CZ is the environment where soils are formed, degrade and provide their essential ecosystem services. Key among these ecosystem services are food and fibre production, filtering, buffering and transformation of water, nutrients and contaminants, storage of carbon and maintaining biological habitat and genetic diversity. We have initiated a new research project to address the priority research areas identified in the European Union Soil Thematic Strategy and to contribute to the development of a global network of Critical Zone Observatories (CZO) committed to soil research. Our hypothesis is that the combined physical-chemical-biological structure of soil can be assessed from first-principles and the resulting soil functions can be quantified in process models that couple the formation and loss of soil stocks with descriptions of biodiversity and nutrient dynamics. The objectives of this research are to 1. Describe from 1st principles how soil structure influences processes and functions of soils, 2. Establish 4 European Critical Zone Observatories to link with established CZOs, 3. Develop a CZ Integrated Model of soil processes and function, 4. Create a GIS-based modelling framework to assess soil threats and mitigation at EU scale, 5. Quantify impacts of changing land use, climate and biodiversity on soil function and its value and 6. Form with international partners a global network of CZOs for soil research and deliver a programme of public outreach and research transfer on soil sustainability. The

  1. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity.

    PubMed

    Brackin, Richard; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich

    2015-01-01

    Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed.

  2. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity.

    PubMed

    Brackin, Richard; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich

    2015-01-01

    Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed. PMID:26496834

  3. [Effects of water-fertilizer spatial coupling in root zone on winter wheat growth and yield].

    PubMed

    Li, Kai-feng; Zhang, Fu-cang; Qi, You-ling; Xing, Ying-ying; Li, Zhi-jun

    2010-12-01

    A soil column experiment was conducted to study the winter wheat growth and yield under effects of different soil wetting (overall wetting, upper part wetting, and lower part wetting) and fertilization (overall fertilization, upper part fertilization, and lower part fertilization). The plant height and leaf area at tillering stage decreased significantly under lower part fertilization, compared with those under upper part and overall soil fertilization, but had no significant differences under different soil wetting. At jointing stage, the plant height was higher when the soil wetting and fertilization were at same location than at different location, manifesting a synergistic coupling effect of water and fertilizer. Lower part soil wetting and lower part fertilization decreased the root-, shoot-, and total dry biomass significantly, upper part fertilization benefited the biomass accumulation of winter wheat, and upper part soil wetting combined with upper part fertilization had an obvious coupling effect on the shoot- and total dry biomass. Soil wetting and fertilization at same location induced a higher ratio of root to shoot, compared with soil wetting and fertilization at different location, and lower part soil wetting resulted in the maximum water use efficiency (WUE), compared with upper part and overall soil wetting. A higher WUE was observed in the soil wetting and fertilization at same location than at different location, but a lower WUE was induced by lower part fertilization. The grain number per spike under upper part and overall soil wetting was increased by 41.7% and 61.9%, respectively, compared with that under lower part soil wetting, and this yield component under upper part and overall soil fertilization was also higher, compared with that under lower part fertilization. Upper part soil wetting and fertilization had an obvious coupling effect of water-fertilizer on the yield and yield components (except for 1000-grain mass). Different soil wetting

  4. [Effects of water-fertilizer spatial coupling in root zone on winter wheat growth and yield].

    PubMed

    Li, Kai-feng; Zhang, Fu-cang; Qi, You-ling; Xing, Ying-ying; Li, Zhi-jun

    2010-12-01

    A soil column experiment was conducted to study the winter wheat growth and yield under effects of different soil wetting (overall wetting, upper part wetting, and lower part wetting) and fertilization (overall fertilization, upper part fertilization, and lower part fertilization). The plant height and leaf area at tillering stage decreased significantly under lower part fertilization, compared with those under upper part and overall soil fertilization, but had no significant differences under different soil wetting. At jointing stage, the plant height was higher when the soil wetting and fertilization were at same location than at different location, manifesting a synergistic coupling effect of water and fertilizer. Lower part soil wetting and lower part fertilization decreased the root-, shoot-, and total dry biomass significantly, upper part fertilization benefited the biomass accumulation of winter wheat, and upper part soil wetting combined with upper part fertilization had an obvious coupling effect on the shoot- and total dry biomass. Soil wetting and fertilization at same location induced a higher ratio of root to shoot, compared with soil wetting and fertilization at different location, and lower part soil wetting resulted in the maximum water use efficiency (WUE), compared with upper part and overall soil wetting. A higher WUE was observed in the soil wetting and fertilization at same location than at different location, but a lower WUE was induced by lower part fertilization. The grain number per spike under upper part and overall soil wetting was increased by 41.7% and 61.9%, respectively, compared with that under lower part soil wetting, and this yield component under upper part and overall soil fertilization was also higher, compared with that under lower part fertilization. Upper part soil wetting and fertilization had an obvious coupling effect of water-fertilizer on the yield and yield components (except for 1000-grain mass). Different soil wetting

  5. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    NASA Astrophysics Data System (ADS)

    Inselsbacher, Erich; Schmidt, Susanne; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Brackin, Richard

    2016-04-01

    Nitrogen (N) uptake by agricultural crops is a key constituent of the global N cycle, as N captured by roots has a markedly different fate than N remaining in the soil. Global evidence indicates that only approximately 50% of applied N fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. This inefficiency is of global concern, and requires innovation based on improved understanding of which N forms are available for and ultimately taken up by crops. However, current soil analysis methods based on destructive soil sampling provide little insight into delivery and acquisition of N forms by roots. Here, we present the results of a study in sugarcane fields receiving different fertilizer regimes comparing soil N supply rates with potential root N uptake rates. We applied microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure flux rates of inorganic N and amino acid N, and analyzed N uptake capacities of sugarcane roots using 15N labelled tracers. We found that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and organic N may contribute more to crop N supply than is currently assumed. Overall, we show a new approach for examining in situ N relations in soil in context of crop N physiology, which provides a new avenue towards tailoring N fertilizer supply to match the specific uptake abilities and N demand of crops over the growth

  6. HYDRAULIC REDISTRIBUTION OF SOIL WATER BY ROOTS IN FORESTS OF THE PACIFIC NORTHWEST

    EPA Science Inventory

    One aspect of structural complexity of forest canopies is the root system structure belowground, which influences patterns of soil water utilization by trees. Deeply rooted trees and other plants can hydraulically lift water via their roots from several m below the soil surface ...

  7. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, Davey L; Vamerali, Teofilo

    2016-03-01

    Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).

  8. A root zone modelling approach to estimating groundwater recharge from irrigated areas

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Skaggs, T. H.; van Genuchten, M. Th.; Candela, L.

    2009-03-01

    SummaryIn irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in which irrigation, evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were simulated with the HYDRUS-1D software package. The model was calibrated using field data collected in an experimental plot. Good agreement was achieved between the HYDRUS-1D simulations and field measurements made under melon and lettuce crops. The simulations indicated that water use by the crops was below potential levels despite regular irrigation. The fraction of applied water (irrigation plus precipitation) going to recharge ranged from 22% for a summer melon crop to 68% for a fall lettuce crop. In total, we estimate that irrigation of annual fruits and vegetables produces 26 hm 3 y -1 of groundwater recharge to the top unconfined aquifer. This estimate does not include important irrigated perennial crops in the region, such as artichoke and citrus. Overall, the results suggest a greater amount of irrigation return flow in the Campo de Cartagena region than was previously estimated.

  9. Mineral protection of soil carbon counteracted by root exudates

    DOE PAGESBeta

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-03-30

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (‘priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals.more » By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Lastly, our results provide insights into the coupled biotic–abiotic mechanisms underlying the ‘priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.« less

  10. Water fluxes in root-soil-systems investigated by Magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, Sabina; Javaux, Mathieu; Pohlmeier, Andreas

    2010-05-01

    days. The important difference to the short term experiment is the observation of tracer uptake followed by an upward transport in the inner root tissues. This could also be proved by a following chemical analysis showing decreasing Gd content from the roots over the shoot to the leaves. In parallel a high resolution 3d image of the root system architecture was performed, in order to compare the experimentally observed motion of the plume with detailed 3D model calculations of water uptake and tracer transport. References: 1. Pohlmeier, A., et al., Imaging water fluxes in porous media by magnetic resonance imaging using D2O as a tracer. Mag. Res. Imag., 2008. 27(2): p. 285-292. 2. Pohlmeier, A., et al., Changes in Soil Water Content Resulting from Ricinus Root Uptake Monitored by Magnetic Resonance Imaging Vadose Zone Journal, 2008. 7: p. 1010-1017. 3. Haber-Pohlmeier, S., Stapf S. and Pohlmeier A., Waterflow monitored by tracer transport in natural porouse media using MRI. Vadose Zone Journal, submitted

  11. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.

    PubMed

    Sun, Tian-Ran; Cang, Long; Wang, Quan-Ying; Zhou, Dong-Mei; Cheng, Jie-Min; Xu, Hui

    2010-04-15

    Phytoremediation is an emerging technology for the remediation of polycyclic aromatic hydrocarbons (PAHs). In this study, pot experiments were conducted to evaluate the efficacy of phytoremediation of phenanthrene and pyrene in a typical low organic matter soil (3.75 g kg(-1)), and the contribution proportions of abiotic losses, microbes, plant roots, and root exudates were ascertained during the PAHs dissipation. The results indicated that contribution of abiotic losses from this soil was high both for phenanthrene (83.4%) and pyrene (57.2%). The contributions of root-exudates-enhanced biodegradation of phenanthrene (15.5%) and pyrene (21.3%) were higher than those of indigenous microbial degradation. The role of root exudates on dissipation of phenanthrene and pyrene was evident in this experiment. By the way, with the increasing of ring numbers in PAHs structures, the root-exudates-enhanced degradation became more and more important. BIOLOG-ECO plate analysis indicated that microbial community structure of the soil receiving root exudates had changed. The removal efficiency and substrate utilization rate in the treatment with plant roots were lower than the treatment only with root exudates, which suggested that possible competition between roots and microbes for nutrients had occurred in a low organic matter soil.

  12. Population Changes of Tylenchulus semipenetrans Under Localized Versus Uniform Drought in the Citrus Root Zone

    PubMed Central

    Duncan, L. W.; El-Morshedy, M. M.

    1996-01-01

    Population development of Tylenchulus semipenetrans in dry soil was investigated in a greenhouse study. Citrus seedlings were grown in sandy soil in vertical tubes with upper and lower sections. Nematode population densities in the upper tubes were measured at 16, 23, and 37 days, post-treatment. Three treatments consisted of i) irrigating both tubes when soil water potential reached -1 5 kPa (non-drought), ii) irrigating only the bottom tube (local drought), and iii) no irrigation (uniform drought). Soil water potential in the upper tubes did not differ under local and uniform drought during the first 16 days post-treatment, when it approached - 125 kPa. Thereafter, the water potential of soil under uniform drought continued to decrease, while that under local drought stabilized at approximately -150 kPa. Treatments had no consistent effects on female T. semipenetrans counts from soil or roots. However, after 37 days, numbers of eggs, juvenile, and male nematodes per gram of root under local drought were more than 2.4-fold greater than those under non-drought or uniform drought. Numbers of juvenile and male nematodes in soil were 6.5 times higher under local drought than under non-drought after 37 days. Nematodes did not survive in soil under uniform drought. Most of the eggs recovered on each date, from roots under local and non-drought, hatched within 35 days. Sixteen days of uniform drought reduced cumulative egg hatch to 51%, and almost no eggs hatched after 23 and 37 days of uniform drought. Thus, the response of T. semipenetrans to dry soil is fundamentally different, depending on whether all or part of the rhizosphere experiences drought. These data and field observations suggest that hydraulic lift via the root xylem may prolong the activity of some nematodes and possibly other rhizosphere-inhabiting organisms in dry soil. PMID:19277154

  13. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees.

    PubMed

    Bithell, Sean L; Tran-Nguyen, Lucy T T; Hearnden, Mark N; Hartley, Diana M

    2014-01-01

    Understanding the root distribution of trees by soil coring is time -: consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m(-2)) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23-28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R(2) = 0.9307, P < 0.001) with the dry matter (g m(-2)) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g.

  14. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    PubMed Central

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  15. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Watts, Chris W; Whalley, W Richard

    2010-08-01

    To investigate the influence of different growing substrates (two mineral, two organic) on root xylem ABA concentration ([ABA](root)) and the contribution of the drying root system to total sap flow during partial rootzone drying (PRD), sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots. Sap flow through each hypocotyl was measured below the graft union when one pot ('wet') was watered and other ('dry') was not. Each substrate gave unique relationships between dry pot matric potential (Psi(soil)), volumetric water content ((v)) or penetrometer resistance (Q) and either the fraction of photoperiod sap flow from roots in drying soil or [ABA](root). However, decreased relative sap flow, and increased [ABA](root), from roots in drying soil varied with root water potential (Psi(root)) more similarly across a range of substrates. The gradient between Psi(soil) and Psi(root) was greater in substrates with high sand or peat proportions, which may have contributed to a more sensitive response of [ABA](root) to Psi(soil) in these substrates. Whole plant transpiration was most closely correlated with the mean Psi(soil) of both pots, and then with detached leaf xylem ABA concentration. Although Psi(root) best predicted decreased relative sap flow, and increased [ABA](root), from roots in drying soil across a range of substrates, the inaccessibility of this variable in field studies requires a better understanding of how measurable soil variables (Psi(soil), (v), Q) affect Psi(root). PMID:20591896

  16. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Watts, Chris W; Whalley, W Richard

    2010-08-01

    To investigate the influence of different growing substrates (two mineral, two organic) on root xylem ABA concentration ([ABA](root)) and the contribution of the drying root system to total sap flow during partial rootzone drying (PRD), sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots. Sap flow through each hypocotyl was measured below the graft union when one pot ('wet') was watered and other ('dry') was not. Each substrate gave unique relationships between dry pot matric potential (Psi(soil)), volumetric water content ((v)) or penetrometer resistance (Q) and either the fraction of photoperiod sap flow from roots in drying soil or [ABA](root). However, decreased relative sap flow, and increased [ABA](root), from roots in drying soil varied with root water potential (Psi(root)) more similarly across a range of substrates. The gradient between Psi(soil) and Psi(root) was greater in substrates with high sand or peat proportions, which may have contributed to a more sensitive response of [ABA](root) to Psi(soil) in these substrates. Whole plant transpiration was most closely correlated with the mean Psi(soil) of both pots, and then with detached leaf xylem ABA concentration. Although Psi(root) best predicted decreased relative sap flow, and increased [ABA](root), from roots in drying soil across a range of substrates, the inaccessibility of this variable in field studies requires a better understanding of how measurable soil variables (Psi(soil), (v), Q) affect Psi(root).

  17. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity

    PubMed Central

    Brackin, Richard; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich

    2015-01-01

    Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots’ uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed. PMID:26496834

  18. [Effects of nitrogen forms on the growth, yield and fruit quality of tomato under controlled alternate partial root zone irrigation].

    PubMed

    Zhang Qiang; Xu, Fei; Wang, Rong-fu; Shu, Liang-zuo; Liu, Rui; Zhang, De-yu

    2014-12-01

    The effects of nitrogen (N) forms (ammonium-N and nitrate-N) on the growth, yield and fruit quality of tomato plants (cv. Zhongyan 988) under controlled alternate partial root zone irrigation (APRI) were examined in a split-root experiment. Under the same irrigation mode and/or controlled soil water limitation treatment, ammonium-N promoted plant growth at the early stage, while nitrate-N improved plant growth and development at the later stage leading to higher biomass accumulation and fruit yield at harvest. Under APRI and the same soil water conditions, plants of the nitrate-N treatment improved the content of vitamin C and the ratio of soluble sugar to organic acid and thus facilitated fruit quality when compared with those of the ammonium-N treatment. Plant height and leaf area under APRI treatment were lower compared with conventional irrigation (CK) under the same N form, but the stem diameter under APRI treatment with 60% theta(f) (field water capacity, theta(f)) soil moisture showed a slight increase at the late growth stage. Under the same N form, fruit yield was significantly lower in APRI treatment than that of the CK. Compared with the CK, fruit yield decreased by 22.4%-26.3% under the APRI treatment with 40% theta(f) soil moisture. Under 60% theta(f) soil moisture, the APRI treatment significantly improved fruit quality and water-use efficiency compared with the CK regardless small reduction (5.3%-5.4%) in fruit yield. The experimental results suggested that the APRI treatment with the lower limitation of soil moisture controlled at 60% theta(f), and nitrate-N supply would be the optimal option in terms of sustainable use of water resource and fertilizer.

  19. [Effects of nitrogen forms on the growth, yield and fruit quality of tomato under controlled alternate partial root zone irrigation].

    PubMed

    Zhang Qiang; Xu, Fei; Wang, Rong-fu; Shu, Liang-zuo; Liu, Rui; Zhang, De-yu

    2014-12-01

    The effects of nitrogen (N) forms (ammonium-N and nitrate-N) on the growth, yield and fruit quality of tomato plants (cv. Zhongyan 988) under controlled alternate partial root zone irrigation (APRI) were examined in a split-root experiment. Under the same irrigation mode and/or controlled soil water limitation treatment, ammonium-N promoted plant growth at the early stage, while nitrate-N improved plant growth and development at the later stage leading to higher biomass accumulation and fruit yield at harvest. Under APRI and the same soil water conditions, plants of the nitrate-N treatment improved the content of vitamin C and the ratio of soluble sugar to organic acid and thus facilitated fruit quality when compared with those of the ammonium-N treatment. Plant height and leaf area under APRI treatment were lower compared with conventional irrigation (CK) under the same N form, but the stem diameter under APRI treatment with 60% theta(f) (field water capacity, theta(f)) soil moisture showed a slight increase at the late growth stage. Under the same N form, fruit yield was significantly lower in APRI treatment than that of the CK. Compared with the CK, fruit yield decreased by 22.4%-26.3% under the APRI treatment with 40% theta(f) soil moisture. Under 60% theta(f) soil moisture, the APRI treatment significantly improved fruit quality and water-use efficiency compared with the CK regardless small reduction (5.3%-5.4%) in fruit yield. The experimental results suggested that the APRI treatment with the lower limitation of soil moisture controlled at 60% theta(f), and nitrate-N supply would be the optimal option in terms of sustainable use of water resource and fertilizer. PMID:25876407

  20. Analysis of the relationship between rusty root incidences and soil properties in Panax ginseng

    NASA Astrophysics Data System (ADS)

    Wang, Q. X.; Xu, C. L.; Sun, H.; Ma, L.; Li, L.; Zhang, D. D.; Zhang, Y. Y.

    2016-08-01

    Rusty root is a serious problem in ginseng cultivation that limits the production and quality of ginseng worldwide. The Changbai Mountains are the most famous area for ginseng cultivation in China. To clarify the relationship between rusty root and soil characteristics, physico-chemical properties and enzymatic activities of soil collected from five different fields in the Changbai Mountains were analyzed and a controlled experiment carried out by increasing the concentration of Fe (II). Soil bulk density, moisture, total iron (Fe) and total manganese (Mn) concentrations and polyphenol oxidase (PPO) activity were significantly higher in rusty root than healthy root groups (two-sample test, P<0.05 or P<0.01), respectively. Pearson test showed that there was a significant positive correlation between rusty root index and pH, N, Fe, Mn, Al, Zn and Ca of soil samples collected from fields (P<0.05 or P<0.01), and a significant positive correlation also occurred between rusty root index and Fe (II) added to soil in Fe (II) inducing rusty root (P<0.01). Physiological factors may be very important roles giving rise to ginseng rusty root. Fe (III) reduction and Fe (II) oxidation could be important in increasing the incidence of rusty root. Soil moisture and bulk density of non-rhizosphere soil not attached to the root surface, and pH, N and PPO content of rhizosphere soils attached to the root surface were heavily involved in the reduction, oxidation and sequestration of metal ions.

  1. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    PubMed

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion. PMID:17615891

  2. Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests

    NASA Astrophysics Data System (ADS)

    Reid, Matthew C.; Pal, David S.; Jaffé, Peter R.

    2015-09-01

    Gas transfer processes are fundamental to the biogeochemical and water quality functions of wetlands, yet there is limited knowledge of the rates and pathways of soil-atmosphere exchange for gases other than oxygen and methane (CH4). In this study, we use a novel push-pull technique with sulfur hexafluoride (SF6) and helium (He) as dissolved gas tracers to quantify the kinetics of root-mediated gas transfer, which is a critical efflux pathway for gases from wetland soils. This tracer approach disentangles the effects of physical transport from simultaneous reaction in saturated, vegetated wetland soils. We measured significant seasonal variation in first-order gas exchange rate constants, with smaller spatial variations between different soil depths and vegetation zones in a New Jersey tidal marsh. Gas transfer rates for most biogeochemical trace gases are expected to be bracketed by the rate constants for SF6 and He, which ranged from ˜10-2 to 2 × 10-1 h-1 at our site. A modified Damköhler number analysis is used to evaluate the balance between biochemical reaction and root-driven gas exchange in governing the fate of environmental trace gases in rooted, anaerobic soils. This approach confirmed the importance of plant gas transport for CH4, and showed that root-driven transport may affect nitrous oxide (N2O) balances in settings where N2O reduction rates are slow.

  3. Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kim, D.; Stein, B.

    1994-01-01

    Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud. were evaluated by light and electron microscopy to determine the distribution of organelle sedimentation towards gravity. Roots of Limnobium are strongly gravitropic. The rootcap consists of only two layers of cells. Although small amyloplasts are present in the central cap cells, no sedimentation of any organelle, including amyloplasts, was found. In contrast, both amyloplasts and nuclei sediment consistently and completely in cells of the elongation zone. Sedimentation occurs in one cell layer of the cortex just outside the endodermis. Sedimentation of both amyloplasts and nuclei begins in cells that are in their initial stages of elongation and persists at least to the level of the root where root hairs emerge. This is the first modern report of the presence of sedimentation away from, but not in, the rootcap. It shows that sedimentation in the rootcap is not necessary for gravitropic sensing in at least one angiosperm. If amyloplast sedimentation is responsible for gravitropic sensing, then the site of sensing in Limnobium roots is the elongation zone and not the rootcap. These data do not necessarily conflict with the hypothesis that sensing occurs in the cap in other roots, since Limnobium roots are exceptional in rootcap origin and structure, as well as in the distribution of organelle sedimentation. Similarly, if nuclear sedimentation is involved in gravitropic sensing, then nuclear mass would function in addition to, not instead of, that of amyloplasts.

  4. Mineral protection of soil carbon counteracted by root exudates [Root exudates counteract mineral control on soil carbon turnover

    SciTech Connect

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-03-30

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (‘priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals. By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Lastly, our results provide insights into the coupled biotic–abiotic mechanisms underlying the ‘priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.

  5. Mineral protection of soil carbon counteracted by root exudates [Root exudates counteract mineral control on soil carbon turnover

    DOE PAGESBeta

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-03-30

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (‘priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals.more » By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Lastly, our results provide insights into the coupled biotic–abiotic mechanisms underlying the ‘priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.« less

  6. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.

    PubMed

    Stout, S C; Porterfield, D M; Briarty, L G; Kuang, A; Musgrave, M E

    2001-03-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur

  7. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    NASA Technical Reports Server (NTRS)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur

  8. Root standing crop and chemistry after six years of soil warming in a temperate forest.

    PubMed

    Zhou, Yumei; Tang, Jianwu; Melillo, Jerry M; Butler, Sarah; Mohan, Jacqueline E

    2011-07-01

    Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground. PMID:21813516

  9. Root standing crop and chemistry after six years of soil warming in a temperate forest.

    PubMed

    Zhou, Yumei; Tang, Jianwu; Melillo, Jerry M; Butler, Sarah; Mohan, Jacqueline E

    2011-07-01

    Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.

  10. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  11. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  12. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  13. [Effects of ryegrass (Lolium perenne) root exudates dose on pyrene degradation and soil microbes in pyrene-contaminated soil].

    PubMed

    Xie, Xiao-mei; Liao, Min; Yang, Jing

    2011-10-01

    By simulating a gradually decreasing concentration of root exudates with the distance away from root surface in rhizosphere, this paper studied the effects of ryegrass (Lolium perenne) root exudates dose on the pyrene degradation and microbial ecological characteristics in a pyrene-contaminated soil. It was observed that with the increasing dose of ryegrass root exudates, the residual amount of soil pyrene changed nonlinearly, i. e. , increased after an initial decrease. When the root exudates dose was 32.75 mg kg(-1) of total organic carbon, the residual pyrene was the minimum, indicating that the root exudates at this dose stimulated pyrene degradation significantly. In the meantime, soil microbial biomass carbon and microbial quotient had an opposite trend, suggesting the close relationship between pyrene degradation and soil microbes. In the test soil, microbial community was dominated by bacteria, and the bacteria had the same variation trend as the pyrene degradation, which indicated that the pyrene was degraded mainly by bacteria, and the effects of root exudates on pyrene degradation were mainly carried out through the effects on bacterial population. There was a similar variation trend between the activity of soil dehydrogenase, a microbial endoenzyme catalyzing the dehydrogenation of organic matter, and the soil microbes, which further demonstrated that the variations of soil microbes and their biochemical characteristics were the ecological mechanisms affecting the pyrene degradation in the pyrene-contaminated soil when the ryegrass root exudates dose increased. PMID:22263480

  14. The mechanics and energetics of soil bioturbation by earthworms and plant roots - Impacts on soil structure generation and maintenance

    NASA Astrophysics Data System (ADS)

    Or, Dani; Ruiz, Siul; Schymanski, Stanlislaus

    2015-04-01

    Soil structure is the delicate arrangement of solids and voids that facilitate numerous hydrological and ecological soil functions ranging from water infiltration and retention to gaseous exchange and mechanical anchoring of plant roots. Many anthropogenic activities affect soil structure, e.g. via tillage and compaction, and by promotion or suppression of biological activity and soil carbon pools. Soil biological activity is critical to the generation and maintenance of favorable soil structure, primarily through bioturbation by earthworms and root proliferation. The study aims to quantify the mechanisms, rates, and energetics associated with soil bioturbation, using a new biomechanical model to estimate stresses required to penetrate and expand a cylindrical cavity in a soil under different hydration and mechanical conditions. The stresses and soil displacement involved are placed in their ecological context (typical sizes, population densities, burrowing rates and behavior) enabling estimation of mechanical energy requirements and impacts on soil organic carbon pool (in the case of earthworms). We consider steady state plastic cavity expansion to determine burrowing pressures of earthworms and plant roots, akin to models of cone penetration representing initial burrowing into soil volumes. Results show that with increasing water content the strain energy decreases and suggest trade-offs between cavity expansion pressures and energy investment for different root and earthworm geometries and soil hydration. The study provides a quantitative framework for estimating energy costs of bioturbation in terms of soil organic carbon or the mechanical costs of soil exploration by plant roots as well as mechanical and hydration limits to such activities.

  15. Identification of active root zone by data assimilation techniques: monitoring and modelling of irrigation experiments

    NASA Astrophysics Data System (ADS)

    Busato, Laura; Vanella, Daniela; Boaga, Jacopo; Manoli, Gabriele; Marani, Marco; Putti, Mario; Consoli, Simona; Binley, Andrew M.; Cassiani, Giorgio

    2015-04-01

    The identification of active root distribution and the quantification of relevant water fluxes (root water uptake-RWU) are key elements in understanding the exchanges of mass and energy in soil-plant-atmosphere systems. In this contribution we present the assimilation of 3D time-lapse Electrical Resistivity Tomography (ERT) data, acquired around an orange tree during irrigation experiments, in a soil-plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaf-level photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances. The data assimilation procedure, assisted also by independent information concerning the soil properties, aims specifically at identifying the distribution and strength of active roots modelled as sinks in the unsaturated flow model. In addition the flow model is enhanced by a forward electrical current model in order to predict the electrical response measured by ERT in dependence of the soil water content distribution. Strengths and weaknesses of the proposed approach are discussed.

  16. Root exudation of phytosiderophores from soil-grown wheat

    PubMed Central

    Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus

    2014-01-01

    For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21–47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330

  17. Root exudation of phytosiderophores from soil-grown wheat.

    PubMed

    Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus

    2014-09-01

    For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21-47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330

  18. [Species diversity of AMF community colonized in herbages roots in calcareous soil and purple soil].

    PubMed

    Song, Hui-Xing; Zhong, Zhang-Cheng

    2009-08-01

    A total of 17 herbages belonging to 12 families were selected as the host plants of arbuscular mycorrhizal fungi (AMF). They were grown on calcareous soil and purple soil, respectively, and sampled on the 120th day after seedling emergence. The DNA of AMF in the herbages roots was extracted by CTAB method, the partial rDNA sequence encoding ribosomal 28S big unit was amplified with special primers U1/U2 for fungi, and the PCR products were analyzed with PAGE silver staining method. In calcareous soil, 29 AMF bands were found in the roots of the 17 host plant species, and each host plant was colonized by 8.29 AMF bands; while in purple soil, only twenty-four AMF bands were found, with 9.47 bands in each host plant. All the AMF bands included unique bands and common bands. Cluster analysis showed that the AMF colonization in host plant roots was family-specific, and affected by soil factors. The feasibility of applying AMF in ecological restoration of limestone area was also discussed in this paper.

  19. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement.

    PubMed

    Lynch, Jonathan P; Chimungu, Joseph G; Brown, Kathleen M

    2014-11-01

    Several root anatomical phenes affect water acquisition from drying soil, and may therefore have utility in breeding more drought-tolerant crops. Anatomical phenes that reduce the metabolic cost of the root cortex ('cortical burden') improve soil exploration and therefore water acquisition from drying soil. The best evidence for this is for root cortical aerenchyma; cortical cell file number and cortical senescence may also be useful in this context. Variation in the number and diameter of xylem vessels strongly affects axial water conductance. Reduced axial conductance may be useful in conserving soil water so that a crop may complete its life cycle under terminal drought. Variation in the suberization and lignification of the endodermis and exodermis affects radial water conductance, and may therefore be important in reducing water loss from mature roots into dry soil. Rhizosheaths may protect the water status of young root tissue. Root hairs and larger diameter root tips improve root penetration of hard, drying soil. Many of these phenes show substantial genotypic variation. The utility of these phenes for water acquisition has only rarely been validated, and may have strong interactions with the spatiotemporal dynamics of soil water availability, and with root architecture and other aspects of the root phenotype. This complexity calls for structural-functional plant modelling and 3D imaging methods. Root anatomical phenes represent a promising yet underexplored and untapped source of crop breeding targets.

  20. An interdisciplinary approach to decipher different phases of soil formation using root abundances and geochemical methods

    NASA Astrophysics Data System (ADS)

    Wiesenberg, Guido; Gocke, Martina

    2015-04-01

    Pedogenic processes are commonly thought to be restricted mainly to the uppermost few dm of soils. However, often processes like water infiltration and - more obviously - rooting lead to much deeper penetration of soil, soil parent material and, if present, paleosols. The extent to which root penetration and subsequent organic matter incorporation, release of root exudates and microbial activity influence the general chemical and physical properties of deeper soil horizons remains largely unknown. We determined the lateral extent of root-derived overprint of the soil parent material as well as the overprint of the chemical properties in paleosols by combining root quantities obtained in the field with a large variety of inorganic and organic chemical as well as microbial properties in bulk soils and rhizosphere samples. Soils, soil parent material and paleosols were sampled along a transect from The Netherlands via Germany and Hungary towards Serbia, where soil and underlying loess, sand, and paleosol profiles were excavated in pits of 2 m to 13 m depth. Root counting on horizontal levels and profile walls during field campaigns, assisted by three-dimensional X-ray microtomographic scanning of undisturbed samples, enabled the quantitative assessment of recent and ancient root systems. Ages were determined by 14C dating for the latter, and by OSL dating for sediments, respectively. The bulk elemental composition of soils, sediments and paleosols and molecular structure of organic matter therein helped to quantitatively assess the root-related overprint in different depth intervals. The results point to the significance of deep roots as a soil forming factor extending into soil parent material, as well as the overprint of geochemical proxies in paleosols due to intense root penetration at various phases after burial. The shown examples highlight potential pitfalls in assessing rooted soil and paleosol profiles and their ages, and provide potential solutions for

  1. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes.

    PubMed

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-03-01

    Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants.

  2. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes.

    PubMed

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-03-01

    Comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on xylem pH, ABA, and ionic concentrations of tomato (Lycopersicon esculentum L.) plants were investigated in two split-root pot experiments. Results showed that PRI plants had similar or significantly higher xylem pH, which was increased by 0.2 units relative to DI plants. Nitrate and total ionic concentrations (cations+anions), and the proportion of cations influenced xylem pH such that xylem pH increases as nitrate and total ionic concentrations decrease, and the proportion of cations increases. In most cases, the xylem ABA concentration was similar for PRI and DI plants, and a clear association between increases in xylem pH with increasing xylem ABA concentration was only found when the soil water content was relatively low. The concentrations of anions, cations, and the sum of anions and cations in PRI were higher than in the DI treatment when soil water content was relatively high in the wetted soil compartment. However, when water content in both soil compartments of the PRI pots were very low before the next irrigation, the acquisition of nutrients by roots was reduced, resulting in lower concentrations of anions and cations in the PRI than in the DI treatment. It is therefore essential that the soil water content in the wet zone should be maintained relatively high while that in the drying soil zone should not be very low, both conditions are crucial to maintain high soil and plant water status while sustaining ABA signalling of the plants. PMID:22162869

  3. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of di...

  4. Creeping bentgrass growth in sand-based root zones with or without biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic amendments such as peat moss and various composts are typically added to sand-based root zones to increase water and nutrient retention. However, these attributes are typically lost within a few years as these amendments decompose. Biochar is a high carbon, porous coproduct from the pyrolysi...

  5. Root carbon decomposition and microbial biomass response at different soil depths

    NASA Astrophysics Data System (ADS)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  6. Stem-root flow effect on soil-atmosphere interactions and uncertainty assessments

    NASA Astrophysics Data System (ADS)

    Kuo, Tzu-Hsien; Chen, Jen-Ping; Xue, Yongkang

    2016-04-01

    Rainfall that reaches the soil surface can rapidly move into deeper layers in the form of bulk flow through the stem-root flow mechanism. This study developed the stem-root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land-atmospheric interactions. The SSiB model was tested in a single-column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem-root flow generally caused a decrease in soil moisture in the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in substantial changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem-root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem-root flow substantially affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could be either positive or negative depending on the relative changes in the soil moisture of the top soil vs. deeper soil layers due to stem-root flow and soil moisture diffusion processes.

  7. [Effects of soil compaction stress on respiratory metabolism of cucumber root].

    PubMed

    Zheng, Jun-Xian; Sun, Yan; Han, Shou-Kun; Zhang, Hao

    2013-03-01

    A pot experiment with cucumber cultivar "Jingchun 4" was conducted to study the effects of soil compaction stress on the respiratory metabolism of cucumber root. Two treatments were installed, i.e. , soil bulk densities 1.20 and 1.55 g . cm-3. Under soil compaction stress, the activities of root pyruvate decarboxylase, alcohol dehydrogenase, and lactate dehydrogenase and the contents of root anaerobic respiration products alcohol, acetaldehyde, and lactate increased significantly, while the activities of the key enzymes involved in root aerobic respiration, including malate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase, decreased significantly, root pyruvate and succinate contents had significant increase, whereas root malate content decreased significantly. All the results illustrated that under soil compaction stress, the aerobic respiration of cucumber root was inhibited, while its anaerobic respiration was promoted.

  8. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  9. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  10. Tracking soil structural changes during root growth with sequential X-Ray CT scanning

    NASA Astrophysics Data System (ADS)

    Schmidt, Sonja; Bengough, Glyn; Hallett, Paul

    2014-05-01

    Crop productivity is highly dependent on a good supply of water and nutrients. With increasing demand for food and variable water regimes due to climate change, it is important to get a better understanding on the processes involved in water and nutrient uptake by roots. Changes in soil structure affect water and nutrient availabilities for plants. It is known that roots change their environment during growth but little is known on how soil structural properties change as roots penetrate soils. More detailed information on root growth induced changes in the rhizosphere will help us to model water and nutrient uptake by plants. The objective of this study was to measure directly how soil structure changes in close proximity to the root as a seedling root penetrates through the soil. 3D volumetric images of maize root growth during six hours were obtained using X-ray microtomography at a resolution of 21 μm. Roots were grown in soils of two different compaction levels (50 kPa and 200 kPa uniaxial load) and matric potentials (10 kPa and 100 kPa). Changes in porosity, pore connectivity and root-soil contact were determined from 2D cross sections for each time step. The 2D cross sections were chosen at 4 different positions in the sample, and each section was divided into sections of 64 voxels (1.3 mm2) to determine changes in porosity and connectivity with distance from the root. Soil movement caused by root growth was quantified from 2D cross sections at different positions along the sample using Particle image velocimetry (PIV). Changes in soil structure during root growth were observed. Porosity in close proximity to the root decreased whereas root-soil contact increased with time. The PIV showed a radial deformation of the soil. Greatest deformation was found close to the root. Some aggregates fractured during root growth whereas others were pushed into the pore space. These data on the changes in soil structure will help us to predict water and nutrient

  11. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil.

    PubMed

    Zhang, Junling; George, Eckhard

    2009-02-01

    Nutrient sources in soils are often heterogeneously distributed. Although many studies have examined the root responses to local N and P enrichments in the soil, less research was conducted on root responses to Mg patches. New roots of pre-grown Mg-insufficient and Mg-sufficient plants of Norway spruce (Picea abies [L.] Karst.) and Scots pine (Pinus sylvestris L.) seedlings were allowed to grow into four other pots of equal size, which were placed under the tree-bearing pot. Soils in the lower pots were either unfertilised, or supplied with Mg, or NPK or a mixture of NPKMg sources. Plants were harvested after 9 months of growth. Compared to the corresponding controls (Mg versus unfertilised and NPKMg versus NPK), Mg additions did not have a significant effect on either root dry matter, total root length (TRL) or specific root length (SRL), irrespective of tree species and plant Mg nutritional status. In contrast, NPK and NPKMg additions significantly increased the root dry matter and TRL in the nutrient-rich soil patch, and decreased SRL in Norway spruce. However, the observed root morphological changes did not occur in Scots pine. Root Mg concentrations were increased in Mg-rich soil patches, but those accumulations varied with tree species. Mg accumulation in a marked patch was measured only in newly grown roots of Mg-sufficient Norway spruce, whereas a more homogenous distribution of Mg concentration was observed for all newly grown roots in Mg-insufficient trees in the four soil treatments. In Scots pine, Mg accumulations occurred in both Mg-insufficient and Mg-sufficient plants. These results suggest that Mg patches in the soil may not lead to a local increase in root growth, but to Mg uptake and root Mg accumulation. Tree roots react differently to Mg patches in comparison to their response to N or P patches in the soil. PMID:19203945

  12. Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere

    PubMed Central

    WATT, MICHELLE; SILK, WENDY K.; PASSIOURA, JOHN B.

    2006-01-01

    • Background Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. • Scope and Aims We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance2/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. • Conclusions Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root–organism interactions in the field. PMID:16551700

  13. Combining fluorescence imaging and neutron radiography to simultaneously record dynamics of oxygen and water content in the root zone

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Nagl, S.; Kardjilov, N.

    2010-12-01

    There is a growing need in non-destructive techniques able to measure life-controlling parameters such as oxygen and water dynamics in ecosystems. We use neutron radiography coupled with fluorescence imaging to map the dynamics of these two essential biogeochemical parameters in the root-zone of plants. Measuring the real-time distribution of water and oxygen concentration can enable us to better understand where the active parts of the roots are located in respect to uptake and respiration. Roots performance itself is a function of age and local conditions such as water and oxygen availability in soil. It is technically challenging to monitor these dynamics in small distances from the roots without disturbing them. Non-destructive imaging methods such as fluorescence and neutron imaging provide a unique opportunity to unravel some of these complex processes. Boron-free glass containers (inner size 10cm x 10cm x 1cm) were filled with fine sand of different grain sizes. A sensor foil for O2 (Borisov et al. 2006) was installed on one inner-side of the containers. We grew lupine plants in the container for two weeks under controlled conditions. We took neutron radiographs and fluorescence images of the samples for a range of water contents, and therefore a range of root activities and oxygen changes. We observed the consumption of oxygen induced by roots of lupine plants during 36 hours. Neutron radiography gives us the information about root development and water content. Due to the high water content, aeration from atmosphere is limited. By focusing on the initial conditions we observe that the fluorescence intensity increases in the lower and upper part, where roots are located. The respiration activity creates oxygen deficits close to the roots, and we observed a higher activity by the lateral roots than the tap root. Moreover, the oxygen consumption increases with increasing root growth or root age. After 24 hours the images indicates better aeration in the upper

  14. Stem-root flow effect on soil-atmosphere interactions and uncertainty assessments

    NASA Astrophysics Data System (ADS)

    Kuo, T.-H.; Chen, J.-P.; Xue, Y.

    2015-11-01

    Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem-root flow mechanism. This study develops the stem-root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land-atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem-root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem-root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem-root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem-root flow and soil moisture diffusion processes.

  15. How far roots and exudates can transform the soil structure and porosity?

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Kohler-Milleret, Roxane; Lamy, Frédéric; Boivin, Pascal

    2014-05-01

    Aims The impact of plant-roots on soil physical porosity and structure is still to be deciphered. Recent results revealed root-induced increases in soil pore volume whose magnitude could not be attributed to root-drilling effect, thus suggesting an indirect effect via microbial activity enhanced by root exudates (Milleret et al., 2009, Kholer-Milleret et al., 2013). This is discussed in the present study by quantifying the soil hydro-structural changes induced by root exudates and microorganisms in the absence of roots. Methods The experiment was performed on series of structured repacked samples from two soils previously experimented with plants in mesocosms (Anthrosol and Luvisol). The samples received a daily input of artificial root exudates for three months. The soil structural changes were then assessed using shrinkage analysis and aggregate stability test. Microbial activity was measured with CO2 emanation. Results In agreement with previous findings, root exudates increased microbial activity and aggregate stability. Oppositely, the observed structural changes were contradictory both in magnitude and pattern with those observed in the presence of plant roots. The soil bulk porosity was almost not changed while the small-diameter structural porosity was decreased in the presence of root exudates. Moreover, the hydro-structural stability of the soil decreased while the aggregate stability increased. Conclusions Though the structural changes observed in the presence of roots cannot be attributed to direct root drilling effect, they are not observed when only root exudates are delivered to the soil. Our results suggest that the soil structure is engineered by a complex soil-plant-microbe interaction combining root mechanical effect and micro-aggregate stabilisation effect. Cumulative structural pore volume increase could result from aggregates rearrangements induced by root growth, either by drilling or lever effect, further stabilized by microorganism

  16. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    NASA Astrophysics Data System (ADS)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of

  17. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  18. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates.

    PubMed

    Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from

  19. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    1998-01-01

    Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is < or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.

  20. Mapping Soil Carbon from Cradle to Grave: 'Omic and Isotope Based Measurements of Root C Transformations

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Nuccio, E. E.; Shi, S.; Neurath, R.; Brodie, E.; Zhou, J.; Lipton, M. S.; Herman, D.; Firestone, M.

    2014-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms, and the soil organo-mineral matrix. Plant roots are the primary inputs of soil organic C; the presence of roots significantly alters rates of organic matter mineralization by soil microbes. Our research on how roots influence decomposition of soil organic matter in both simplified and complex microcosms uses geochemical characterization, molecular microbiology, isotope tracing, 'omics and novel imaging approaches ('ChipSIP' and 'STXM-SIMS') to trace the fate of isotopically labelled root exudates and plant tissues. Our work seeks to understand the genomic basis for how organic C transformation and decomposition in soil is altered by interactions between plant roots and the soil microbial community (bacteria, archaea, fungi, microfauna). We hypothesize that root-exudate stimulation of soil microbial populations results in the altered expression of transcripts and proteins involved in decomposition of macromolecular C compounds. Using an isotope array that allows us to follow root C into bacterial, fungal, and microfaunal communities, we have tracked movement of 13C from labeled exudates and 15N from labeled root litter into the soil microbial community, and linked this data to 16S profiles and community gene transcripts. By integrating stable isotopes as tracers of natural resource utilization (i.e. root litter), and analysis of the functional properties of the communities that respond to those resources, we can identify the molecular pathways that are stimulated in the soil microbiome in response to root litter, living roots, and their interfaces.

  1. [Species-associated differences in foliage-root coupling soil-reinforcement and anti-erosion].

    PubMed

    Liu, Fu-quan; Liu, Jing; Nao, Min; Yao, Xi-jun; Zheng, Yong-gang; Li, You-fang; Su, Yu; Wang, Chen-jia

    2015-02-01

    This paper took four kinds of common soil and water conservation plants of the study area, Caragana microphylla, Salix psammophila, Artemisia sphaerocephala and Hippophae rhamnides at ages of 4 as the research object. Thirteen indicators, i.e., single shrub to reduce wind velocity ration, shelterbelt reducing wind velocity ration, community reducing wind velocity ration, taproot tensile strength, representative root constitutive properties, representative root elasticity modulus, lateral root branch tensile strength, accumulative surface area, root-soil interface sheer strength, interface friction coefficient, accumulative root length, root-soil composite cohesive, root-soil composite equivalent friction angle, reflecting the characteristics of windbreak and roots, were chose to evaluate the differences of foliage-root coupling soil-reinforcement and anti-erosion among four kinds of plants by analytic hierarchy process (AHP) under the condition of spring gale and summer rainstorm, respectively. The results showed the anti-erosion index of foliage-root coupling was in the sequence of S. psammophila (0.841) > C. microphylla (0.454) > A. sphaerocephala (-0.466) > H. rhamnides (-0.829) in spring gale, and C. microphylla (0.841) > S. psammophila (0. 474) > A. sphaerocephala (-0.470) > H. rhamnides (-0.844) in summer rainstorm. S. psammophila could be regarded as one of the most important windbreak and anti-erosion species, while C. microphylla could be the most valuable soil and water conservation plant for the study area.

  2. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  3. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification.

    PubMed

    Braun, Sabine; Cantaluppi, Leonardo; Flückiger, Walter

    2005-10-01

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with < or =20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees.

  4. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  5. Spatial and Temporal Variability in Nitrate Concentration below the Root Zone in an Almond Orchard and its Implications for Potential Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Baram, S.; Couvreur, V.

    2015-12-01

    Spatial and Temporal Variability in Nitrate Concentration below the Root Zone in an Almond Orchard and its Implications for Potential Groundwater Contamination S. Baram1, M. Read1, D. Smart2, T. Harter1, J Hopmans11Department of Land, Air & Water Resources University of California Davis 2Department of Viticulture and Enology University of California Davis Estimates of water and fertilizer losses below the root zone of nitrogen (N) intensive agricultural orchard crops are major concern in groundwater protection. However, microscopic and macroscopic heterogeneity in unsaturated soils make accurate loss estimates very challenging. In this study we aimed to examine field scale variability in nitrate (NO3-) losses below the root zone (>250cm) of a 15 years old almond orchard in Madera county California. Based on a soil variability survey, tensiometers and solution samplers were installed at 17 locations around the 40 acre orchard. The hydraulic potential and the NO3- concentrations were monitored over two growing seasons. Nitrate concentrations varied spatially and temporarily, and ranged from below to more than 30 times higher than the drinking water contamination standard of >10 mg NO3--N L-1. Principal component analysis of the relations between the NO3- concentration, presence of a hard pan in the subsurface, its depth and thickness, and the fertigation and irrigation events indicated that none of these factors explained the observed variability in pore-water NO3- concentrations, with hard pan being the most dominant factor. Throughout the irrigation season minimal leaching was observed, yet post-harvest and preseason flooding events led to deep drainage. Due to the high spatial and temporal variability in the NO3- concentration and the potential for deep drainage following a wet winter or flooding event we conclude that the most efficient way to protect ground water is by transitioning to high frequency low nitrogen fertigation which would retain NO3-in the active

  6. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  7. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture.

    PubMed

    Lynch, Jonathan P

    2015-09-01

    Crop genotypes with reduced metabolic costs of soil exploration would have improved water and nutrient acquisition. Three strategies to achieve this goal are (1) production of the optimum number of axial roots; (2) greater biomass allocation to root classes that are less metabolically demanding; and (3) reduction of the respiratory requirement of root tissue. An example of strategy 1 is the case of reduced crown root number in maize, which is associated with greater rooting depth, N capture and yield in low N soil. An example of strategy 2 is the case of increased hypocotyl-borne rooting in bean, which decreases root cost and increases P capture from low P soil. Examples of strategy 3 are the cases of increased formation of root cortical aerenchyma, decreased cortical cell file number and increased cortical cell size in maize, which decrease specific root respiration, increase rooting depth and increase water capture and yield under water stress. Root cortical aerenchyma also increases N capture and yield under N stress. Root phenes that reduce the metabolic cost of soil exploration are promising, underexploited avenues to the climate-resilient, resource-efficient crops that are urgently needed in global agriculture. PMID:25255708

  8. Imaging of Roots and Surrounding Soil by NMR Tomography and Relaxometry

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Watzlaw, J.; Schnakenberg, U.; Pohlmeier, A. J.; Blümich, B.

    2011-12-01

    The combination of 3D imaging of root system architecture and water uptake patterns is mandatory for the understanding of root water uptake processes. A very convenient tool for this is magnetic resonance imaging (MRI). The differentiation between roots and surrounding soil is achieved by using a comparative long echo time so that the signal from the soil is suppressed due to its much shorter T2 relaxation time (10 - 25ms) in contrast to the root tissue (ca. 60ms). Depending on a given system diameter we achieve a resolution of up to 0.16 mm for the root system which allows a reliable visualization of the entire root system. The power of the method is demonstrated by the investigation of a time series of root growth during increasing drought stress combined with a simultaneous monitoring of water content changes with high resolution of 1.56 mm. Desiccation starts first in the outer, less rooted regions of the pot. In the inner regions with a dense network of roots water content remains higher in the neighborhood of the roots. A challenging goal is to investigate the local NMR properties of soil and roots by implanting micro coils (< 2x2 mm^2) directly in the soil and the neighborhood of the roots. This offers the opportunity of obtaining local relaxation times and indirectly hydraulic parameters in larger setups like lysimeters.

  9. A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments

    NASA Astrophysics Data System (ADS)

    Beyer, M.; Koeniger, P.; Gaj, M.; Hamutoko, J. T.; Wanke, H.; Himmelsbach, T.

    2016-02-01

    Non- or minimum-invasive methods for the quantification of rooting depths of plants are rare, in particular in (semi-)arid regions; yet, this information is crucial for the parameterization of SVAT (Soil-Vegetation-Atmosphere Transfer) models and understanding of processes within the hydrological cycle. We present a technique utilizing the stable isotope deuterium (2H) applied as artificial tracer to investigate the vertical extent of the root zone, characterize water uptake dynamics of trees and shrubs at different depths and monitor transport of water through the unsaturated zone of dry environments. One liter of 35% deuterated water (2H2O) was punctually applied at several depths (0.5 m, 1 m, 2 m, 2.5 m and 4 m) at six different plots at a natural forested site in the Cuvelai-Etosha Basin (CEB), Namibia/Angola. Subsequently, uptake of the tracer was monitored by collecting plant samples (xylem and transpired water) up to seven days after tracer injection. Soil profiles at the plots were taken after the campaign and again after six months in order to evaluate the transport and distribution of 2H within the unsaturated zone. Of 162 plant samples taken, 31 samples showed clear signals of artificially introduced 2H, of which all originate from the plots labeled up to 2 m depth. No artificially injected 2H was found in plants when tracer application occurred deeper than 2 m. Results further indicate a sharing of water resources between the investigated shrubs and trees in the upper 1 m whilst tree roots seem to have better access to deeper layers of the unsaturated zone. The soil profiles taken after six months reveal elevated 2H-concentrations from depths as great as 4 m up to 1 m below surface indicating upward transport of water vapor. Purely diffuse transport towards the soil surface yielded an estimated 0.4 mm over the dry season. Results are of particular significance for a more precise parameterization of SVAT models and the formulation of water balances in

  10. Root responses to soil physical conditions; growth dynamics from field to cell.

    PubMed

    Bengough, A Glyn; Bransby, M Fraser; Hans, Joachim; McKenna, Stephen J; Roberts, Tim J; Valentine, Tracy A

    2006-01-01

    Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.

  11. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes

    DOE PAGESBeta

    Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; Mayes, Melanie A.; Wang, Gangsheng; Classen, Aimée T.

    2015-10-20

    Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal

  12. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes

    SciTech Connect

    Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; Mayes, Melanie A.; Wang, Gangsheng; Classen, Aimée T.

    2015-10-20

    Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are present in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while

  13. Mapping Soil Carbon from Cradle to Grave: C Transformations of Root Exudates and Plant Litter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Keiluweit, M.; Nuccio, E.; Bougoure, J.; Weber, P. K.; Brodie, E.; Mayali, X.; Shi, S.; Hwang, M.; Thelen, M.; Firestone, M.; Kleber, M.; Nico, P. S.

    2013-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms, and the soil organo-mineral matrix. Plant roots provide 30-40% of soil organic C inputs, accelerate the rate of organic matter mineralization by ~10X, and support an active microhabitat for microbial transformation of soil C. Our research on how roots influence decomposition of soil organic matter in both simplified and complex microcosms uses geochemical characterization, molecular microbiology, isotope tracing, metabolomics and novel imaging approaches (';ChipSIP' and ';STXM-SIMS') to trace the fate of isotopically labelled root exudates and plant tissues. Our previous work suggests root exudates drive O2 limitation, alter metal chemistry and mineralogy, and influence the availability of SOM. Our most recent experiments using synthetic rhizospheres were designed to identify the role of root exudates on ligno-cellulose decomposition in soils. Cultures of 13C/15N-labeled single plant cells (lignin-rich tracheary elements) were added to rhizosphere microcosm soils, and their decomposition followed under the influence of different root exudates using the dual imaging approach ';STXM-SIMS'. Using this combination of X-ray spectromicroscopy and NanoSIMS, we imaged the deconstruction of 13C/15N-labeled ligno-cellulose in situ, and mapped associations of plant cell-derived decomposition products with specific soil minerals. We've also looked at microbial community function in the more complex rhizospheres surrounding roots of the annual grass Avena fatua. Using an isotope array that allows us to follow root C into bacterial, fungal, and microfaunal communities, we tracked the movement of 13C from labeled exudates and 15N from labeled root litter into the soil microbial community. Our results indicate that the microbial communities involved in litter decomposition differ in rhizosphere versus bulk soils, which may have implications for carbon stabilization in soil.

  14. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. PMID:25871977

  15. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  16. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  17. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation

    PubMed Central

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-01-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and 13C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of 13CO2-exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly 13C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of 13C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes. PMID:25382456

  18. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation.

    PubMed

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-03-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and (13) C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of (13) CO2 -exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly (13) C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of (13) C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes.

  19. Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake.

    PubMed

    Markewitz, Daniel; Devine, Scott; Davidson, Eric A; Brando, Paulo; Nepstad, Daniel C

    2010-08-01

    *Deep root water uptake in tropical Amazonian forests has been a major discovery during the last 15 yr. However, the effects of extended droughts, which may increase with climate change, on deep soil moisture utilization remain uncertain. *The current study utilized a 1999-2005 record of volumetric water content (VWC) under a throughfall exclusion experiment to calibrate a one-dimensional model of the hydrologic system to estimate VWC, and to quantify the rate of root uptake through 11.5 m of soil. *Simulations with root uptake compensation had a relative root mean square error (RRMSE) of 11% at 0-40 cm and < 5% at 350-1150 cm. The simulated contribution of deep root uptake under the control was c. 20% of water demand from 250 to 550 cm and c. 10% from 550 to 1150 cm. Furthermore, in years 2 (2001) and 3 (2002) of throughfall exclusion, deep root uptake increased as soil moisture was available but then declined to near zero in deep layers in 2003 and 2004. *Deep root uptake was limited despite high VWC (i.e. > 0.30 cm(3) cm(-3)). This limitation may partly be attributable to high residual water contents (theta(r)) in these high-clay (70-90%) soils or due to high soil-to-root resistance. The ability of deep roots and soils to contribute increasing amounts of water with extended drought will be limited.

  20. Is the Inherent Potential of Maize Roots Efficient for Soil Phosphorus Acquisition?

    PubMed Central

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  1. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    PubMed

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots. PMID:24594677

  2. Root zone calcium modulates the response of potato plants to heat stress.

    PubMed

    Kleinhenz, Matthew D; Palta, Jiwan P

    2002-05-01

    Potato plant growth and development are known to be severely impacted by heat stress. Here plants grown in a chemically inert medium of 1 : 1 quartzite : perlite (v : v) were subjected to either 35/25 degrees C (stress) or 20/15 degrees C (control) day/night air temperatures and four concentrations of root zone calcium (5, 25, 125 and 600 &mgr;M Ca) for 3 weeks. We report for the first time that potato plant growth under heat stress can persist at specific levels of Ca2+ in the root zone and that the Ca2+ level required for growth under heat stress exceeds that required for growth under normal temperatures. We also provide strong, initial evidence that the ability of high Ca2+ levels to mitigate heat stress effects results from shifts in meristematic activity. Total foliar mass and leaf area were essentially unaffected by Ca2+ level under control temperatures. Under heat stress, leaf area was reduced to about 5% of the control at 5 and 25 &mgr;M Ca but to only 70% of the control at 125 and 600 &mgr;M Ca. Likewise, total foliar mass was reduced under heat stress to about 30% of the control at 5 and 25 &mgr;M Ca but total foliar mass was greater under heat stress than control conditions at 125 and 600 &mgr;M Ca. This increase at higher Ca2+ concentrations was due primarily to axillary shoot growth. Anatomical studies of leaves grown under heat stress show that cell expansion was impaired by heat stress and this impairment was overcome by increasing root zone calcium levels. These results provide insight into the mechanism by which root zone Ca2+ may modulate plant response to heat stress. PMID:12010474

  3. Soil Moisture/ Tree Water Status Dynamics in a Mid-Latitude Montane Forest, Southern Sierra Critical Zone Observatory, CA

    NASA Astrophysics Data System (ADS)

    Hartsough, P. C.; Malazian, A.; Kamai, T.; Roudneva, E.; Hopmans, J. W.

    2009-12-01

    In the Mediterranean climate of the Sierra Nevada, snow pack persists well into the spring after precipitation has effectively stopped. With the onset of summer and continued dry conditions, snow quickly melts, and soil profiles dry out as shrubs and trees deplete the available soil moisture. A better understanding of surface and subsurface water budgets in remote landscapes warrants closer monitoring of moisture and temperature variability in near surfaces soils. As part of the Southern Sierra Critical Zone Observatory (CZO), investigators from University of California deployed approximately 150 soil moisture, water potential and temperature sensors within the root structure of an individual white fir tree (Abies concolor) located in the Kings River Experimental Watershed (KREW). These sensors complement sap flow measurements in the trunk, stem water potential measurements in the canopy, and snow depth measurements, to enable the Southern Sierra CZO researchers to investigate how soil environmental stresses (water, temperature, and nutrients) impact forest ecosystems across the rain-to-snow-dominated transition zone. We captured the dynamics of the soil profile desiccation at various depths beneath the snow pack as soils went from wet to very dry conditions. Monitoring of sap flow and periodic leaf water potential measurements, we tracked the activity of the tree as it responded to changing available moisture in the root zone. All sensors were reactive to moisture and temperature variations and showed dynamic responses to precipitation, snow melt and changes in vegetative demand. We demonstrate here the initial phase of a multi-year deployment of soil moisture sensors as a critical integrator of hydrologic/ biotic interaction in a forested catchment as part of a wider effort to document changing ecosystem response to changing environmental inputs.

  4. Quantifying root-reinforcement of river bank soils by four Australian tree species

    NASA Astrophysics Data System (ADS)

    Docker, B. B.; Hubble, T. C. T.

    2008-08-01

    The increased shear resistance of soil due to root-reinforcement by four common Australian riparian trees, Casuarina glauca, Eucalyptus amplifolia, Eucalyptus elata and Acacia floribunda, was determined in-situ with a field shear-box. Root pull-out strengths and root tensile-strengths were also measured and used to evaluate the utility of the root-reinforcement estimation models that assume simultaneous failure of all roots at the shear plane. Field shear-box results indicate that tree roots fail progressively rather than simultaneously. Shear-strengths calculated for root-reinforced soil assuming simultaneous root failure, yielded values between 50% and 215% higher than directly measured shear-strengths. The magnitude of the overestimate varies among species and probably results from differences in both the geometry of the root-system and tensile strengths of the root material. Soil blocks under A. floribunda which presents many, well-spread, highly-branched fine roots with relatively higher tensile strength, conformed most closely with root model estimates; whereas E. amplifolia, which presents a few, large, unbranched vertical roots, concentrated directly beneath the tree stem and of relatively low tensile strength, deviated furthest from model-estimated shear-strengths. These results suggest that considerable caution be exercised when applying estimates of increased shear-strength due to root-reinforcement in riverbank stability modelling. Nevertheless, increased soil shear strength provided by tree roots can be calculated by knowledge of the Root Area Ratio ( RAR) at the shear plane. At equivalent RAR values, A. floribunda demonstrated the greatest earth reinforcement potential of the four species studied.

  5. From root zone modelling to regional forecasting of nitrate concentration in recharge flows - The case of the Walloon Region (Belgium)

    NASA Astrophysics Data System (ADS)

    Sohier, C.; Degré, A.; Dautrebande, S.

    2009-05-01

    SummaryIn order to model the nitrate concentration of the recharge water in a spatially distributed way for the agricultural areas of the Walloon Region of Belgium, the EPIC model was first adapted to the specific soil description by modifying the reservoir sizes. It was also adapted to the regional crop production by modifying classcrop files in relation with observed data (both aerial and underground crop growth, yield) in wheat, sugar beet, and potato fields. As the vadose zone presents a depth between 1.5 and 104 m in this region, new reservoirs were added according to the geological descriptions available. Deep nitrate transfer was validated in a specific site where cropping history was known. Nitrate nitrogen after harvest in the root zone was validated for wheat within different crop rotations using the first results of a nitrate-monitoring program planned by the authorities to test the effectiveness of the mitigation measures in agriculture. This extended model was also linked to a GIS (geographical information system) using 1 km 2-cells. All the required data were rasterised to allow HRU (hydrological response unit) identification within the cells. The cell's daily water flows are weighted flows of each HRU depending on their relative area within the cell. Water balances at catchment scale allow us to validate the calculation. Taking into account the evolution of distributed land use and observed climatic data, we have built maps of fast indicators and long-term indicators. The first map represents nitrate concentration in the water leaving the root zone and the second one represents the time transfer for nitrate from 1.5 m depth to the groundwater table and nitrate concentration in recharge water. These maps constitute major tools for nitrogen management at a regional level.

  6. [Ammonia-oxidizing bacteria community composition at the root zones of aquatic plants after ecological restoration].

    PubMed

    Xing, Peng; Kong, Fan-xiang; Chen, Kai-ning; Chen, Mei-jun; Wu, Xiao-dong

    2008-08-01

    To investigate the effects of aquatic plants on ammonia-oxidizing bacteria (AOB) at their root zones, four species of aquatic plants were selected, Phragmites communis, Typha angustifolia L., Potamogeton crispus L., and Limnanthemun nymphoides, which were widely used in ecological restorations. AOB in the samples were enumerated by most-probable-number (MPN) method. Nested polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) procedures were performed with ammonia oxidizer-selective primers. Main DGGE bands were excised from the gel and sequenced for phylogenetic affiliation. Results indicate that AOB densities are always higher at the root zones of emergent plants (Phragmites communis 2.8 x 10(5) cells/g and Typha angustifolia L.4.3 x 10(5) cells/g) than those of submerged and floating-leaved plant (Potamogeton crispus L. 9.3 x 10(4) cells/g and Limnanthemun nymphoides 7.7 x 10(4) cells/g). At the root zones, the oxidation-reduction potential is above zero and NH4+ concentration is lower than it in the bare surface sediment. Fourteen major bands were recovered from the DGGE gel, re-amplified and sequenced. Although the identified bands have their respective similar sequences in GenBank, most of them are related to Nitrosomonas-like. This type of bacteria would play an important role of nitrogen cycle in lake sediment after ecological restoration.

  7. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    NASA Astrophysics Data System (ADS)

    Holleran, M.; Levi, M.; Rasmussen, C.

    2015-01-01

    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil

  8. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    PubMed

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  9. SOIL RESPIRED D13C SIGNATURES REFLECT ROOT EXUDATE OR ROOT TURNOVER SIGNATURES IN AN ELEVATED CO2 AND OZONE MESOCOSM EXPERIMENT

    EPA Science Inventory

    Bulk tissue and root and soil respired d13C signatures were measured throughout the soil profile in a Ponderosa Pine mesocosm experiment exposed to ambient and elevated CO2 concentrations. For the ambient treatment, root (0-1mm, 1-2mm, and >2mm) and soil d13C signatures were ?24...

  10. Documentation of Computer Program INFIL3.0 - A Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone

    USGS Publications Warehouse

    ,

    2008-01-01

    This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that

  11. How significant to plant N nutrition is the direct consumption of soil microbes by roots?

    PubMed Central

    Hill, Paul W; Marsden, Karina A; Jones, Davey L

    2013-01-01

    Summary –The high degree to which plant roots compete with soil microbes for organic forms of nitrogen (N) is becoming increasingly apparent. This has culminated in the finding that plants may consume soil microbes as a source of N, but the functional significance of this process remains unknown. –We used 15N- and 14C-labelled cultures of soil bacteria to measure rates of acquisition of microbes by sterile wheat roots and plants growing in soil. We compared these rates with acquisition of 15N delivered as nitrate, amino acid monomer (l-alanine) and short peptide (l-tetraalanine), and the rate of decomposition of [14C] microbes by indigenous soil microbiota. –Acquisition of microbe 15N by both sterile roots and roots growing in soil was one to two orders of magnitude slower than acquisition of all other forms of 15N. Decomposition of microbes was fast enough to account for all 15N recovered, but approximately equal recovery of microbe 14C suggests that microbes entered roots intact. –Uptake of soil microbes by wheat (Triticum aestivum) roots appears to take place in soil. If wheat is typical, the importance of this process to terrestrial N cycling is probably minor in comparison with fluxes of other forms of soil inorganic and organic N. PMID:23718181

  12. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  13. Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at picatinny arsenal, New Jersey

    USGS Publications Warehouse

    Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.

    1990-01-01

    This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.

  14. Root chemistry in Populus tremuloides: effects of soil nutrients, defoliation, and genotype.

    PubMed

    Stevens, Michael T; Gusse, Adam C; Lindroth, Richard L

    2014-01-01

    Although genetic, environmental, and G x E effects on aboveground phytochemistry have been well documented in trembling aspen (Populus tremuloides), little work has focused on the same factors affecting tissues underground. Belowground plant defenses are likely important mediators of root-feeding herbivores that can strongly influence plant fitness. We used a common garden of potted aspen trees to explore the individual and interactive effects of soil nutrient availability, foliar damage, genotype, and their interactions, on concentrations of phytochemicals in aspen roots. Our common garden experiment employed 12 aspen genotypes that were planted into either low- or high-nutrient soil environments. Half of the trees were subjected to defoliation for two successive years, while the others were protected from damage. At the end of the growing season after the second defoliation, we harvested the trees to obtain root samples for which we assessed levels of phenolic glycosides, condensed tannins, nitrogen, and starch. Phenolic glycosides were most affected by genotype, while the other root phytochemicals were most responsive to soil nutrient conditions. The effects of defoliation were observed in interaction with soil nutrient environment and/or genotype. Interestingly, the effect of defoliation on phenolic glycosides was mediated by soil nutrients, whereas the effect of defoliation on condensed tannins was observed in concert with effects of both soil nutrients and genotype. Comparison of data from this study with an earlier, related study revealed that concentrations of phenolic glycosides and condensed tannins are lower in roots than leaves, and less responsive to defoliation. That soil nutrient environment affects root phytochemical concentrations is not unexpected given the intimate association of roots and soil, but the complex interactions between soil nutrients, aboveground damage, and genotype, and their effects on root phytochemistry, are intriguing

  15. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.

  16. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  17. The role of the distal elongation zone in the response of maize roots to auxin and gravity.

    PubMed

    Ishikawa, H; Evans, M L

    1993-08-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism. PMID:11536543

  18. The role of the distal elongation zone in the response of maize roots to auxin and gravity

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1993-01-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.

  19. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Gardi, Ciro; Menta, Cristina

    2014-04-01

    In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni. PMID:24288040

  20. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    PubMed

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  1. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.

  2. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. PMID:27459206

  3. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  4. Soil resistivity over root area ratio, soil humidity, and bulk density: laboratory tests

    NASA Astrophysics Data System (ADS)

    Guastini, Enrico; Giambastiani, Yamuna; Preti, Federico

    2015-04-01

    Knowledge about root system distribution covers an important role in slope shallow stability stud-ies, as this factor grants an increase in soil geotechnical properties (soil cohesion and friction an-gle) and determines a different underground water circulation. Published studies (Amato et al., 2008 and 2011; Censini et al., 2014) about in situ application of ERT (Electrical Resistivity Tomo-graphy) analysis show how the root presence affects the measurable soil resistivity values, confirm-ing the suitability to investigate the application of such technique, aiming to estimate root density in soil with an indirect and non-invasive method. This study, laboratory-based and led on reconstructed samples in controlled condition, aim to find a correlation between the resistivity variations and the various factors that can affect them (humid-ity, bulk density, presence of foreign bodies, temperature). The tests involved a clay-loam soil (USDA classification) taken from Quaracchi (Florence, Italy), in an experimental fir-wood (Picea abies) owned by the Department of Agricultural, Food and For-estry System, Florence University, a previously chosen site for field ERT applications. The row ma-terial has been dried out in a lab stove, grounded and sieved at 2 mm, and then placed in a lexan box (30 x 20 x 20 cm) without compaction. Inside the sample have been inserted 3 series of 4 iron electrodes, insulated along the shaft and with the conductive end placed at three different depth: 2 cm from surface, in the middle of the sample and in contact with the bottom of the box; resistivity measures are conducted on the three levels using a Syscal R2 with electrodes connected in a dipole-dipole configuration. Root presence is simulated inserting bamboo spits (simple geometry, replicable "R.A.R.") in varying number from 0 to 16 in every area between two contiguous electrodes. The tests are repeated in time, monitoring the natural variations in humidity (evapotranspiration) and bulk

  5. Distribution of electrolytes in cells of the tomato root elongation zone during a gravitropic response

    NASA Astrophysics Data System (ADS)

    Klymchuk, Dmytro

    It is known that gravitropic response of etiolated seedlings is accompanied with asymmetrical distribution of auxins. The higher amount of auxins in the tissues of the lower sides of gravistimulated organs induces cell elongation in shoots and inhibits cell elongation in roots. In spite on the progress in understanding of the auxin-mediated effects on plant growth and development, there is no a complete conception concerning of gravitropic response mechanism. This investigation aims to determine whether the growth response of tomato seedlings on reorientation to the horizontal induces alterations in distribution of electrolytes in cells of the main root elongation zone, the site where induction of the curvature takes place. Tomato (Lycopersicon esculentum, Rio Grande) seedlings were grown on agar surface in 10 cm Petri dishes. The gravitropic response of seedlings was evaluated by the angle of gravitropic curvature after the roots were reoriented 90° from the vertical. Root segments of several mm basipetal to the root tip were fixed in liquid nitrogen, freeze-substituted with Lowicril K11M at -35° C. Sections 100 and 1000 nm thick were cut using LKB Ultrotome V, collected by dry method and analyzed in the 6060 LA SEM at accelerating voltage 15 kV. Using different modes of X-ray microanalysis (X-ray map, - line and -point analysis), distribution of the physiologically relevant ions (Na, P, K, Ca) in cells of surface layers of the upper and lower root sides were investigated. The peculiarities in localization of the electrolytes in different subcellular compartments as well as distribution in the direction between upper and lower sides of the root curvature are discussed.

  6. Contribution of Root Cap Mucilage and Presence of an Intact Root Cap in Maize (Zea mays) to the Reduction of Soil Mechanical Impedance

    PubMed Central

    IIJIMA, MORIO; HIGUCHI, TOSHIFUMI; BARLOW, PETER W.

    2004-01-01

    • Background and Aims The impedance to root growth imposed by soil can be decreased by both mucilage secretion and the sloughing of border cells from the root cap. The aim of this study is to quantify the contribution of these two factors for maize root growth in compact soil. • Methods These effects were evaluated by assessing growth after removing both mucilage (treatment I – intact) and the root cap (treatment D – decapped) from the root tip, and then by adding back 2 µL of mucilage to both intact (treatment IM – intact plus mucilage) and decapped (treatment DM – decapped plus mucilage) roots. Roots were grown in either loose (0·9 Mg m−3) or compact (1·5 Mg m−3) loamy sand soils. Also examined were the effects of decapping on root penetration resistance at three soil bulk densities (1·3, 1·4 and 1·5 Mg m−3). • Key Results In treatment I, mucilage was visible 12 h after transplanting to the compact soil. The decapping and mucilage treatments affected neither the root elongation nor the root widening rates when the plants were grown in loose soil for 12 h. Root growth pressures of seminal axes in D, DM, I and IM treatments were 0·328, 0·288, 0·272 and 0·222 MPa, respectively, when the roots were grown in compact soil (1·5 Mg m−3 density; 1·59 MPa penetrometer resistance). • Conclusions The contributions of mucilage and presence of the intact root cap without mucilage to the lubricating effect of root cap (percentage decrease in root penetration resistance caused by decapping) were 43 % and 58 %, respectively. The lubricating effect of the root cap was about 30 % and unaffected by the degree of soil compaction (for penetrometer resistances of 0·52, 1·20 and 1·59 MPa). PMID:15277251

  7. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  8. The Mechanics and Energetics of Soil Bioturbation by Plant Roots and Earthworms - Plastic Deformation Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus

    2014-05-01

    Soil structure plays a critical factor in the agricultural, hydrological and ecological functions of soils. These services are adversely impacted by soil compaction, a damage that could last for many years until functional structure is restored. An important class of soil structural restoration processes are related to biomechanical activity associated with burrowing of earthworms and root proliferation in impacted soil volumes. We study details of the mechanical processes and energetics associated with quantifying the rates and mechanical energy required for soil structural restoration. We first consider plastic cavity expansion to describe earthworm and plant root radial expansion under various conditions. We then use cone penetration models as analogues to wedging induced by root tip growth and worm locomotion. The associated mechanical stresses and strains determine the mechanical energy associated with bioturbation for different hydration conditions and root/earthworm geometries. Results illustrate a reduction in strain energy with increasing water content and trade-offs between pressure and energy investment for various root and earthworm geometries. The study provides the basic building blocks for estimating rates of soil structural alteration, the associated energetic requirements (soil carbon, plant assimilates) needed to sustain structure regeneration by earthworms and roots, and highlights potential mechanical cut-offs for such activities.

  9. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere.

    PubMed

    Cheng, Yanhong; Jiang, Ying; Wu, Yue; Valentine, Tracy A; Li, Huixin

    2016-01-01

    It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is "exclusion", where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter), and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm) and a control treatment (5μm). The second method is "inoculation", whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas) and Nematodes (Cephalobus and C. elegans). In order to detect the changes in the rice's perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA)), rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion), low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation), a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status.

  10. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere

    PubMed Central

    Wu, Yue; Valentine, Tracy A.; Li, Huixin

    2016-01-01

    It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is “exclusion”, where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter), and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm) and a control treatment (5μm). The second method is “inoculation”, whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas) and Nematodes (Cephalobus and C. elegans). In order to detect the changes in the rice’s perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA)), rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion), low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation), a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status. PMID:26841062

  11. NaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils.

    PubMed

    Wu, Jinsong; Kurten, Erin L; Monshausen, Gabriele; Hummel, Grégoire M; Gilroy, Simon; Baldwin, Ian T

    2007-12-01

    Rapid alkalinization factor (RALF) is a 49-amino-acid peptide that rapidly alkalinizes cultivated tobacco cell cultures. In the native tobacco Nicotiana attenuata, NaRALF occurs as a single-copy gene and is highly expressed in roots and petioles. Silencing the NaRALF transcript by transforming N. attenuata with an inverted-repeat construct generated plants (irRALF) with normal wild-type (WT) above-ground parts, but with roots that grew longer and produced trichoblasts that developed into abnormal root hairs. Most trichoblasts produced a localized 'bulge' without commencing root hair tip growth; fewer trichoblasts grew, but were only 10% as long as those of WT plants. The root hair phenotype was associated with slowed apoplastic pH oscillations, increased pH at the tips of trichoblasts and decreased accumulation of reactive oxygen species in the root hair initiation zone. The root hair growth phenotype was partially restored when irRALF lines were grown in a low-pH-buffered medium, and reproduced in WT plants grown in a high-pH-buffered medium. When irRALF plants were grown in pH 5.6, 6.7 and 8.1 soils together with WT plants in glasshouse experiments, they were out-competed by WT plants in basic, but not acidic, soils. When WT and irRALF lines were planted into the basic soils of the native habitat of N. attenuata in the Great Basin Desert, irRALF plants had smaller leaves, shorter stalks, and produced fewer flowers and seed capsules than did WT plants. We conclude that NaRALF is required for regulating root hair extracellular pH, the transition from root hair initiation to tip growth and plant growth in basic soils.

  12. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  13. A DNA based method to detect the grapevine root-rotting fungus Roesleria subterranea in soil and root samples

    PubMed Central

    Neuhauser, Sigrid; Huber, Lars; Kirchmair, Martin

    2011-01-01

    Summary Roesleria subterranea causes root rot in grapevine and fruit trees. The fungus has long been underestimated as a weak parasite, but during the last years it has been reported to cause severe damages in German vineyards. Direct, observation-based detection of the parasite is time consuming and destructive, as large parts of the rootstocks have to be uprooted and screened for the tiny, stipitate, hypogeous ascomata of R. subterranea. To facilitate rapid detection in vineyards, protocols to extract DNA from soil samples and grapevine roots, and R.-subterranea-specific PCR primers were designed. Twelve DNA–extraction protocols for soil samples were tested in small-scale experiments, and selected parameters were optimised. A protocol based on ball-mill homogenization, DNA extraction with SDS, skim milk, chloroform, and isopropanol, and subsequent purification of the raw extracts with PVPP-spin-columns was most effective. This DNA extraction protocol was found to be suitable for a wide range of soil-types including clay, loam and humic-rich soils. For DNA extraction from grapevine roots a CTAB-based protocol was more reliable for various grapevine rootstock varieties. Roesleria-subterranea-specific primers for the ITS1–5.8S–ITS2 rDNA-region were developed and tested for their specificity to DNA extracts from eleven R. subterranea strains isolated from grapevine and fruit trees. No cross reactions were detected with DNA extracts from 44 different species of fungi isolated from vineyard soils. The sensitivity of the species-specific primers in combination with the DNA extraction method for soil was high: as little as 100 fg μl−1 R.-subterranea-DNA was sufficient for a detection in soil samples and plant material. Given that specific primers are available, the presented method will also allow quick and large-scale testing for other root pathogens. PMID:21442023

  14. Climate controls how ecosystems size the root zone storage capacity at catchment scale

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Schymanski, Stan; Fenicia, Fabrizio; Sriwongsitanon, Nutchanart; Savenije, Hubert

    2015-04-01

    The root zone moisture storage capacity (SR) of terrestrial ecosystems is a buffer providing vegetation continuous access to water and a critical factor controlling land-atmospheric moisture exchange, hydrological response and biogeochemical processes. However, it is impossible to observe directly at catchment scale. Here, using data from 300 diverse catchments, it was tested that, treating the root zone as a reservoir, the mass curve technique (MCT), an engineering method for reservoir design, can be used to estimate catchment-scale SR from effective rainfall and plant transpiration. Supporting the initial hypothesis, it was found that MCT-derived SR coincided with model-derived estimates. These estimates of parameter SR can be used to constrain hydrological, climate and land surface models. Further, the study provides evidence that ecosystems dynamically design their root systems to bridge droughts with return periods of 10-40 years, controlled by climate and linked to aridity index, inter-storm duration, seasonality and runoff ratio. This adaptation of ecosystems to climate could be explored for prediction in ungauged basins. We found that implementing the MCT-derived SR without recalibration has dramatically increased hydrological model transferability.

  15. Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots

    NASA Technical Reports Server (NTRS)

    Kiss, H. G.; Evans, M. L.; Johnson, J. D.

    1991-01-01

    Calcium has been implicated as a key component in the signal transduction process of root gravitropism. We measured cytoplasmic free calcium in protoplasts isolated from the elongation zone and cap of primary roots of light-grown, vertically oriented seedlings of Zea mays L. Protoplasts were loaded with the penta-potassium salts of fura-2 and indo-1 by incubation in acidic solutions of these calcium indicators. Loading increased with decreasing pH but the pH dependence was stronger for indo-1 than for fura-2. In the case of fura-2, loading was enhanced only at the lowest pH (4.5) tested. Dyes loaded in this manner were distributed predominantly in the cytoplasm as indicated by fluorescence patterns. As an alternative method of loading, protoplasts were incubated with the acetoxymethylesters of fura-2 and indo-1. Protoplasts loaded by this method exhibited fluorescence both in the cytoplasm and in association with various organelles. Cytoplasmic calcium levels measured using spectrofluorometry, were found to be 160 +/- 40 nM and 257 +/- 27 nM, respectively, in populations of protoplasts from the root cap and elongation zone. Cytoplasmic free calcium did not increase upon addition of calcium to the incubation medium, indicating that the passive permeability to calcium was low.

  16. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots.

    PubMed

    Bodelier, P L; Roslev, P; Henckel, T; Frenzel, P

    2000-01-27

    Methane is involved in a number of chemical and physical processes in the Earth's atmosphere, including global warming. Atmospheric methane originates mainly from biogenic sources, such as rice paddies and natural wetlands; the former account for at least 30% of the global annual emission of methane to the atmosphere. As an increase of rice production by 60% is the most appropriate way to sustain the estimated increase of the human population during the next three decades, intensified global fertilizer application will be necessary: but it is known that an increase of the commonly used ammonium-based fertilizers can enhance methane emission from rice agriculture. Approximately 10-30% of the methane produced by methanogens in rice paddies is consumed by methane-oxidizing bacteria associated with the roots of rice; these bacteria are generally thought to be inhibited by ammonium-based fertilizers, as was demonstrated for soils and sediments. In contrast, we show here that the activity and growth of such bacteria in the root zone of rice plants are stimulated after fertilization. Using a combination of radioactive fingerprinting and molecular biology techniques, we identify the bacteria responsible for this effect. We expect that our results will make necessary a re-evaluation of the link between fertilizer use and methane emissions, with effects on global warming studies.

  17. Utilization of Soil C and N by Microbial Groups in the Presence of Living Roots

    NASA Astrophysics Data System (ADS)

    Bird, J.; Herman, D.; Firestone, M.

    2007-12-01

    The effects of living plant roots and N on belowground C dynamics were examined in a CA annual grassland soil (Haploxeralf) during a 2-y greenhouse study. The fate of 13C-labeled plant roots ( Avena barbata L.) and soil were followed under planted and unplanted conditions; and with and without N addition (20 kg N ha-1 season-1). The treatments were applied during 2 growing seasons and each growing season was followed by a dry, fallow period (~ 150-d long). Living roots increased the turnover rate and loss of belowground 13 C during and after 2 seasons compared with unplanted soils. After 2 seasons, planted soils had 21% less belowground 13C present than in unplanted soils. However, total soil C increased in planted soils by 4.6% compared to unplanted after 2 seasons. N additions decreased belowground 13C turnover during the first treatment season in both planted and unplanted soils, however no effect of N on soil C was observed thereafter. Planted soils had larger microbial biomass and the community structure differed compared with unplanted soils. Planted soils had higher proportions of gram (-) bacteria, while unplanted soils had higher proportions of gram (+) bacteria, actinomycetes, and fungi. New root and exudate C supplied from living roots increased the turnover of microbial assimilated 13C compared with unplanted for all microbial groups. This greater turnover of belowground 13C was especially significant for gram (-) bacteria, which were stimulated in the planted soil. In contrast, the activity among microbial groups in unplanted soils was similar to that prior to the initiation of the treatments and soil wet-up. Our findings suggest that A. barbata roots increased soil C levels over time because root and exudate C inputs are significant, however that C increase will be moderated by an overall faster C mineralization rate of belowground C. Increased N deposition may slow soil C losses, however, they appear minor and temporary at the rates applied and for

  18. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    NASA Astrophysics Data System (ADS)

    Thaysen, E. M.; Jacques, D.; Jessen, S.; Andersen, C. E.; Laloy, E.; Ambus, P.; Postma, D.; Jakobsen, I.

    2014-12-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechanisms. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol C m-2 s-1, respectively, and grossly exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m-2 s-1. Plant biomass was high in the mesocosms as compared to a standard field situation. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one-third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Modeling suggested that increasing soil alkalinity during plant growth was due to nutrient buffering during root nitrate uptake.

  19. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  20. Roots rather than shoot residues drive soil arthropod communities of arable fields.

    PubMed

    Scheunemann, Nicole; Digel, Christoph; Scheu, Stefan; Butenschoen, Olaf

    2015-12-01

    Soil food webs are driven by plant-derived carbon (C) entering the soil belowground as rhizodeposits or aboveground via leaf litter, with recent research pointing to a higher importance of the former for driving forest soil food webs. Using natural abundance stable isotopes of wheat (C3 plant) and maize (C4 plant), we followed and quantified the incorporation of shoot residue- and root-derived maize C into the soil animal food web of an arable field for 1 year, thereby disentangling the importance of shoot residue- versus root-derived resources for arable soil food webs. On average, shoot residue-derived resources only contributed less than 12% to soil arthropod body C, while incorporation of root-derived resources averaged 26% after 2 months of maize crop and increased to 32% after 1 year. However, incorporation of root-derived maize C did not consistently increase with time: rather, it increased, decreased or remained constant depending on species. Further, preference of shoot residue- or root-derived resources was also species-specific with about half the species incorporating mainly root-derived C, while only a few species preferentially incorporated shoot residue-derived C, and about 40% incorporated both shoot residue- as well as root-derived C. The results highlight the predominant importance of root-derived resources for arable soil food webs and suggest that shoot residues only form an additional resource of minor importance. Variation in the use of plant-derived C between soil arthropod species suggests that the flux of C through soil food webs of arable systems can only be disentangled by adopting a species-specific approach.

  1. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  2. Soil CO2 efflux in a sand grassland: contribution by root, mycorrhizal and basal respiration components

    NASA Astrophysics Data System (ADS)

    Papp, Marianna; Balogh, János; Pintér, Krisztina; Cserhalmi, Dóra; Nagy, Zoltán

    2014-05-01

    Grasslands play an important role in global carbon cycle because of their remarkable extension and carbon storage capacity. Soil respiration takes a major part in the carbon cycle of the ecosystems; ratio of its autotrophic and heterotrophic components is important also when considering their sensitivity to environmental drivers. The aim of the study was to estimate the contribution by root, mycorrhizal and basal components to total soil CO2 efflux. The study was carried out in the semi-arid sandy grassland dominated by Festuca pseudovina at the Kiskunság National Park in Hungary (Bugac site) where C-flux measurements have been going on since 2002. The soil CO2 effluxes were measured in the following treatments: a./ control, b./ root-exclusion, c./ root and mycorrhiza exclusion by using 80 cm long 15 cm inner diameter PVC tubes and micro-pore inox meshes. Inox mesh was used to exclude roots, but let the mycorrhiza filaments to grow into the tubes. 10 soil cores were excavated, sieved, then root-free soil was packed back layer by layer into the cores giving 6 and 4 repetitions in b and c treatments respectively. Basal respiration is referred to as the heterotrophic respiration without influence of roots or mycorrhiza. Difference between root-exclusion and root and mycorrhiza exclusion treatment gave the value of mycorrhizal respiration and control (non-disturbed) plots the total soil CO2 efflux. The contribution by the above components was evaluated. Soil CO2 efflux was measured continuously by using an automated open system of 10 soil respiration chambers. Data was collected in every two hours from each treatment (one of the chambers recorded basal respiration, 3 chambers were settled on root-excluded treatments and 6 chambers measured control plots). Chambers were moved in every 2 weeks between the repetitions of the treatments. Soil CO2 efflux (mycorrhiza-free, root free, control) data were fitted using a soil respiration model, where soil temperature, soil

  3. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    PubMed

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P < 0.05), which could explain 35%-75% variability of soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  4. Tests of the pesticide root zone model and the aggregate model for transport and transformation of aldicarb, metolachlor, and bromide

    SciTech Connect

    Parrish, R.S.; Smith, C.N.; Fong, F.K.

    1992-01-01

    Mathematical models are widely used to predict leaching of pesticides and nutrients in agricultural systems. The work was conducted to investigate the predictive capability of the Pesticide Root Zone Model (PRZM) and the Aggregate Model (AGGR) for the pesticides aldicarb (2-methyl-2-(methylthio)propionaldehyde-O-(methyl-carbamoyl)oxime), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) and for a bromide tracer. Model predictions were compared with data collected from 1984 to 1987 in the Dougherty Plain area of southwestern Georgia. Field data were used to estimate mean concentrations of pesticide and bromide residues in the soil profile on various dates after application in each of four growing seasons. Both models tended to predict rates of movement of bromide tracer compounds in excess of that observed. For metolachlor, a pesticide with a soprption-partition coefficient that is higher than for other compounds in the study, both models provided reasonably accurate predictions within the upper 30-cm zone. For the pesticide aldicarb, results were more variable.

  5. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    PubMed

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.

  6. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    PubMed

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797

  7. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging1[OPEN

    PubMed Central

    Kochs, Johannes; Pflugfelder, Daniel

    2016-01-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants. PMID:26729797

  8. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    NASA Astrophysics Data System (ADS)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2013-03-01

    Large areas of land are restored with unweathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils, as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites, the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition, we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5 × 10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In

  9. Root growth of Lotus corniculatus interacts with P distribution in young sandy soil

    NASA Astrophysics Data System (ADS)

    Felderer, B.; Boldt-Burisch, K. M.; Schneider, B. U.; Hüttl, R. F. J.; Schulin, R.

    2012-07-01

    Large areas of land are restored with un-weathered soil substrates following mining activities in eastern Germany and elsewhere. In the initial stages of colonization of such land by vegetation, plant roots may become key agents in generating soil formation patterns by introducing gradients in chemical and physical soil properties. On the other hand, such patterns may be influenced by root growth responses to pre-existing substrate heterogeneities. In particular, the roots of many plants were found to preferentially proliferate into nutrient-rich patches. Phosphorus (P) is of primary interest in this respect because its availability is often low in unweathered soils, limiting especially the growth of leguminous plants. However, leguminous plants occur frequently among the pioneer plant species on such soils as they only depend on atmospheric nitrogen (N) fixation as N source. In this study we investigated the relationship between root growth allocation of the legume Lotus corniculatus and soil P distribution on recently restored land. As test sites the experimental Chicken Creek Catchment (CCC) in eastern Germany and a nearby experimental site (ES) with the same soil substrate were used. We established two experiments with constructed heterogeneity, one in the field on the experimental site and the other in a climate chamber. In addition we conducted high-density samplings on undisturbed soil plots colonized by L. corniculatus on the ES and on the CCC. In the field experiment, we installed cylindrical ingrowth soil cores (4.5×10 cm) with and without P fertilization around single two-month-old L. corniculatus plants. Roots showed preferential growth into the P-fertilized ingrowth-cores. Preferential root allocation was also found in the climate chamber experiment, where single L. corniculatus plants were grown in containers filled with ES soil and where a lateral portion of the containers was additionally supplied with a range of different P concentrations. In the

  10. In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil.

    PubMed

    Mohney, Brian K; Matz, Tricia; Lamoreaux, Jessica; Wilcox, David S; Gimsing, Anne Louise; Mayer, Philipp; Weidenhamer, Jeffrey D

    2009-11-01

    The difficulties of monitoring allelochemical concentrations in soil and their dynamics over time have been a major barrier to testing hypotheses of allelopathic effects. Here, we evaluate three diffusive sampling strategies that employ polydimethylsiloxane (PDMS) sorbents to map the spatial distribution and temporal dynamics of root-exuded thiophenes from the African marigold, Tagetes erecta. Solid phase root zone extraction (SPRE) probes constructed by inserting stainless steel wire into PDMS tubing were used to monitor thiophene concentrations at various depths beneath marigolds growing in PVC pipes. PDMS sheets were used to map the distribution of thiophenes beneath marigolds grown in thin glass boxes. Concentrations of the two major marigold thiophenes measured by these two methods were extremely variable in both space and time. Dissection and analysis of roots indicated that distribution of thiophenes in marigold roots also was quite variable. A third approach used 1 m lengths of PDMS microtubing placed in marigold soil for repeated sampling of soil without disturbance of the roots. The two ends of the tubing remained out of the soil so that solvent could be washed through the tubing to collect samples for HPLC analysis. Unlike the other two methods, initial experiments with this approach show more uniformity of response, and suggest that soil concentrations of marigold thiophenes are affected greatly even by minimal disturbance of the soil. Silicone tube microextraction gave a linear response for alpha-terthienyl when maintained in soils spiked with 0-10 ppm of this thiophene. This method, which is experimentally simple and uses inexpensive materials, should be broadly applicable to the measurement of non-polar root exudates, and thus provides a means to test hypotheses about the role of root exudates in plant-plant and other interactions. PMID:19902302

  11. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils.

    PubMed

    Luo, Lei; Zhang, Shuzhen; Shan, Xiao-Quan; Zhu, Yong-Guan

    2006-05-01

    The abiotic desorption of p,p'-DDT from seven Chinese soils spiked with p,p'-DDT and the effects of oxalate at 0.001-0.1M and the root exudates of maize, wheat, and ryegrass were evaluated using batch experiments. Soil organic carbon played a predominant role in the retention of DDT. Oxalate significantly increased the desorption of p,p'-DDT, with the largest increments ranging from 11% to 54% for different soils. Oxalate addition also resulted in the increased release of dissolved organic carbon and inorganic ions from soils. Root exudates had similar effects to those of oxalate. Root exudates significantly increased DDT desorption from the soils, and the general trend was similar among the plant species studied for all the soils (p > 0.05). Low molecular weight dissolved organic carbon amendments caused partial dissolution of the soil structure, such as the organo-mineral linkages, resulting in the release of organic carbon and metal ions and thus the subsequent enhanced desorption of DDT from the soils. The enhancing effects of oxalate and root exudates on DDT desorption were influenced by the contents of soil organic carbon and dissolved organic carbon in soils. PMID:16307790

  12. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  13. Soil microbial biomass and root growth in Bt and non-Bt cotton

    NASA Astrophysics Data System (ADS)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  14. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  15. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality. PMID:27022106

  16. Characterization of fluorescent pseudomonas spp. associated with roots and soil of two sorghum genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum, useful for bioenergy feedstock, animal feed, and food, requires economical methods for disease prevention and control. Fluorescent Pseudomonas spp. were isolated from sorghum roots and adherent soil to identify isolates that inhibited sorghum fungal pathogens. Pseudomonads were collected fr...

  17. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  18. A Novel Growing Device Inspired by Plant Root Soil Penetration Behaviors

    PubMed Central

    Sadeghi, Ali; Tonazzini, Alice; Popova, Liyana; Mazzolai, Barbara

    2014-01-01

    Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks. PMID:24587244