Sample records for root-mean-square error rmse

  1. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  2. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    NASA Astrophysics Data System (ADS)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  3. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-29

    plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.

  4. An evaluation of three growth and yield simulators for even-aged hardwood forests of the mid-Appalachian region

    Treesearch

    John R. Brooks; Gary W. Miller

    2011-01-01

    Data from even-aged hardwood stands in four ecoregions across the mid-Appalachian region were used to test projection accuracy for three available growth and yield software systems: SILVAH, the Forest Vegetation Simulator, and the Stand Damage Model. Average root mean squared error (RMSE) ranged from 20 to 140 percent of actual trees per acre while RMSE ranged from 2...

  5. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.

    2017-12-01

    Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.

  6. The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    PubMed Central

    Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin

    2011-01-01

    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030

  7. Performance Metrics for Soil Moisture Retrievals and Applications Requirements

    USDA-ARS?s Scientific Manuscript database

    Quadratic performance metrics such as root-mean-square error (RMSE) and time series correlation are often used to assess the accuracy of geophysical retrievals and true fields. These metrics are generally related; nevertheless each has advantages and disadvantages. In this study we explore the relat...

  8. An empirical model for estimating solar radiation in the Algerian Sahara

    NASA Astrophysics Data System (ADS)

    Benatiallah, Djelloul; Benatiallah, Ali; Bouchouicha, Kada; Hamouda, Messaoud; Nasri, Bahous

    2018-05-01

    The present work aims to determine the empirical model R.sun that will allow us to evaluate the solar radiation flues on a horizontal plane and in clear-sky on the located Adrar city (27°18 N and 0°11 W) of Algeria and compare with the results measured at the localized site. The expected results of this comparison are of importance for the investment study of solar systems (solar power plants for electricity production, CSP) and also for the design and performance analysis of any system using the solar energy. Statistical indicators used to evaluate the accuracy of the model where the mean bias error (MBE), root mean square error (RMSE) and coefficient of determination. The results show that for global radiation, the daily correlation coefficient is 0.9984. The mean absolute percentage error is 9.44 %. The daily mean bias error is -7.94 %. The daily root mean square error is 12.31 %.

  9. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2014-01-01

    The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.

  10. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  11. The Consequences of Ignoring Item Parameter Drift in Longitudinal Item Response Models

    ERIC Educational Resources Information Center

    Lee, Wooyeol; Cho, Sun-Joo

    2017-01-01

    Utilizing a longitudinal item response model, this study investigated the effect of item parameter drift (IPD) on item parameters and person scores via a Monte Carlo study. Item parameter recovery was investigated for various IPD patterns in terms of bias and root mean-square error (RMSE), and percentage of time the 95% confidence interval covered…

  12. Estimation of the daily global solar radiation based on the Gaussian process regression methodology in the Saharan climate

    NASA Astrophysics Data System (ADS)

    Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said

    2018-06-01

    Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.

  13. Performance of statistical models to predict mental health and substance abuse cost.

    PubMed

    Montez-Rath, Maria; Christiansen, Cindy L; Ettner, Susan L; Loveland, Susan; Rosen, Amy K

    2006-10-26

    Providers use risk-adjustment systems to help manage healthcare costs. Typically, ordinary least squares (OLS) models on either untransformed or log-transformed cost are used. We examine the predictive ability of several statistical models, demonstrate how model choice depends on the goal for the predictive model, and examine whether building models on samples of the data affects model choice. Our sample consisted of 525,620 Veterans Health Administration patients with mental health (MH) or substance abuse (SA) diagnoses who incurred costs during fiscal year 1999. We tested two models on a transformation of cost: a Log Normal model and a Square-root Normal model, and three generalized linear models on untransformed cost, defined by distributional assumption and link function: Normal with identity link (OLS); Gamma with log link; and Gamma with square-root link. Risk-adjusters included age, sex, and 12 MH/SA categories. To determine the best model among the entire dataset, predictive ability was evaluated using root mean square error (RMSE), mean absolute prediction error (MAPE), and predictive ratios of predicted to observed cost (PR) among deciles of predicted cost, by comparing point estimates and 95% bias-corrected bootstrap confidence intervals. To study the effect of analyzing a random sample of the population on model choice, we re-computed these statistics using random samples beginning with 5,000 patients and ending with the entire sample. The Square-root Normal model had the lowest estimates of the RMSE and MAPE, with bootstrap confidence intervals that were always lower than those for the other models. The Gamma with square-root link was best as measured by the PRs. The choice of best model could vary if smaller samples were used and the Gamma with square-root link model had convergence problems with small samples. Models with square-root transformation or link fit the data best. This function (whether used as transformation or as a link) seems to help deal with the high comorbidity of this population by introducing a form of interaction. The Gamma distribution helps with the long tail of the distribution. However, the Normal distribution is suitable if the correct transformation of the outcome is used.

  14. Improvement of GPS radio occultation retrieval error of E region electron density: COSMIC measurement and IRI model simulation

    NASA Astrophysics Data System (ADS)

    Wu, Kang-Hung; Su, Ching-Lun; Chu, Yen-Hsyang

    2015-03-01

    In this article, we use the International Reference Ionosphere (IRI) model to simulate temporal and spatial distributions of global E region electron densities retrieved by the FORMOSAT-3/COSMIC satellites by means of GPS radio occultation (RO) technique. Despite regional discrepancies in the magnitudes of the E region electron density, the IRI model simulations can, on the whole, describe the COSMIC measurements in quality and quantity. On the basis of global ionosonde network and the IRI model, the retrieval errors of the global COSMIC-measured E region peak electron density (NmE) from July 2006 to July 2011 are examined and simulated. The COSMIC measurement and the IRI model simulation both reveal that the magnitudes of the percentage error (PE) and root mean-square-error (RMSE) of the relative RO retrieval errors of the NmE values are dependent on local time (LT) and geomagnetic latitude, with minimum in the early morning and at high latitudes and maximum in the afternoon and at middle latitudes. In addition, the seasonal variation of PE and RMSE values seems to be latitude dependent. After removing the IRI model-simulated GPS RO retrieval errors from the original COSMIC measurements, the average values of the annual and monthly mean percentage errors of the RO retrieval errors of the COSMIC-measured E region electron density are, respectively, substantially reduced by a factor of about 2.95 and 3.35, and the corresponding root-mean-square errors show averaged decreases of 15.6% and 15.4%, respectively. It is found that, with this process, the largest reduction in the PE and RMSE of the COSMIC-measured NmE occurs at the equatorial anomaly latitudes 10°N-30°N in the afternoon from 14 to 18 LT, with a factor of 25 and 2, respectively. Statistics show that the residual errors that remained in the corrected COSMIC-measured NmE vary in a range of -20% to 38%, which are comparable to or larger than the percentage errors of the IRI-predicted NmE fluctuating in a range of -6.5% to 20%.

  15. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees

    Treesearch

    K.P. Poudel; H. Temesgen

    2016-01-01

    Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that...

  16. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments

    DTIC Science & Technology

    2011-02-01

    µECD Gas chromatography - micro electron capture detector HPAH high molecular weight polyaromatic hydrocarbon HOC Hydrophobic organic compound IR...hydrocarbon PCB Polychlorinated biphenyl PE Polyethylene PED Polyethylene devices PFC Perfluorinated chemical POM Polyoxymethylene PRC...Performance reference compound RMSE Root Mean Squared Error SPME Solid Phase Micro Extraction SERDP Strategic Environmental Research and Development

  17. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought.

    PubMed

    Chen, Hui; Fan, Li; Wu, Wei; Liu, Hong-Bin

    2017-09-26

    Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010-2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R 2 ), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R 2 , MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.

  18. Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error

    PubMed Central

    Zhang, Yan; Shen, Jun

    2013-01-01

    Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436

  19. Using High Spatial Resolution Digital Imagery

    DTIC Science & Technology

    2005-02-01

    digital base maps were high resolution U.S. Geological Survey (USGS) Digital Orthophoto Quarter Quadrangles (DOQQ). The Root Mean Square Errors (RMSE...next step was to assign real world coordinates to the linear im- age. The mosaics were geometrically registered to the panchromatic orthophotos ...useable thematic map from high-resolution imagery. A more practical approach may be to divide the Refuge into a set of smaller areas, or tiles

  20. [Study on the polarized reflectance-hyperspectral information fusion technology of tomato leaves nutrient diagnoses].

    PubMed

    Zhu, Wen-Jing; Mao, Han-Ping; Li, Qing-Lin; Liu, Hong-Yu; Sun, Jun; Zuo, Zhi-Yu; Chen, Yong

    2014-09-01

    With 25%, 50%, 75%, 100% and 150%, five levels of, nitrogen (N), phosphorus (P) and potassium (K) nutrition stress samples cultivated in Venlo type greenhouse soilless cultivation mode as the research object, polarized reflectance spectra and hyperspectral images of different nutrient deficiency greenhouse tomato leaves were acquired by using polarized reflectance spectroscopy system developed by our own research group and hyperspectral imaging system respectively. The relationship between a certain number of changes in the bump and texture of non-smooth surface of the nutrient stress leaf and the level of polarization reflected radiation was clarified by scanning electron microscopy (SEM). On the one hand, the polarization spectrum was converted into the degree of polarization through Stokes equation, and the four polarization characteristics between the polarization spectroscopy and reference measurement values of N, P and K respectively were extracted. On the other hand, the four characteristic wavelengths of N, P, K hyperspectral image data were determined respectively through the principal component analysis, followed by eight hyperspectral texture features extracted corresponding to the four characteristic wavelengths through correlation analysis. Polarization characteristics and hyperspectral texture features combined with each characteristics of N, P, K were extracted. These 12 characteristic variables were normalized by maximum-minimum value method. N, P, K nutrient levels quantitative diagnostic models were established by SVR. Results of models are as follows: the correlation coefficient of nitrogen r = 0.961 8, root mean square error RMSE= 0.451; correlation coefficient of phosphorus r = 0.916 3, root mean square error RMSE = 0.620; correlation coefficient of potassium r = 0.940 6, root mean square error RMSE = 0.494. The results show that high precision tomato leaves nutrition prediction model could be built by using polarized reflectance spectroscopy combined with high spectral information fusion technology and achieve good diagnoses effect. It has a great significance for the improvement of model accuracy and the development of special instruments. The research provides a new idea for the rapid detection of tomato nutrient content.

  1. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  2. Modeling number of claims and prediction of total claim amount

    NASA Astrophysics Data System (ADS)

    Acar, Aslıhan Şentürk; Karabey, Uǧur

    2017-07-01

    In this study we focus on annual number of claims of a private health insurance data set which belongs to a local insurance company in Turkey. In addition to Poisson model and negative binomial model, zero-inflated Poisson model and zero-inflated negative binomial model are used to model the number of claims in order to take into account excess zeros. To investigate the impact of different distributional assumptions for the number of claims on the prediction of total claim amount, predictive performances of candidate models are compared by using root mean square error (RMSE) and mean absolute error (MAE) criteria.

  3. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    scheme in which 2-D image was created via adding voltages with the appropriate time offset. Simulation results show that our DCT-based scheme works...using RSNs in terms of the probability of miss detection PMD and the root mean square error (RMSE). Simulation results showed that multi-target detection... Simulation results are presented to evaluate the feasibility and effectiveness of the proposed JMIC algorithm in a query surveillance region. 5 SVD-QR and

  4. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zhu, Weining; Tian, Yong Q.; Yu, Qian; Zheng, Yuhan; Huang, Litong

    2017-07-01

    Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R2)=0.884, root-mean-squared error (RMSE)=0.731 m-1, relative root-mean-squared error (RRMSE)=28.02%, and bias=-0.1 m-1. The best Chla retrieval algorithm is a B5/B4 model with accuracy R2=0.49, RMSE=9.972 mg/m3, RRMSE=48.47%, and bias=-0.116 mg/m3. Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m×10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes.

  5. Modeling of surface dust concentrations using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  6. Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.

    2012-01-01

    The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  7. Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression.

    PubMed

    Hao, Z Q; Li, C M; Shen, M; Yang, X Y; Li, K H; Guo, L B; Li, X Y; Lu, Y F; Zeng, X Y

    2015-03-23

    Laser-induced breakdown spectroscopy (LIBS) with partial least squares regression (PLSR) has been applied to measuring the acidity of iron ore, which can be defined by the concentrations of oxides: CaO, MgO, Al₂O₃, and SiO₂. With the conventional internal standard calibration, it is difficult to establish the calibration curves of CaO, MgO, Al₂O₃, and SiO₂ in iron ore due to the serious matrix effects. PLSR is effective to address this problem due to its excellent performance in compensating the matrix effects. In this work, fifty samples were used to construct the PLSR calibration models for the above-mentioned oxides. These calibration models were validated by the 10-fold cross-validation method with the minimum root-mean-square errors (RMSE). Another ten samples were used as a test set. The acidities were calculated according to the estimated concentrations of CaO, MgO, Al₂O₃, and SiO₂ using the PLSR models. The average relative error (ARE) and RMSE of the acidity achieved 3.65% and 0.0048, respectively, for the test samples.

  8. Arm-eye coordination test to objectively quantify motor performance and muscles activation in persons after stroke undergoing robot-aided rehabilitation training: a pilot study.

    PubMed

    Song, Rong; Tong, Kai-Yu; Hu, Xiaoling; Li, Le; Sun, Rui

    2013-09-01

    This study designed an arm-eye coordination test to investigate the effectiveness of the robot-aided rehabilitation for persons after stroke. Six chronic poststroke subjects were recruited to attend a 20-session robot-aided rehabilitation training of elbow joint. Before and after the training program, subjects were asked to perform voluntary movements of elbow flection and extension by following sinusoidal trajectories at different velocities with visual feedback on their joint positions. The elbow angle and the electromyographic signal of biceps and triceps as well as clinical scores were evaluated together with the parameters. Performance was objectively quantified by root mean square error (RMSE), root mean square jerk (RMSJ), range of motion (ROM), and co-contraction index (CI). After 20 sessions, RMSE and ROM improved significantly in both the affected and the unaffected side based on two-way ANOVA (P < 0.05). There was significant lower RMSJ in the affected side at higher velocities (P < 0.05). There was significant negative correlation between average RMSE with different tracking velocities and Fugl-Meyer shoulder-elbow score (P < 0.05). There was also significant negative correlation between average RMSE and average ROM (P < 0.05), and moderate nonsignificant negative correlation with RMSJ, and CI. The characterization of velocity-dependent deficiencies, monitoring of training-induced improvement, and the correlation between quantitative parameters and clinical scales could enable the exploration of effects of different types of treatment and design progress-based training method to accelerate the processes of recovery.

  9. Modeling and forecasting of KLCI weekly return using WT-ANN integrated model

    NASA Astrophysics Data System (ADS)

    Liew, Wei-Thong; Liong, Choong-Yeun; Hussain, Saiful Izzuan; Isa, Zaidi

    2013-04-01

    The forecasting of weekly return is one of the most challenging tasks in investment since the time series are volatile and non-stationary. In this study, an integrated model of wavelet transform and artificial neural network, WT-ANN is studied for modeling and forecasting of KLCI weekly return. First, the WT is applied to decompose the weekly return time series in order to eliminate noise. Then, a mathematical model of the time series is constructed using the ANN. The performance of the suggested model will be evaluated by root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE). The result shows that the WT-ANN model can be considered as a feasible and powerful model for time series modeling and prediction.

  10. [Application of wavelet neural networks model to forecast incidence of syphilis].

    PubMed

    Zhou, Xian-Feng; Feng, Zi-Jian; Yang, Wei-Zhong; Li, Xiao-Song

    2011-07-01

    To apply Wavelet Neural Networks (WNN) model to forecast incidence of Syphilis. Back Propagation Neural Network (BPNN) and WNN were developed based on the monthly incidence of Syphilis in Sichuan province from 2004 to 2008. The accuracy of forecast was compared between the two models. In the training approximation, the mean absolute error (MAE), rooted mean square error (RMSE) and mean absolute percentage error (MAPE) were 0.0719, 0.0862 and 11.52% respectively for WNN, and 0.0892, 0.1183 and 14.87% respectively for BPNN. The three indexes for generalization of models were 0.0497, 0.0513 and 4.60% for WNN, and 0.0816, 0.1119 and 7.25% for BPNN. WNN is a better model for short-term forecasting of Syphilis.

  11. A Gompertzian model with random effects to cervical cancer growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazlan, Mazma Syahidatul Ayuni; Rosli, Norhayati

    2015-05-15

    In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of Gompertzian model with random effect indicate good fits.

  12. An optimized ensemble local mean decomposition method for fault detection of mechanical components

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang

    2017-03-01

    Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.

  13. Hybrid empirical mode decomposition- ARIMA for forecasting exchange rates

    NASA Astrophysics Data System (ADS)

    Abadan, Siti Sarah; Shabri, Ani; Ismail, Shuhaida

    2015-02-01

    This paper studied the forecasting of monthly Malaysian Ringgit (MYR)/ United State Dollar (USD) exchange rates using the hybrid of two methods which are the empirical model decomposition (EMD) and the autoregressive integrated moving average (ARIMA). MYR is pegged to USD during the Asian financial crisis causing the exchange rates are fixed to 3.800 from 2nd of September 1998 until 21st of July 2005. Thus, the chosen data in this paper is the post-July 2005 data, starting from August 2005 to July 2010. The comparative study using root mean square error (RMSE) and mean absolute error (MAE) showed that the EMD-ARIMA outperformed the single-ARIMA and the random walk benchmark model.

  14. Modeling rainfall-runoff process using soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal; Tombul, Mustafa

    2013-02-01

    Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82 l/s, MAE=6.61 l/s, CE=0.72 and R2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.

  15. Application of RBFN network and GM (1, 1) for groundwater level simulation

    NASA Astrophysics Data System (ADS)

    Li, Zijun; Yang, Qingchun; Wang, Luchen; Martín, Jordi Delgado

    2017-10-01

    Groundwater is a prominent resource of drinking and domestic water in the world. In this context, a feasible water resources management plan necessitates acceptable predictions of groundwater table depth fluctuations, which can help ensure the sustainable use of a watershed's aquifers for urban and rural water supply. Due to the difficulties of identifying non-linear model structure and estimating the associated parameters, in this study radial basis function neural network (RBFNN) and GM (1, 1) models are used for the prediction of monthly groundwater level fluctuations in the city of Longyan, Fujian Province (South China). The monthly groundwater level data monitored from January 2003 to December 2011 are used in both models. The error criteria are estimated using the coefficient of determination ( R 2), mean absolute error (E) and root mean squared error (RMSE). The results show that both the models can forecast the groundwater level with fairly high accuracy, but the RBFN network model can be a promising tool to simulate and forecast groundwater level since it has a relatively smaller RMSE and MAE.

  16. Development of a Direct Spectrophotometric and Chemometric Method for Determining Food Dye Concentrations.

    PubMed

    Arroz, Erin; Jordan, Michael; Dumancas, Gerard G

    2017-07-01

    An ultraviolet visible (UV-Vis) spectrophotometric and partial least squares (PLS) chemometric method was developed for the simultaneous determination of erythrosine B (red), Brilliant Blue, and tartrazine (yellow) dyes. A training set (n = 64) was generated using a full factorial design and its accuracy was tested in a test set (n = 13) using a Box-Behnken design. The test set garnered a root mean square error (RMSE) of 1.79 × 10 -7 for blue, 4.59 × 10 -7 for red, and 1.13 × 10 -6 for yellow dyes. The relatively small RMSE suggests only a small difference between predicted versus measured concentrations, demonstrating the accuracy of our model. The relative error of prediction (REP) for the test set were 11.73%, 19.52%, 19.38%, for blue, red, and yellow dyes, respectively. A comparable overlay between the actual candy samples and their replicated synthetic spectra were also obtained indicating the model as a potentially accurate method for determining concentrations of dyes in food samples.

  17. Support vector regression methodology for estimating global solar radiation in Algeria

    NASA Astrophysics Data System (ADS)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  18. Gradient-based interpolation method for division-of-focal-plane polarimeters.

    PubMed

    Gao, Shengkui; Gruev, Viktor

    2013-01-14

    Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.

  19. Development and Positioning Accuracy Assessment of Single-Frequency Precise Point Positioning Algorithms by Combining GPS Code-Pseudorange Measurements with Real-Time SSR Corrections

    PubMed Central

    Kim, Miso; Park, Kwan-Dong

    2017-01-01

    We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403

  20. Influence of stimulated Brillouin scattering on positioning accuracy of long-range dual Mach-Zehnder interferometric vibration sensors

    NASA Astrophysics Data System (ADS)

    He, Xiangge; Xie, Shangran; Cao, Shan; Liu, Fei; Zheng, Xiaoping; Zhang, Min; Yan, Han; Chen, Guocai

    2016-11-01

    The properties of noise induced by stimulated Brillouin scattering (SBS) in long-range interferometers and their influences on the positioning accuracy of dual Mach-Zehnder interferometric (DMZI) vibration sensing systems are studied. The SBS noise is found to be white and incoherent between the two arms of the interferometer in a 1-MHz bandwidth range. Experiments on 25-km long fibers show that the root mean square error (RMSE) of the positioning accuracy is consistent with the additive noise model for the time delay estimation theory. A low-pass filter can be properly designed to suppress the SBS noise and further achieve a maximum RMSE reduction of 6.7 dB.

  1. A new approach to measure visual field progression in glaucoma patients using variational bayes linear regression.

    PubMed

    Murata, Hiroshi; Araie, Makoto; Asaoka, Ryo

    2014-11-20

    We generated a variational Bayes model to predict visual field (VF) progression in glaucoma patients. This retrospective study included VF series from 911 eyes of 547 glaucoma patients as test data, and VF series from 5049 eyes of 2858 glaucoma patients as training data. Using training data, variational Bayes linear regression (VBLR) was created to predict VF progression. The performance of VBLR was compared against ordinary least-squares linear regression (OLSLR) by predicting VFs in the test dataset. The total deviation (TD) values of test patients' 11th VFs were predicted using TD values from their second to 10th VFs (VF2-10), the root mean squared error (RMSE) associated with each approach then was calculated. Similarly, mean TD (mTD) of test patients' 11th VFs was predicted using VBLR and OLSLR, and the absolute prediction errors compared. The RMSE resulting from VBLR averaged 3.9 ± 2.1 (SD) and 4.9 ± 2.6 dB for prediction based on the second to 10th VFs (VF2-10) and the second to fourth VFs (VF2-4), respectively. The RMSE resulting from OLSLR was 4.1 ± 2.0 (VF2-10) and 19.9 ± 12.0 (VF2-4) dB. The absolute prediction error (SD) for mTD using VBLR was 1.2 ± 1.3 (VF2-10) and 1.9 ± 2.0 (VF2-4) dB, while the prediction error resulting from OLSLR was 1.2 ± 1.3 (VF2-10) and 6.2 ± 6.6 (VF2-4) dB. The VBLR more accurately predicts future VF progression in glaucoma patients compared to conventional OLSLR, especially in short VF series. © ARVO.

  2. Stochastic growth logistic model with aftereffect for batch fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  3. Stochastic growth logistic model with aftereffect for batch fermentation process

    NASA Astrophysics Data System (ADS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  4. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  5. Prediction of BP reactivity to talking using hybrid soft computing approaches.

    PubMed

    Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar

    2014-01-01

    High blood pressure (BP) is associated with an increased risk of cardiovascular diseases. Therefore, optimal precision in measurement of BP is appropriate in clinical and research studies. In this work, anthropometric characteristics including age, height, weight, body mass index (BMI), and arm circumference (AC) were used as independent predictor variables for the prediction of BP reactivity to talking. Principal component analysis (PCA) was fused with artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS), and least square-support vector machine (LS-SVM) model to remove the multicollinearity effect among anthropometric predictor variables. The statistical tests in terms of coefficient of determination (R (2)), root mean square error (RMSE), and mean absolute percentage error (MAPE) revealed that PCA based LS-SVM (PCA-LS-SVM) model produced a more efficient prediction of BP reactivity as compared to other models. This assessment presents the importance and advantages posed by PCA fused prediction models for prediction of biological variables.

  6. Positioning performance analysis of the time sum of arrival algorithm with error features

    NASA Astrophysics Data System (ADS)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  7. Waveform LiDAR processing: comparison of classic approaches and optimized Gold deconvolution to characterize vegetation structure and terrain elevation

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2016-12-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.

  8. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors.

    PubMed

    McGrath, Timothy; Fineman, Richard; Stirling, Leia

    2018-06-08

    Inertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles—an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study ( n = 15) with an absolute root-mean-square-error (RMSE) of 9.24∘ and a zero-mean RMSE of 3.49∘. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.

  9. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.

    PubMed

    Heddam, Salim

    2014-11-01

    The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).

  10. i-LOVE: ISS-JEM lidar for observation of vegetation environment

    NASA Astrophysics Data System (ADS)

    Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota

    2012-11-01

    It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.

  11. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.

  12. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  13. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    PubMed

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  14. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  15. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics

    DOE PAGES

    Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...

    2016-04-04

    Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less

  16. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    NASA Astrophysics Data System (ADS)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that IMERG performs well for moderate to high intensity rainfall and that the interpolation remains effective only when rainfall exceeds a certain threshold value. Over Metro Manila, an F-RMSE threshold of 0.5 mm indicated better correspondence between ground measured and satellite measured rainfall.

  17. Application of VNIR diffuse reflectance spectroscopy to estimate soil organic carbon content, and content of different forms of iron and manganese

    NASA Astrophysics Data System (ADS)

    Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2013-04-01

    Visible and near-infrared (VNIR) diffuse reflectance spectroscopy is a progressive method used for prediction of soil properties. Study was performed on the soils from the agricultural land from the south Moravia municipality of Brumovice. Studied area is characterized by a relatively flat upper part, a tributary valley in the middle and a colluvial fan at the bottom. Haplic Chernozem reminded at the flat upper part of the area. Regosols were formed at steep parts of the valley. Colluvial Chernozem and Colluvial soils were formed at the bottom parts of the valley and at the bottom part of the studied field. The goal of the study was to evaluate relationship between soil spectra curves and organic matter content, and different forms iron and manganese content (Mehlich III extract, ammonium oxalate extract and dithionite-citrate extract). Samples (87) were taken from the topsoil within regular grid covering studied area. The soil spectra curves (of air dry soil and sieved using 2 mm sieve) were measured in the laboratory using spectometer FieldSpec®3 (350 - 2 500 nm). The Fe and Mn contents in different extract were measured using ICP-OES (with an iCAP 6500 Radial ICP Emission spectrometer; Thermo Scientific, UK) under standard analytical conditions. Partial least squares regression (PLSR) was used for modeling of the relationship between spectra and measured soil properties. Prediction ability was evaluated using the R2, root mean square error (RMSE) and normalized root mean square deviation (NRMSD). The results showed the best prediction for Mn (R2 = 0.86, RMSE = 29, NRMSD = 0.11), Fe in ammonium oxalate extract (R2 = 0.82, RMSE = 171, NRMSD = 0.12) and organic matter content (R2 = 0.84, RMSE = 0.13, NRMSD = 0.09). The slightly worse prediction was obtained for Mn and Fe in citrate extract (R2 = 0.82, RMSE = 21, NRMSD = 0.10; R2 = 0.77, RMSE = 522, NRMSD = 0.23). Poor prediction was evaluated for Mn and Fe in Mehlich III extract (R2 = 0.43, RMSE = 13, NRMSD = 0.17; R2 = 0.39, RMSE = 13, NRMSD = 0.26). In general, the results confirmed that the measurement of soil spectral characteristics is a promising technology for a digital soil mapping and predicting studied soil properties. Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319) and the Czech Science Foundation (grant No. GA526/09/1762).

  18. Time series model for forecasting the number of new admission inpatients.

    PubMed

    Zhou, Lingling; Zhao, Ping; Wu, Dongdong; Cheng, Cheng; Huang, Hao

    2018-06-15

    Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding. We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016. For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage. Hybrid model does not necessarily outperform its constituents' performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.

  19. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  20. Curve fitting methods for solar radiation data modeling

    NASA Astrophysics Data System (ADS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  1. Curve fitting methods for solar radiation data modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both withmore » two terms) gives better results as compare with the other fitting methods.« less

  2. Matched samples logistic regression in case-control studies with missing values: when to break the matches.

    PubMed

    Hansson, Lisbeth; Khamis, Harry J

    2008-12-01

    Simulated data sets are used to evaluate conditional and unconditional maximum likelihood estimation in an individual case-control design with continuous covariates when there are different rates of excluded cases and different levels of other design parameters. The effectiveness of the estimation procedures is measured by method bias, variance of the estimators, root mean square error (RMSE) for logistic regression and the percentage of explained variation. Conditional estimation leads to higher RMSE than unconditional estimation in the presence of missing observations, especially for 1:1 matching. The RMSE is higher for the smaller stratum size, especially for the 1:1 matching. The percentage of explained variation appears to be insensitive to missing data, but is generally higher for the conditional estimation than for the unconditional estimation. It is particularly good for the 1:2 matching design. For minimizing RMSE, a high matching ratio is recommended; in this case, conditional and unconditional logistic regression models yield comparable levels of effectiveness. For maximizing the percentage of explained variation, the 1:2 matching design with the conditional logistic regression model is recommended.

  3. Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon

    2017-04-01

    In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal waves well and to improve the accuracy of forecasts by supporting modification of physics and numeric on numerical models through sensitivity test. In this study, we proposed an appropriate method of error quantification especially on abnormal high waves which are occurred by local weather condition. Furthermore, we introduced that how the quantification errors are contributed to improve wind-wave modeling by applying data assimilation and utilizing reanalysis data.

  4. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    NASA Astrophysics Data System (ADS)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  5. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    NASA Astrophysics Data System (ADS)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  6. Estimating accuracy of land-cover composition from two-stage cluster sampling

    USGS Publications Warehouse

    Stehman, S.V.; Wickham, J.D.; Fattorini, L.; Wade, T.D.; Baffetta, F.; Smith, J.H.

    2009-01-01

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), root mean square error (RMSE), and correlation (CORR) to quantify accuracy of land-cover composition for a general two-stage cluster sampling design, and for the special case of simple random sampling without replacement (SRSWOR) at each stage. The bias of the estimators for the two-stage SRSWOR design is evaluated via a simulation study. The estimators of RMSE and CORR have small bias except when sample size is small and the land-cover class is rare. The estimator of MAD is biased for both rare and common land-cover classes except when sample size is large. A general recommendation is that rare land-cover classes require large sample sizes to ensure that the accuracy estimators have small bias. ?? 2009 Elsevier Inc.

  7. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    USGS Publications Warehouse

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  8. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  9. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  10. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  11. An efficient optimization method to improve the measuring accuracy of oxygen saturation by using triangular wave optical signal

    NASA Astrophysics Data System (ADS)

    Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling

    2017-09-01

    The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.

  12. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  13. Evaluating the performance of the Lee-Carter method and its variants in modelling and forecasting Malaysian mortality

    NASA Astrophysics Data System (ADS)

    Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.

    2014-12-01

    This study investigated the performance of the Lee-Carter (LC) method and it variants in modeling and forecasting Malaysia mortality. These include the original LC, the Lee-Miller (LM) variant and the Booth-Maindonald-Smith (BMS) variant. These methods were evaluated using Malaysia's mortality data which was measured based on age specific death rates (ASDR) for 1971 to 2009 for overall population while those for 1980-2009 were used in separate models for male and female population. The performance of the variants has been examined in term of the goodness of fit of the models and forecasting accuracy. Comparison was made based on several criteria namely, mean square error (MSE), root mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE). The results indicate that BMS method was outperformed in in-sample fitting for overall population and when the models were fitted separately for male and female population. However, in the case of out-sample forecast accuracy, BMS method only best when the data were fitted to overall population. When the data were fitted separately for male and female, LCnone performed better for male population and LM method is good for female population.

  14. Validation of the Aster Global Digital Elevation Model Version 3 Over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D.

    2016-06-01

    The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of -1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from -2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  15. Validation of the ASTER Global Digital Elevation Model version 3 over the conterminous United States

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Danielson, Jeffrey J.; Meyer, David; Halounova, L; Šafář, V.; Jiang, J.; Olešovská, H.; Dvořáček, P.; Holland, D.; Seredovich, V.A.; Muller, J.P.; Pattabhi Rama Rao, E.; Veenendaal, B.; Mu, L.; Zlatanova, S.; Oberst, J.; Yang, C.P.; Ban, Y.; Stylianidis, S.; Voženílek, V.; Vondráková, A.; Gartner, G.; Remondino, F.; Doytsher, Y.; Percivall, George; Schreier, G.; Dowman, I.; Streilein, A.; Ernst, J.

    2016-01-01

    The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

  16. Use of machine learning methods to reduce predictive error of groundwater models.

    PubMed

    Xu, Tianfang; Valocchi, Albert J; Choi, Jaesik; Amir, Eyal

    2014-01-01

    Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model. © 2013, National GroundWater Association.

  17. Tourism forecasting using modified empirical mode decomposition and group method of data handling

    NASA Astrophysics Data System (ADS)

    Yahya, N. A.; Samsudin, R.; Shabri, A.

    2017-09-01

    In this study, a hybrid model using modified Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) model is proposed for tourism forecasting. This approach reconstructs intrinsic mode functions (IMFs) produced by EMD using trial and error method. The new component and the remaining IMFs is then predicted respectively using GMDH model. Finally, the forecasted results for each component are aggregated to construct an ensemble forecast. The data used in this experiment are monthly time series data of tourist arrivals from China, Thailand and India to Malaysia from year 2000 to 2016. The performance of the model is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) where conventional GMDH model and EMD-GMDH model are used as benchmark models. Empirical results proved that the proposed model performed better forecasts than the benchmarked models.

  18. Estimation of Thermal Sensation Based on Wrist Skin Temperatures.

    PubMed

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-03-23

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one's thermal environment.

  19. Estimation of Thermal Sensation Based on Wrist Skin Temperatures

    PubMed Central

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-01-01

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one’s thermal environment. PMID:27023538

  20. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    NASA Technical Reports Server (NTRS)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  1. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey

    NASA Astrophysics Data System (ADS)

    Citakoglu, Hatice

    2017-10-01

    Soil temperature is a meteorological data directly affecting the formation and development of plants of all kinds. Soil temperatures are usually estimated with various models including the artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models. Soil temperatures along with other climate data are recorded by the Turkish State Meteorological Service (MGM) at specific locations all over Turkey. Soil temperatures are commonly measured at 5-, 10-, 20-, 50-, and 100-cm depths below the soil surface. In this study, the soil temperature data in monthly units measured at 261 stations in Turkey having records of at least 20 years were used to develop relevant models. Different input combinations were tested in the ANN and ANFIS models to estimate soil temperatures, and the best combination of significant explanatory variables turns out to be monthly minimum and maximum air temperatures, calendar month number, depth of soil, and monthly precipitation. Next, three standard error terms (mean absolute error (MAE, °C), root mean squared error (RMSE, °C), and determination coefficient ( R 2 )) were employed to check the reliability of the test data results obtained through the ANN, ANFIS, and MLR models. ANFIS (RMSE 1.99; MAE 1.09; R 2 0.98) is found to outperform both ANN and MLR (RMSE 5.80, 8.89; MAE 1.89, 2.36; R 2 0.93, 0.91) in estimating soil temperature in Turkey.

  2. Gold - A novel deconvolution algorithm with optimization for waveform LiDAR processing

    NASA Astrophysics Data System (ADS)

    Zhou, Tan; Popescu, Sorin C.; Krause, Keith; Sheridan, Ryan D.; Putman, Eric

    2017-07-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from the corresponding reference data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, <0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (<1.01 m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high vegetation. This study provides an alternative and innovative approach for waveform processing that will benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.

  3. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  4. Comprehensive modeling of monthly mean soil temperature using multivariate adaptive regression splines and support vector machine

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-07-01

    Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.

  5. Accuracy evaluation of Fourier series analysis and singular spectrum analysis for predicting the volume of motorcycle sales in Indonesia

    NASA Astrophysics Data System (ADS)

    Sasmita, Yoga; Darmawan, Gumgum

    2017-08-01

    This research aims to evaluate the performance of forecasting by Fourier Series Analysis (FSA) and Singular Spectrum Analysis (SSA) which are more explorative and not requiring parametric assumption. Those methods are applied to predicting the volume of motorcycle sales in Indonesia from January 2005 to December 2016 (monthly). Both models are suitable for seasonal and trend component data. Technically, FSA defines time domain as the result of trend and seasonal component in different frequencies which is difficult to identify in the time domain analysis. With the hidden period is 2,918 ≈ 3 and significant model order is 3, FSA model is used to predict testing data. Meanwhile, SSA has two main processes, decomposition and reconstruction. SSA decomposes the time series data into different components. The reconstruction process starts with grouping the decomposition result based on similarity period of each component in trajectory matrix. With the optimum of window length (L = 53) and grouping effect (r = 4), SSA predicting testing data. Forecasting accuracy evaluation is done based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The result shows that in the next 12 month, SSA has MAPE = 13.54 percent, MAE = 61,168.43 and RMSE = 75,244.92 and FSA has MAPE = 28.19 percent, MAE = 119,718.43 and RMSE = 142,511.17. Therefore, to predict volume of motorcycle sales in the next period should use SSA method which has better performance based on its accuracy.

  6. A novel validation and calibration method for motion capture systems based on micro-triangulation.

    PubMed

    Nagymáté, Gergely; Tuchband, Tamás; Kiss, Rita M

    2018-06-06

    Motion capture systems are widely used to measure human kinematics. Nevertheless, users must consider system errors when evaluating their results. Most validation techniques for these systems are based on relative distance and displacement measurements. In contrast, our study aimed to analyse the absolute volume accuracy of optical motion capture systems by means of engineering surveying reference measurement of the marker coordinates (uncertainty: 0.75 mm). The method is exemplified on an 18 camera OptiTrack Flex13 motion capture system. The absolute accuracy was defined by the root mean square error (RMSE) between the coordinates measured by the camera system and by engineering surveying (micro-triangulation). The original RMSE of 1.82 mm due to scaling error was managed to be reduced to 0.77 mm while the correlation of errors to their distance from the origin reduced from 0.855 to 0.209. A simply feasible but less accurate absolute accuracy compensation method using tape measure on large distances was also tested, which resulted in similar scaling compensation compared to the surveying method or direct wand size compensation by a high precision 3D scanner. The presented validation methods can be less precise in some respects as compared to previous techniques, but they address an error type, which has not been and cannot be studied with the previous validation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  8. [Simulation of AquaCrop model and management practice optimization for dryland maize production under whole plastic-film mulching on double ridges].

    PubMed

    Zhang, Tao; Sun, Wei; Zhang, Feng Wei; Sun, Bu Gong; Wang, Ting; Wu, Jian Min

    2017-03-18

    In order to study the applicability of AquaCrop model for simulating dryland whole plastic-film mulching in double ridges cultivation mode and to find the best agronomic management measures, the data of nitrogen gradient test in 2014 and 2015 were selected to validate the variety and stress parameters in the model. The change trends of yield were simulated under different mana-gement measures. The results showed that the root mean square error (RMSE), normalized root mean square error (NRMSE) and the compliance index (d) of the measured and simulated production for all treatments were 717 kg·hm -2 , 10.0% and 0.96, respectively, the RMSE, NRMSE and d of the total biomass were 951 kg·hm -2 , 6.5% and 0.98, respectively, which indicated that the cultivation characteristics of the whole plastic-film mulching on double ridges maize in the dryland could be well reflected. The best fitting degree was 270 kg N·hm -2 from dynamic simulation analysis of canopy cover degrees and biomass, and with the increase of N stress, the simulation accuracy gradually declined. The best sowing time of the whole plastic-film mulching on double ridges maize in the middle part of Gansu Province was from late April to early May, the seeding density was 45000-65000 plants·hm -2 , the growth period was 130-145 days, and the nitrogen application rate was 240-280 kg·hm -2 . The results of this study had a certain reference value for the application of AcquaCrop model in arid region of Gansu, and would contribute to the transformation and popularization of agricultural cultivation techniques.

  9. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar

    PubMed Central

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-01

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass (R2 = 0.340, root-mean-square error (RMSE) = 81.89 g·m−2, and relative error of 14.1%). The improvement of multiple regressions to the R2 and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns. PMID:28106819

  10. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    PubMed

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass ( R ² = 0.340, root-mean-square error (RMSE) = 81.89 g·m -2 , and relative error of 14.1%). The improvement of multiple regressions to the R ² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (<100 m). These findings are helpful for modeling stable regressions to estimate grassland biomass using lidar returns.

  11. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  12. The prediction of speed and incline in outdoor running in humans using accelerometry.

    PubMed

    Herren, R; Sparti, A; Aminian, K; Schutz, Y

    1999-07-01

    To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.

  13. Comparison of infiltration models in NIT Kurukshetra campus

    NASA Astrophysics Data System (ADS)

    Singh, Balraj; Sihag, Parveen; Singh, Karan

    2018-05-01

    The aim of the present investigation is to evaluate the performance of infiltration models used to calculate the infiltration rate of the soils. Ten different locations were chosen to measure the infiltration rate in NIT Kurukshetra. The instrument used for the experimentation was double ring infiltrometer. Some of the popular infiltration models like Horton's, Philip's, Modified Philip's and Green-Ampt were fitted with infiltration test data and performance of the models was determined using Nash-Sutcliffe efficiency (NSE), coefficient of correlation (C.C) and Root mean square error (RMSE) criteria. The result suggests that Modified Philip's model is the most accurate model where values of C.C, NSE and RMSE vary from 0.9947-0.9999, 0.9877-0.9998 to 0.1402-0.6913 (mm/h), respectively. Thus, this model can be used to synthetically produce infiltration data in the absence of infiltration data under the same conditions.

  14. Numerical Study on Sensitivity of Pollutant Dispersion on Turbulent Schmidt Number in a Street Canyon

    NASA Astrophysics Data System (ADS)

    WANG, J.; Kim, J.

    2014-12-01

    In this study, sensitivity of pollutant dispersion on turbulent Schmidt number (Sct) was investigated in a street canyon using a computational fluid dynamics (CFD) model. For this, numerical simulations with systematically varied Sct were performed and the CFD model results were validated against a wind‒tunnel measurement data. The results showed that root mean square error (RMSE) was quite dependent on Sct and dispersion patterns of non‒reactive scalar pollutant with different Sct were quite different among the simulation results. The RMSE was lowest in the case of Sct = 0.35 and the apparent dispersion pattern was most similar to the wind‒tunnel data in the case of Sct = 0.35. Also, numerical simulations using spatially weighted Sct were additionally performed in order for the best reproduction of the wind‒tunnel data. Detailed method and procedure to find the best reproduction will be presented.

  15. Reconstruction of regional mean temperature for East Asia since 1900s and its uncertainties

    NASA Astrophysics Data System (ADS)

    Hua, W.

    2017-12-01

    Regional average surface air temperature (SAT) is one of the key variables often used to investigate climate change. Unfortunately, because of the limited observations over East Asia, there were also some gaps in the observation data sampling for regional mean SAT analysis, which was important to estimate past climate change. In this study, the regional average temperature of East Asia since 1900s is calculated by the Empirical Orthogonal Function (EOF)-based optimal interpolation (OA) method with considering the data errors. The results show that our estimate is more precise and robust than the results from simple average, which provides a better way for past climate reconstruction. In addition to the reconstructed regional average SAT anomaly time series, we also estimated uncertainties of reconstruction. The root mean square error (RMSE) results show that the the error decreases with respect to time, and are not sufficiently large to alter the conclusions on the persist warming in East Asia during twenty-first century. Moreover, the test of influence of data error on reconstruction clearly shows the sensitivity of reconstruction to the size of the data error.

  16. A Comparison of the Forecast Skills among Three Numerical Models

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S. R.; White, L. J.

    2003-12-01

    Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.

  17. Optimal dental age estimation practice in United Arab Emirates' children.

    PubMed

    Altalie, Salem; Thevissen, Patrick; Fieuws, Steffen; Willems, Guy

    2014-03-01

    The aim of the study was to detect whether the Willems model, developed on a Belgian reference sample, can be used for age estimations in United Arab Emirates (UAE) children. Furthermore, it was verified that if added third molars development information in children provided more accurate age predictions. On 1900 panoramic radiographs, the development of left mandibular permanent teeth (PT) and third molars (TM) was registered according the Demirjian and the Kohler technique, respectively. The PT data were used to verify the Willems model and to develop a UAE model and to verify it. Multiple regression models with PT, TM, and PT + TM scores as independent and age as dependent factor were developed. Comparing the verified Willems- and the UAE model revealed differences in mean error of -0.01 year, mean absolute error of 0.01 year and root mean squared error of 0.90 year. Neglectable overall decrease in RMSE was detected combining PM and TM developmental information. © 2013 American Academy of Forensic Sciences.

  18. Predicting online ratings based on the opinion spreading process

    NASA Astrophysics Data System (ADS)

    He, Xing-Sheng; Zhou, Ming-Yang; Zhuo, Zhao; Fu, Zhong-Qian; Liu, Jian-Guo

    2015-10-01

    Predicting users' online ratings is always a challenge issue and has drawn lots of attention. In this paper, we present a rating prediction method by combining the user opinion spreading process with the collaborative filtering algorithm, where user similarity is defined by measuring the amount of opinion a user transfers to another based on the primitive user-item rating matrix. The proposed method could produce a more precise rating prediction for each unrated user-item pair. In addition, we introduce a tunable parameter λ to regulate the preferential diffusion relevant to the degree of both opinion sender and receiver. The numerical results for Movielens and Netflix data sets show that this algorithm has a better accuracy than the standard user-based collaborative filtering algorithm using Cosine and Pearson correlation without increasing computational complexity. By tuning λ, our method could further boost the prediction accuracy when using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as measurements. In the optimal cases, on Movielens and Netflix data sets, the corresponding algorithmic accuracy (MAE and RMSE) are improved 11.26% and 8.84%, 13.49% and 10.52% compared to the item average method, respectively.

  19. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    USGS Publications Warehouse

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  20. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  1. Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Khosa, Rakesh; Adamowski, Jan; ch, Sudheer; Partheepan, G.; Anand, Jatin; Narsimlu, Boini

    2014-12-01

    The temporal dynamics of hydrological processes are spread across different time scales and, as such, the performance of hydrological models cannot be estimated reliably from global performance measures that assign a single number to the fit of a simulated time series to an observed reference series. Accordingly, it is important to analyze model performance at different time scales. Wavelets have been used extensively in the area of hydrological modeling for multiscale analysis, and have been shown to be very reliable and useful in understanding dynamics across time scales and as these evolve in time. In this paper, a wavelet-based multiscale performance measure for hydrological models is proposed and tested (i.e., Multiscale Nash-Sutcliffe Criteria and Multiscale Normalized Root Mean Square Error). The main advantage of this method is that it provides a quantitative measure of model performance across different time scales. In the proposed approach, model and observed time series are decomposed using the Discrete Wavelet Transform (known as the à trous wavelet transform), and performance measures of the model are obtained at each time scale. The applicability of the proposed method was explored using various case studies-both real as well as synthetic. The synthetic case studies included various kinds of errors (e.g., timing error, under and over prediction of high and low flows) in outputs from a hydrologic model. The real time case studies investigated in this study included simulation results of both the process-based Soil Water Assessment Tool (SWAT) model, as well as statistical models, namely the Coupled Wavelet-Volterra (WVC), Artificial Neural Network (ANN), and Auto Regressive Moving Average (ARMA) methods. For the SWAT model, data from Wainganga and Sind Basin (India) were used, while for the Wavelet Volterra, ANN and ARMA models, data from the Cauvery River Basin (India) and Fraser River (Canada) were used. The study also explored the effect of the choice of the wavelets in multiscale model evaluation. It was found that the proposed wavelet-based performance measures, namely the MNSC (Multiscale Nash-Sutcliffe Criteria) and MNRMSE (Multiscale Normalized Root Mean Square Error), are a more reliable measure than traditional performance measures such as the Nash-Sutcliffe Criteria (NSC), Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE). Further, the proposed methodology can be used to: i) compare different hydrological models (both physical and statistical models), and ii) help in model calibration.

  2. Accuracy of a Basketball Indoor Tracking System Based on Standard Bluetooth Low Energy Channels (NBN23®).

    PubMed

    Figueira, Bruno; Gonçalves, Bruno; Folgado, Hugo; Masiulis, Nerijus; Calleja-González, Julio; Sampaio, Jaime

    2018-06-14

    The present study aims to identify the accuracy of the NBN23 ® system, an indoor tracking system based on radio-frequency and standard Bluetooth Low Energy channels. Twelve capture tags were attached to a custom cart with fixed distances of 0.5, 1.0, 1.5, and 1.8 m. The cart was pushed along a predetermined course following the lines of a standard dimensions Basketball court. The course was performed at low speed (<10.0 km/h), medium speed (>10.0 km/h and <20.0 km/h) and high speed (>20.0 km/h). Root mean square error (RMSE) and percentage of variance accounted for (%VAF) were used as accuracy measures. The obtained data showed acceptable accuracy results for both RMSE and %VAF, despite the expected degree of error in position measurement at higher speeds. The RMSE for all the distances and velocities presented an average absolute error of 0.30 ± 0.13 cm with 90.61 ± 8.34 of %VAF, in line with most available systems, and considered acceptable for indoor sports. The processing of data with filter correction seemed to reduce the noise and promote a lower relative error, increasing the %VAF for each measured distance. Research using positional-derived variables in Basketball is still very scarce; thus, this independent test of the NBN23 ® tracking system provides accuracy details and opens up opportunities to develop new performance indicators that help to optimize training adaptations and performance.

  3. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)

    NASA Astrophysics Data System (ADS)

    Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.

    2018-03-01

    We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.

  4. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  5. Using compressive measurement to obtain images at ultra low-light-level

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Wei, Ping

    2013-08-01

    In this paper, a compressive imaging architecture is used for ultra low-light-level imaging. In such a system, features, instead of object pixels, are imaged onto a photocathode, and then magnified by an image intensifier. By doing so, system measurement SNR is increased significantly. Therefore, the new system can image objects at ultra low-ligh-level, while a conventional system has difficulty. PCA projection is used to collect feature measurements in this work. Linear Wiener operator and nonlinear method based on FoE model are used to reconstruct objects. Root mean square error (RMSE) is used to quantify system reconstruction quality.

  6. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  7. An Evaluation of Portable Wet Bulb Globe Temperature Monitor Accuracy.

    PubMed

    Cooper, Earl; Grundstein, Andrew; Rosen, Adam; Miles, Jessica; Ko, Jupil; Curry, Patrick

    2017-12-01

      Wet bulb globe temperature (WBGT) is the gold standard for assessing environmental heat stress during physical activity. Many manufacturers of commercially available instruments fail to report WBGT accuracy.   To determine the accuracy of several commercially available WBGT monitors compared with a standardized reference device.   Observational study.   Field test.   Six commercially available WBGT devices.   Data were recorded for 3 sessions (1 in the morning and 2 in the afternoon) at 2-minute intervals for at least 2 hours. Mean absolute error (MAE), root mean square error (RMSE), mean bias error (MBE), and the Pearson correlation coefficient ( r) were calculated to determine instrument performance compared with the reference unit.   The QUESTemp° 34 (MAE = 0.24°C, RMSE = 0.44°C, MBE = -0.64%) and Extech HT30 Heat Stress Wet Bulb Globe Temperature Meter (Extech; MAE = 0.61°C, RMSE = 0.79°C, MBE = 0.44%) demonstrated the least error in relation to the reference standard, whereas the General WBGT8778 Heat Index Checker (General; MAE = 1.18°C, RMSE = 1.34°C, MBE = 4.25%) performed the poorest. The QUESTemp° 34 and Kestrel 4400 Heat Stress Tracker units provided conservative measurements that slightly overestimated the WBGT provided by the reference unit. Finally, instruments using the psychrometric wet bulb temperature (General, REED Heat Index WBGT Meter, and WBGT-103 Heat Stroke Checker) tended to underestimate the WBGT, and the resulting values more frequently fell into WBGT-based activity categories with fewer restrictions as defined by the American College of Sports Medicine.   The QUESTemp° 34, followed by the Extech, had the smallest error compared with the reference unit. Moreover, the QUESTemp° 34, Extech, and Kestrel units appeared to offer conservative yet accurate assessments of the WBGT, potentially minimizing the risk of allowing physical activity to continue in stressful heat environments. Instruments using the psychrometric wet bulb temperature tended to underestimate WBGT under low wind-speed conditions. Accurate WBGT interpretations are important to enable clinicians to guide activities in hot and humid weather conditions.

  8. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  9. Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogeneous roughness.

    PubMed

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.

  10. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC

    PubMed Central

    2017-01-01

    We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.132 kBT (0.37 kJ/mol). PAC-MAC shows a RMSE of 0.151 kBT with a calculation speed being potentially 1.0 × 104 times greater than TI. OPLS-AA force field parameters are optimized using PAC-MAC based on vapor–liquid equilibrium data, instead of enthalpies of vaporization or densities. The RMSE of PAC-MAC is reduced to 0.099 kBT by optimizing 50 force field parameters. The resulting OPLS-PM force field has a comparable accuracy as the OPLS-AA force field in the calculation of mixing free energies using TI. PMID:28418655

  11. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches.

    PubMed

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey

    2014-09-01

    Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.

  12. Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle in the Eastern Coast of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Kim, S. J.; Kim, G. T.; Choi, B. C.; Shim, J.; Kim, B. G.

    2015-12-01

    The results from the global positioning system (GPS) measurements of mobile observation vehicle (MOVE) in the eastern coast of Korea have been compared with a fixed observation reference (REF) values from the fixed GPS sites to assess performance of precipitable water vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals have comparatively similar trends and reasonable agreement with REF-PWV with a root mean square error (RMSE) of 7.4 mm and R2 of 0.61 indicating a statistical significance at the 1% level (p-value of 0.01). Especially PWV retrievals from the June cases showed better agreement (mean bias of 2.1 mm and RMSE of 3.8 mm) with the other cases. We further investigated the relationships of determinant factors of GPS signals with the PWV retrievals for the detailed error analysis. As a result, both multipath (MP) errors of L1 and L2 pseudo-range had the best indices (0.75~0.99 m) for the June cases. We also found that both position dilution of precision (PDOP) and signal to noise ratio (SNR) values in June cases during the 1st period (0000~0100 UTC) are better (lower and higher) than those in Non-June cases, which is strongly associated with good accuracy (RMSE of 3.5 mm) of PWV in June cases. These results clearly demonstrate those effects on PWV accuracy, that is, analytic results of the key factors (MP errors, PDOP, and SNR) that could affect GPS signals should be considered for obtaining more stable performance. Taking advantage of MOVE, we would provide water vapor information with high spatial and temporal resolutions in case that weather dramatically changes such as in Korean Peninsula.

  13. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  14. Monitoring of beer fermentation based on hybrid electronic tongue.

    PubMed

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model

    NASA Astrophysics Data System (ADS)

    Wang, Weijie; Lu, Yanmin

    2018-03-01

    Most existing Collaborative Filtering (CF) algorithms predict a rating as the preference of an active user toward a given item, which is always a decimal fraction. Meanwhile, the actual ratings in most data sets are integers. In this paper, we discuss and demonstrate why rounding can bring different influences to these two metrics; prove that rounding is necessary in post-processing of the predicted ratings, eliminate of model prediction bias, improving the accuracy of the prediction. In addition, we also propose two new rounding approaches based on the predicted rating probability distribution, which can be used to round the predicted rating to an optimal integer rating, and get better prediction accuracy compared to the Basic Rounding approach. Extensive experiments on different data sets validate the correctness of our analysis and the effectiveness of our proposed rounding approaches.

  16. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  17. A comprehensive assessment of different evapotranspiration products using the site-level FLUXNET database

    NASA Astrophysics Data System (ADS)

    Liu, J.

    2017-12-01

    Accurately estimate of ET is crucial for studies of land-atmosphere interactions. A series of ET products have been developed recently relying on various simulation methods, however, uncertainties in accuracy of products limit their implications. In this study, accuracies of total 8 popular global ET products simulated based on satellite retrieves (ETMODIS and ETZhang), reanalysis (ETJRA55), machine learning method (ETJung) and land surface models (ETCLM, ETMOS, ETNoah and ETVIC) forcing by Global Land Data Assimilation System (GLDAS), respectively, were comprehensively evaluated against observations from eddy covariance FLUXNET sites by yearly, land cover and climate zones. The result shows that all simulated ET products tend to underestimate in the lower ET ranges or overestimate in higher ET ranges compared with ET observations. Through the examining of four statistic criterias, the root mean square error (RMSE), mean bias error (MBE), R2, and Taylor skill score (TSS), ETJung provided a high performance whether yearly or land cover or climatic zones. Satellite based ET products also have impressive performance. ETMODIS and ETZhang present comparable accuracy, while were skilled for different land cover and climate zones, respectively. Generally, the ET products from GLDAS show reasonable accuracy, despite ETCLM has relative higher RMSE and MBE for yearly, land cover and climate zones comparisons. Although the ETJRA55 shows comparable R2 with other products, its performance was constraint by the high RMSE and MBE. Knowledge from this study is crucial for ET products improvement and selection when they were used.

  18. Evaluation of the kinetic energy of the torso by magneto-inertial measurement unit during the sit-to-stand movement.

    PubMed

    Lepetit, Kevin; Ben Mansour, Khalil; Boudaoud, Sofiane; Kinugawa-Bourron, Kiyoka; Marin, Frédéric

    2018-01-23

    Sit-to-stand tests are used in geriatrics as a qualitative issue in order to evaluate motor control and stability. In terms of measured indicators, it is traditionally the duration of the task that is reported, however it appears that the use of the kinetic energy as a new quantitative criterion allows getting a better understanding of musculoskeletal deficits of elderly subjects. The aim of this study was to determine the feasibility to obtain the measure of kinetic energy using magneto-inertial measurement units (MIMU) during sit-to-stand movements at various paces. 26 healthy subjects contributed to this investigation. Measured results were compared to a marker-based motion capture using the correlation coefficient and the normalized root mean square error (nRMSE). nRMSE were below 10% and correlation coefficients were over 0.97. In addition, errors on the mean kinetic energy were also investigated using Bland-Altman 95% limits of agreement (0.63 J-0.77 J), RMSE (0.29 J-0.38 J) and correlation coefficient (0.96-0.98). The results obtained highlighted that the method based on MIMU data could be an alternative to optoelectronic data acquisition to assess the kinetic energy of the torso during the sit-to-stand test, suggesting this method as being a promising alternative to determine kinetic energy during the sit-to-stand movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  20. Development and application of GIS-based PRISM integration through a plugin approach

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Seop; Chun, Jong Ahn; Kang, Kwangmin

    2014-05-01

    A PRISM (Parameter-elevation Regressions on Independent Slopes Model) QGIS-plugin was developed on Quantum GIS platform in this study. This Quantum GIS plugin system provides user-friendly graphic user interfaces (GUIs) so that users can obtain gridded meteorological data of high resolutions (1 km × 1 km). Also, this software is designed to run on a personal computer so that it does not require an internet access or a sophisticated computer system. This module is a user-friendly system that a user can generate PRISM data with ease. The proposed PRISM QGIS-plugin is a hybrid statistical-geographic model system that uses coarse resolution datasets (APHRODITE datasets in this study) with digital elevation data to generate the fine-resolution gridded precipitation. To validate the performance of the software, Prek Thnot River Basin in Kandal, Cambodia is selected for application. Overall statistical analysis shows promising outputs generated by the proposed plugin. Error measures such as RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percentage Error) were used to evaluate the performance of the developed PRISM QGIS-plugin. Evaluation results using RMSE and MAPE were 2.76 mm and 4.2%, respectively. This study suggested that the plugin can be used to generate high resolution precipitation datasets for hydrological and climatological studies at a watershed where observed weather datasets are limited.

  1. Predicting tropical plant physiology from leaf and canopy spectroscopy

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Asner, G. P.; Martin, R.

    2009-12-01

    A broad understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but elusive, due to difficult canopy access and great species diversity. In this paper, we develop an empirical model to predict light saturated sunlit tropical leaf photosynthesis based on leaf and canopy spectra with the goal of developing a high resolution remote sensing technique to measure canopy photosynthesis. To develop this model, we used the partial least squares (PLS) regression technique on three tropical forest datasets (~168 species), two in Hawaii and one in the tropical rainforest module of Biosphere 2 (B2L). For each species, we measured light saturated photosynthesis (A), light and CO2 saturated photosynthesis (Amax), day respiration (R), leaf spectra (400-2500 nm with 1 nm sampling), leaf nitrogen (N), chlorophyll A and B, carotenoids, and specific leaf area (SLA). On a subset of species we measured Jmax and Vcmax based on light and Aci curves. The model best predicted A (r2 = 0.74, root mean square error (RMSE) = 2.85 µmol m-2 s-1), R (r2 of 0.48, RMSE of -0.52 µmol m-2 s-1) followed by Amax (r2 of 0.47, RMSE of 5.1 µmol m-2 s-1), Jmax, (R2 = 0.52, RMSE = 39) and VCmax (R2 = 0.39, RMSE = 36). The PLS weightings, which indicate which wavelengths most contribute to the model, indicated that physiology weightings were most similar to nitrogen weightings, followed by chlorophyll and SLA. We combined leaf-level reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance, and found that canopy spectra are a better predictor of light saturated photosynthesis more strongly (RMSE = 2.4 µmol m-2 s-1) than are leaf spectra (RMSE = 2.85 µmol m-2 s-1). The results suggest that there is potential for this technique to be used with high fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  2. Statistical Analysis of speckle noise reduction techniques for echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manojkumar

    2011-12-01

    Echocardiography is the safe, easy and fast technology for diagnosing the cardiac diseases. As in other ultrasound images these images also contain speckle noise. In some cases this speckle noise is useful such as in motion detection. But in general noise removal is required for better analysis of the image and proper diagnosis. Different Adaptive and anisotropic filters are included for statistical analysis. Statistical parameters such as Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), and Root Mean Square Error (RMSE) calculated for performance measurement. One more important aspect that there may be blurring during speckle noise removal. So it is prefered that filter should be able to enhance edges during noise removal.

  3. An algorithm of Saxena-Easo on fuzzy time series forecasting

    NASA Astrophysics Data System (ADS)

    Ramadhani, L. C.; Anggraeni, D.; Kamsyakawuni, A.; Hadi, A. F.

    2018-04-01

    This paper presents a forecast model of Saxena-Easo fuzzy time series prediction to study the prediction of Indonesia inflation rate in 1970-2016. We use MATLAB software to compute this method. The algorithm of Saxena-Easo fuzzy time series doesn’t need stationarity like conventional forecasting method, capable of dealing with the value of time series which are linguistic and has the advantage of reducing the calculation, time and simplifying the calculation process. Generally it’s focus on percentage change as the universe discourse, interval partition and defuzzification. The result indicate that between the actual data and the forecast data are close enough with Root Mean Square Error (RMSE) = 1.5289.

  4. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer

    2016-07-01

    In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.

  5. Validation and Expected Error Estimation of Suomi-NNP VIIRS Aerosol Optical Thickness and Angstrom Exponent with AERONET

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Zhang, Hai; Superczynski, Stephen; Ciren, Pubu; Holben, Brent N.; Petrenko, Maksym

    2016-01-01

    The new-generation polar-orbiting operational environmental sensor, the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite, provides critical daily global aerosol observations. As older satellite sensors age out, the VIIRS aerosol product will become the primary observational source for global assessments of aerosol emission and transport, aerosol meteorological and climatic effects, air quality monitoring, and public health. To prove their validity and to assess their maturity level, the VIIRS aerosol products were compared to the spatiotemporally matched Aerosol Robotic Network (AERONET)measurements. Over land, the VIIRS aerosol optical thickness (AOT) environmental data record (EDR) exhibits an overall global bias against AERONET of 0.0008 with root-mean-square error(RMSE) of the biases as 0.12. Over ocean, the mean bias of VIIRS AOT EDR is 0.02 with RMSE of the biases as 0.06.The mean bias of VIIRS Ocean Angstrom Exponent (AE) EDR is 0.12 with RMSE of the biases as 0.57. The matchups between each product and its AERONET counterpart allow estimates of expected error in each case. Increased uncertainty in the VIIRS AOT and AE products is linked to specific regions, seasons, surface characteristics, and aerosol types, suggesting opportunity for future modifications as understanding of algorithm assumptions improves. Based on the assessment, the VIIRS AOT EDR over land reached Validated maturity beginning 23 January 2013; the AOT EDR and AE EDR over ocean reached Validated maturity beginning 2 May 2012, excluding the processing error period 15 October to 27 November 2012. These findings demonstrate the integrity and usefulness of the VIIRS aerosol products that will transition from S-NPP to future polar-orbiting environmental satellites in the decades to come and become the standard global aerosol data set as the previous generations missions come to an end.

  6. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  7. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.

    PubMed

    Lowther, Andrew D; Lydersen, Christian; Fedak, Mike A; Lovell, Phil; Kovacs, Kit M

    2015-01-01

    Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs) to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE) for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.

  8. [Inversion of organic matter content of the north fluvo-aquic soil based on hyperspectral and multi-spectra].

    PubMed

    Wang, Yan-Cang; Gu, Xiao-He; Zhu, Jin-Shan; Long, Hui-Ling; Xu, Peng; Liao, Qin-Hong

    2014-01-01

    The present study aims to assess the feasibility of multi-spectral data in monitoring soil organic matter content. The data source comes from hyperspectral measured under laboratory condition, and simulated multi-spectral data from the hyperspectral. According to the reflectance response functions of Landsat TM and HJ-CCD (the Environment and Disaster Reduction Small Satellites, HJ), the hyperspectra were resampled for the corresponding bands of multi-spectral sensors. The correlation between hyperspectral, simulated reflectance spectra and organic matter content was calculated, and used to extract the sensitive bands of the organic matter in the north fluvo-aquic soil. The partial least square regression (PLSR) method was used to establish experiential models to estimate soil organic matter content. Both root mean squared error (RMSE) and coefficient of the determination (R2) were introduced to test the precision and stability of the modes. Results demonstrate that compared with the hyperspectral data, the best model established by simulated multi-spectral data gives a good result for organic matter content, with R2=0.586, and RMSE=0.280. Therefore, using multi-spectral data to predict tide soil organic matter content is feasible.

  9. Development of Super-Ensemble techniques for ocean analyses: the Mediterranean Sea case

    NASA Astrophysics Data System (ADS)

    Pistoia, Jenny; Pinardi, Nadia; Oddo, Paolo; Collins, Matthew; Korres, Gerasimos; Drillet, Yann

    2017-04-01

    Short-term ocean analyses for Sea Surface Temperature SST in the Mediterranean Sea can be improved by a statistical post-processing technique, called super-ensemble. This technique consists in a multi-linear regression algorithm applied to a Multi-Physics Multi-Model Super-Ensemble (MMSE) dataset, a collection of different operational forecasting analyses together with ad-hoc simulations produced by modifying selected numerical model parameterizations. A new linear regression algorithm based on Empirical Orthogonal Function filtering techniques is capable to prevent overfitting problems, even if best performances are achieved when we add correlation to the super-ensemble structure using a simple spatial filter applied after the linear regression. Our outcomes show that super-ensemble performances depend on the selection of an unbiased operator and the length of the learning period, but the quality of the generating MMSE dataset has the largest impact on the MMSE analysis Root Mean Square Error (RMSE) evaluated with respect to observed satellite SST. Lower RMSE analysis estimates result from the following choices: 15 days training period, an overconfident MMSE dataset (a subset with the higher quality ensemble members), and the least square algorithm being filtered a posteriori.

  10. Long-term forecasting of meteorological time series using Nonlinear Canonical Correlation Analysis (NLCCA)

    NASA Astrophysics Data System (ADS)

    Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.

    2016-12-01

    Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction

  11. Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi

    2017-08-01

    The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.

  12. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  13. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.

  14. Fish measurement using Android smart phone: the example of swamp eel

    NASA Astrophysics Data System (ADS)

    Chen, Baisong; Fu, Zhuo; Ouyang, Haiying; Sun, Yingze; Ge, Changshui; Hu, Jing

    The body length and weight are critical physiological parameters for fishes, especially eel-like fishes like swamp eel(Monopterusalbus).Fast and accurate measuring of body length is significant for swamp eel culturing as well as its resource investigation and protection. This paper presents an Android smart phone-based photogrammetry technology for measuring and estimating the length and weight of swamp eel. This method utilizes the feature that the ratio of lengths of two objects within an image is equal to that of in reality to measure the length of swamp eels. And then, it estimates the weight via a pre-built length-weight regression model. Analysis and experimental results have indicated that this method is a fast and accurate method for length and weight measurements of swamp eel. The cross-validation results shows that the RMSE (root-mean-square error) of total length measurement of swamp eel is0.4 cm, and the RMSE of weight estimation is 11 grams.

  15. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    NASA Astrophysics Data System (ADS)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  16. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  17. Solubility of organic compounds in octanol: Improved predictions based on the geometrical fragment approach.

    PubMed

    Mathieu, Didier

    2017-09-01

    Two new models are introduced to predict the solubility of chemicals in octanol (S oct ), taking advantage of the extensive character of log(S oct ) through a decomposition of molecules into so-called geometrical fragments (GF). They are extensively validated and their compliance with regulatory requirements is demonstrated. The first model requires just a molecular formula as input. Despite an extreme simplicity, it performs as well as an advanced random forest model involving 86 descriptors, with a root mean square error (RMSE) of 0.64 log units for an external test set of 100 molecules. For the second one, which requires the melting point T m as input, introducing GF descriptors reduces the RMSE from about 0.7 to <0.5 log units, a performance that could previously be obtained only through the use of Abraham descriptors. A script is provided for easy application of the models, taking into account the limits of their applicability domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Forecasting hotspots in East Kutai, Kutai Kartanegara, and West Kutai as early warning information

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Goejantoro, R.; Rizki, N. A.

    2018-04-01

    The aims of this research are to model hotspots and forecast hotspot 2017 in East Kutai, Kutai Kartanegara and West Kutai. The methods which used in this research were Holt exponential smoothing, Holt’s additive dump trend method, Holt-Winters’ additive method, additive decomposition method, multiplicative decomposition method, Loess decomposition method and Box-Jenkins method. For smoothing techniques, additive decomposition is better than Holt’s exponential smoothing. The hotspots model using Box-Jenkins method were Autoregressive Moving Average ARIMA(1,1,0), ARIMA(0,2,1), and ARIMA(0,1,0). Comparing the results from all methods which were used in this research, and based on Root of Mean Squared Error (RMSE), show that Loess decomposition method is the best times series model, because it has the least RMSE. Thus the Loess decomposition model used to forecast the number of hotspot. The forecasting result indicatethat hotspots pattern tend to increase at the end of 2017 in Kutai Kartanegara and West Kutai, but stationary in East Kutai.

  19. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    NASA Technical Reports Server (NTRS)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' < or = 18 mag), with 4500 K < or = Teff < or = 7000 K, corresponding to those with the most reliable SSPP estimates, I find that the model predicts [Fe/H] values with a root-mean-squared-error (RMSE) of approx.0.27 dex. The RMSE from this machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  20. High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik

    2014-11-01

    This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.

  1. Wireless Monitoring of Liver Hemodynamics In Vivo

    DOE PAGES

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; ...

    2014-07-14

    Liver transplants have their highest failure rate in the first two weeks following surgery. There are no devices for continuous, real-time monitoring of the graft, currently. Here, we present a continuous perfusion and oxygen consumption monitor based on photoplethysmography. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.125 mL/min/g of tissue. We show the possibility of using the pulsatile wave tomore » measure the arterial oxygen saturation similar to pulse oximetry. This signal is used as a feedback to extract the venous oxygen saturation from the DC levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19 and 1.39% respectively when no vascular occlusions were induced. The resulting error increased to 2.82 and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of the oximetry catheter used as a reference. This work is the first realization of a wireless perfusion and oxygenation sensor for continuous monitoring of hepatic perfusion and oxygenation changes.« less

  2. Indoor-to-outdoor particle concentration ratio model for human exposure analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Ryu, Sung Hee; Lee, Gwangjae; Bae, Gwi-Nam

    2016-02-01

    This study presents an indoor-to-outdoor particle concentration ratio (IOR) model for improved estimates of indoor exposure levels. This model is useful in epidemiological studies with large population, because sampling indoor pollutants in all participants' house is often necessary but impractical. As a part of a study examining the association between air pollutants and atopic dermatitis in children, 16 parents agreed to measure the indoor and outdoor PM10 and PM2.5 concentrations at their homes for 48 h. Correlation analysis and multi-step multivariate linear regression analysis was performed to develop the IOR model. Temperature and floor level were found to be powerful predictors of the IOR. Despite the simplicity of the model, it demonstrated high accuracy in terms of the root mean square error (RMSE). Especially for long-term IOR estimations, the RMSE was as low as 0.064 and 0.063 for PM10 and PM2.5, respectively. When using a prediction model in an epidemiological study, understanding the consequence of the modeling error and justifying the use of the model is very important. In the last section, this paper discussed the impact of the modeling error and developed a novel methodology to justify the use of the model.

  3. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA

    USGS Publications Warehouse

    Huang, Shengli; Ramirez, Carlos; Conway, Scott; Kennedy, Kama; Kohler, Tanya; Liu, Jinxun

    2016-01-01

    High-resolution site index (SI) and mean annual increment (MAI) maps are desired for local forest management. We integrated field inventory, Landsat, and ecological variables to produce 30 m SI and MAI maps for the Tahoe National Forest (TNF) where different tree species coexist. We converted species-specific SI using adjustment factors. Then, the SI map was produced by (i) intensifying plots to expand the training sets to more climatic, topographic, soil, and forest reflective classes, (ii) using results from a stepwise regression to enable a weighted imputation that minimized the effects of outlier plots within classes, and (iii) local interpolation and strata median filling to assign values to pixels without direct imputations. The SI (reference age is 50 years) map had an R2 of 0.7637, a root-mean-square error (RMSE) of 3.60, and a mean absolute error (MAE) of 3.07 m. The MAI map was similarly produced with an R2 of 0.6882, an RMSE of 1.73, and a MAE of 1.20 m3·ha−1·year−1. Spatial patterns and trends of SI and MAI were analyzed to be related to elevation, aspect, slope, soil productivity, and forest type. The 30 m SI and MAI maps can be used to support decisions on fire, plantation, biodiversity, and carbon.

  4. Simulating maize yield and bomass with spatial variability of soil field capacity

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  5. A drifting GPS buoy for retrieving effective riverbed bathymetry

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  6. Look-up-table approach for leaf area index retrieval from remotely sensed data based on scale information

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohua; Li, Chuanrong; Tang, Lingli

    2018-03-01

    Leaf area index (LAI) is a key structural characteristic of vegetation and plays a significant role in global change research. Several methods and remotely sensed data have been evaluated for LAI estimation. This study aimed to evaluate the suitability of the look-up-table (LUT) approach for crop LAI retrieval from Satellite Pour l'Observation de la Terre (SPOT)-5 data and establish an LUT approach for LAI inversion based on scale information. The LAI inversion result was validated by in situ LAI measurements, indicating that the LUT generated based on the PROSAIL (PROSPECT+SAIL: properties spectra + scattering by arbitrarily inclined leaves) model was suitable for crop LAI estimation, with a root mean square error (RMSE) of ˜0.31m2 / m2 and determination coefficient (R2) of 0.65. The scale effect of crop LAI was analyzed based on Taylor expansion theory, indicating that when the SPOT data aggregated by 200 × 200 pixel, the relative error is significant with 13.7%. Finally, an LUT method integrated with scale information was proposed in this article, improving the inversion accuracy with RMSE of 0.20 m2 / m2 and R2 of 0.83.

  7. Neural activity during affect labeling predicts expressive writing effects on well-being: GLM and SVM approaches

    PubMed Central

    Memarian, Negar; Torre, Jared B.; Haltom, Kate E.; Stanton, Annette L.

    2017-01-01

    Abstract Affect labeling (putting feelings into words) is a form of incidental emotion regulation that could underpin some benefits of expressive writing (i.e. writing about negative experiences). Here, we show that neural responses during affect labeling predicted changes in psychological and physical well-being outcome measures 3 months later. Furthermore, neural activity of specific frontal regions and amygdala predicted those outcomes as a function of expressive writing. Using supervised learning (support vector machines regression), improvements in four measures of psychological and physical health (physical symptoms, depression, anxiety and life satisfaction) after an expressive writing intervention were predicted with an average of 0.85% prediction error [root mean square error (RMSE) %]. The predictions were significantly more accurate with machine learning than with the conventional generalized linear model method (average RMSE: 1.3%). Consistent with affect labeling research, right ventrolateral prefrontal cortex (RVLPFC) and amygdalae were top predictors of improvement in the four outcomes. Moreover, RVLPFC and left amygdala predicted benefits due to expressive writing in satisfaction with life and depression outcome measures, respectively. This study demonstrates the substantial merit of supervised machine learning for real-world outcome prediction in social and affective neuroscience. PMID:28992270

  8. SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross-Polar Cap Potential

    NASA Astrophysics Data System (ADS)

    Haiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.; Morley, Steven K.; Ozturk, Dogacan Su

    2017-12-01

    We simulated the entire month of January 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model and tested two different grid resolutions. We evaluated the model's accuracy in predicting Kp, SYM-H, AL, and cross-polar cap potential (CPCP). We find that the model does an excellent job of predicting the SYM-H index, with a root-mean-square error (RMSE) of 17-18 nT. Kp is predicted well during storm time conditions but overpredicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonably well on average, with an RMSE of 230-270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to overpredict CPCP, with RMSE values on the order of 46-48 kV. We found the results to be insensitive to grid resolution, with the exception of the rate of occurrence for strongly negative AL values. The use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.

  9. The reliability and validity of a three-camera foot image system for obtaining foot anthropometrics.

    PubMed

    O'Meara, Damien; Vanwanseele, Benedicte; Hunt, Adrienne; Smith, Richard

    2010-08-01

    The purpose was to develop a foot image capture and measurement system with web cameras (the 3-FIS) to provide reliable and valid foot anthropometric measures with efficiency comparable to that of the conventional method of using a handheld anthropometer. Eleven foot measures were obtained from 10 subjects using both methods. Reliability of each method was determined over 3 consecutive days using the intraclass correlation coefficient and root mean square error (RMSE). Reliability was excellent for both the 3-FIS and the handheld anthropometer for the same 10 variables, and good for the fifth metatarsophalangeal joint height. The RMSE values over 3 days ranged from 0.9 to 2.2 mm for the handheld anthropometer, and from 0.8 to 3.6 mm for the 3-FIS. The RMSE values between the 3-FIS and the handheld anthropometer were between 2.3 and 7.4 mm. The 3-FIS required less time to collect and obtain the final variables than the handheld anthropometer. The 3-FIS provided accurate and reproducible results for each of the foot variables and in less time than the conventional approach of a handheld anthropometer.

  10. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  11. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Method for Estimating Zero-Flow Pressure and Intracranial Pressure

    PubMed Central

    Caren, Marzban; Paul, Raymond Illian; David, Morison; Anne, Moore; Michel, Kliot; Marek, Czosnyka; Pierre, Mourad

    2012-01-01

    Background It has been hypothesized that critical closing pressure of cerebral circulation, or zero-flow pressure (ZFP), can estimate intracranial pressure (ICP). One ZFP estimation method employs extrapolation of arterial blood pressure versus blood-flow velocity. The aim of this study is to improve ICP predictions. Methods Two revisions are considered: 1) The linear model employed for extrapolation is extended to a nonlinear equation, and 2) the parameters of the model are estimated by an alternative criterion (not least-squares). The method is applied to data on transcranial Doppler measurements of blood-flow velocity, arterial blood pressure, and ICP, from 104 patients suffering from closed traumatic brain injury, sampled across the United States and England. Results The revisions lead to qualitative (e.g., precluding negative ICP) and quantitative improvements in ICP prediction. In going from the original to the revised method, the ±2 standard deviation of error is reduced from 33 to 24 mm Hg; the root-mean-squared error (RMSE) is reduced from 11 to 8.2 mm Hg. The distribution of RMSE is tighter as well; for the revised method the 25th and 75th percentiles are 4.1 and 13.7 mm Hg, respectively, as compared to 5.1 and 18.8 mm Hg for the original method. Conclusions Proposed alterations to a procedure for estimating ZFP lead to more accurate and more precise estimates of ICP, thereby offering improved means of estimating it noninvasively. The quality of the estimates is inadequate for many applications, but further work is proposed which may lead to clinically useful results. PMID:22824923

  13. Relationships Between Internal and External Training Load in Team-Sport Athletes: Evidence for an Individualized Approach.

    PubMed

    Bartlett, Jonathan D; O'Connor, Fergus; Pitchford, Nathan; Torres-Ronda, Lorena; Robertson, Samuel J

    2017-02-01

    The aim of this study was to quantify and predict relationships between rating of perceived exertion (RPE) and GPS training-load (TL) variables in professional Australian football (AF) players using group and individualized modeling approaches. TL data (GPS and RPE) for 41 professional AF players were obtained over a period of 27 wk. A total of 2711 training observations were analyzed with a total of 66 ± 13 sessions/player (range 39-89). Separate generalized estimating equations (GEEs) and artificial-neural-network analyses (ANNs) were conducted to determine the ability to predict RPE from TL variables (ie, session distance, high-speed running [HSR], HSR %, m/min) on a group and individual basis. Prediction error for the individualized ANN (root-mean-square error [RMSE] 1.24 ± 0.41) was lower than the group ANN (RMSE 1.42 ± 0.44), individualized GEE (RMSE 1.58 ± 0.41), and group GEE (RMSE 1.85 ± 0.49). Both the GEE and ANN models determined session distance as the most important predictor of RPE. Furthermore, importance plots generated from the ANN revealed session distance as most predictive of RPE in 36 of the 41 players, whereas HSR was predictive of RPE in just 3 players and m/min was predictive of RPE in just 2 players. This study demonstrates that machine learning approaches may outperform more traditional methodologies with respect to predicting athlete responses to TL. These approaches enable further individualization of load monitoring, leading to more accurate training prescription and evaluation.

  14. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula

    PubMed Central

    Mukul, Manas; Srivastava, Vinee; Jade, Sridevi; Mukul, Malay

    2017-01-01

    The Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) are used with the consensus view that it has a minimum vertical accuracy of 16 m absolute error at 90% confidence (Root Mean Square Error (RMSE) of 9.73 m) world-wide. However, vertical accuracy of the data decreases with increase in slope and elevation due to presence of large outliers and voids. Therefore, studies using SRTM data “as is”, especially in regions like the Himalaya, are not statistically meaningful. New data from ~200 high-precision static Global Position System (GPS) Independent Check Points (ICPs) in the Himalaya and Peninsular India indicate that only 1-arc X-Band data are usable “as is” in the Himalaya as it has height accuracy of 9.18 m (RMSE). In contrast, recently released (2014–2015) “as-is” 1-arc and widely used 3-arc C-Band data have a height accuracy of RMSE 23.53 m and 47.24 m and need to be corrected before use. Outlier and void filtering improves the height accuracy to RMSE 8 m, 10.14 m, 14.38 m for 1-arc X and C-Band and 3-arc C-Band data respectively. Our study indicates that the C-Band 90 m and 30 m DEMs are well-aligned and without any significant horizontal offset implying that area and length computations using both the datasets have identical values. PMID:28176825

  15. Impact of missing data on the efficiency of homogenisation: experiments with ACMANTv3

    NASA Astrophysics Data System (ADS)

    Domonkos, Peter; Coll, John

    2018-04-01

    The impact of missing data on the efficiency of homogenisation with ACMANTv3 is examined with simulated monthly surface air temperature test datasets. The homogeneous database is derived from an earlier benchmarking of daily temperature data in the USA, and then outliers and inhomogeneities (IHs) are randomly inserted into the time series. Three inhomogeneous datasets are generated and used, one with relatively few and small IHs, another one with IHs of medium frequency and size, and a third one with large and frequent IHs. All of the inserted IHs are changes to the means. Most of the IHs are single sudden shifts or pair of shifts resulting in platform-shaped biases. Each test dataset consists of 158 time series of 100 years length, and their mean spatial correlation is 0.68-0.88. For examining the impacts of missing data, seven experiments are performed, in which 18 series are left complete, while variable quantities (10-70%) of the data of the other 140 series are removed. The results show that data gaps have a greater impact on the monthly root mean squared error (RMSE) than the annual RMSE and trend bias. When data with a large ratio of gaps is homogenised, the reduction of the upper 5% of the monthly RMSE is the least successful, but even there, the efficiency remains positive. In terms of reducing the annual RMSE and trend bias, the efficiency is 54-91%. The inclusion of short and incomplete series with sufficient spatial correlation in all cases improves the efficiency of homogenisation with ACMANTv3.

  16. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.

  17. [Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A case study for potato and oil sunflower.

    PubMed

    Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu

    2016-11-18

    The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal conductance models for oil sunflower are to be improved in further research.

  18. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia

    PubMed Central

    Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-01-01

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015

  19. Solid waste forecasting using modified ANFIS modeling.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; K N A, Maulud

    2015-10-01

    Solid waste prediction is crucial for sustainable solid waste management. Usually, accurate waste generation record is challenge in developing countries which complicates the modelling process. Solid waste generation is related to demographic, economic, and social factors. However, these factors are highly varied due to population and economy growths. The objective of this research is to determine the most influencing demographic and economic factors that affect solid waste generation using systematic approach, and then develop a model to forecast solid waste generation using a modified Adaptive Neural Inference System (MANFIS). The model evaluation was performed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the coefficient of determination (R²). The results show that the best input variables are people age groups 0-14, 15-64, and people above 65 years, and the best model structure is 3 triangular fuzzy membership functions and 27 fuzzy rules. The model has been validated using testing data and the resulted training RMSE, MAE and R² were 0.2678, 0.045 and 0.99, respectively, while for testing phase RMSE =3.986, MAE = 0.673 and R² = 0.98. To date, a few attempts have been made to predict the annual solid waste generation in developing countries. This paper presents modeling of annual solid waste generation using Modified ANFIS, it is a systematic approach to search for the most influencing factors and then modify the ANFIS structure to simplify the model. The proposed method can be used to forecast the waste generation in such developing countries where accurate reliable data is not always available. Moreover, annual solid waste prediction is essential for sustainable planning.

  20. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population

    PubMed Central

    Yu, Solomon C. Y.; Powell, Alice; Khow, Kareeann S. F.; Visvanathan, Renuka

    2016-01-01

    Appendicular skeletal muscle mass (ASM) is a diagnostic criterion for sarcopenia. Bioelectrical impedance analysis (BIA) offers a bedside approach to measure ASM but the performance of BIA prediction equations (PE) varies with ethnicities and body composition. We aim to validate the performance of five PEs in estimating ASM against estimation by dual-energy X-ray absorptiometry (DXA). We recruited 195 healthy adult Australians and ASM was measured using single-frequency BIA. Bland-Altman analysis was used to assess the predictive accuracy of ASM as determined by BIA against DXA. Precision (root mean square error (RMSE)) and bias (mean error (ME)) were calculated according to the method of Sheiner and Beal. Four PEs (except that by Kim) showed ASM values that correlated strongly with ASMDXA (r ranging from 0.96 to 0.97, p < 0.001). The Sergi equation performed the best with the lowest ME of −1.09 kg (CI: −0.84–−1.34, p < 0.001) and the RMSE was 2.09 kg (CI: 1.72–2.47). In men, the Kyle equation performed better with the lowest ME (−0.32 kg (CI: −0.66–0.02) and RMSE (1.54 kg (CI: 1.14–1.93)). The Sergi equation is applicable in adult Australians (Caucasian) whereas the Kyle equation can be considered in males. The need remains to validate PEs in other ethnicities and to develop equations suitable for multi-frequency BIA. PMID:27043617

  1. Area under the curve predictions of dalbavancin, a new lipoglycopeptide agent, using the end of intravenous infusion concentration data point by regression analyses such as linear, log-linear and power models.

    PubMed

    Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally

    2018-02-01

    1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE < 10.3%. The external data evaluation showed that the models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.

  2. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ping; Wang, Chenyu; Li, Mingjie

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) can not fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First,more » the modeling error PDF by the tradional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. Furthermore, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  3. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ping; Wang, Chenyu; Li, Mingjie

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  4. Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking

    DOE PAGES

    Zhou, Ping; Wang, Chenyu; Li, Mingjie; ...

    2018-01-31

    In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less

  5. An assessment of the accuracy of a novel weight estimation device for children.

    PubMed

    Jung, Jae Yun; Kwak, Young Ho; Kim, Do Kyun; Suh, Dongbum; Chang, Ikwan; Yoon, Chiyul; Lee, Jung Chan; Kim, Hee Chan; Choi, Jae Yeon; Ahn, HeeJeong

    2017-03-01

    We sought to validate the accuracy and assess the efficacy of a newly developed electronic weight estimation device (ie, the rolling tape) for paediatric weight estimation. We enrolled a convenience sample of children aged <17 years presenting to our emergency department who volunteered to participate in the study. The children's heights and weights were measured, and three researchers estimated these values using the rolling tape and Broselow tape at 5 min intervals. The weight estimates of researcher 1, researcher 2 and the Broselow tape were compared with measured values, and mean percentage error (MPE), root mean square error (RMSE) and percentage of estimates within 10% of the actual measured values were calculated. For 30 randomly selected subjects, we compared the time interval from the start of the measurement to the time that orders for epinephrine, defibrillation dose and instrument size could be given in a simulated arrest scenario. We enrolled 906 children (median age 4.0 years). For researcher 1, researcher 2 and the Broselow tape, MPE values were 0.11% (RMSE 2.61 kg), 1.41% (RMSE, 2.61 kg) and 1.72% (RMSE 5.41 kg), respectively, and the percentages of children with predictions within 10% of their actual weight were 75.1%, 75.7% and 60.6%, respectively. In the 30 simulated cases, the mean time for measurement to ordering was significantly shorter (25.8 s vs 35.5 s, p<0.001) for the rolling tape compared with the Broselow tape method. The rolling tape is a good weight estimation tool for children compared with other methods. The rolling tape method significantly decreased the time from weight estimation to orders for essential drug dose, instrument size and defibrillation dose for resuscitation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  7. Recent bathymetric variability of sandbars at Duck, NC

    NASA Astrophysics Data System (ADS)

    Ladner, H.; Palmsten, M. L.

    2016-02-01

    Sediment transport and sandbar migration are unresolved research topics due to the complex interaction between waves, currents, and sediments in the nearshore region. Previous studies have led to better fundamental understanding of sediment transport, but the capability to make precise short term estimates is still limited. One challenge in predicting sediment transport is the sparse bathymetric data available to ground-truth predictions. A recently developed algorithm, cBathy, uses video images to estimate the nearshore bathymetry from wave celerity. This new method can provide an extensive time series of bathymetric change in order to further study the physics of short term sediment transport. The cBathy code is still under development and needs further testing for accuracy. The objective of this work is to validate cBathy estimates of bathymetry and quantify sandbar behavior over a two month period by analyzing the position of the sandbar crest. The bias between the cBathy estimate and survey on 04/02/15 was 0.24 m and root mean square error (RMSE) was 0.50 m. The bias for the cBathy estimate and survey on 05/19/15 was -0.02 m and RMSE was 0.39 m. The bias and RMSE we observed were comparable previous estimates. As expected, errors were largest in shallower water depths where assumptions made by the cBathy algorithm were not valid. Over the two month period, the mean cross-shore location of the primary sandbar at the alongshore location of 200 m was approximately 216 m, with a standard deviation of 16 m. The mean cross-shore location of the primary sandbar at the alongshore location of 850 m was approximately 205 m, with a standard deviation of 17 m.

  8. Carbon Nanotubes' Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra.

    PubMed

    González-Durruthy, Michael; Monserrat, Jose M; Rasulev, Bakhtiyor; Casañola-Martín, Gerardo M; Barreiro Sorrivas, José María; Paraíso-Medina, Sergio; Maojo, Víctor; González-Díaz, Humberto; Pazos, Alejandro; Munteanu, Cristian R

    2017-11-11

    This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux ( J m ) under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments) and perturbation theory. The experimental measures of J m showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of J m for other CNTs was provided by random forest using eight features, obtaining test R-squared ( R ²) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  9. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  10. Validation of the Conversion between the Mini-Mental State Examination and Montreal Cognitive assessment in Korean Patients with Parkinson’s Disease

    PubMed Central

    Kim, Ryul; Kim, Han-Joon; Kim, Aryun; Jang, Mi-Hee; Kim, Hyun Jeong; Jeon, Beomseok

    2018-01-01

    Objective Two conversion tables between the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) have recently been established for Parkinson’s disease (PD). This study aimed to validate them in Korean patients with PD and to evaluate whether they could be influenced by educational level. Methods A total of 391 patients with PD who undertook both the Korean MMSE and the Korean MoCA during the same session were retrospectively assessed. The mean, median, and root mean squared error (RMSE) of the difference between the true and converted MMSE scores and the intraclass correlation coefficient (ICC) were calculated according to educational level (6 or fewer years, 7–12 years, or 13 or more years). Results Both conversions had a median value of 0, with a small mean and RMSE of differences, and a high correlation between the true and converted MMSE scores. In the classification according to educational level, all groups had roughly similar values of the median, mean, RMSE, and ICC both within and between the conversions. Conclusion Our findings suggest that both MMSE-MoCA conversion tables are useful instruments for transforming MoCA scores into converted MMSE scores in Korean patients with PD, regardless of educational level. These will greatly enhance the utility of the existing cognitive data from the Korean PD population in clinical and research settings. PMID:29316782

  11. Analysis of tractable distortion metrics for EEG compression applications.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-07-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio.

  12. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  13. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    PubMed

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.

  14. Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI

    NASA Astrophysics Data System (ADS)

    Ahn, Seo-Hee; Lee, Kyu-Tae; Rim, Se-Hun; Zo, Il-Sung; Kim, Bu-Yo

    2018-05-01

    This study contributes to the development of an algorithm to retrieve the Earth's surface downward longwave radiation (DLR) for 2nd Geostationary Earth Orbit KOrea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A)/Advanced Meteorological Imager (AMI). Regarding simulation data for algorithm development, we referred to Clouds and the Earth's Radiant Energy System (CERES), and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis data. The clear sky DLR calculations were in good agreement with the Gangneung-Wonju National University (GWNU) Line-By-Line (LBL) model. Compared with CERES data, the Root Mean Square Error (RMSE) was 10.14Wm-2. In the case of cloudy sky DLR, we estimated the cloud base temperature empirically by utilizing cloud liquid water content (LWC) according to the cloud type. As a result, the correlation coefficients with CERES all sky DLRs were greater than 0.99. However, the RMSE between calculated DLR and CERES data was about 16.67Wm-2, due to ice clouds and problems of mismatched spatial and temporal resolutions for input data. This error may be reduced when GK-2A is launched and its products can be used as input data. Accordingly, further study is needed to improve the accuracy of DLR calculation by using high-resolution input data. In addition, when compared with BSRN surface-based observational data and retrieved DLR for all sky, the correlation coefficient was 0.86 and the RMSE was 31.55 Wm-2, which indicates relatively high accuracy. It is expected that increasing the number of experimental Cases will reduce the error.

  15. Validation of geometric accuracy of Global Land Survey (GLS) 2000 data

    USGS Publications Warehouse

    Rengarajan, Rajagopalan; Sampath, Aparajithan; Storey, James C.; Choate, Michael J.

    2015-01-01

    The Global Land Survey (GLS) 2000 data were generated from Geocover™ 2000 data with the aim of producing a global data set of accuracy better than 25 m Root Mean Square Error (RMSE). An assessment and validation of accuracy of GLS 2000 data set, and its co-registration with Geocover™ 2000 data set is presented here. Since the availability of global data sets that have higher nominal accuracy than the GLS 2000 is a concern, the data sets were assessed in three tiers. In the first tier, the data were compared with the Geocover™ 2000 data. This comparison provided a means of localizing regions of higher differences. In the second tier, the GLS 2000 data were compared with systematically corrected Landsat-7 scenes that were obtained in a time period when the spacecraft pointing information was extremely accurate. These comparisons localize regions where the data are consistently off, which may indicate regions of higher errors. The third tier consisted of comparing the GLS 2000 data against higher accuracy reference data. The reference data were the Digital Ortho Quads over the United States, orthorectified SPOT data over Australia, and high accuracy check points obtained using triangulation bundle adjustment of Landsat-7 images over selected sites around the world. The study reveals that the geometric errors in Geocover™ 2000 data have been rectified in GLS 2000 data, and that the accuracy of GLS 2000 data can be expected to be better than 25 m RMSE for most of its constituent scenes.

  16. A new method to estimate average hourly global solar radiation on the horizontal surface

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.

    2012-10-01

    A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.

  17. Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability.

    PubMed

    Hossain, Monowar; Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Horan, Ben; Stojcevski, Alex

    2018-01-01

    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.

  18. Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability

    PubMed Central

    Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M.; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Stojcevski, Alex

    2018-01-01

    In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations. PMID:29702645

  19. Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland

    NASA Astrophysics Data System (ADS)

    Woroszkiewicz, Małgorzata; Ewiak, Ireneusz; Lulkowska, Paulina

    2017-06-01

    The TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) mission launched in 2010 is another programme - after the Shuttle Radar Topography Mission (SRTM) in 2000 - that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project "Accuracy assessment of a Digital Elevation Model based on TanDEM-X data" for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.

  20. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  1. Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Akgüngör, Ali Payıdar; Korkmaz, Ersin

    2017-06-01

    Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.

  2. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    PubMed

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pharmacokinetics of low-dose nedaplatin and validation of AUC prediction in patients with non-small-cell lung carcinoma.

    PubMed

    Niioka, Takenori; Uno, Tsukasa; Yasui-Furukori, Norio; Takahata, Takenori; Shimizu, Mikiko; Sugawara, Kazunobu; Tateishi, Tomonori

    2007-04-01

    The aim of this study was to determine the pharmacokinetics of low-dose nedaplatin combined with paclitaxel and radiation therapy in patients having non-small-cell lung carcinoma and establish the optimal dosage regimen for low-dose nedaplatin. We also evaluated predictive accuracy of reported formulas to estimate the area under the plasma concentration-time curve (AUC) of low-dose nedaplatin. A total of 19 patients were administered a constant intravenous infusion of 20 mg/m(2) body surface area (BSA) nedaplatin for an hour, and blood samples were collected at 1, 2, 3, 4, 6, 8, and 19 h after the administration. Plasma concentrations of unbound platinum were measured, and the actual value of platinum AUC (actual AUC) was calculated based on these data. The predicted value of platinum AUC (predicted AUC) was determined by three predictive methods reported in previous studies, consisting of Bayesian method, limited sampling strategies with plasma concentration at a single time point, and simple formula method (SFM) without measured plasma concentration. Three error indices, mean prediction error (ME, measure of bias), mean absolute error (MAE, measure of accuracy), and root mean squared prediction error (RMSE, measure of precision), were obtained from the difference between the actual and the predicted AUC, to compare the accuracy between the three predictive methods. The AUC showed more than threefold inter-patient variation, and there was a favorable correlation between nedaplatin clearance and creatinine clearance (Ccr) (r = 0.832, P < 0.01). In three error indices, MAE and RMSE showed significant difference between the three AUC predictive methods, and the method of SFM had the most favorable results, in which %ME, %MAE, and %RMSE were 5.5, 10.7, and 15.4, respectively. The dosage regimen of low-dose nedaplatin should be established based on Ccr rather than on BSA. Since prediction accuracy of SFM, which did not require measured plasma concentration, was most favorable among the three methods evaluated in this study, SFM could be the most practical method to predict AUC of low-dose nedaplatin in a clinical situation judging from its high accuracy in predicting AUC without measured plasma concentration.

  4. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less

  5. Scaled SFS method for Lambertian surface 3D measurement under point source lighting.

    PubMed

    Ma, Long; Lyu, Yi; Pei, Xin; Hu, Yan Min; Sun, Feng Ming

    2018-05-28

    A Lambertian surface is a kind of very important assumption in shape from shading (SFS), which is widely used in many measurement cases. In this paper, a novel scaled SFS method is developed to measure the shape of a Lambertian surface with dimensions. In which, a more accurate light source model is investigated under the illumination of a simple point light source, the relationship between surface depth map and the recorded image grayscale is established by introducing the camera matrix into the model. Together with the constraints of brightness, smoothness and integrability, the surface shape with dimensions can be obtained by analyzing only one image using the scaled SFS method. The algorithm simulations show a perfect matching between the simulated structures and the results, the rebuilding root mean square error (RMSE) is below 0.6mm. Further experiment is performed by measuring a PVC tube internal surface, the overall measurement error lies below 2%.

  6. MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A.; Ranson, K. J.

    2009-01-01

    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone.

  7. Prediction skill of rainstorm events over India in the TIGGE weather prediction models

    NASA Astrophysics Data System (ADS)

    Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.

    2017-12-01

    Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.

  8. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  9. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering

    PubMed Central

    Almeida, Fernando R.; Brayner, Angelo; Rodrigues, Joel J. P. C.; Maia, Jose E. Bessa

    2017-01-01

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering. To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE). PMID:28590450

  10. Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering.

    PubMed

    Almeida, Fernando R; Brayner, Angelo; Rodrigues, Joel J P C; Maia, Jose E Bessa

    2017-06-07

    An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering . To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE).

  11. Microwave Photonic Architecture for Direction Finding of LPI Emitters: Post-Processing for Angle of Arrival Estimation

    DTIC Science & Technology

    2016-09-01

    mean- square (RMS) error of 0.29° at ə° resolution. For a P4 coded signal, the RMS error in estimating the AOA is 0.32° at 1° resolution. 14...FMCW signal, it was demonstrated that the system is capable of estimating the AOA with a root-mean- square (RMS) error of 0.29° at ə° resolution. For a...Modulator PCB printed circuit board PD photodetector RF radio frequency RMS root-mean- square xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii

  12. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    PubMed

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Arterial pressure transfer characteristics: effects of travel time.

    PubMed

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos

    2007-02-01

    We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.

  14. Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event

    NASA Astrophysics Data System (ADS)

    Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex

    2017-09-01

    We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.

  15. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An evaluation of light intensity functions for determination of shaded reference stream metabolism.

    PubMed

    Zell, Chris; Hubbart, Jason A

    2012-04-30

    The performance of three single-station whole stream metabolism models were evaluated within three shaded, seasonally hypoxic, Missouri reference streams using high resolution (15-minute) dissolved oxygen (DO), temperature, and light intensity data collected during the summers (July-September) of 2006-2008. The model incorporating light intensity data consistently achieved a lower root mean square error (median RMSE = 0.20 mg L(-1)) relative to models assuming sinusoidal light intensity functions (median RMSE = 0.28 mg L(-1)) and constant diel temperature (median RMSE = 0.53 mg L(-1)). Incorporation of site-specific light intensity into metabolism models better predicted morning DO concentrations and exposure to hypoxic conditions in shaded study streams. Model choice significantly affected (p < 0.05) rate estimates for daily average photosynthesis. Low reaeration (pooled site mean 1.1 day(-1) at 20 °C) coupled with summer temperatures (pooled site mean = 25.8 °C) and low to moderate community respiration (site median 1.0-3.0 g O(2) m(-2) day(-1)) yielded diel dissolved oxygen concentrations near or below critical aquatic life thresholds in studied reference streams. Quantifying these process combinations in best-available or least-disturbed (i.e., reference) systems advances our understanding of regional dissolved oxygen expectations and informs environmental management policy. Additional research is warranted to better link landscape processes with distributed sources that contribute to community respiration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  18. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  19. Soil moisture from ground-based networks and the North American Land Data Assimilation System Phase 2 Model: Are the right values somewhere in between?

    NASA Astrophysics Data System (ADS)

    Caldwell, T. G.; Scanlon, B. R.; Long, D.; Young, M.

    2013-12-01

    Soil moisture is the most enigmatic component of the water balance; nonetheless, it is inherently tied to every component of the hydrologic cycle, affecting the partitioning of both water and energy at the land surface. However, our ability to assess soil water storage capacity and status through measurement or modeling is challenged by error and scale. Soil moisture is as difficult to measure as it is to model, yet land surface models and remote sensing products require some means of validation. Here we compare the three major soil moisture monitoring networks across the US, including the USDA Soil Climate Assessment Network (SCAN), NOAA Climate Reference Network (USCRN), and Cosmic Ray Soil Moisture Observing System (COSMOS) to the soil moisture simulated using the North American Land Data Assimilation System (NLDAS) Phase 2. NLDAS runs in near real-time on a 0.125° (12 km) grid over the US, producing ensemble model outputs of surface fluxes and storage. We focus primarily on soil water storage (SWS) in the upper 0-0.1 m zone from the Noah Land Surface Model and secondarily on the effects of error propagation from atmospheric forcing and soil parameterization. No scaling of the observational data was attempted. We simply compared the extracted time series at the nearest grid center from NLDAS and assessed the results by standard model statistics including root mean square error (RMSE) and mean bias estimate (MBE) of the collocated ground station. Observed and modeled data were compared at both hourly and daily mean coordinated universal time steps. In all, ~300 stations were used for 2012. SCAN sites were found to be particularly troublesome at 5- and 10-cm depths. SWS at 163 SCAN sites departed significantly from Noah with a mean R2 of 0.38 × 0.0.23, a mean RMSE of 14.9 mm with a MBE of -13.5 mm. SWS at 111 USCRN sites has a mean R2 of 0.53 × 0.20, a mean RMSE of 8.2 mm with a MBE of -3.7 mm relative to Noah. Finally, 62 COSMOS sites, the instrument with the largest measurement footprint (0.03 km2), we calculated a mean R2 of 0.53 × 0.21, a mean RMSE of 9.7 mm with a MBE of -0.3 mm. Forcing errors and textural misclassifications correlate well with model biases, indicating that scale and structural errors are equally present in NLDAS. Scaling issues aside, these confounding errors make cal/val missions, such as NASA's upcoming Soil Moisture Active Passive (SMAP) mission, problematic without significant quality control and maintenance of for our monitoring networks. Land surface models, such as NLDAS-2, may provide valuable insight into our soil moisture data and somewhere in between the real values likely exist.

  20. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. UV–Vis and ATR–FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma

    PubMed Central

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI. PMID:28753641

  2. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Tatar, Afshin; Ahangar, Mohammad Reza Hassani; Rostamian, Hossein

    2018-02-01

    Since the conventional thermal fluids such as water, oil, and ethylene glycol have poor thermal properties, the tiny solid particles are added to these fluids to increase their heat transfer improvement. As viscosity determines the rheological behavior of a fluid, studying the parameters affecting the viscosity is crucial. Since the experimental measurement of viscosity is expensive and time consuming, predicting this parameter is the apt method. In this work, three artificial intelligence methods containing Genetic Algorithm-Radial Basis Function Neural Networks (GA-RBF), Least Square Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP) were applied to predict the viscosity of TiO2/SAE 50 nano-lubricant with Non-Newtonian power-law behavior using experimental data. The correlation factor (R2), Average Absolute Relative Deviation (AARD), Root Mean Square Error (RMSE), and Margin of Deviation were employed to investigate the accuracy of the proposed models. RMSE values of 0.58, 1.28, and 6.59 and R2 values of 0.99998, 0.99991, and 0.99777 reveal the accuracy of the proposed models for respective GA-RBF, CSA-LSSVM, and GEP methods. Among the developed models, the GA-RBF shows the best accuracy.

  3. Estimation of distributional parameters for censored trace level water quality data: 2. Verification and applications

    USGS Publications Warehouse

    Helsel, Dennis R.; Gilliom, Robert J.

    1986-01-01

    Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.

  4. Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool

    NASA Astrophysics Data System (ADS)

    Henry, Delano G.; Watson, Jonathan S.; John, Cédric M.

    2017-01-01

    ATR-FTIR (attenuated total reflectance Fourier transform infrared) spectroscopy can be used as a rapid and economical tool for qualitative identification of carbonates, calcium sulphates, oxides and silicates, as well as quantitatively estimating the concentration of minerals. Over 200 powdered samples with known concentrations of two, three, four and five phase mixtures were made, then a suite of calibration curves were derived that can be used to quantify the minerals. The calibration curves in this study have an R2 that range from 0.93-0.99, a RMSE (root mean square error) of 1-5 wt.% and a maximum error of 3-10 wt.%. The calibration curves were used on 35 geological samples that have previously been studied using XRD (X-ray diffraction). The identification of the minerals using ATR-FTIR is comparable with XRD and the quantitative results have a RMSD (root mean square deviation) of 14% and 12% for calcite and dolomite respectively when compared to XRD results. ATR-FTIR is a rapid technique (identification and quantification takes < 5 min) that involves virtually no cost if the machine is available. It is a common tool in most analytical laboratories, but it also has the potential to be deployed on a rig for real-time data acquisition of the mineralogy of cores and rock chips at the surface as there is no need for special sample preparation, rapid data collection and easy analysis.

  5. Local-scale spatial modelling for interpolating climatic temperature variables to predict agricultural plant suitability

    NASA Astrophysics Data System (ADS)

    Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman

    2016-05-01

    Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.

  6. Wetland Assessment Using Unmanned Aerial Vehicle (uav) Photogrammetry

    NASA Astrophysics Data System (ADS)

    Boon, M. A.; Greenfield, R.; Tesfamichael, S.

    2016-06-01

    The use of Unmanned Arial Vehicle (UAV) photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs) were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM) computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP's were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE) and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  7. Performance of MIDAS Over East African Longitude Sector: Case Study During 4-14 March 2012 Quiet to Disturbed Geomagnetic Conditions

    NASA Astrophysics Data System (ADS)

    Giday, Nigussie M.; Katamzi-Joseph, Zama T.

    2018-02-01

    This study investigates the performance of a tomographic algorithm, Multi-Instrument and Data Analysis System (MIDAS), during an extended period of 4-14 March 2012, containing moderate and strong geomagnetic storms conditions, over an understudied and data scarce Eastern African longitude sector. Nonetheless, a relatively better distribution of Global Navigation Satellite Systems stations exists along a narrow longitude sector between 30°E and 44°E and latitude range of 30°S and 36°N that spans the equatorial, middle-, and low-latitude ionosphere. Then results are compared with independent global models such as International Reference Ionosphere 2012 (IRI-2012) and global ionosphere map (GIM). MIDAS performance was better than that of the IRI-2012 and GIM models in terms of capturing the diurnal trends as well as the short temporal total electron content (TEC) structures, with least root-mean-square errors (RMSEs). Overall, MIDAS results showed better agreement with the observation vertical TEC (VTEC) with computed maximum correlation coefficient (r) of 0.99 and minimum root-mean-square error (RMSE) of 2.91 TEC unit (1 TECU = 1,016 el m-2 over all the test stations and the validation days. Conversely, for the IRI-2012 and GIM TEC estimates, the corresponding maximum computed r values were 0.93 and 0.99, respectively, while the minimum RMSEs were 13.03 TECU and 6.52 TECU, respectively, for all the test stations and the validation days.

  8. Groundwater recharge estimation in semi-arid zone: a study case from the region of Djelfa (Algeria)

    NASA Astrophysics Data System (ADS)

    Ali Rahmani, S. E.; Chibane, Brahim; Boucefiène, Abdelkader

    2017-09-01

    Deficiency of surface water resources in semi-arid area makes the groundwater the most preferred resource to assure population increased needs. In this research we are going to quantify the rate of groundwater recharge using new hybrid model tack in interest the annual rainfall and the average annual temperature and the geological characteristics of the area. This hybrid model was tested and calibrated using a chemical tracer method called Chloride mass balance method (CMB). This hybrid model is a combination between general hydrogeological model and a hydrological model. We have tested this model in an aquifer complex in the region of Djelfa (Algeria). Performance of this model was verified by five criteria [Nash, mean absolute error (MAE), Root mean square error (RMSE), the coefficient of determination and the arithmetic mean error (AME)]. These new approximations facilitate the groundwater management in semi-arid areas; this model is a perfection and amelioration of the model developed by Chibane et al. This model gives a very interesting result, with low uncertainty. A new recharge class diagram was established by our model to get rapidly and quickly the groundwater recharge value for any area in semi-arid region, using temperature and rainfall.

  9. The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability.

    PubMed

    Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A

    2015-10-01

    Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  11. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    PubMed

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Intelligent Ensemble Forecasting System of Stock Market Fluctuations Based on Symetric and Asymetric Wavelet Functions

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim; Boukadoum, Mounir

    2015-08-01

    We present a new ensemble system for stock market returns prediction where continuous wavelet transform (CWT) is used to analyze return series and backpropagation neural networks (BPNNs) for processing CWT-based coefficients, determining the optimal ensemble weights, and providing final forecasts. Particle swarm optimization (PSO) is used for finding optimal weights and biases for each BPNN. To capture symmetry/asymmetry in the underlying data, three wavelet functions with different shapes are adopted. The proposed ensemble system was tested on three Asian stock markets: The Hang Seng, KOSPI, and Taiwan stock market data. Three statistical metrics were used to evaluate the forecasting accuracy; including, mean of absolute errors (MAE), root mean of squared errors (RMSE), and mean of absolute deviations (MADs). Experimental results showed that our proposed ensemble system outperformed the individual CWT-ANN models each with different wavelet function. In addition, the proposed ensemble system outperformed the conventional autoregressive moving average process. As a result, the proposed ensemble system is suitable to capture symmetry/asymmetry in financial data fluctuations for better prediction accuracy.

  13. Pan evaporation modeling using six different heuristic computing methods in different climates of China

    NASA Astrophysics Data System (ADS)

    Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui

    2017-01-01

    Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.

  14. Best of both worlds: combining pharma data and state of the art modeling technology to improve in Silico pKa prediction.

    PubMed

    Fraczkiewicz, Robert; Lobell, Mario; Göller, Andreas H; Krenz, Ursula; Schoenneis, Rolf; Clark, Robert D; Hillisch, Alexander

    2015-02-23

    In a unique collaboration between a software company and a pharmaceutical company, we were able to develop a new in silico pKa prediction tool with outstanding prediction quality. An existing pKa prediction method from Simulations Plus based on artificial neural network ensembles (ANNE), microstates analysis, and literature data was retrained with a large homogeneous data set of drug-like molecules from Bayer. The new model was thus built with curated sets of ∼14,000 literature pKa values (∼11,000 compounds, representing literature chemical space) and ∼19,500 pKa values experimentally determined at Bayer Pharma (∼16,000 compounds, representing industry chemical space). Model validation was performed with several test sets consisting of a total of ∼31,000 new pKa values measured at Bayer. For the largest and most difficult test set with >16,000 pKa values that were not used for training, the original model achieved a mean absolute error (MAE) of 0.72, root-mean-square error (RMSE) of 0.94, and squared correlation coefficient (R(2)) of 0.87. The new model achieves significantly improved prediction statistics, with MAE = 0.50, RMSE = 0.67, and R(2) = 0.93. It is commercially available as part of the Simulations Plus ADMET Predictor release 7.0. Good predictions are only of value when delivered effectively to those who can use them. The new pKa prediction model has been integrated into Pipeline Pilot and the PharmacophorInformatics (PIx) platform used by scientists at Bayer Pharma. Different output formats allow customized application by medicinal chemists, physical chemists, and computational chemists.

  15. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.

    PubMed

    Nazemi, S Majid; Kalajahi, S Mehrdad Hosseini; Cooper, David M L; Kontulainen, Saija A; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-07-05

    Previously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R 2 =0.77, normalized root mean squared error (RMSE%)=16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia. Local stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin's fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R 2 and RMSE%. The uniform anisotropic FE model explained 53-74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76-79% of the variance in stiffness with RMSE% being 11.2-11.5%. Of the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin's fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The error and bias of supplementing a short, arid climate, rainfall record with regional vs. global frequency analysis

    NASA Astrophysics Data System (ADS)

    Endreny, Theodore A.; Pashiardis, Stelios

    2007-02-01

    SummaryRobust and accurate estimates of rainfall frequencies are difficult to make with short, and arid-climate, rainfall records, however new regional and global methods were used to supplement such a constrained 15-34 yr record in Cyprus. The impact of supplementing rainfall frequency analysis with the regional and global approaches was measured with relative bias and root mean square error (RMSE) values. Analysis considered 42 stations with 8 time intervals (5-360 min) in four regions delineated by proximity to sea and elevation. Regional statistical algorithms found the sites passed discordancy tests of coefficient of variation, skewness and kurtosis, while heterogeneity tests revealed the regions were homogeneous to mildly heterogeneous. Rainfall depths were simulated in the regional analysis method 500 times, and then goodness of fit tests identified the best candidate distribution as the general extreme value (GEV) Type II. In the regional analysis, the method of L-moments was used to estimate location, shape, and scale parameters. In the global based analysis, the distribution was a priori prescribed as GEV Type II, a shape parameter was a priori set to 0.15, and a time interval term was constructed to use one set of parameters for all time intervals. Relative RMSE values were approximately equal at 10% for the regional and global method when regions were compared, but when time intervals were compared the global method RMSE had a parabolic-shaped time interval trend. Relative bias values were also approximately equal for both methods when regions were compared, but again a parabolic-shaped time interval trend was found for the global method. The global method relative RMSE and bias trended with time interval, which may be caused by fitting a single scale value for all time intervals.

  17. Anthropometric predictors of body fat as measured by hydrostatic weighing in Guatemalan adults.

    PubMed

    Ramirez-Zea, Manuel; Torun, Benjamin; Martorell, Reynaldo; Stein, Aryeh D

    2006-04-01

    Most predictive equations currently used to assess percentage body fat (%BF) were derived from persons in industrialized Western societies. We developed equations to predict %BF from anthropometric measurements in rural and urban Guatemalan adults. Body density was measured in 123 women and 114 men by using hydrostatic weighing and simultaneous measurement of residual lung volume. Anthropometric measures included weight (in kg), height (in cm), 4 skinfold thicknesses [(STs) in mm], and 6 circumferences (in cm). Sex-specific multiple linear regression models were developed with %BF as the dependent variable and age, residence (rural or urban), and all anthropometric measures as independent variables (the "full" model). A "simplified" model was developed by using age, residence, weight, height, and arm, abdominal, and calf circumferences as independent variables. The preferred full models were %BF = -80.261 - (weight x 0.623) + (height x 0.214) + (tricipital ST x 0.379) + (abdominal ST x 0.202) + (abdominal circumference x 0.940) + (thigh circumference x 0.316); root mean square error (RMSE) = 3.0; and pure error (PE) = 3.4 for men and %BF = -15.471 + (tricipital ST x 0.332) + (subscapular ST x 0.154) + (abdominal ST x 0.119) + (hip circumference x 0.356); RMSE = 2.4; and PE = 2.9 for women. The preferred simplified models were %BF = -48.472 - (weight x 0.257) + (abdominal circumference x 0.989); RMSE = 3.8; and PE = 3.7 for men and %BF = 19.420 + (weight x 0.385) - (height x 0.215) + (abdominal circumference x 0.265); RMSE = 3.5; and PE = 3.5 for women. These equations performed better in this developing-country population than did previously published equations.

  18. Head repositioning accuracy to neutral: a comparative study of error calculation.

    PubMed

    Hill, Robert; Jensen, Pål; Baardsen, Tor; Kulvik, Kristian; Jull, Gwendolen; Treleaven, Julia

    2009-02-01

    Deficits in cervical proprioception have been identified in subjects with neck pain through the measure of head repositioning accuracy (HRA). Nevertheless there appears to be no general consensus regarding the construct of measurement of error used for calculating HRA. This study investigated four different mathematical methods of measurement of error to determine if there were any differences in their ability to discriminate between a control group and subjects with a whiplash associated disorder. The four methods for measuring cervical joint position error were calculated using a previous data set consisting of 50 subjects with whiplash complaining of dizziness (WAD D), 50 subjects with whiplash not complaining of dizziness (WAD ND) and 50 control subjects. The results indicated that no one measure of HRA uniquely detected or defined the differences between the whiplash and control groups. Constant error (CE) was significantly different between the whiplash and control groups from extension (p<0.05). Absolute errors (AEs) and root mean square errors (RMSEs) demonstrated differences between the two WAD groups in rotation trials (p<0.05). No differences were seen with variable error (VE). The results suggest that a combination of AE (or RMSE) and CE are probably the most suitable measures for analysis of HRA.

  19. Improved error estimates of a discharge algorithm for remotely sensed river measurements: Test cases on Sacramento and Garonne Rivers

    NASA Astrophysics Data System (ADS)

    Yoon, Yeosang; Garambois, Pierre-André; Paiva, Rodrigo C. D.; Durand, Michael; Roux, Hélène; Beighley, Edward

    2016-01-01

    We present an improvement to a previously presented algorithm that used a Bayesian Markov Chain Monte Carlo method for estimating river discharge from remotely sensed observations of river height, width, and slope. We also present an error budget for discharge calculations from the algorithm. The algorithm may be utilized by the upcoming Surface Water and Ocean Topography (SWOT) mission. We present a detailed evaluation of the method using synthetic SWOT-like observations (i.e., SWOT and AirSWOT, an airborne version of SWOT). The algorithm is evaluated using simulated AirSWOT observations over the Sacramento and Garonne Rivers that have differing hydraulic characteristics. The algorithm is also explored using SWOT observations over the Sacramento River. SWOT and AirSWOT height, width, and slope observations are simulated by corrupting the "true" hydraulic modeling results with instrument error. Algorithm discharge root mean square error (RMSE) was 9% for the Sacramento River and 15% for the Garonne River for the AirSWOT case using expected observation error. The discharge uncertainty calculated from Manning's equation was 16.2% and 17.1%, respectively. For the SWOT scenario, the RMSE and uncertainty of the discharge estimate for the Sacramento River were 15% and 16.2%, respectively. A method based on the Kalman filter to correct errors of discharge estimates was shown to improve algorithm performance. From the error budget, the primary source of uncertainty was the a priori uncertainty of bathymetry and roughness parameters. Sensitivity to measurement errors was found to be a function of river characteristics. For example, Steeper Garonne River is less sensitive to slope errors than the flatter Sacramento River.

  20. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    NASA Astrophysics Data System (ADS)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  1. Predicting the reference evapotranspiration based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Misaghian, Negin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Mohammadi, Kasra

    2017-11-01

    Most of the available models for reference evapotranspiration (ET0) estimation are based upon only an empirical equation for ET0. Thus, one of the main issues in ET0 estimation is the appropriate integration of time information and different empirical ET0 equations to determine ET0 and boost the precision. The FAO-56 Penman-Monteith, adjusted Hargreaves, Blaney-Criddle, Priestley-Taylor, and Jensen-Haise equations were utilized in this study for estimating ET0 for two stations of Belgrade and Nis in Serbia using collected data for the period of 1980 to 2010. Three-order tensor is used to capture three-way correlations among months, years, and ET0 information. Afterward, the latent correlations among ET0 parameters were found by the multiway analysis to enhance the quality of the prediction. The suggested method is valuable as it takes into account simultaneous relations between elements, boosts the prediction precision, and determines latent associations. Models are compared with respect to coefficient of determination ( R 2), mean absolute error (MAE), and root-mean-square error (RMSE). The proposed tensor approach has a R 2 value of greater than 0.9 for all selected ET0 methods at both selected stations, which is acceptable for the ET0 prediction. RMSE is ranged between 0.247 and 0.485 mm day-1 at Nis station and between 0.277 and 0.451 mm day-1 at Belgrade station, while MAE is between 0.140 and 0.337 mm day-1 at Nis and between 0.208 and 0.360 mm day-1 at Belgrade station. The best performances are achieved by Priestley-Taylor model at Nis station ( R 2 = 0.985, MAE = 0.140 mm day-1, RMSE = 0.247 mm day-1) and FAO-56 Penman-Monteith model at Belgrade station (MAE = 0.208 mm day-1, RMSE = 0.277 mm day-1, R 2 = 0.975).

  2. An image registration-based technique for noninvasive vascular elastography

    NASA Astrophysics Data System (ADS)

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-02-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in the regions far from the center of the vessel, causing a high error of displacement measurement. On the other hand, increasing the compression leads to a relatively large displacement in the regions near the center, which reduces the performance of the cross correlation-based methods. In this study, a non-rigid image registration-based technique is proposed to measure the tissue displacement for a relatively large compression. The results show that the error of the displacement measurement obtained by the proposed method is reduced by increasing the amount of compression while the error of the cross correlationbased method rises for a relatively large compression. We also used the synthetic aperture imaging method, benefiting the directivity diagram, to improve the image quality, especially in the superficial regions. The best relative root-mean-square error (RMSE) of the proposed method and the adaptive cross correlation method were 4.5% and 6%, respectively. Consequently, the proposed algorithm outperforms the conventional method and reduces the relative RMSE by 25%.

  3. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  4. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

    PubMed Central

    Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network. PMID:27959927

  5. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    PubMed

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  6. Neural activity during affect labeling predicts expressive writing effects on well-being: GLM and SVM approaches.

    PubMed

    Memarian, Negar; Torre, Jared B; Haltom, Kate E; Stanton, Annette L; Lieberman, Matthew D

    2017-09-01

    Affect labeling (putting feelings into words) is a form of incidental emotion regulation that could underpin some benefits of expressive writing (i.e. writing about negative experiences). Here, we show that neural responses during affect labeling predicted changes in psychological and physical well-being outcome measures 3 months later. Furthermore, neural activity of specific frontal regions and amygdala predicted those outcomes as a function of expressive writing. Using supervised learning (support vector machines regression), improvements in four measures of psychological and physical health (physical symptoms, depression, anxiety and life satisfaction) after an expressive writing intervention were predicted with an average of 0.85% prediction error [root mean square error (RMSE) %]. The predictions were significantly more accurate with machine learning than with the conventional generalized linear model method (average RMSE: 1.3%). Consistent with affect labeling research, right ventrolateral prefrontal cortex (RVLPFC) and amygdalae were top predictors of improvement in the four outcomes. Moreover, RVLPFC and left amygdala predicted benefits due to expressive writing in satisfaction with life and depression outcome measures, respectively. This study demonstrates the substantial merit of supervised machine learning for real-world outcome prediction in social and affective neuroscience. © The Author (2017). Published by Oxford University Press.

  7. Calculation of distribution coefficients in the SAMPL5 challenge from atomic solvation parameters and surface areas.

    PubMed

    Santos-Martins, Diogo; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2016-11-01

    In the context of SAMPL5, we submitted blind predictions of the cyclohexane/water distribution coefficient (D) for a series of 53 drug-like molecules. Our method is purely empirical and based on the additive contribution of each solute atom to the free energy of solvation in water and in cyclohexane. The contribution of each atom depends on the atom type and on the exposed surface area. Comparatively to similar methods in the literature, we used a very small set of atomic parameters: only 10 for solvation in water and 1 for solvation in cyclohexane. As a result, the method is protected from overfitting and the error in the blind predictions could be reasonably estimated. Moreover, this approach is fast: it takes only 0.5 s to predict the distribution coefficient for all 53 SAMPL5 compounds, allowing its application in virtual screening campaigns. The performance of our approach (submission 49) is modest but satisfactory in view of its efficiency: the root mean square error (RMSE) was 3.3 log D units for the 53 compounds, while the RMSE of the best performing method (using COSMO-RS) was 2.1 (submission 16). Our method is implemented as a Python script available at https://github.com/diogomart/SAMPL5-DC-surface-empirical .

  8. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas.

    PubMed

    Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso

    2016-11-01

    This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red-green-blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%-50% and 70%-40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE).

  9. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas

    PubMed Central

    Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso

    2016-01-01

    This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red–green–blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%–50% and 70%–40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE). PMID:27809293

  10. Quantum-classical boundary for precision optical phase estimation

    NASA Astrophysics Data System (ADS)

    Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo

    2017-12-01

    Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.

  11. QSPR for predicting chloroform formation in drinking water disinfection.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-01-01

    Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.

  12. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    NASA Astrophysics Data System (ADS)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  13. Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation

    NASA Astrophysics Data System (ADS)

    Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah

    2018-03-01

    To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.

  14. Prediction of Backbreak in Open Pit Blasting by Adaptive Neuro-Fuzzy Inference System / Prognozowanie Spękań Skał Przy Pracach Strzałowych W Kopalniach Odkrywkowych Przy Użyciu Metod Neuronowych I Wnioskowania Rozmytego (Anfis) Zastosowanych W Modelu Adaptywnym

    NASA Astrophysics Data System (ADS)

    Bazzazi, Abbas Aghajani; Esmaeili, Mohammad

    2012-12-01

    Adaptive neuro-fuzzy inference system (ANFIS) is powerful model in solving complex problems. Since ANFIS has the potential of solving nonlinear problem and can easily achieve the input-output mapping, it is perfect to be used for solving the predicting problem. Backbreak is one of the undesirable effects of blasting operations causing instability in mine walls, falling down the machinery, improper fragmentation and reduction in efficiency of drilling. In this paper, ANFIS was applied to predict backbreak in Sangan iron mine of Iran. The performance of the model was assessed through the root mean squared error (RMSE), the variance account for (VAF) and the correlation coefficient (R2) computed from the measured of backbreak and model-predicted values of the dependent variables. The RMSE, VAF, R2 indices were calculated 0.6, 0.94 and 0.95 for ANFIS model. As results, these indices revealed that the ANFIS model has very good prediction performance.

  15. The Relationship between Root Mean Square Error of Approximation and Model Misspecification in Confirmatory Factor Analysis Models

    ERIC Educational Resources Information Center

    Savalei, Victoria

    2012-01-01

    The fit index root mean square error of approximation (RMSEA) is extremely popular in structural equation modeling. However, its behavior under different scenarios remains poorly understood. The present study generates continuous curves where possible to capture the full relationship between RMSEA and various "incidental parameters," such as…

  16. Ambient Sound-Based Collaborative Localization of Indeterministic Devices

    PubMed Central

    Kamminga, Jacob; Le, Duc; Havinga, Paul

    2016-01-01

    Localization is essential in wireless sensor networks. To our knowledge, no prior work has utilized low-cost devices for collaborative localization based on only ambient sound, without the support of local infrastructure. The reason may be the fact that most low-cost devices are indeterministic and suffer from uncertain input latencies. This uncertainty makes accurate localization challenging. Therefore, we present a collaborative localization algorithm (Cooperative Localization on Android with ambient Sound Sources (CLASS)) that simultaneously localizes the position of indeterministic devices and ambient sound sources without local infrastructure. The CLASS algorithm deals with the uncertainty by splitting the devices into subsets so that outliers can be removed from the time difference of arrival values and localization results. Since Android is indeterministic, we select Android devices to evaluate our approach. The algorithm is evaluated with an outdoor experiment and achieves a mean Root Mean Square Error (RMSE) of 2.18 m with a standard deviation of 0.22 m. Estimated directions towards the sound sources have a mean RMSE of 17.5° and a standard deviation of 2.3°. These results show that it is feasible to simultaneously achieve a relative positioning of both devices and sound sources with sufficient accuracy, even when using non-deterministic devices and platforms, such as Android. PMID:27649176

  17. Open loop model for WDM links

    NASA Astrophysics Data System (ADS)

    D, Meena; Francis, Fredy; T, Sarath K.; E, Dipin; Srinivas, T.; K, Jayasree V.

    2014-10-01

    Wavelength Division Multiplexing (WDM) techniques overfibrelinks helps to exploit the high bandwidth capacity of single mode fibres. A typical WDM link consisting of laser source, multiplexer/demultiplexer, amplifier and detectoris considered for obtaining the open loop gain model of the link. The methodology used here is to obtain individual component models using mathematical and different curve fitting techniques. These individual models are then combined to obtain the WDM link model. The objective is to deduce a single variable model for the WDM link in terms of input current to system. Thus it provides a black box solution for a link. The Root Mean Square Error (RMSE) associated with each of the approximated models is given for comparison. This will help the designer to select the suitable WDM link model during a complex link design.

  18. Development of Anthropometry-Based Equations for the Estimation of the Total Body Water in Koreans

    PubMed Central

    Lee, Seoung Woo; Kim, Gyeong A; Lim, Hee Jung; Lee, Sun Young; Park, Geun Ho; Song, Joon Ho

    2005-01-01

    For developing race-specific anthropometry-based total body water (TBW) equations, we measured TBW using bioelectrical impedance analysis (TBWBIA) in 2,943 healthy Korean adults. Among them, 2,223 were used as a reference group. Two equations (TBWK1 and TBWK2) were developed based on age, sex, height, and body weight. The adjusted R2 was 0.908 for TBWK1 and 0.910 for TBWK2. The remaining 720 subjects were used for the validation of our results. Watson (TBWW) and Hume-Weyers (TBWH) formulas were also used. In men, TBWBIA showed the highest correlation with TBWH, followed by TBWK1, TBWK2 and TBWW. TBWK1 and TBWK2 showed the lower root mean square errors (RMSE) and mean prediction errors (ME) than TBWW and TBWH. On the Bland-Altman plot, the correlations between the differences and means were smaller for TBWK2 than for TBWK1. On the contrary, TBWBIA showed the highest correlation with TBWW, followed by TBWK2, TBWK1, and TBWH in females. RMSE was smallest in TBWW, followed by TBWK2, TBWK1 and TBWH. ME was closest to zero for TBWK2, followed by TBWK1, TBWW and TBWH. The correlation coefficients between the means and differences were highest in TBWW, and lowest in TBWK2. In conclusion, TBWK2 provides better accuracy with a smaller bias than the TBWW or TBWH in males. TBWK2 shows a similar accuracy, but with a smaller bias than TBWW in females. PMID:15953867

  19. Asymptotic properties of Pearson's rank-variate correlation coefficient under contaminated Gaussian model.

    PubMed

    Ma, Rubao; Xu, Weichao; Zhang, Yun; Ye, Zhongfu

    2014-01-01

    This paper investigates the robustness properties of Pearson's rank-variate correlation coefficient (PRVCC) in scenarios where one channel is corrupted by impulsive noise and the other is impulsive noise-free. As shown in our previous work, these scenarios that frequently encountered in radar and/or sonar, can be well emulated by a particular bivariate contaminated Gaussian model (CGM). Under this CGM, we establish the asymptotic closed forms of the expectation and variance of PRVCC by means of the well known Delta method. To gain a deeper understanding, we also compare PRVCC with two other classical correlation coefficients, i.e., Spearman's rho (SR) and Kendall's tau (KT), in terms of the root mean squared error (RMSE). Monte Carlo simulations not only verify our theoretical findings, but also reveal the advantage of PRVCC by an example of estimating the time delay in the particular impulsive noise environment.

  20. Google Earth elevation data extraction and accuracy assessment for transportation applications

    PubMed Central

    Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung

    2017-01-01

    Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications. PMID:28445480

  1. Google Earth elevation data extraction and accuracy assessment for transportation applications.

    PubMed

    Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung

    2017-01-01

    Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications.

  2. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV)

    PubMed Central

    Bardeen, Matthew

    2017-01-01

    Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψstem). However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounted on unmanned aerial vehicle (UAV) is capable to capture the variability of vine water stress in a whole field scenario. It has been reported that conventional multispectral indices (CMI) that use information between 500–800 nm, do not accurately predict plant water status since they are not sensitive to water content. The objective of this study was to develop artificial neural network (ANN) models derived from multispectral images to predict the Ψstem spatial variability of a drip-irrigated Carménère vineyard in Talca, Maule Region, Chile. The coefficient of determination (R2) obtained between ANN outputs and ground-truth measurements of Ψstem were between 0.56–0.87, with the best performance observed for the model that included the bands 550, 570, 670, 700 and 800 nm. Validation analysis indicated that the ANN model could estimate Ψstem with a mean absolute error (MAE) of 0.1 MPa, root mean square error (RMSE) of 0.12 MPa, and relative error (RE) of −9.1%. For the validation of the CMI, the MAE, RMSE and RE values were between 0.26–0.27 MPa, 0.32–0.34 MPa and −24.2–25.6%, respectively. PMID:29084169

  3. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV).

    PubMed

    Poblete, Tomas; Ortega-Farías, Samuel; Moreno, Miguel Angel; Bardeen, Matthew

    2017-10-30

    Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψ stem ). However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounted on unmanned aerial vehicle (UAV) is capable to capture the variability of vine water stress in a whole field scenario. It has been reported that conventional multispectral indices (CMI) that use information between 500-800 nm, do not accurately predict plant water status since they are not sensitive to water content. The objective of this study was to develop artificial neural network (ANN) models derived from multispectral images to predict the Ψ stem spatial variability of a drip-irrigated Carménère vineyard in Talca, Maule Region, Chile. The coefficient of determination (R²) obtained between ANN outputs and ground-truth measurements of Ψ stem were between 0.56-0.87, with the best performance observed for the model that included the bands 550, 570, 670, 700 and 800 nm. Validation analysis indicated that the ANN model could estimate Ψ stem with a mean absolute error (MAE) of 0.1 MPa, root mean square error (RMSE) of 0.12 MPa, and relative error (RE) of -9.1%. For the validation of the CMI, the MAE, RMSE and RE values were between 0.26-0.27 MPa, 0.32-0.34 MPa and -24.2-25.6%, respectively.

  4. Ultra-wideband pose detection system for boom-type roadheader based on Caffery transform and Taylor series expansion

    NASA Astrophysics Data System (ADS)

    Fu, Shichen; Li, Yiming; Zhang, Minjun; Zong, Kai; Cheng, Long; Wu, Miao

    2018-01-01

    To realize unmanned pose detection of a coalmine boom-type roadheader, an ultra-wideband (UWB) pose detection system (UPDS) for a roadheader is designed, which consists of four UWB positioning base stations and three roadheader positioning nodes. The positioning base stations are used in turn to locate the positioning nodes of the roadheader fuselage. Using 12 sets of distance measurement information, a time-of-arrival (TOA) positioning model is established to calculate the 3D coordinates of three positioning nodes of the roadheader fuselage, and the three attitude angles (heading, pitch, and roll angles) of the roadheader fuselage are solved. A range accuracy experiment of a UWB P440 module was carried out in a narrow and closed tunnel, and the experiment data show that the mean error and standard deviation of the module can reach below 2 cm. Based on the TOA positioning model of the UPDS, we propose a fusion-positioning algorithm based on a Caffery transform and Taylor series expansion (CTFPA). We derived the complete calculation process, designed a flowchart, and carried out a simulation of CTFPA in MATLAB, comparing 1000 simulated positioning nodes of CTFPA and the Caffery positioning algorithm (CPA) for a 95 m long tunnel. The positioning error field of the tunnel was established, and the influence of the spatial variation on the positioning accuracy of CPA and CTFPA was analysed. The simulation results show that, compared with CPA, the positioning accuracy of CTFPA is clearly improved, and the accuracy of each axis can reach more than 5 mm. The accuracy of the X-axis is higher than that of the Y- and Z-axes. In section X-Y of the tunnel, the root mean square error (RMSE) contours of CTFPA are clear and orderly, and with an increase in the measuring distance, RMSE increases linearly. In section X-Z, the RMSE contours are concentric circles, and the variation ratio is nonlinear.

  5. Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches

    PubMed Central

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael

    2014-01-01

    Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650

  6. Predicting active-layer soil thickness using topographic variables at a small watershed scale

    PubMed Central

    Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie

    2017-01-01

    Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196

  7. High‐resolution trench photomosaics from image‐based modeling: Workflow and error analysis

    USGS Publications Warehouse

    Reitman, Nadine G.; Bennett, Scott E. K.; Gold, Ryan D.; Briggs, Richard; Duross, Christopher

    2015-01-01

    Photomosaics are commonly used to construct maps of paleoseismic trench exposures, but the conventional process of manually using image‐editing software is time consuming and produces undesirable artifacts and distortions. Herein, we document and evaluate the application of image‐based modeling (IBM) for creating photomosaics and 3D models of paleoseismic trench exposures, illustrated with a case‐study trench across the Wasatch fault in Alpine, Utah. Our results include a structure‐from‐motion workflow for the semiautomated creation of seamless, high‐resolution photomosaics designed for rapid implementation in a field setting. Compared with conventional manual methods, the IBM photomosaic method provides a more accurate, continuous, and detailed record of paleoseismic trench exposures in approximately half the processing time and 15%–20% of the user input time. Our error analysis quantifies the effect of the number and spatial distribution of control points on model accuracy. For this case study, an ∼87  m2 exposure of a benched trench photographed at viewing distances of 1.5–7 m yields a model with <2  cm root mean square error (rmse) with as few as six control points. Rmse decreases as more control points are implemented, but the gains in accuracy are minimal beyond 12 control points. Spreading control points throughout the target area helps to minimize error. We propose that 3D digital models and corresponding photomosaics should be standard practice in paleoseismic exposure archiving. The error analysis serves as a guide for future investigations that seek balance between speed and accuracy during photomosaic and 3D model construction.

  8. High variability of the subjective visual vertical test of vertical perception, in some people with neck pain - Should this be a standard measure of cervical proprioception?

    PubMed

    Treleaven, Julia; Takasaki, Hiroshi

    2015-02-01

    Subjective visual vertical (SVV) assesses visual dependence for spacial orientation, via vertical perception testing. Using the computerized rod-and-frame test (CRFT), SVV is thought to be an important measure of cervical proprioception and might be greater in those with whiplash associated disorder (WAD), but to date research findings are inconsistent. The aim of this study was to investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects. Cross sectional study. Neck Disability Index (NDI), Dizziness Handicap Inventory short form (DHIsf) and the average constant error (CE), absolute error (AE), root mean square error (RMSE), and variable error (VE) of the SVV were obtained from 142 subjects (48 asymptomatic, 36 INP, 42 WAD). The INP group had significantly (p < 0.03) greater VE and RMSE when compared to both the control and WAD groups. There were no differences seen between the WAD and controls. The results demonstrated that people with INP (not WAD), had an altered strategy for maintaining the perception of vertical by increasing variability of performance. This may be due to the complexity of the task. Further, the SVV performance was not related to reported pain or dizziness handicap. These findings are inconsistent with other measures of cervical proprioception in neck pain and more research is required before the SVV can be considered an important measure and utilized clinically. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  9. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Peter R., E-mail: pmarti46@uwo.ca; Cool, Derek W.; Romagnoli, Cesare

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiologymore » resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using spherical tumor shapes as opposed to no shape assumption. However, an assumption of spherical tumor shape for RMSE = 3.5 mm led to a mean overestimation of tumor sampling probabilities of 3%, implying that assuming spherical tumor shape may be reasonable for many prostate tumors. The authors also determined that a biopsy system would need to have a RMS needle delivery error of no more than 1.6 mm in order to sample 95% of tumors with one core. The authors’ experiments also indicated that the effect of axial-direction error on the measured tumor burden was mitigated by the 18 mm core length at 3.5 mm RMSE. Conclusions: For biopsy systems with RMSE ≥ 3.5 mm, more than one biopsy core must be taken from the majority of tumors to achieveP ≥ 95%. These observations support the authors’ perspective that some tumors of clinically significant sizes may require more than one biopsy attempt in order to be sampled during the first biopsy session. This motivates the authors’ ongoing development of an approach to optimize biopsy plans with the aim of achieving a desired probability of obtaining a sample from each tumor, while minimizing the number of biopsies. Optimized planning of within-tumor targets for MRI-3D TRUS fusion biopsy could support earlier diagnosis of prostate cancer while it remains localized to the gland and curable.« less

  10. Field, laboratory and numerical approaches to studying flow through mangrove pneumatophores

    NASA Astrophysics Data System (ADS)

    Chua, V. P.

    2014-12-01

    The circulation of water in riverine mangrove swamps is expected to be influenced by mangrove roots, which in turn affect the nutrients, pollutants and sediments transport in these systems. Field studies were carried out in mangrove areas along the coastline of Singapore where Avicennia marina and Sonneratia alba pneumatophore species are found. Geometrical properties, such as height, diameter and spatial density of the mangrove roots were assessed through the use of photogrammetric methods. Samples of these roots were harvested from mangrove swamps and their material properties, such as bending strength and Young's modulus were determined in the laboratory. It was found that the pneumatophores under hydrodynamic loadings in a mangrove environment could be regarded as fairly rigid. Artificial root models of pneumatophores were fabricated from downscaling based on field observations of mangroves. Flume experiments were performed and measurements of mean flow velocities, Reynolds stress and turbulent kinetic energy were made. The boundary layer formed over the vegetation patch is fully developed after x = 6 m with a linear mean velocity profile. High shear stresses and turbulent kinetic energy were observed at the interface between the top portion of the roots and the upper flow. The experimental data was employed to calibrate and validate three-dimensional simulations of flow in pneumatophores. The simulations were performed with the Delft3D-FLOW model, where the vegetation effect is introduced by adding a depth-distributed resistance force and modifying the k-ɛ turbulence model. The model-predicted profiles for mean velocity, turbulent kinetic energy and concentration were compared with experimental data. The model calibration is performed by adjusting the horizontal and vertical eddy viscosities and diffusivities. A skill assessment of the model is performed using statistical measures that include the Pearson correlation coefficient (r), the mean absolute error (MAE), and the root-mean-squared error (RMSE).

  11. Modeled and monitored variation in space and time of PCB-153 concentrations in air, sediment, soil and aquatic biota on a European scale.

    PubMed

    Hauck, Mara; Huijbregts, Mark A J; Hollander, Anne; Hendriks, A Jan; van de Meent, Dik

    2010-08-15

    We evaluated various modeling options for estimating concentrations of PCB-153 in the environment and in biota across Europe, using a nested multimedia fate model coupled with a bioaccumulation model. The most detailed model set up estimates concentrations in air, soil, fresh water sediment and fresh water biota with spatially explicit environmental characteristics and spatially explicit emissions to air and water in the period 1930-2005. Model performance was evaluated with the root mean square error (RMSE(log)), based on the difference between estimated and measured concentrations. The RMSE(log) was 5.4 for air, 5.6-6.3 for sediment and biota, and 5.5 for soil in the most detailed model scenario. Generally, model estimations tended to underestimate observed values for all compartments, except air. The decline in observed concentrations was also slightly underestimated by the model for the period where measurements were available (1989-2002). Applying a generic model setup with averaged emissions and averaged environmental characteristics, the RMSE(log) increased to 21 for air and 49 for sediment. For soil the RMSE(log) decreased to 3.5. We found that including spatial variation in emissions was most relevant for all compartments, except soil, while including spatial variation in environmental characteristics was less influential. For improving predictions of concentrations in sediment and aquatic biota, including emissions to water was found to be relevant as well. Copyright 2009 Elsevier B.V. All rights reserved.

  12. A Phonocardiographic-Based Fiber-Optic Sensor and Adaptive Filtering System for Noninvasive Continuous Fetal Heart Rate Monitoring.

    PubMed

    Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer

    2017-04-18

    This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.

  13. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements.

    PubMed

    Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C

    2015-03-01

    The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.

  14. Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems

    PubMed Central

    Li, Zhining; Zhang, Yingtang; Yin, Gang

    2018-01-01

    The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544

  15. Determining Sala mango qualities with the use of RGB images captured by a mobile phone camera

    NASA Astrophysics Data System (ADS)

    Yahaya, Ommi Kalsom Mardziah; Jafri, Mohd Zubir Mat; Aziz, Azlan Abdul; Omar, Ahmad Fairuz

    2015-04-01

    Sala mango (Mangifera indicia) is one of the Malaysia's most popular tropical fruits that are widely marketed within the country. The degrees of ripeness of mangoes have conventionally been evaluated manually on the basis of color parameters, but a simple non-destructive technique using the Samsung Galaxy Note 1 mobile phone camera is introduced to replace the destructive technique. In this research, color parameters in terms of RGB values acquired using the ENVI software system were linked to detect Sala mango quality parameters. The features of mango were extracted from the acquired images and then used to classify of fruit skin color, which relates to the stages of ripening. A multivariate analysis method, multiple linear regression, was employed with the purpose of using RGB color parameters to estimate the pH, soluble solids content (SSC), and firmness. The relationship between these qualities parameters of Sala mango and its mean pixel values in the RGB system is analyzed. Findings show that pH yields the highest accuracy with a correlation coefficient R = 0.913 and root mean square of error RMSE = 0.166 pH. Meanwhile, firmness has R = 0.875 and RMSE = 1.392 kgf, whereas soluble solid content has the lowest accuracy with R = 0.814 and RMSE = 1.218°Brix with the correlation between color parameters. Therefore, this non-invasive method can be used to determine the quality attributes of mangoes.

  16. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    PubMed Central

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  17. The Influence of Dimensionality on Estimation in the Partial Credit Model.

    ERIC Educational Resources Information Center

    De Ayala, R. J.

    1995-01-01

    The effect of multidimensionality on partial credit model parameter estimation was studied with noncompensatory and compensatory data. Analysis results, consisting of root mean square error bias, Pearson product-moment corrections, standardized root mean squared differences, standardized differences between means, and descriptive statistics…

  18. Spiral tracing on a touchscreen is influenced by age, hand, implement, and friction.

    PubMed

    Heintz, Brittany D; Keenan, Kevin G

    2018-01-01

    Dexterity impairments are well documented in older adults, though it is unclear how these influence touchscreen manipulation. This study examined age-related differences while tracing on high- and low-friction touchscreens using the finger or stylus. 26 young and 24 older adults completed an Archimedes spiral tracing task on a touchscreen mounted on a force sensor. Root mean square error was calculated to quantify performance. Root mean square error increased by 29.9% for older vs. young adults using the fingertip, but was similar to young adults when using the stylus. Although other variables (e.g., touchscreen usage, sensation, and reaction time) differed between age groups, these variables were not related to increased error in older adults while using their fingertip. Root mean square error also increased on the low-friction surface for all subjects. These findings suggest that utilizing a stylus and increasing surface friction may improve touchscreen use in older adults.

  19. Modelling thermal comfort of visitors at urban squares in hot and arid climate using NN-ARX soft computing method

    NASA Astrophysics Data System (ADS)

    Kariminia, Shahab; Motamedi, Shervin; Shamshirband, Shahaboddin; Piri, Jamshid; Mohammadi, Kasra; Hashim, Roslan; Roy, Chandrabhushan; Petković, Dalibor; Bonakdari, Hossein

    2016-05-01

    Visitors utilize the urban space based on their thermal perception and thermal environment. The thermal adaptation engages the user's behavioural, physiological and psychological aspects. These aspects play critical roles in user's ability to assess the thermal environments. Previous studies have rarely addressed the effects of identified factors such as gender, age and locality on outdoor thermal comfort, particularly in hot, dry climate. This study investigated the thermal comfort of visitors at two city squares in Iran based on their demographics as well as the role of thermal environment. Assessing the thermal comfort required taking physical measurement and questionnaire survey. In this study, a non-linear model known as the neural network autoregressive with exogenous input (NN-ARX) was employed. Five indices of physiological equivalent temperature (PET), predicted mean vote (PMV), standard effective temperature (SET), thermal sensation votes (TSVs) and mean radiant temperature ( T mrt) were trained and tested using the NN-ARX. Then, the results were compared to the artificial neural network (ANN) and the adaptive neuro-fuzzy inference system (ANFIS). The findings showed the superiority of the NN-ARX over the ANN and the ANFIS. For the NN-ARX model, the statistical indicators of the root mean square error (RMSE) and the mean absolute error (MAE) were 0.53 and 0.36 for the PET, 1.28 and 0.71 for the PMV, 2.59 and 1.99 for the SET, 0.29 and 0.08 for the TSV and finally 0.19 and 0.04 for the T mrt.

  20. Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.

    PubMed

    Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T

    2011-12-01

    Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.

  1. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model.

    PubMed

    Azeez, Adeboye; Obaromi, Davies; Odeyemi, Akinwumi; Ndege, James; Muntabayi, Ruffin

    2016-07-26

    Tuberculosis (TB) is a deadly infectious disease caused by Mycobacteria tuberculosis. Tuberculosis as a chronic and highly infectious disease is prevalent in almost every part of the globe. More than 95% of TB mortality occurs in low/middle income countries. In 2014, approximately 10 million people were diagnosed with active TB and two million died from the disease. In this study, our aim is to compare the predictive powers of the seasonal autoregressive integrated moving average (SARIMA) and neural network auto-regression (SARIMA-NNAR) models of TB incidence and analyse its seasonality in South Africa. TB incidence cases data from January 2010 to December 2015 were extracted from the Eastern Cape Health facility report of the electronic Tuberculosis Register (ERT.Net). A SARIMA model and a combined model of SARIMA model and a neural network auto-regression (SARIMA-NNAR) model were used in analysing and predicting the TB data from 2010 to 2015. Simulation performance parameters of mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean percent error (MPE), mean absolute scaled error (MASE) and mean absolute percentage error (MAPE) were applied to assess the better performance of prediction between the models. Though practically, both models could predict TB incidence, the combined model displayed better performance. For the combined model, the Akaike information criterion (AIC), second-order AIC (AICc) and Bayesian information criterion (BIC) are 288.56, 308.31 and 299.09 respectively, which were lower than the SARIMA model with corresponding values of 329.02, 327.20 and 341.99, respectively. The seasonality trend of TB incidence was forecast to have a slightly increased seasonal TB incidence trend from the SARIMA-NNAR model compared to the single model. The combined model indicated a better TB incidence forecasting with a lower AICc. The model also indicates the need for resolute intervention to reduce infectious disease transmission with co-infection with HIV and other concomitant diseases, and also at festival peak periods.

  2. Determination of suitable drying curve model for bread moisture loss during baking

    NASA Astrophysics Data System (ADS)

    Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.

    2013-03-01

    This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.

  3. Prediction of penetration rate of rotary-percussive drilling using artificial neural networks - a case study / Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych - studium przypadku

    NASA Astrophysics Data System (ADS)

    Aalizad, Seyed Ali; Rashidinejad, Farshad

    2012-12-01

    Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.

  4. Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site

    NASA Astrophysics Data System (ADS)

    Turchi, Alessio; Masciadri, Elena; Fini, Luca

    2017-04-01

    In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.

  5. Automatic Sub-Pixel Co-Registration of LandSat-8 OLI and Sentinel-2A MSI Images Using Phase Correlation and Machine Learning Based Mapping

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Roger, Jean-Claude; Vermote, Eric F.; Masek, Jeffrey G.; Justice, Christopher O.

    2017-01-01

    This study investigates misregistration issues between Landsat-8/OLI and Sentinel-2A/MSI at 30 m resolution, and between multi-temporal Sentinel-2A images at 10 m resolution using a phase correlation approach and multiple transformation functions. Co-registration of 45 Landsat-8 to Sentinel-2A pairs and 37 Sentinel-2A to Sentinel-2A pairs were analyzed. Phase correlation proved to be a robust approach that allowed us to identify hundreds and thousands of control points on images acquired more than 100 days apart. Overall, misregistration of up to 1.6 pixels at 30 m resolution between Landsat-8 and Sentinel-2A images, and 1.2 pixels and 2.8 pixels at 10 m resolution between multi-temporal Sentinel-2A images from the same and different orbits, respectively, were observed. The non-linear Random Forest regression used for constructing the mapping function showed best results in terms of root mean square error (RMSE), yielding an average RMSE error of 0.07+/-0.02 pixels at 30 m resolution, and 0.09+/-0.05 and 0.15+/-0.06 pixels at 10 m resolution for the same and adjacent Sentinel-2A orbits, respectively, for multiple tiles and multiple conditions. A simpler 1st order polynomial function (affine transformation) yielded RMSE of 0.08+/-0.02 pixels at 30 m resolution and 0.12+/-0.06 (same Sentinel-2A orbits) and 0.20+/-0.09 (adjacent orbits) pixels at 10 m resolution.

  6. Characterizing trabecular bone structure for assessing vertebral fracture risk on volumetric quantitative computed tomography

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Checefsky, Walter A.; Abidin, Anas Z.; Tsai, Halley; Wang, Xixi; Hobbs, Susan K.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2015-03-01

    While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature `correlation' (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.

  7. Mapping health assessment questionnaire disability index (HAQ-DI) score, pain visual analog scale (VAS), and disease activity score in 28 joints (DAS28) onto the EuroQol-5D (EQ-5D) utility score with the KORean Observational study Network for Arthritis (KORONA) registry data.

    PubMed

    Kim, Hye-Lin; Kim, Dam; Jang, Eun Jin; Lee, Min-Young; Song, Hyun Jin; Park, Sun-Young; Cho, Soo-Kyung; Sung, Yoon-Kyoung; Choi, Chan-Bum; Won, Soyoung; Bang, So-Young; Cha, Hoon-Suk; Choe, Jung-Yoon; Chung, Won Tae; Hong, Seung-Jae; Jun, Jae-Bum; Kim, Jinseok; Kim, Seong-Kyu; Kim, Tae-Hwan; Kim, Tae-Jong; Koh, Eunmi; Lee, Hwajeong; Lee, Hye-Soon; Lee, Jisoo; Lee, Shin-Seok; Lee, Sung Won; Park, Sung-Hoon; Shim, Seung-Cheol; Yoo, Dae-Hyun; Yoon, Bo Young; Bae, Sang-Cheol; Lee, Eui-Kyung

    2016-04-01

    The aim of this study was to estimate the mapping model for EuroQol-5D (EQ-5D) utility values using the health assessment questionnaire disability index (HAQ-DI), pain visual analog scale (VAS), and disease activity score in 28 joints (DAS28) in a large, nationwide cohort of rheumatoid arthritis (RA) patients in Korea. The KORean Observational study Network for Arthritis (KORONA) registry data on 3557 patients with RA were used. Data were randomly divided into a modeling set (80 % of the data) and a validation set (20 % of the data). The ordinary least squares (OLS), Tobit, and two-part model methods were employed to construct a model to map to the EQ-5D index. Using a combination of HAQ-DI, pain VAS, and DAS28, four model versions were examined. To evaluate the predictive accuracy of the models, the root-mean-square error (RMSE) and mean absolute error (MAE) were calculated using the validation dataset. A model that included HAQ-DI, pain VAS, and DAS28 produced the highest adjusted R (2) as well as the lowest Akaike information criterion, RMSE, and MAE, regardless of the statistical methods used in modeling set. The mapping equation of the OLS method is given as EQ-5D = 0.95-0.21 × HAQ-DI-0.24 × pain VAS/100-0.01 × DAS28 (adjusted R (2) = 57.6 %, RMSE = 0.1654 and MAE = 0.1222). Also in the validation set, the RMSE and MAE were shown to be the smallest. The model with HAQ-DI, pain VAS, and DAS28 showed the best performance, and this mapping model enabled the estimation of an EQ-5D value for RA patients in whom utility values have not been measured.

  8. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  9. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  10. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  11. Quantified Choice of Root-Mean-Square Errors of Approximation for Evaluation and Power Analysis of Small Differences between Structural Equation Models

    ERIC Educational Resources Information Center

    Li, Libo; Bentler, Peter M.

    2011-01-01

    MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…

  12. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  14. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system.

    PubMed

    Nüesch, Corina; Roos, Elena; Pagenstert, Geert; Mündermann, Annegret

    2017-05-24

    Inertial sensor systems are becoming increasingly popular for gait analysis because their use is simple and time efficient. This study aimed to compare joint kinematics measured by the inertial sensor system RehaGait® with those of an optoelectronic system (Vicon®) for treadmill walking and running. Additionally, the test re-test repeatability of kinematic waveforms and discrete parameters for the RehaGait® was investigated. Twenty healthy runners participated in this study. Inertial sensors and reflective markers (PlugIn Gait) were attached according to respective guidelines. The two systems were started manually at the same time. Twenty consecutive strides for walking and running were recorded and each software calculated sagittal plane ankle, knee and hip kinematics. Measurements were repeated after 20min. Ensemble means were analyzed calculating coefficients of multiple correlation for waveforms and root mean square errors (RMSE) for waveforms and discrete parameters. After correcting the offset between waveforms, the two systems/models showed good agreement with coefficients of multiple correlation above 0.950 for walking and running. RMSE of the waveforms were below 5° for walking and below 8° for running. RMSE for ranges of motion were between 4° and 9° for walking and running. Repeatability analysis of waveforms showed very good to excellent coefficients of multiple correlation (>0.937) and RMSE of 3° for walking and 3-7° for running. These results indicate that in healthy subjects sagittal plane joint kinematics measured with the RehaGait® are comparable to those using a Vicon® system/model and that the measured kinematics have a good repeatability, especially for walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China

    PubMed Central

    Liang, Hao; Gao, Lian; Liang, Bingyu; Huang, Jiegang; Zang, Ning; Liao, Yanyan; Yu, Jun; Lai, Jingzhen; Qin, Fengxiang; Su, Jinming; Ye, Li; Chen, Hui

    2016-01-01

    Background Hepatitis is a serious public health problem with increasing cases and property damage in Heng County. It is necessary to develop a model to predict the hepatitis epidemic that could be useful for preventing this disease. Methods The autoregressive integrated moving average (ARIMA) model and the generalized regression neural network (GRNN) model were used to fit the incidence data from the Heng County CDC (Center for Disease Control and Prevention) from January 2005 to December 2012. Then, the ARIMA-GRNN hybrid model was developed. The incidence data from January 2013 to December 2013 were used to validate the models. Several parameters, including mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean square error (MSE), were used to compare the performance among the three models. Results The morbidity of hepatitis from Jan 2005 to Dec 2012 has seasonal variation and slightly rising trend. The ARIMA(0,1,2)(1,1,1)12 model was the most appropriate one with the residual test showing a white noise sequence. The smoothing factor of the basic GRNN model and the combined model was 1.8 and 0.07, respectively. The four parameters of the hybrid model were lower than those of the two single models in the validation. The parameters values of the GRNN model were the lowest in the fitting of the three models. Conclusions The hybrid ARIMA-GRNN model showed better hepatitis incidence forecasting in Heng County than the single ARIMA model and the basic GRNN model. It is a potential decision-supportive tool for controlling hepatitis in Heng County. PMID:27258555

  16. Parameter Optimisation and Uncertainty Analysis in Visual MODFLOW based Flow Model for predicting the groundwater head in an Eastern Indian Aquifer

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Jena, S.; Panda, R. K.

    2016-12-01

    The overexploitation of groundwater elicited in abandoning several shallow tube wells in the study Basin in Eastern India. For the sustainability of groundwater resources, basin-scale modelling of groundwater flow is indispensable for the effective planning and management of the water resources. The basic intent of this study is to develop a 3-D groundwater flow model of the study basin using the Visual MODFLOW Flex 2014.2 package and successfully calibrate and validate the model using 17 years of observed data. The sensitivity analysis was carried out to quantify the susceptibility of aquifer system to the river bank seepage, recharge from rainfall and agriculture practices, horizontal and vertical hydraulic conductivities, and specific yield. To quantify the impact of parameter uncertainties, Sequential Uncertainty Fitting Algorithm (SUFI-2) and Markov chain Monte Carlo (McMC) techniques were implemented. Results from the two techniques were compared and the advantages and disadvantages were analysed. Nash-Sutcliffe coefficient (NSE), Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Percent Deviation (Dv) and Root Mean Squared Error (RMSE) were adopted as criteria of model evaluation during calibration and validation of the developed model. NSE, R2, MAE, Dv and RMSE values for groundwater flow model during calibration and validation were in acceptable range. Also, the McMC technique was able to provide more reasonable results than SUFI-2. The calibrated and validated model will be useful to identify the aquifer properties, analyse the groundwater flow dynamics and the change in groundwater levels in future forecasts.

  17. Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit.

    PubMed

    Hibbing, Paul R; Lamunion, Samuel R; Kaplan, Andrew S; Crouter, Scott E

    2018-05-01

    The purpose of this study was to explore whether gyroscope and magnetometer data from the ActiGraph GT9X improved accelerometer-based predictions of energy expenditure (EE). Thirty participants (mean ± SD: age, 23.0 ± 2.3 yr; body mass index, 25.2 ± 3.9 kg·m) volunteered to complete the study. Participants wore five GT9X monitors (right hip, both wrists, and both ankles) while performing 10 activities ranging from rest to running. A Cosmed K4b was worn during the trial, as a criterion measure of EE (30-s averages) expressed in METs. Triaxial accelerometer data (80 Hz) were converted to milli-G using Euclidean norm minus one (ENMO; 1-s epochs). Gyroscope data (100 Hz) were expressed as a vector magnitude (GVM) in degrees per second (1-s epochs) and magnetometer data (100 Hz) were expressed as direction changes per 5 s. Minutes 4-6 of each activity were used for analysis. Three two-regression algorithms were developed for each wear location: 1) ENMO, 2) ENMO and GVM, and 3) ENMO, GVM, and direction changes. Leave-one-participant-out cross-validation was used to evaluate the root mean square error (RMSE) and mean absolute percent error (MAPE) of each algorithm. Adding gyroscope to accelerometer-only algorithms resulted in RMSE reductions between 0.0 METs (right wrist) and 0.17 METs (right ankle), and MAPE reductions between 0.1% (right wrist) and 6.0% (hip). When direction changes were added, RMSE changed by ≤0.03 METs and MAPE by ≤0.21%. The combined use of gyroscope and accelerometer at the hip and ankles improved individual-level prediction of EE compared with accelerometer only. For the wrists, adding gyroscope produced negligible changes. The magnetometer did not meaningfully improve estimates for any algorithms.

  18. A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors

    PubMed Central

    Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.

    2013-01-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877

  19. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors.

    PubMed

    Thipphavong, David P

    2016-09-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  20. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    PubMed Central

    Thipphavong, David P.

    2017-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%. PMID:28684883

  1. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Thipphavong, David P.

    2016-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  2. Carbon dioxide emission prediction using support vector machine

    NASA Astrophysics Data System (ADS)

    Saleh, Chairul; Rachman Dzakiyullah, Nur; Bayu Nugroho, Jonathan

    2016-02-01

    In this paper, the SVM model was proposed for predict expenditure of carbon (CO2) emission. The energy consumption such as electrical energy and burning coal is input variable that affect directly increasing of CO2 emissions were conducted to built the model. Our objective is to monitor the CO2 emission based on the electrical energy and burning coal used from the production process. The data electrical energy and burning coal used were obtained from Alcohol Industry in order to training and testing the models. It divided by cross-validation technique into 90% of training data and 10% of testing data. To find the optimal parameters of SVM model was used the trial and error approach on the experiment by adjusting C parameters and Epsilon. The result shows that the SVM model has an optimal parameter on C parameters 0.1 and 0 Epsilon. To measure the error of the model by using Root Mean Square Error (RMSE) with error value as 0.004. The smallest error of the model represents more accurately prediction. As a practice, this paper was contributing for an executive manager in making the effective decision for the business operation were monitoring expenditure of CO2 emission.

  3. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

    PubMed

    Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W

    2005-01-01

    Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.

  4. Vanishing Point Extraction and Refinement for Robust Camera Calibration

    PubMed Central

    Tsai, Fuan

    2017-01-01

    This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966

  5. Currency crisis indication by using ensembles of support vector machine classifiers

    NASA Astrophysics Data System (ADS)

    Ramli, Nor Azuana; Ismail, Mohd Tahir; Wooi, Hooy Chee

    2014-07-01

    There are many methods that had been experimented in the analysis of currency crisis. However, not all methods could provide accurate indications. This paper introduces an ensemble of classifiers by using Support Vector Machine that's never been applied in analyses involving currency crisis before with the aim of increasing the indication accuracy. The proposed ensemble classifiers' performances are measured using percentage of accuracy, root mean squared error (RMSE), area under the Receiver Operating Characteristics (ROC) curve and Type II error. The performances of an ensemble of Support Vector Machine classifiers are compared with the single Support Vector Machine classifier and both of classifiers are tested on the data set from 27 countries with 12 macroeconomic indicators for each country. From our analyses, the results show that the ensemble of Support Vector Machine classifiers outperforms single Support Vector Machine classifier on the problem involving indicating a currency crisis in terms of a range of standard measures for comparing the performance of classifiers.

  6. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

    PubMed

    Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C

    2002-03-01

    Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant negative influences of employment status and partnership on costs. All three models provided a R2 of about.31. The Residuals of the linear OLS model revealed significant deviances from normality and homoscedasticity. The residuals of the log-transformed model are normally distributed but still heteroscedastic. The linear OLS model provided the lowest prediction error and the best forecast of the dependent cost variable. The log-transformed model provided the lowest RMSE if the heteroscedastic bias correction was used. The RMSE of the GLM with a log link and a gamma distribution was higher than those of the linear OLS model and the log-transformed OLS model. The difference between the RMSE of the linear OLS model and that of the log-transformed OLS model without bias correction was significant at the 95% level. As result of the cross-validation procedure, the linear OLS model provided the lowest RMSE followed by the log-transformed OLS model with a heteroscedastic bias correction. The GLM showed the weakest model fit again. None of the differences between the RMSE resulting form the cross- validation procedure were found to be significant. The comparison of the fit indices of the different regression models revealed that the linear OLS model provided a better fit than the log-transformed model and the GLM, but the differences between the models RMSE were not significant. Due to the small number of cases in the study the lack of significance does not sufficiently proof that the differences between the RSME for the different models are zero and the superiority of the linear OLS model can not be generalized. The lack of significant differences among the alternative estimators may reflect a lack of sample size adequate to detect important differences among the estimators employed. Further studies with larger case number are necessary to confirm the results. Specification of an adequate regression models requires a careful examination of the characteristics of the data. Estimation of standard errors and confidence intervals by nonparametric methods which are robust against deviations from the normal distribution and the homoscedasticity of residuals are suitable alternatives to the transformation of the skew distributed dependent variable. Further studies with more adequate case numbers are needed to confirm the results.

  7. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    PubMed Central

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-01-01

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes. PMID:25815450

  8. An adaptive supervisory sliding fuzzy cerebellar model articulation controller for sensorless vector-controlled induction motor drive systems.

    PubMed

    Wang, Shun-Yuan; Tseng, Chwan-Lu; Lin, Shou-Chuang; Chiu, Chun-Jung; Chou, Jen-Hsiang

    2015-03-25

    This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC) in the speed sensorless vector control of an induction motor (IM) drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes--the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC--were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE) was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  9. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    NASA Astrophysics Data System (ADS)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  10. A comparison of entropy balance and probability weighting methods to generalize observational cohorts to a population: a simulation and empirical example.

    PubMed

    Harvey, Raymond A; Hayden, Jennifer D; Kamble, Pravin S; Bouchard, Jonathan R; Huang, Joanna C

    2017-04-01

    We compared methods to control bias and confounding in observational studies including inverse probability weighting (IPW) and stabilized IPW (sIPW). These methods often require iteration and post-calibration to achieve covariate balance. In comparison, entropy balance (EB) optimizes covariate balance a priori by calibrating weights using the target's moments as constraints. We measured covariate balance empirically and by simulation by using absolute standardized mean difference (ASMD), absolute bias (AB), and root mean square error (RMSE), investigating two scenarios: the size of the observed (exposed) cohort exceeds the target (unexposed) cohort and vice versa. The empirical application weighted a commercial health plan cohort to a nationally representative National Health and Nutrition Examination Survey target on the same covariates and compared average total health care cost estimates across methods. Entropy balance alone achieved balance (ASMD ≤ 0.10) on all covariates in simulation and empirically. In simulation scenario I, EB achieved the lowest AB and RMSE (13.64, 31.19) compared with IPW (263.05, 263.99) and sIPW (319.91, 320.71). In scenario II, EB outperformed IPW and sIPW with smaller AB and RMSE. In scenarios I and II, EB achieved the lowest mean estimate difference from the simulated population outcome ($490.05, $487.62) compared with IPW and sIPW, respectively. Empirically, only EB differed from the unweighted mean cost indicating IPW, and sIPW weighting was ineffective. Entropy balance demonstrated the bias-variance tradeoff achieving higher estimate accuracy, yet lower estimate precision, compared with IPW methods. EB weighting required no post-processing and effectively mitigated observed bias and confounding. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A hybrid machine learning model to estimate nitrate contamination of production zone groundwater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Ransom, K.; Nolan, B. T.; Faunt, C. C.; Bell, A.; Gronberg, J.; Traum, J.; Wheeler, D. C.; Rosecrans, C.; Belitz, K.; Eberts, S.; Harter, T.

    2016-12-01

    A hybrid, non-linear, machine learning statistical model was developed within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface in the Central Valley, California. A database of 213 predictor variables representing well characteristics, historical and current field and county scale nitrogen mass balance, historical and current landuse, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6,000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The machine learning method, gradient boosting machine (GBM) was used to screen predictor variables and rank them in order of importance in relation to the groundwater nitrate measurements. The top five most important predictor variables included oxidation/reduction characteristics, historical field scale nitrogen mass balance, climate, and depth to 60 year old water. Twenty-two variables were selected for the final model and final model errors for log-transformed hold-out data were R squared of 0.45 and root mean square error (RMSE) of 1.124. Modeled mean groundwater age was tested separately for error improvement in the model and when included decreased model RMSE by 0.5% compared to the same model without age and by 0.20% compared to the model with all 213 variables. 1D and 2D partial plots were examined to determine how variables behave individually and interact in the model. Some variables behaved as expected: log nitrate decreased with increasing probability of anoxic conditions and depth to 60 year old water, generally decreased with increasing natural landuse surrounding wells and increasing mean groundwater age, generally increased with increased minimum depth to high water table and with increased base flow index value. Other variables exhibited much more erratic or noisy behavior in the model making them more difficult to interpret but highlighting the usefulness of the non-linear machine learning method. 2D interaction plots show probability of anoxic groundwater conditions largely control estimated nitrate concentrations compared to the other predictors.

  12. Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.

    PubMed

    Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M

    2018-01-17

    In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.

  13. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

    PubMed Central

    Choi, Kyuwan

    2013-01-01

    In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469

  14. A novel approach to detect respiratory phases from pulmonary acoustic signals using normalised power spectral density and fuzzy inference system.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian; Huliraj, N; Revadi, S S

    2016-07-01

    Monitoring respiration is important in several medical applications. One such application is respiratory rate monitoring in patients with sleep apnoea. The respiratory rate in patients with sleep apnoea disorder is irregular compared with the controls. Respiratory phase detection is required for a proper monitoring of respiration in patients with sleep apnoea. To develop a model to detect the respiratory phases present in the pulmonary acoustic signals and to evaluate the performance of the model in detecting the respiratory phases. Normalised averaged power spectral density for each frame and change in normalised averaged power spectral density between the adjacent frames were fuzzified and fuzzy rules were formulated. The fuzzy inference system (FIS) was developed with both Mamdani and Sugeno methods. To evaluate the performance of both Mamdani and Sugeno methods, correlation coefficient and root mean square error (RMSE) were calculated. In the correlation coefficient analysis in evaluating the fuzzy model using Mamdani and Sugeno method, the strength of the correlation was found to be r = 0.9892 and r = 0.9964, respectively. The RMSE for Mamdani and Sugeno methods are RMSE = 0.0853 and RMSE = 0.0817, respectively. The correlation coefficient and the RMSE of the proposed fuzzy models in detecting the respiratory phases reveals that Sugeno method performs better compared with the Mamdani method. © 2014 John Wiley & Sons Ltd.

  15. Fluid dynamics of coarctation of the aorta: analytical solution, in vitro validation and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra

    2015-11-01

    Coarctation of the aorta (COA) is a congenital heart disease corresponding to a narrowing in the aorta. Cardiac catheterization is considered to be the reference standard for definitive evaluation of COA severity, based on the peak-to-peak trans-coarctation pressure gradient (PtoP TCPG) and instantaneous systolic value of trans-COA pressure gradient (TCPG). However, invasive cardiac catheterization may carry high risks given that undergoing multiple follow-up cardiac catheterizations in patients with COA is common. The objective of this study is to present an analytical description of the COA that estimates PtoP TCPG and TCPG without a need for high risk invasive data collection. Coupled Navier-Stokes and elastic deformation equations were solved analytically to estimate TCPG and PtoP TCPG. The results were validated against data measured in vitro (e.g., 90% COA: TCPG: root mean squared error (RMSE) = 3.93 mmHg; PtoP TCPG: RMSE = 7.9 mmHg). Moreover, the estimated PtoP TCPG resulted from the suggested analytical description was validated using clinical data in twenty patients with COA (maximum RMSE: 8.3 mmHg). Very good correlation and concordance were found between TCPG and PtoP TCPG obtained from the analytical formulation and in vitro and in vivo data. The suggested methodology can be considered as an alternative to cardiac catheterization and can help preventing its risks.

  16. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran)

    NASA Astrophysics Data System (ADS)

    Zamani Losgedaragh, Saeideh; Rahimzadegan, Majid

    2018-06-01

    Evapotranspiration (ET) estimation is of great importance due to its key role in water resource management. Surface energy modeling tools such as Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC), and the Surface Energy Balance System (SEBS) can estimate the amount of evapotranspiration for every pixel of the satellite images. The main objective of this research is evaporation investigation from the freshwater bodies using SEBAL, METRIC, and SEBS. For this purpose, the Amirkabir dam reservoir and its nearby agricultural lands in a semi-arid climate were selected and studied from 2011 to 2017 as the study area. The implementations of this study were accomplished on 16 satellite images of Landsat TM5 and OLI. Then, SEBAL, METRIC, and SEBS were implemented on the selected images. Moreover, the corresponding pan evaporate measurements on the reservoir bank were considered as the ground truth data. Regarding to the results, SEBAL is not a reliable method to evaluate freshwater evaporation with the coefficient of determination (R2) of 0.36 and the Root Mean Square Error (RMSE) of 5.1 mm. On the other hand, METRIC with RMSE and R2 of 0.57 and 2.02 mm and SEBS with RMSE and R2 of 0.93 and 0.62 demonstrated a relatively good performance.

  17. Long-term body weight fluctuation is associated with metabolic syndrome independent of current body mass index among Japanese men.

    PubMed

    Zhang, Huiming; Tamakoshi, Koji; Yatsuya, Hiroshi; Murata, Chiyoe; Wada, Keiko; Otsuka, Rei; Nagasawa, Nobue; Ishikawa, Miyuki; Sugiura, Kaichiro; Matsushita, Kunihiro; Hori, Yoko; Kondo, Takaaki; Toyoshima, Hideaki

    2005-01-01

    The relation between weight fluctuation and the risk of cardiovascular disease (CVD) is fairly consistent, although the physiologic basis for the relationship is uncertain. In the present study the association between long-term weight fluctuation and the development of metabolic syndrome (MS), a potent CVD risk factor, was investigated. A cross-sectional study of 664 Japanese men aged 40-49 years was conducted. The root mean square error around the slope of weight on age (weight - RMSE) was calculated by a simple linear regression model, in which the subject's actual weights at ages 20, 25, 30 years and 5 years prior to the study, as well as current weight, were dependent variables against the subject's age as the independent variable. Weight-RMSE was significantly and positively associated with the prevalence of each MS components (high blood pressure, hypertriglyceridemia, low-high density lipoprotein-cholesterol, high fasting glucose, and obesity). Such associations, as well as clustering of the MS component together with RMSE increase, were apparent among subjects with body mass index (BMI) <25 kg/m2, although the prevalence of MS or its components was much higher among overweight subjects (BMI >or=25 kg/m2). Development of MS possibly explains the risk of CVD not only in overweight or obese persons, but also in normal-weight persons with large weight fluctuation.

  18. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China

    PubMed Central

    Liu, Tao; Zhu, Guanghu; Lin, Hualiang; Zhang, Yonghui; He, Jianfeng; Deng, Aiping; Peng, Zhiqiang; Xiao, Jianpeng; Rutherford, Shannon; Xie, Runsheng; Zeng, Weilin; Li, Xing; Ma, Wenjun

    2017-01-01

    Background Dengue fever (DF) in Guangzhou, Guangdong province in China is an important public health issue. The problem was highlighted in 2014 by a large, unprecedented outbreak. In order to respond in a more timely manner and hence better control such potential outbreaks in the future, this study develops an early warning model that integrates internet-based query data into traditional surveillance data. Methodology and principal findings A Dengue Baidu Search Index (DBSI) was collected from the Baidu website for developing a predictive model of dengue fever in combination with meteorological and demographic factors. Generalized additive models (GAM) with or without DBSI were established. The generalized cross validation (GCV) score and deviance explained indexes, intraclass correlation coefficient (ICC) and root mean squared error (RMSE), were respectively applied to measure the fitness and the prediction capability of the models. Our results show that the DBSI with one-week lag has a positive linear relationship with the local DF occurrence, and the model with DBSI (ICC:0.94 and RMSE:59.86) has a better prediction capability than the model without DBSI (ICC:0.72 and RMSE:203.29). Conclusions Our study suggests that a DSBI combined with traditional disease surveillance and meteorological data can improve the dengue early warning system in Guangzhou. PMID:28263988

  19. Simulating the Refractive Index Structure Constant ({C}_{n}^{2}) in the Surface Layer at Antarctica with a Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Tian, Qiguo; Liu, Dong; Rao, Ruizhong; Zhu, Wenyue

    2018-01-01

    In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (C n 2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate C n 2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate C n 2 using the bulk aerodynamic method. Finally, the corresponding C n 2 values from the micro-thermometer are compared with the C n 2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators—the bias, root mean square error (RMSE), bias-corrected RMSE (σ), and correlation coefficient (R xy )—in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, σ, and R xy . The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.

  20. Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.

    PubMed

    Kim, K; Lee, H; Gwak, E; Yoon, Y

    2014-07-01

    In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and 30°C for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (μ max; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At 4°C, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at 10°C to 30°C with a μ max of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The μ max values increased as temperature increased, while LPD values decreased, and μ max and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

  1. Comparison of hourly surface downwelling solar radiation estimated from MSG-SEVIRI and forecast by the RAMS model with pyranometers over Italy

    NASA Astrophysics Data System (ADS)

    Federico, Stefano; Torcasio, Rosa Claudia; Sanò, Paolo; Casella, Daniele; Campanelli, Monica; Fokke Meirink, Jan; Wang, Ping; Vergari, Stefania; Diémoz, Henri; Dietrich, Stefano

    2017-06-01

    In this paper, we evaluate the performance of two global horizontal solar irradiance (GHI) estimates, one derived from Meteosat Second Generation (MSG) and another from the 1-day forecast of the Regional Atmospheric Modeling System (RAMS) mesoscale model. The horizontal resolution of the MSG-GHI is 3 × 5 km2 over Italy, which is the focus area of this study. For this paper, RAMS has the horizontal resolution of 4 km.The performances of the MSG-GHI estimate and RAMS-GHI 1-day forecast are evaluated for 1 year (1 June 2013-31 May 2014) against data of 12 ground-based pyranometers over Italy spanning a range of climatic conditions, i.e. from maritime Mediterranean to Alpine climate.Statistics for hourly GHI and daily integrated GHI are presented for the four seasons and the whole year for all the measurement sites. Different sky conditions are considered in the analysisResults for hourly data show an evident dependence on the sky conditions, with the root mean square error (RMSE) increasing from clear to cloudy conditions. The RMSE is substantially higher for Alpine stations in all the seasons, mainly because of the increase of the cloud coverage for these stations, which is not well represented at the satellite and model resolutions. Considering the yearly statistics computed from hourly data for the RAMS model, the RMSE ranges from 152 W m-2 (31 %) obtained for Cozzo Spadaro, a maritime station, to 287 W m-2 (82 %) for Aosta, an Alpine site. Considering the yearly statistics computed from hourly data for MSG-GHI, the minimum RMSE is for Cozzo Spadaro (71 W m-2, 14 %), while the maximum is for Aosta (181 W m-2, 51 %). The mean bias error (MBE) shows the tendency of RAMS to over-forecast the GHI, while no specific behaviour is found for MSG-GHI.Results for daily integrated GHI show a lower RMSE compared to hourly GHI evaluation for both RAMS-GHI 1-day forecast and MSG-GHI estimate. Considering the yearly evaluation, the RMSE of daily integrated GHI is at least 9 % lower (in percentage units, from 31 to 22 % for RAMS in Cozzo Spadaro) than the RMSE computed for hourly data for each station. A partial compensation of underestimation and overestimation of the GHI contributes to the RMSE reduction. Furthermore, a post-processing technique, namely model output statistics (MOS), is applied to improve the GHI forecast at hourly and daily temporal scales. The application of MOS shows an improvement of RAMS-GHI forecast, which depends on the site considered, while the impact of MOS on MSG-GHI RMSE is small.

  2. Optimization of Stripping Voltammetric Sensor by a Back Propagation Artificial Neural Network for the Accurate Determination of Pb(II) in the Presence of Cd(II).

    PubMed

    Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-09-21

    An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.

  3. Monitoring Building Deformation with InSAR: Experiments and Validation.

    PubMed

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-12-20

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated.

  4. Using Least Squares for Error Propagation

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2015-01-01

    The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…

  5. Wind observations above an urban river using a new lidar technique, scintillometry and anemometry.

    PubMed

    Wood, C R; Pauscher, L; Ward, H C; Kotthaus, S; Barlow, J F; Gouvea, M; Lane, S E; Grimmond, C S B

    2013-01-01

    Airflow along rivers might provide a key mechanism for ventilation in cities: important for air quality and thermal comfort. Airflow varies in space and time in the vicinity of rivers. Consequently, there is limited utility in point measurements. Ground-based remote sensing offers the opportunity to study 3D airflow in locations which are difficult to observe with conventional approaches. For three months in the winter and spring of 2011, the airflow above the River Thames in central London was observed using a scanning Doppler lidar, a scintillometer and sonic anemometers. First, an inter-comparison showed that lidar-derived mean wind-speed estimates compare almost as well to sonic anemometers (root-mean-square error (rmse) 0.65-0.68 ms(-1)) as comparisons between sonic anemometers (0.35-0.73 ms(-1)). Second, the lidar duo-beam operating strategy provided horizontal transects of wind vectors (comparison with scintillometer rmse 1.12-1.63 ms(-1)) which revealed mean and turbulent airflow across the river and surrounds; in particular, channelled airflow along the river and changes in turbulence quantities consistent with the roughness changes between built and river environments. The results have important consequences for air quality and dispersion around urban rivers, especially given that many cities have high traffic rates on roads located on riverbanks. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. [Prediction of soil nutrients spatial distribution based on neural network model combined with goestatistics].

    PubMed

    Li, Qi-Quan; Wang, Chang-Quan; Zhang, Wen-Jiang; Yu, Yong; Li, Bing; Yang, Juan; Bai, Gen-Chuan; Cai, Yan

    2013-02-01

    In this study, a radial basis function neural network model combined with ordinary kriging (RBFNN_OK) was adopted to predict the spatial distribution of soil nutrients (organic matter and total N) in a typical hilly region of Sichuan Basin, Southwest China, and the performance of this method was compared with that of ordinary kriging (OK) and regression kriging (RK). All the three methods produced the similar soil nutrient maps. However, as compared with those obtained by multiple linear regression model, the correlation coefficients between the measured values and the predicted values of soil organic matter and total N obtained by neural network model increased by 12. 3% and 16. 5% , respectively, suggesting that neural network model could more accurately capture the complicated relationships between soil nutrients and quantitative environmental factors. The error analyses of the prediction values of 469 validation points indicated that the mean absolute error (MAE) , mean relative error (MRE), and root mean squared error (RMSE) of RBFNN_OK were 6.9%, 7.4%, and 5. 1% (for soil organic matter), and 4.9%, 6.1% , and 4.6% (for soil total N) smaller than those of OK (P<0.01), and 2.4%, 2.6% , and 1.8% (for soil organic matter), and 2.1%, 2.8%, and 2.2% (for soil total N) smaller than those of RK, respectively (P<0.05).

  7. Evaluating MTCLIM for incident daily solar radiation and humidity in diverse meteorological and topographical environments in the main Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Needham, H.; Longman, R. J.

    2017-12-01

    Continuous and high resolution climatologies are important inputs in determining future scenarios for land processes. In Hawaíi, a lack of continuous meteorological data has been a problem for both ecological and hydrological research of land-surface processes at daily time scales. For downward shortwave radiation (SWdown) and relative humidity (RH) climate variables, the number of surface stations which record daily values are limited and tend to be situated at city airports or in convenient locations leaving large sections of the islands underrepresented. The aim of this study is to evaluate the rationale behind using the mountain microclimate simulator MTCLIM to obtain a gridded observation based ensemble of SWdown and RH data at a daily increment for the period of 1990-2014 for the main Hawaiian Islands. Preliminary results, testing model output with observed data, show mean bias errors (%MBE) of 1.15 W/m2 for SWdown and -0.8% for RH. Mean absolute errors (%MAE) of 32.83 W/m2 SWdown and 14.96% RH, with root mean square errors (%RMSE) of 40.17 W/m2 SWdown and 11.75% RH. Further optimization of the model and additional methods to reduce errors are being investigated to improve the model's functionality with Hawaíi's extreme climate gradients.

  8. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains

    USGS Publications Warehouse

    Senay, Gabriel; Gowda, Prasanna H.; Bohms, Stefanie; Howell, T.A.; Friedrichs, Mackenzie; Marek, T.H.; Verdin, James

    2014-01-01

    The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March–October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (−11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.

  9. Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.

    PubMed

    Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H

    2017-02-11

    In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.

  10. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.

    PubMed

    Ding, H; Chen, C; Zhang, X

    2016-01-01

    The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.

  11. Reservoir water level forecasting using group method of data handling

    NASA Astrophysics Data System (ADS)

    Zaji, Amir Hossein; Bonakdari, Hossein; Gharabaghi, Bahram

    2018-06-01

    Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and management. In this study, the group method of data handling is combined with the minimum description length method to develop a very practical and functional model for predicting reservoir water levels. The models' performance is evaluated using two groups of input combinations based on recent days and recent weeks. Four different input combinations are considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and validation. To assess the models' applicability in practical situations, the models are made to predict a non-observed dataset for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L -1) and (L, L -1, L -12) for recent days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L -7) and (L, L -7, L -14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.typingclub.com/st. Accordingly, (L, L -1) is selected as the best input combination for making 7-day ahead predictions of reservoir water levels.

  12. Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach

    NASA Astrophysics Data System (ADS)

    Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa

    2018-06-01

    Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.

  13. Prediction of road traffic death rate using neural networks optimised by genetic algorithm.

    PubMed

    Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari

    2015-01-01

    Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors.

  14. Development of an ecotoxicity QSAR model for the KAshinhou Tool for Ecotoxicity (KATE) system, March 2009 version.

    PubMed

    Furuhama, A; Toida, T; Nishikawa, N; Aoki, Y; Yoshioka, Y; Shiraishi, H

    2010-07-01

    The KAshinhou Tool for Ecotoxicity (KATE) system, including ecotoxicity quantitative structure-activity relationship (QSAR) models, was developed by the Japanese National Institute for Environmental Studies (NIES) using the database of aquatic toxicity results gathered by the Japanese Ministry of the Environment and the US EPA fathead minnow database. In this system chemicals can be entered according to their one-dimensional structures and classified by substructure. The QSAR equations for predicting the toxicity of a chemical compound assume a linear correlation between its log P value and its aquatic toxicity. KATE uses a structural domain called C-judgement, defined by the substructures of specified functional groups in the QSAR models. Internal validation by the leave-one-out method confirms that the QSAR equations, with r(2 )> 0.7, RMSE 5, give acceptable q(2) values. Such external validation indicates that a group of chemicals with an in-domain of KATE C-judgements exhibits a lower root mean square error (RMSE). These findings demonstrate that the KATE system has the potential to enable chemicals to be categorised as potential hazards.

  15. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics

    NASA Astrophysics Data System (ADS)

    Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim

    2018-05-01

    The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).

  16. Evaluation of effectiveness of wavelet based denoising schemes using ANN and SVM for bearing condition classification.

    PubMed

    Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N

    2012-01-01

    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

  17. [Estimation of organic matter content of north fluvo-aquic soil based on the coupling model of wavelet transform and partial least squares].

    PubMed

    Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong

    2014-07-01

    For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.

  18. Comparative Analysis of Hybrid Models for Prediction of BP Reactivity to Crossed Legs.

    PubMed

    Kaur, Gurmanik; Arora, Ajat Shatru; Jain, Vijender Kumar

    2017-01-01

    Crossing the legs at the knees, during BP measurement, is one of the several physiological stimuli that considerably influence the accuracy of BP measurements. Therefore, it is paramount to develop an appropriate prediction model for interpreting influence of crossed legs on BP. This research work described the use of principal component analysis- (PCA-) fused forward stepwise regression (FSWR), artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), and least squares support vector machine (LS-SVM) models for prediction of BP reactivity to crossed legs among the normotensive and hypertensive participants. The evaluation of the performance of the proposed prediction models using appropriate statistical indices showed that the PCA-based LS-SVM (PCA-LS-SVM) model has the highest prediction accuracy with coefficient of determination ( R 2 ) = 93.16%, root mean square error (RMSE) = 0.27, and mean absolute percentage error (MAPE) = 5.71 for SBP prediction in normotensive subjects. Furthermore, R 2  = 96.46%, RMSE = 0.19, and MAPE = 1.76 for SBP prediction and R 2  = 95.44%, RMSE = 0.21, and MAPE = 2.78 for DBP prediction in hypertensive subjects using the PCA-LSSVM model. This assessment presents the importance and advantages posed by hybrid computing models for the prediction of variables in biomedical research studies.

  19. Blending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait

    NASA Astrophysics Data System (ADS)

    Mujiasih, Subekti; Riyadi, Mochammad; Wandono, Dr; Wayan Suardana, I.; Nyoman Gede Wiryajaya, I.; Nyoman Suarsa, I.; Hartanto, Dwi; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m2/s2. The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m2/s2. This study is still preliminary step, but it gives promising result for bigger size of data, combining other model and further development. Keyword: HF Radar, Sunda Strait, ETKF, CMEMS

  20. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  1. Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city-China

    NASA Astrophysics Data System (ADS)

    Tang, Jinjun; Zhang, Shen; Chen, Xinqiang; Liu, Fang; Zou, Yajie

    2018-03-01

    Understanding Origin-Destination distribution of taxi trips is very important for improving effects of transportation planning and enhancing quality of taxi services. This study proposes a new method based on Entropy-Maximizing theory to model OD distribution in Harbin city using large-scale taxi GPS trajectories. Firstly, a K-means clustering method is utilized to partition raw pick-up and drop-off location into different zones, and trips are assumed to start from and end at zone centers. A generalized cost function is further defined by considering travel distance, time and fee between each OD pair. GPS data collected from more than 1000 taxis at an interval of 30 s during one month are divided into two parts: data from first twenty days is treated as training dataset and last ten days is taken as testing dataset. The training dataset is used to calibrate model while testing dataset is used to validate model. Furthermore, three indicators, mean absolute error (MAE), root mean square error (RMSE) and mean percentage absolute error (MPAE), are applied to evaluate training and testing performance of Entropy-Maximizing model versus Gravity model. The results demonstrate Entropy-Maximizing model is superior to Gravity model. Findings of the study are used to validate the feasibility of OD distribution from taxi GPS data in urban system.

  2. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    NASA Astrophysics Data System (ADS)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  3. Multi-model ensemble projections of future extreme heat stress on rice across southern China

    NASA Astrophysics Data System (ADS)

    He, Liang; Cleverly, James; Wang, Bin; Jin, Ning; Mi, Chunrong; Liu, De Li; Yu, Qiang

    2017-08-01

    Extreme heat events have become more frequent and intense with climate warming, and these heatwaves are a threat to rice production in southern China. Projected changes in heat stress in rice provide an assessment of the potential impact on crop production and can direct measures for adaptation to climate change. In this study, we calculated heat stress indices using statistical scaling techniques, which can efficiently downscale output from general circulation models (GCMs). Data across the rice belt in southern China were obtained from 28 GCMs in the Coupled Model Intercomparison Project phase 5 (CMIP5) with two emissions scenarios (RCP4.5 for current emissions and RCP8.5 for increasing emissions). Multi-model ensemble projections over the historical period (1960-2010) reproduced the trend of observations in heat stress indices (root-mean-square error RMSE = 6.5 days) better than multi-model arithmetic mean (RMSE 8.9 days) and any individual GCM (RMSE 11.4 days). The frequency of heat stress events was projected to increase by 2061-2100 in both scenarios (up to 185 and 319% for RCP4.5 and RCP8.5, respectively), especially in the middle and lower reaches of the Yangtze River. This increasing risk of exposure to heat stress above 30 °C during flowering and grain filling is predicted to impact rice production. The results of our study suggest the importance of specific adaption or mitigation strategies, such as selection of heat-tolerant cultivars and adjustment of planting date in a warmer future world.

  4. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    PubMed

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  5. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    NASA Astrophysics Data System (ADS)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  6. Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter.

    PubMed

    Welles, Alexander P; Xu, Xiaojiang; Santee, William R; Looney, David P; Buller, Mark J; Potter, Adam W; Hoyt, Reed W

    2018-05-18

    Core body temperature (T C ) is a key physiological metric of thermal heat-strain yet it remains difficult to measure non-invasively in the field. This work used combinations of observations of skin temperature (T S ), heat flux (HF), and heart rate (HR) to accurately estimate T C using a Kalman Filter (KF). Data were collected from eight volunteers (age 22 ± 4 yr, height 1.75 ± 0.10 m, body mass 76.4 ± 10.7 kg, and body fat 23.4 ± 5.8%, mean ± standard deviation) while walking at two different metabolic rates (∼350 and ∼550 W) under three conditions (warm: 25 °C, 50% relative humidity (RH); hot-humid: 35 °C, 70% RH; and hot-dry: 40 °C, 20% RH). Skin temperature and HF data were collected from six locations: pectoralis, inner thigh, scapula, sternum, rib cage, and forehead. Kalman filter variables were learned via linear regression and covariance calculations between T C and T S , HF, and HR. Root mean square error (RMSE) and bias were calculated to identify the best performing models. The pectoralis (RMSE 0.18 ± 0.04 °C; bias -0.01 ± 0.09 °C), rib (RMSE 0.18 ± 0.09 °C; bias -0.03 ± 0.09 °C), and sternum (RMSE 0.20 ± 0.10 °C; bias -0.04 ± 0.13 °C) were found to have the lowest error values when using T S , HF, and HR but, using only two of these measures provided similar accuracy. Copyright © 2018. Published by Elsevier Ltd.

  7. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    NASA Astrophysics Data System (ADS)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the phenomenon which shows the relationship between the input and output parameters. This study provided new alternatives for solar radiation estimation based on temperatures.

  8. Reliability of assessing postural control during seated balancing using a physical human-robot interaction.

    PubMed

    Ramadan, Ahmed; Cholewicki, Jacek; Radcliffe, Clark J; Popovich, John M; Reeves, N Peter; Choi, Jongeun

    2017-11-07

    This study evaluated the within- and between-visit reliability of a seated balance test for quantifying trunk motor control using input-output data. Thirty healthy subjects performed a seated balance test under three conditions: eyes open (EO), eyes closed (EC), and eyes closed with vibration to the lumbar muscles (VIB). Each subject performed three trials of each condition on three different visits. The seated balance test utilized a torque-controlled robotic seat, which together with a sitting subject resulted in a physical human-robot interaction (pHRI) (two degrees-of-freedom with upper and lower body rotations). Subjects balanced the pHRI by controlling trunk rotation in response to pseudorandom torque perturbations applied to the seat in the coronal plane. Performance error was expressed as the root mean square (RMSE) of deviations from the upright position in the time domain and as the mean bandpass signal energy (E mb ) in the frequency domain. Intra-class correlation coefficients (ICC) quantified the between-visit reliability of both RMSE and E mb . The empirical transfer function estimates (ETFE) from the perturbation input to each of the two rotational outputs were calculated. Coefficients of multiple correlation (CMC) quantified the within- and between-visit reliability of the averaged ETFE. ICCs of RMSE and E mb for all conditions were ≥0.84. The mean within- and between-visit CMCs were all ≥0.96 for the lower body rotation and ≥0.89 for the upper body rotation. Therefore, our seated balance test consisting of pHRI to assess coronal plane trunk motor control is reliable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accurate prediction of energy expenditure using a shoe-based activity monitor.

    PubMed

    Sazonova, Nadezhda; Browning, Raymond C; Sazonov, Edward

    2011-07-01

    The aim of this study was to develop and validate a method for predicting energy expenditure (EE) using a footwear-based system with integrated accelerometer and pressure sensors. We developed a footwear-based device with an embedded accelerometer and insole pressure sensors for the prediction of EE. The data from the device can be used to perform accurate recognition of major postures and activities and to estimate EE using the acceleration, pressure, and posture/activity classification information in a branched algorithm without the need for individual calibration. We measured EE via indirect calorimetry as 16 adults (body mass index=19-39 kg·m) performed various low- to moderate-intensity activities and compared measured versus predicted EE using several models based on the acceleration and pressure signals. Inclusion of pressure data resulted in better accuracy of EE prediction during static postures such as sitting and standing. The activity-based branched model that included predictors from accelerometer and pressure sensors (BACC-PS) achieved the lowest error (e.g., root mean squared error (RMSE)=0.69 METs) compared with the accelerometer-only-based branched model BACC (RMSE=0.77 METs) and nonbranched model (RMSE=0.94-0.99 METs). Comparison of EE prediction models using data from both legs versus models using data from a single leg indicates that only one shoe needs to be equipped with sensors. These results suggest that foot acceleration combined with insole pressure measurement, when used in an activity-specific branched model, can accurately estimate the EE associated with common daily postures and activities. The accuracy and unobtrusiveness of a footwear-based device may make it an effective physical activity monitoring tool.

  10. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  11. Evaluation of Different Phenological Information to Map Crop Rotation in Complex Irrigated Indus Basin

    NASA Astrophysics Data System (ADS)

    Ismaeel, A.; Zhou, Q.

    2018-04-01

    Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  12. Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5

    NASA Astrophysics Data System (ADS)

    Ausati, Shadi; Amanollahi, Jamil

    2016-10-01

    Since Sanandaj is considered one of polluted cities of Iran, prediction of any type of pollution especially prediction of suspended particles of PM2.5, which are the cause of many diseases, could contribute to health of society by timely announcements and prior to increase of PM2.5. In order to predict PM2.5 concentration in the Sanandaj air the hybrid models consisting of an ensemble empirical mode decomposition and general regression neural network (EEMD-GRNN), Adaptive Neuro-Fuzzy Inference System (ANFIS), principal component regression (PCR), and linear model such as multiple liner regression (MLR) model were used. In these models the data of suspended particles of PM2.5 were the dependent variable and the data related to air quality including PM2.5, PM10, SO2, NO2, CO, O3 and meteorological data including average minimum temperature (Min T), average maximum temperature (Max T), average atmospheric pressure (AP), daily total precipitation (TP), daily relative humidity level of the air (RH) and daily wind speed (WS) for the year 2014 in Sanandaj were the independent variables. Among the used models, EEMD-GRNN model with values of R2 = 0.90, root mean square error (RMSE) = 4.9218 and mean absolute error (MAE) = 3.4644 in the training phase and with values of R2 = 0.79, RMSE = 5.0324 and MAE = 3.2565 in the testing phase, exhibited the best function in predicting this phenomenon. It can be concluded that hybrid models have accurate results to predict PM2.5 concentration compared with linear model.

  13. Pre-processing by data augmentation for improved ellipse fitting.

    PubMed

    Kumar, Pankaj; Belchamber, Erika R; Miklavcic, Stanley J

    2018-01-01

    Ellipse fitting is a highly researched and mature topic. Surprisingly, however, no existing method has thus far considered the data point eccentricity in its ellipse fitting procedure. Here, we introduce the concept of eccentricity of a data point, in analogy with the idea of ellipse eccentricity. We then show empirically that, irrespective of ellipse fitting method used, the root mean square error (RMSE) of a fit increases with the eccentricity of the data point set. The main contribution of the paper is based on the hypothesis that if the data point set were pre-processed to strategically add additional data points in regions of high eccentricity, then the quality of a fit could be improved. Conditional validity of this hypothesis is demonstrated mathematically using a model scenario. Based on this confirmation we propose an algorithm that pre-processes the data so that data points with high eccentricity are replicated. The improvement of ellipse fitting is then demonstrated empirically in real-world application of 3D reconstruction of a plant root system for phenotypic analysis. The degree of improvement for different underlying ellipse fitting methods as a function of data noise level is also analysed. We show that almost every method tested, irrespective of whether it minimizes algebraic error or geometric error, shows improvement in the fit following data augmentation using the proposed pre-processing algorithm.

  14. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    NASA Astrophysics Data System (ADS)

    Almanza, V. H.; Molina, L. T.; Sosa, G.

    2012-11-01

    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order to estimate emission rates of combustion by-products of interest for air quality: acetylene, ethylene, nitrogen oxides, carbon monoxide, soot and sulfur dioxide. The emission rates of NO2 and SO2 were compared with measurements obtained at Tula as part of MILAGRO field campaign. The rates of soot, VOCs and CO emissions were compared with estimates obtained by Instituto Mexicano del Petróleo (IMP). The emission rates of these species were further included in WRF-Chem model to simulate the chemical transport of the plume from 22 to 27 March of 2006. The model presents reliable performance of the resolved meteorology, with respect to the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), mean bias (BIAS), vector RMSE and Index of Agreement (IOA). WRF-Chem outputs of SO2 and soot were compared with surface measurements obtained at the three supersites of MILAGRO campaign. The results suggest a contribution of Tula flaring activities to the total SO2 levels of 18% to 27% at the urban supersite (T0), and of 10% to 18% at the suburban supersite (T1). For soot, the model predicts low contribution at the three supersites, with less than 0.1% at three supersites. According to the model, the greatest contribution of both pollutants to the three supersites occurred on 23 March, which coincides with the third cold surge event reported during the campaign.

  15. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei

    2016-03-01

    Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  16. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.

    2015-12-01

    Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  17. Computational intelligence models to predict porosity of tablets using minimum features

    PubMed Central

    Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander

    2017-01-01

    The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space. PMID:28138223

  18. Computational intelligence models to predict porosity of tablets using minimum features.

    PubMed

    Khalid, Mohammad Hassan; Kazemi, Pezhman; Perez-Gandarillas, Lucia; Michrafy, Abderrahim; Szlęk, Jakub; Jachowicz, Renata; Mendyk, Aleksander

    2017-01-01

    The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space.

  19. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.

    PubMed

    Elwan, Ahmed; Singh, Ranvir; Patterson, Maree; Roygard, Jon; Horne, Dave; Clothier, Brent; Jones, Geoffrey

    2018-01-11

    Better management of water quality in streams, rivers and lakes requires precise and accurate estimates of different contaminant loads. We assessed four sampling frequencies (2 days, weekly, fortnightly and monthly) and five load calculation methods (global mean (GM), rating curve (RC), ratio estimator (RE), flow-stratified (FS) and flow-weighted (FW)) to quantify loads of nitrate-nitrogen (NO 3 - -N), soluble inorganic nitrogen (SIN), total nitrogen (TN), dissolved reactive phosphorus (DRP), total phosphorus (TP) and total suspended solids (TSS), in the Manawatu River, New Zealand. The estimated annual river loads were compared to the reference 'true' loads, calculated using daily measurements of flow and water quality from May 2010 to April 2011, to quantify bias (i.e. accuracy) and root mean square error 'RMSE' (i.e. accuracy and precision). The GM method resulted into relatively higher RMSE values and a consistent negative bias (i.e. underestimation) in estimates of annual river loads across all sampling frequencies. The RC method resulted in the lowest RMSE for TN, TP and TSS at monthly sampling frequency. Yet, RC highly overestimated the loads for parameters that showed dilution effect such as NO 3 - -N and SIN. The FW and RE methods gave similar results, and there was no essential improvement in using RE over FW. In general, FW and RE performed better than FS in terms of bias, but FS performed slightly better than FW and RE in terms of RMSE for most of the water quality parameters (DRP, TP, TN and TSS) using a monthly sampling frequency. We found no significant decrease in RMSE values for estimates of NO 3 - N, SIN, TN and DRP loads when the sampling frequency was increased from monthly to fortnightly. The bias and RMSE values in estimates of TP and TSS loads (estimated by FW, RE and FS), however, showed a significant decrease in the case of weekly or 2-day sampling. This suggests potential for a higher sampling frequency during flow peaks for more precise and accurate estimates of annual river loads for TP and TSS, in the study river and other similar conditions.

  20. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Parmar, Kulwinder Singh

    2016-03-01

    This study investigates the accuracy of least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5Tree) in modeling river water pollution. Various combinations of water quality parameters, Free Ammonia (AMM), Total Kjeldahl Nitrogen (TKN), Water Temperature (WT), Total Coliform (TC), Fecal Coliform (FC) and Potential of Hydrogen (pH) monitored at Nizamuddin, Delhi Yamuna River in India were used as inputs to the applied models. Results indicated that the LSSVM and MARS models had almost same accuracy and they performed better than the M5Tree model in modeling monthly chemical oxygen demand (COD). The average root mean square error (RMSE) of the LSSVM and M5Tree models was decreased by 1.47% and 19.1% using MARS model, respectively. Adding TC input to the models did not increase their accuracy in modeling COD while adding FC and pH inputs to the models generally decreased the accuracy. The overall results indicated that the MARS and LSSVM models could be successfully used in estimating monthly river water pollution level by using AMM, TKN and WT parameters as inputs.

  1. An application of seasonal ARIMA models on group commodities to forecast Philippine merchandise exports performance

    NASA Astrophysics Data System (ADS)

    Natividad, Gina May R.; Cawiding, Olive R.; Addawe, Rizavel C.

    2017-11-01

    The increase in the merchandise exports of the country offers information about the Philippines' trading role within the global economy. Merchandise exports statistics are used to monitor the country's overall production that is consumed overseas. This paper investigates the comparison between two models obtained by a) clustering the commodity groups into two based on its proportional contribution to the total exports, and b) treating only the total exports. Different seasonal autoregressive integrated moving average (SARIMA) models were then developed for the clustered commodities and for the total exports based on the monthly merchandise exports of the Philippines from 2011 to 2016. The data set used in this study was retrieved from the Philippine Statistics Authority (PSA) which is the central statistical authority in the country responsible for primary data collection. A test for significance of the difference between means at 0.05 level of significance was then performed on the forecasts produced. The result indicates that there is a significant difference between the mean of the forecasts of the two models. Moreover, upon a comparison of the root mean square error (RMSE) and mean absolute error (MAE) of the models, it was found that the models used for the clustered groups outperform the model for the total exports.

  2. Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes.

    PubMed

    Felkai-Haddache, Lamia; Dahmoune, Farid; Remini, Hocine; Lefsih, Khalef; Mouni, Lotfi; Madani, Khodir

    2016-03-01

    In this study, microwave-assisted extraction (MAE) of polysaccharides from Opuntia ficus indica Cladodes were investigated using response surface methodology (RSM). The effects of three extraction factors on the yield of mucilage were examined. The results indicated that the optimum extraction conditions were determined as follows: microwave power X1, 700 W; extraction time X2, 5.15 minand ratio water/raw material X3, 4.83 mL/g at fixed pH 11. Under these optimal extraction conditions, mucilage yield was found to be Y, 25.6%. A comparison between the model results and experimental data gave a high correlation coefficient (R(2)=0.88), adjusted coefficient (Radj=0.83) and low root mean square error (RMSE=2.45) and showed that the two models were able to predict a mucilage yield by green extraction microwave process. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Advanced image fusion algorithms for Gamma Knife treatment planning. Evaluation and proposal for clinical use.

    PubMed

    Apostolou, N; Papazoglou, Th; Koutsouris, D

    2006-01-01

    Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.

  4. Modified Regression Correlation Coefficient for Poisson Regression Model

    NASA Astrophysics Data System (ADS)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  5. Estimation of winter wheat canopy nitrogen density at different growth stages based on Multi-LUT approach

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Li, Na; Li, Zhenhong; Wang, Jianwen; Liu, Chang

    2017-10-01

    Rapid real-time monitoring of wheat nitrogen (N) status is crucial for precision N management during wheat growth. In this study, Multi Lookup Table (Multi-LUT) approach based on the N-PROSAIL model parameters setting at different growth stages was constructed to estimating canopy N density (CND) in winter wheat. The results showed that the estimated CND was in line with with measured CND, with the determination coefficient (R2) and the corresponding root mean square error (RMSE) values of 0.80 and 1.16 g m-2, respectively. Time-consuming of one sample estimation was only 6 ms under the test machine with CPU configuration of Intel(R) Core(TM) i5-2430 @2.40GHz quad-core. These results confirmed the potential of using Multi-LUT approach for CND retrieval in winter wheat at different growth stages and under variables climatic conditions.

  6. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  7. Simple Forest Canopy Thermal Exitance Model

    NASA Technical Reports Server (NTRS)

    Smith J. A.; Goltz, S. M.

    1999-01-01

    We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.

  8. New Model for Estimating Glomerular Filtration Rate in Patients With Cancer

    PubMed Central

    Janowitz, Tobias; Williams, Edward H.; Marshall, Andrea; Ainsworth, Nicola; Thomas, Peter B.; Sammut, Stephen J.; Shepherd, Scott; White, Jeff; Mark, Patrick B.; Lynch, Andy G.; Jodrell, Duncan I.; Tavaré, Simon; Earl, Helena

    2017-01-01

    Purpose The glomerular filtration rate (GFR) is essential for carboplatin chemotherapy dosing; however, the best method to estimate GFR in patients with cancer is unknown. We identify the most accurate and least biased method. Methods We obtained data on age, sex, height, weight, serum creatinine concentrations, and results for GFR from chromium-51 (51Cr) EDTA excretion measurements (51Cr-EDTA GFR) from white patients ≥ 18 years of age with histologically confirmed cancer diagnoses at the Cambridge University Hospital NHS Trust, United Kingdom. We developed a new multivariable linear model for GFR using statistical regression analysis. 51Cr-EDTA GFR was compared with the estimated GFR (eGFR) from seven published models and our new model, using the statistics root-mean-squared-error (RMSE) and median residual and on an internal and external validation data set. We performed a comparison of carboplatin dosing accuracy on the basis of an absolute percentage error > 20%. Results Between August 2006 and January 2013, data from 2,471 patients were obtained. The new model improved the eGFR accuracy (RMSE, 15.00 mL/min; 95% CI, 14.12 to 16.00 mL/min) compared with all published models. Body surface area (BSA)–adjusted chronic kidney disease epidemiology (CKD-EPI) was the most accurate published model for eGFR (RMSE, 16.30 mL/min; 95% CI, 15.34 to 17.38 mL/min) for the internal validation set. Importantly, the new model reduced the fraction of patients with a carboplatin dose absolute percentage error > 20% to 14.17% in contrast to 18.62% for the BSA-adjusted CKD-EPI and 25.51% for the Cockcroft-Gault formula. The results were externally validated. Conclusion In a large data set from patients with cancer, BSA-adjusted CKD-EPI is the most accurate published model to predict GFR. The new model improves this estimation and may present a new standard of care. PMID:28686534

  9. New Model for Estimating Glomerular Filtration Rate in Patients With Cancer.

    PubMed

    Janowitz, Tobias; Williams, Edward H; Marshall, Andrea; Ainsworth, Nicola; Thomas, Peter B; Sammut, Stephen J; Shepherd, Scott; White, Jeff; Mark, Patrick B; Lynch, Andy G; Jodrell, Duncan I; Tavaré, Simon; Earl, Helena

    2017-08-20

    Purpose The glomerular filtration rate (GFR) is essential for carboplatin chemotherapy dosing; however, the best method to estimate GFR in patients with cancer is unknown. We identify the most accurate and least biased method. Methods We obtained data on age, sex, height, weight, serum creatinine concentrations, and results for GFR from chromium-51 ( 51 Cr) EDTA excretion measurements ( 51 Cr-EDTA GFR) from white patients ≥ 18 years of age with histologically confirmed cancer diagnoses at the Cambridge University Hospital NHS Trust, United Kingdom. We developed a new multivariable linear model for GFR using statistical regression analysis. 51 Cr-EDTA GFR was compared with the estimated GFR (eGFR) from seven published models and our new model, using the statistics root-mean-squared-error (RMSE) and median residual and on an internal and external validation data set. We performed a comparison of carboplatin dosing accuracy on the basis of an absolute percentage error > 20%. Results Between August 2006 and January 2013, data from 2,471 patients were obtained. The new model improved the eGFR accuracy (RMSE, 15.00 mL/min; 95% CI, 14.12 to 16.00 mL/min) compared with all published models. Body surface area (BSA)-adjusted chronic kidney disease epidemiology (CKD-EPI) was the most accurate published model for eGFR (RMSE, 16.30 mL/min; 95% CI, 15.34 to 17.38 mL/min) for the internal validation set. Importantly, the new model reduced the fraction of patients with a carboplatin dose absolute percentage error > 20% to 14.17% in contrast to 18.62% for the BSA-adjusted CKD-EPI and 25.51% for the Cockcroft-Gault formula. The results were externally validated. Conclusion In a large data set from patients with cancer, BSA-adjusted CKD-EPI is the most accurate published model to predict GFR. The new model improves this estimation and may present a new standard of care.

  10. Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge.

    PubMed

    Bannan, Caitlin C; Burley, Kalistyn H; Chiu, Michael; Shirts, Michael R; Gilson, Michael K; Mobley, David L

    2016-11-01

    In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace the hydration free energies that were a central part of the past five SAMPL challenges. A wide variety of computational methods were represented by the 76 submissions from 18 participating groups. Here, we analyze submissions by a variety of error metrics and provide details for a number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty-how well they can predict the magnitude of their model or force field error for specific predictions. Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients introduced complexities not present in past SAMPL challenges, including tautomer enumeration, that are likely to be important in predicting biomolecular properties of interest to drug discovery, therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution coefficient challenge provided great insight into the importance of modeling a variety of physical effects. We believe these types of measurements will be a promising source of data for future blind challenges, especially in view of the relatively straightforward nature of the experiments and the level of insight provided.

  11. Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge

    PubMed Central

    Bannan, Caitlin C.; Burley, Kalistyn H.; Chiu, Michael; Shirts, Michael R.; Gilson, Michael K.; Mobley, David L.

    2016-01-01

    In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace the hydration free energies that were a central part of the past five SAMPL challenges. A wide variety of computational methods were represented by the 76 submissions from 18 participating groups. Here, we analyze submissions by a variety of error metrics and provide details for a number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty – how well they can predict the magnitude of their model or force field error for specific predictions. Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients introduced complexities not present in past SAMPL challenges, including tautomer enumeration, that are likely to be important in predicting biomolecular properties of interest to drug discovery, therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution coefficient challenge provided great insight into the importance of modeling a variety of physical effects. We believe these types of measurements will be a promising source of data for future blind challenges, especially in view of the relatively straightforward nature of the experiments and the level of insight provided. PMID:27677750

  12. Reliability of Semi-Automated Segmentations in Glioblastoma.

    PubMed

    Huber, T; Alber, G; Bette, S; Boeckh-Behrens, T; Gempt, J; Ringel, F; Alberts, E; Zimmer, C; Bauer, J S

    2017-06-01

    In glioblastoma, quantitative volumetric measurements of contrast-enhancing or fluid-attenuated inversion recovery (FLAIR) hyperintense tumor compartments are needed for an objective assessment of therapy response. The aim of this study was to evaluate the reliability of a semi-automated, region-growing segmentation tool for determining tumor volume in patients with glioblastoma among different users of the software. A total of 320 segmentations of tumor-associated FLAIR changes and contrast-enhancing tumor tissue were performed by different raters (neuroradiologists, medical students, and volunteers). All patients underwent high-resolution magnetic resonance imaging including a 3D-FLAIR and a 3D-MPRage sequence. Segmentations were done using a semi-automated, region-growing segmentation tool. Intra- and inter-rater-reliability were addressed by intra-class-correlation (ICC). Root-mean-square error (RMSE) was used to determine the precision error. Dice score was calculated to measure the overlap between segmentations. Semi-automated segmentation showed a high ICC (> 0.985) for all groups indicating an excellent intra- and inter-rater-reliability. Significant smaller precision errors and higher Dice scores were observed for FLAIR segmentations compared with segmentations of contrast-enhancement. Single rater segmentations showed the lowest RMSE for FLAIR of 3.3 % (MPRage: 8.2 %). Both, single raters and neuroradiologists had the lowest precision error for longitudinal evaluation of FLAIR changes. Semi-automated volumetry of glioblastoma was reliably performed by all groups of raters, even without neuroradiologic expertise. Interestingly, segmentations of tumor-associated FLAIR changes were more reliable than segmentations of contrast enhancement. In longitudinal evaluations, an experienced rater can detect progressive FLAIR changes of less than 15 % reliably in a quantitative way which could help to detect progressive disease earlier.

  13. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.

    PubMed

    Huang, Lihan

    2016-07-01

    Clostridium perfringens type A is a significant public health threat and its spores may germinate, outgrow, and multiply during cooling of cooked meats. This study applies a new C. perfringens growth model in the USDA Integrated Pathogen Modeling Program-Dynamic Prediction (IPMP Dynamic Prediction) Dynamic Prediction to predict the growth from spores of C. perfringens in cooked uncured meat and poultry products using isothermal, dynamic heating, and cooling data reported in the literature. The residual errors of predictions (observation-prediction) are analyzed, and the root-mean-square error (RMSE) calculated. For isothermal and heating profiles, each data point in growth curves is compared. The mean residual errors (MRE) of predictions range from -0.40 to 0.02 Log colony forming units (CFU)/g, with a RMSE of approximately 0.6 Log CFU/g. For cooling, the end point predictions are conservative in nature, with an MRE of -1.16 Log CFU/g for single-rate cooling and -0.66 Log CFU/g for dual-rate cooling. The RMSE is between 0.6 and 0.7 Log CFU/g. Compared with other models reported in the literature, this model makes more accurate and fail-safe predictions. For cooling, the percentage for accurate and fail-safe predictions is between 97.6% and 100%. Under criterion 1, the percentage of accurate predictions is 47.5% for single-rate cooling and 66.7% for dual-rate cooling, while the fail-dangerous predictions are between 0% and 2.4%. This study demonstrates that IPMP Dynamic Prediction can be used by food processors and regulatory agencies as a tool to predict the growth of C. perfringens in uncured cooked meats and evaluate the safety of cooked or heat-treated uncured meat and poultry products exposed to cooling deviations or to develop customized cooling schedules. This study also demonstrates the need for more accurate data collection during cooling. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques.

    PubMed

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Oliveri, Paolo; Casolino, Maria Chiara; Jalali-Heravi, Mehdi; Lanteri, Silvia

    2012-09-15

    The current study presents an application of near infrared spectroscopy for identification and quantification of the fraudulent addition of barley in roasted and ground coffee samples. Nine different types of coffee including pure Arabica, Robusta and mixtures of them at different roasting degrees were blended with four types of barley. The blending degrees were between 2 and 20 wt% of barley. D-optimal design was applied to select 100 and 30 experiments to be used as calibration and test set, respectively. Partial least squares regression (PLS) was employed to build the models aimed at predicting the amounts of barley in coffee samples. In order to obtain simplified models, taking into account only informative regions of the spectral profiles, a genetic algorithm (GA) was applied. A completely independent external set was also used to test the model performances. The models showed excellent predictive ability with root mean square errors (RMSE) for the test and external set equal to 1.4% w/w and 0.8% w/w, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A feasibility study on the measurement of tree trunks in forests using multi-scale vertical images

    NASA Astrophysics Data System (ADS)

    Berveglieri, A.; Oliveira, R. O.; Tommaselli, A. M. G.

    2014-06-01

    The determination of the Diameter at Breast Height (DBH) is an important variable that contributes to several studies on forest, e.g., environmental monitoring, tree growth, volume of wood, and biomass estimation. This paper presents a preliminary technique for the measurement of tree trunks using terrestrial images collected with a panoramic camera in nadir view. A multi-scale model is generated with these images. Homologue points on the trunk surface are measured over the images and their ground coordinates are determined by intersection of rays. The resulting XY coordinates of each trunk, defining an arc shape, can be used as observations in a circle fitting by least squares. Then, the DBH of each trunk is calculated using an estimated radius. Experiments were performed in two urban forest areas to assess the approach. In comparison with direct measurements on the trunks taken with a measuring tape, the discrepancies presented a Root Mean Square Error (RMSE) of 1.8 cm with a standard deviation of 0.7 cm. These results demonstrate compatibility with manual measurements and confirm the feasibility of the proposed technique.

  16. Forecasting typhoid fever incidence in the Cordillera administrative region in the Philippines using seasonal ARIMA models

    NASA Astrophysics Data System (ADS)

    Cawiding, Olive R.; Natividad, Gina May R.; Bato, Crisostomo V.; Addawe, Rizavel C.

    2017-11-01

    The prevalence of typhoid fever in developing countries such as the Philippines calls for a need for accurate forecasting of the disease. This will be of great assistance in strategic disease prevention. This paper presents a development of useful models that predict the behavior of typhoid fever incidence based on the monthly incidence in the provinces of the Cordillera Administrative Region from 2010 to 2015 using univariate time series analysis. The data used was obtained from the Cordillera Office of the Department of Health (DOH-CAR). Seasonal autoregressive moving average (SARIMA) models were used to incorporate the seasonality of the data. A comparison of the results of the obtained models revealed that the SARIMA (1,1,7)(0,0,1)12 with a fixed coefficient at the seventh lag produces the smallest root mean square error (RMSE), mean absolute error (MAE), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The model suggested that for the year 2016, the number of cases would increase from the months of July to September and have a drop in December. This was then validated using the data collected from January 2016 to December 2016.

  17. Validity and reliability of the 1/4 mile run-walk test in physically active children and adolescents.

    PubMed

    Ruiz, Jonatan R; Ortega, Francisco B; Castro-Piñero, Jose

    2014-11-30

    We investigated the criterion-related validity and the reliability of the 1/4 mile run-walk test (MRWT) in children and adolescents. A total of 86 children (n=42 girls) completed a maximal graded treadmill test using a gas analyzer and the 1/4MRW test. We investigated the test-retest reliability of the 1/4MRWT in a different group of children and adolescents (n=995, n=418 girls). The 1/4MRWT time, sex, and BMI significantly contributed to predict measured VO2peak (R2= 0.32). There was no systematic bias in the cross-validation group (P>0.1). The root mean sum of squared errors (RMSE) and the percentage error were 6.9 ml/kg/min and 17.7%, respectively, and the accurate prediction (i.e. the percentage of estimations within ±4.5 ml/kg/min of VO2peak) was 48.8%. The reliability analysis showed that the mean inter-trial difference ranged from 0.6 seconds in children aged 6-11 years to 1.3 seconds in adolescents aged 12-17 years (all P. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.

    PubMed

    Basant, Nikita; Gupta, Shikha

    2017-06-01

    The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2 ) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

  19. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    PubMed Central

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  20. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks.

    PubMed

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.

  1. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Chuan; Chau, Kwok-Wing; Cheng, Chun-Tian; Qiu, Lin

    2009-08-01

    SummaryDeveloping a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation ( R), Nash-Sutcliffe efficiency coefficient ( E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.

  2. Intranasal Pharmacokinetic Data for Triptans Such as Sumatriptan and Zolmitriptan Can Render Area Under the Curve (AUC) Predictions for the Oral Route: Strategy Development and Application.

    PubMed

    Srinivas, Nuggehally R; Syed, Muzeeb

    2016-01-01

    Limited pharmacokinetic sampling strategy may be useful for predicting the area under the curve (AUC) for triptans and may have clinical utility as a prospective tool for prediction. Using appropriate intranasal pharmacokinetic data, a Cmax vs. AUC relationship was established by linear regression models for sumatriptan and zolmitriptan. The predictions of the AUC values were performed using published mean/median Cmax data and appropriate regression lines. The quotient of observed and predicted values rendered fold-difference calculation. The mean absolute error (MAE), mean positive error (MPE), mean negative error (MNE), root mean square error (RMSE), correlation coefficient (r), and the goodness of the AUC fold prediction were used to evaluate the two triptans. Also, data from the mean concentration profiles at time points of 1 hour (sumatriptan) and 3 hours (zolmitriptan) were used for the AUC prediction. The Cmax vs. AUC models displayed excellent correlation for both sumatriptan (r = .9997; P < .001) and zolmitriptan (r = .9999; P < .001). Irrespective of the two triptans, the majority of the predicted AUCs (83%-85%) were within 0.76-1.25-fold difference using the regression model. The prediction of AUC values for sumatriptan or zolmitriptan using the concentration data that reflected the Tmax occurrence were in the proximity of the reported values. In summary, the Cmax vs. AUC models exhibited strong correlations for sumatriptan and zolmitriptan. The usefulness of the prediction of the AUC values was established by a rigorous statistical approach.

  3. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    PubMed

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  5. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  6. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows.

    PubMed

    Higgs, R J; Chase, L E; Van Amburgh, M E

    2012-04-01

    Nitrogen excretion is of particular concern on dairy farms, not only because of its effects on water quality, but also because of the subsequent release of gases such as ammonia to the atmosphere. To manage N excretion, accurate estimates of urinary N (UN) and fecal N (FN) are needed. On commercial farms, directly measuring UN and FN is impractical, meaning that quantification must be based on predictions rather than measured data. The purpose of this study was to use a statistical approach to develop equations and evaluate the Cornell Net Carbohydrate and Protein System's (CNCPS) ability to predict N excretion in lactating dairy cows, and to compare CNCPS predictions to other equations in the literature. Urinary N was over-predicted by the CNCPS due to inconsistencies in N accounting within the model that partitioned more N to feces than urine, although predicted total N excretion was reasonable. Data to refine model predictions were compiled from published studies (n=32) that reported total collection N balance results. Considerable care was taken to ensure the data included in the development data set (n=104) accounted for >90% of the N intake (NI). Unaccounted N for the compiled data set was 1.47±4.60% (mean ± SD). The results showed that FN predictions could be improved by using a modification of a previously published equation: FN (g/d) = [[NI (g/kg of organic matter) × (1 - 0.842)] + 4.3 × organic matter intake (kg/d)] × 1.20, which, when evaluated against the compiled N balance data, had a squared coefficient of determination based on a mean study effect R(MP)(2) of 0.73, concurrent correlation coefficient (CCC) of 0.83 and a root mean square error (RMSE) of 10.38 g/d. Urinary N is calculated in the CNCPS as the difference between NI and other N excretion and losses. Incorporating the more accurate FN prediction into the current CNCPS framework and correcting an internal calculation error considerably improved UN predictions (RMSE=12.73 g/d, R(MP)(2)=0.86, CCC=0.90). The changes to FN and UN translated into an improved prediction of total manure N excretion (RMSE=12.42 g/d, R(MP)(2)=0.96, CCC=0.97) and allows nutritionists and farm advisors to evaluate these factors during the ration formulation process. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    PubMed

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  8. A study comparison of two system model performance in estimated lifted index over Indonesia.

    NASA Astrophysics Data System (ADS)

    lestari, Juliana tri; Wandala, Agie

    2018-05-01

    Lifted index (LI) is one of atmospheric stability indices that used for thunderstorm forecasting. Numerical weather Prediction Models are essential for accurate weather forecast these day. This study has completed the attempt to compare the two NWP models these are Weather Research Forecasting (WRF) model and Global Forecasting System (GFS) model in estimates LI at 20 locations over Indonesia and verified the result with observation. Taylor diagram was used to comparing the models skill with shown the value of standard deviation, coefficient correlation and Root mean square error (RMSE). This study using the dataset on 00.00 UTC and 12.00 UTC during mid-March to Mid-April 2017. From the sample of LI distributions, both models have a tendency to overestimated LI value in almost all region in Indonesia while the WRF models has the better ability to catch the LI pattern distribution with observation than GFS model has. The verification result shows how both WRF and GFS model have such a weak relationship with observation except Eltari meteorologi station that its coefficient correlation reach almost 0.6 with the low RMSE value. Mean while WRF model have a better performance than GFS model. This study suggest that estimated LI of WRF model can provide the good performance for Thunderstorm forecasting over Indonesia in the future. However unsufficient relation between output models and observation in the certain location need a further investigation.

  9. Association between weight fluctuation and fasting insulin concentration in Japanese men.

    PubMed

    Yatsuya, H; Tamakoshi, K; Yoshida, T; Hori, Y; Zhang, H; Ishikawa, M; Zhu, S; Kondo, T; Toyoshima, H

    2003-04-01

    To investigate whether long-term weight fluctuation is associated with the fasting serum insulin concentration. Weight histories of 1932 male Japanese workers aged 40-59 y were analyzed in relation to their current fasting serum insulin concentration. Individual weight fluctuation was calculated by root mean square error (RMSE) along the linear regression line of weight measured at five to six different ages. The mean RMSE and fasting insulin concentration were 1.22 kg and 4.5 microU/ml, respectively. The multivariate adjusted insulin level became higher with the increase in weight fluctuation. Subanalysis stratified by current body mass index (BMI) showed that the multivariate adjusted insulin level in individuals in the top quartile of fluctuation was 4.3 microU/ml, against 3.9 microU/ml in those in the bottom quartile (P=0.018, analysis of covariance (ANCOVA)) in the normal weight subgroup with current BMI below 25 kg/m(2). In the overweight subgroup with BMI 25 kg/m(2) or above, the level was 6.9 microU/ml in individuals in the top quartile and 6.2 microU/ml in those in the bottom quartile (P=0.054, ANCOVA). The results suggest that weight fluctuation increases the risk of developing hyperinsulinemia. Prospective observations together with measurement of changes in adiposity are needed for confirmation.

  10. Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery

    NASA Astrophysics Data System (ADS)

    Cherkauer, Keith; Hearst, Anthony

    2015-04-01

    Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.

  11. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  12. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    PubMed

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  13. A flexible wearable sensor for knee flexion assessment during gait.

    PubMed

    Papi, Enrica; Bo, Yen Nee; McGregor, Alison H

    2018-05-01

    Gait analysis plays an important role in the diagnosis and management of patients with movement disorders but it is usually performed within a laboratory. Recently interest has shifted towards the possibility of conducting gait assessments in everyday environments thus facilitating long-term monitoring. This is possible by using wearable technologies rather than laboratory based equipment. This study aims to validate a novel wearable sensor system's ability to measure peak knee sagittal angles during gait. The proposed system comprises a flexible conductive polymer unit interfaced with a wireless acquisition node attached over the knee on a pair of leggings. Sixteen healthy volunteers participated to two gait assessments on separate occasions. Data was simultaneously collected from the novel sensor and a gold standard 10 camera motion capture system. The relationship between sensor signal and reference knee flexion angles was defined for each subject to allow the transformation of sensor voltage outputs to angular measures (degrees). The knee peak flexion angle from the sensor and reference system were compared by means of root mean square error (RMSE), absolute error, Bland-Altman plots and intra-class correlation coefficients (ICCs) to assess test-retest reliability. Comparisons of knee peak flexion angles calculated from the sensor and gold standard yielded an absolute error of 0.35(±2.9°) and RMSE of 1.2(±0.4)°. Good agreement was found between the two systems with the majority of data lying within the limits of agreement. The sensor demonstrated high test-retest reliability (ICCs>0.8). These results show the ability of the sensor to monitor knee peak sagittal angles with small margins of error and in agreement with the gold standard system. The sensor has potential to be used in clinical settings as a discreet, unobtrusive wearable device allowing for long-term gait analysis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey

    NASA Astrophysics Data System (ADS)

    Göl, Ceyhun; Bulut, Sinan; Bolat, Ferhat

    2017-10-01

    The purpose of this research is to compare the spatial variability of soil organic carbon (SOC) in four adjacent land uses including the cultivated area, the grassland area, the plantation area and the natural forest area in the semi - arid region of Black Sea backward region of Turkey. Some of the soil properties, including total nitrogen, SOC, soil organic matter, and bulk density were measured on a grid with a 50 m sampling distance on the top soil (0-15 cm depth). Accordingly, a total of 120 samples were taken from the four adjacent land uses. Data was analyzed using geostatistical methods. The methods used were: Block kriging (BK), co - kriging (CK) with organic matter, total nitrogen and bulk density as auxiliary variables and inverse distance weighting (IDW) methods with the power of 1, 2 and 4. The methods were compared using a performance criteria that included root mean square error (RMSE), mean absolute error (MAE) and the coefficient of correlation (r). The one - way ANOVA test showed that differences between the natural (0.6653 ± 0.2901) - plantation forest (0.7109 ± 0.2729) areas and the grassland (1.3964 ± 0.6828) - cultivated areas (1.5851 ± 0.5541) were statistically significant at 0.05 level (F = 28.462). The best model for describing spatially variation of SOC was CK with the lowest error criteria (RMSE = 0.3342, MAE = 0.2292) and the highest coefficient of correlation (r = 0.84). The spatial structure of SOC could be well described by the spherical model. The nugget effect indicated that SOC was moderately dependent on the study area. The error distributions of the model showed that the improved model was unbiased in predicting the spatial distribution of SOC. This study's results revealed that an explanatory variable linked SOC increased success of spatial interpolation methods. In subsequent studies, this case should be taken into account for reaching more accurate outputs.

  15. Estimation of metabolic energy expenditure from core temperature using a human thermoregulatory model.

    PubMed

    Welles, Alexander P; Buller, Mark J; Looney, David P; Rumpler, William V; Gribok, Andrei V; Hoyt, Reed W

    2018-02-01

    Human metabolic energy expenditure is critical to many scientific disciplines but can only be measured using expensive and/or restrictive equipment. The aim of this work is to determine whether the SCENARIO thermoregulatory model can be adapted to estimate metabolic rate (M) from core body temperature (T C ). To validate this method of M estimation, data were collected from fifteen test volunteers (age = 23 ± 3yr, height = 1.73 ± 0.07m, mass = 68.6 ± 8.7kg, body fat = 16.7 ± 7.3%; mean ± SD) who wore long sleeved nylon jackets and pants (I tot,clo = 1.22, I m = 0.41) during treadmill exercise tasks (32 trials; 7.8 ± 0.5km in 1h; air temp. = 22°C, 50% RH, wind speed = 0.35ms -1 ). Core body temperatures were recorded by ingested thermometer pill and M data were measured via whole room indirect calorimetry. Metabolic rate was estimated for 5min epochs in a two-step process. First, for a given epoch, a range of M values were input to the SCENARIO model and a corresponding range of T C values were output. Second, the output T C range value with the lowest absolute error relative to the observed T C for the given epoch was identified and its corresponding M range input was selected as the estimated M for that epoch. This process was then repeated for each subsequent remaining epoch. Root mean square error (RMSE), mean absolute error (MAE), and bias between observed and estimated M were 186W, 130 ± 174W, and 33 ± 183W, respectively. The RMSE for total energy expenditure by exercise period was 0.30 MJ. These results indicate that the SCENARIO model is useful for estimating M from T C when measurement is otherwise impractical. Published by Elsevier Ltd.

  16. Measurement and modeling of particulate matter concentrations: Applying spatial analysis and regression techniques to assess air quality.

    PubMed

    Sajjadi, Seyed Ali; Zolfaghari, Ghasem; Adab, Hamed; Allahabadi, Ahmad; Delsouz, Mehri

    2017-01-01

    This paper presented the levels of PM 2.5 and PM 10 in different stations at the city of Sabzevar, Iran. Furthermore, this study was an attempt to evaluate spatial interpolation methods for determining the PM 2.5 and PM 10 concentrations in the city of Sabzevar. Particulate matters were measured by Haz-Dust EPAM at 48 stations. Then, four interpolating models, including Radial Basis Functions (RBF), Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Universal Kriging (UK) were used to investigate the status of air pollution in the city. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were employed to compare the four models. The results showed that the PM 2.5 concentrations in the stations were between 10 and 500 μg/m 3 . Furthermore, the PM 10 concentrations for all of 48 stations ranged from 20 to 1500 μg/m 3 . The concentrations obtained for the period of nine months were greater than the standard limits. There was difference in the values of MAPE, RMSE, MBE, and MAE. The results indicated that the MAPE in IDW method was lower than other methods: (41.05 for PM 2.5 and 25.89 for PM 10 ). The best interpolation method for the particulate matter (PM 2.5 and PM 10 ) seemed to be IDW method. •The PM 10 and PM 2.5 concentration measurements were performed in the period of warm and risky in terms of particulate matter at 2016.•Concentrations of PM 2.5 and PM 10 were measured by a monitoring device, environmental dust model Haz-Dust EPAM 5000.•Interpolation is used to convert data from observation points to continuous fields to compare spatial patterns sampled by these measurements with spatial patterns of other spatial entities.

  17. Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men.

    PubMed

    Muniyappa, Ranganath; Irving, Brian A; Unni, Uma S; Briggs, William M; Nair, K Sreekumaran; Quon, Michael J; Kurpad, Anura V

    2010-12-01

    Insulin resistance is highly prevalent in Asian Indians and contributes to worldwide public health problems, including diabetes and related disorders. Surrogate measurements of insulin sensitivity/resistance are used frequently to study Asian Indians, but these are not formally validated in this population. In this study, we compared the ability of simple surrogate indices to accurately predict insulin sensitivity as determined by the reference glucose clamp method. In this cross-sectional study of Asian-Indian men (n = 70), we used a calibration model to assess the ability of simple surrogate indices for insulin sensitivity [quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment (HOMA2-IR), fasting insulin-to-glucose ratio (FIGR), and fasting insulin (FI)] to predict an insulin sensitivity index derived from the reference glucose clamp method (SI(Clamp)). Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction as well as leave-one-out cross-validation-type RMSE of prediction (CVPE). QUICKI, FIGR, and FI, but not HOMA2-IR, had modest linear correlations with SI(Clamp) (QUICKI: r = 0.36; FIGR: r = -0.36; FI: r = -0.27; P < 0.05). No significant differences were noted among CVPE or RMSE from any of the surrogate indices when compared with QUICKI. Surrogate measurements of insulin sensitivity/resistance such as QUICKI, FIGR, and FI are easily obtainable in large clinical studies, but these may only be useful as secondary outcome measurements in assessing insulin sensitivity/resistance in clinical studies of Asian Indians.

  18. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  19. Stochastic inversion of ocean color data using the cross-entropy method.

    PubMed

    Salama, Mhd Suhyb; Shen, Fang

    2010-01-18

    Improving the inversion of ocean color data is an ever continuing effort to increase the accuracy of derived inherent optical properties. In this paper we present a stochastic inversion algorithm to derive inherent optical properties from ocean color, ship and space borne data. The inversion algorithm is based on the cross-entropy method where sets of inherent optical properties are generated and converged to the optimal set using iterative process. The algorithm is validated against four data sets: simulated, noisy simulated in-situ measured and satellite match-up data sets. Statistical analysis of validation results is based on model-II regression using five goodness-of-fit indicators; only R2 and root mean square of error (RMSE) are mentioned hereafter. Accurate values of total absorption coefficient are derived with R2 > 0.91 and RMSE, of log transformed data, less than 0.55. Reliable values of the total backscattering coefficient are also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37. The developed algorithm has the ability to derive reliable results from noisy data with R2 above 0.96 for the total absorption and above 0.84 for the backscattering coefficients. The algorithm is self contained and easy to implement and modify to derive the variability of chlorophyll-a absorption that may correspond to different phytoplankton species. It gives consistently accurate results and is therefore worth considering for ocean color global products.

  20. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.

    PubMed

    Kamavuako, Ernest N; Scheme, Erik J; Englehart, Kevin B

    2013-06-01

    In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.

  1. Monitoring Building Deformation with InSAR: Experiments and Validation

    PubMed Central

    Yang, Kui; Yan, Li; Huang, Guoman; Chen, Chu; Wu, Zhengpeng

    2016-01-01

    Synthetic Aperture Radar Interferometry (InSAR) techniques are increasingly applied for monitoring land subsidence. The advantages of InSAR include high accuracy and the ability to cover large areas; nevertheless, research validating the use of InSAR on building deformation is limited. In this paper, we test the monitoring capability of the InSAR in experiments using two landmark buildings; the Bohai Building and the China Theater, located in Tianjin, China. They were selected as real examples to compare InSAR and leveling approaches for building deformation. Ten TerraSAR-X images spanning half a year were used in Permanent Scatterer InSAR processing. These extracted InSAR results were processed considering the diversity in both direction and spatial distribution, and were compared with true leveling values in both Ordinary Least Squares (OLS) regression and measurement of error analyses. The detailed experimental results for the Bohai Building and the China Theater showed a high correlation between InSAR results and the leveling values. At the same time, the two Root Mean Square Error (RMSE) indexes had values of approximately 1 mm. These analyses show that a millimeter level of accuracy can be achieved by means of InSAR technique when measuring building deformation. We discuss the differences in accuracy between OLS regression and measurement of error analyses, and compare the accuracy index of leveling in order to propose InSAR accuracy levels appropriate for monitoring buildings deformation. After assessing the advantages and limitations of InSAR techniques in monitoring buildings, further applications are evaluated. PMID:27999403

  2. Applicability of AgMERRA Forcing Dataset to Fill Gaps in Historical in-situ Meteorological Data

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Lashkari, A.; Zare, H.; Asadi, S.; Salehnia, N.

    2015-12-01

    Integrated assessment studies of food production systems use crop models to simulate the effects of climate and socio-economic changes on food security. Climate forcing data is one of those key inputs of crop models. This study evaluated the performance of AgMERRA climate forcing dataset to fill gaps in historical in-situ meteorological data for different climatic regions of Iran. AgMERRA dataset intercompared with in- situ observational dataset for daily maximum and minimum temperature and precipitation during 1980-2010 periods via Root Mean Square error (RMSE), Mean Absolute Error (MAE) and Mean Bias Error (MBE) for 17 stations in four climatic regions included humid and moderate, cold, dry and arid, hot and humid. Moreover, probability distribution function and cumulative distribution function compared between model and observed data. The results of measures of agreement between AgMERRA data and observed data demonstrated that there are small errors in model data for all stations. Except for stations which are located in cold regions, model data in the other stations illustrated under-prediction for daily maximum temperature and precipitation. However, it was not significant. In addition, probability distribution function and cumulative distribution function showed the same trend for all stations between model and observed data. Therefore, the reliability of AgMERRA dataset is high to fill gaps in historical observations in different climatic regions of Iran as well as it could be applied as a basis for future climate scenarios.

  3. On the tidally driven circulation in the South China Sea: modeling and analysis

    NASA Astrophysics Data System (ADS)

    Nelko, Varjola; Saha, Abhishek; Chua, Vivien P.

    2014-03-01

    The South China Sea is a large marginal sea surrounded by land masses and island chains, and characterized by complex bathymetry and irregular coastlines. An unstructured-grid SUNTANS model is employed to perform depth-averaged simulations of the circulation in the South China Sea. The model is tidally forced at the open ocean boundaries using the eight main tidal constituents as derived from the OSU Tidal Prediction Software. The model simulations are performed for the year 2005 using a time step of 60 s. The model reproduces the spring-neap and diurnal and semidiurnal variability in the observed data. Skill assessment of the model is performed by comparing model-predicted surface elevations with observations. For stations located in the central region of the South China Sea, the root mean squared errors (RMSE) are less than 10 % and the Pearson's correlation coefficient ( r) is as high as 0.9. The simulations show that the quality of the model prediction is dependent on the horizontal grid resolution, coastline accuracy, and boundary locations. The maximum RMSE errors and minimum correlation coefficients occur at Kaohsiung (located in northern South China Sea off Taiwan coast) and Tioman (located in southern South China Sea off Malaysia coast). This may be explained with spectral analysis of sea level residuals and winds, which reveal dynamics at Kaohsiung and Tioman are strongly influenced by the seasonal monsoon winds. Our model demonstrates the importance of tidally driven circulation in the central region of the South China Sea.

  4. Analysis of Different Hyperspectral Variables for Diagnosing Leaf Nitrogen Accumulation in Wheat.

    PubMed

    Tan, Changwei; Du, Ying; Zhou, Jian; Wang, Dunliang; Luo, Ming; Zhang, Yongjian; Guo, Wenshan

    2018-01-01

    Hyperspectral remote sensing is a rapid non-destructive method for diagnosing nitrogen status in wheat crops. In this study, a quantitative correlation was associated with following parameters: leaf nitrogen accumulation (LNA), raw hyperspectral reflectance, first-order differential hyperspectra, and hyperspectral characteristics of wheat. In this study, integrated linear regression of LNA was obtained with raw hyperspectral reflectance (measurement wavelength = 790.4 nm). Furthermore, an exponential regression of LNA was obtained with first-order differential hyperspectra (measurement wavelength = 831.7 nm). Coefficients ( R 2 ) were 0.813 and 0.847; root mean squared errors (RMSE) were 2.02 g·m -2 and 1.72 g·m -2 ; and relative errors (RE) were 25.97% and 20.85%, respectively. Both the techniques were considered as optimal in the diagnoses of wheat LNA. Nevertheless, the better one was the new normalized variable (SD r - SD b )/(SD r + SD b ) , which was based on vegetation indices of R 2 = 0.935, RMSE = 0.98, and RE = 11.25%. In addition, (SD r - SD b )/(SD r + SD b ) was reliable in the application of a different cultivar or even wheat grown elsewhere. This indicated a superior fit and better performance for (SD r - SD b )/(SD r + SD b ) . For diagnosing LNA in wheat, the newly normalized variable (SD r - SD b )/(SD r + SD b ) was more effective than the previously reported data of raw hyperspectral reflectance, first-order differential hyperspectra, and red-edge parameters.

  5. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.

    PubMed

    Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe

    2013-09-03

    On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Estimation of Soil Moisture Profile using a Simple Hydrology Model and Passive Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Soman, Vishwas V.; Crosson, William L.; Laymon, Charles; Tsegaye, Teferi

    1998-01-01

    Soil moisture is an important component of analysis in many Earth science disciplines. Soil moisture information can be obtained either by using microwave remote sensing or by using a hydrologic model. In this study, we combined these two approaches to increase the accuracy of profile soil moisture estimation. A hydrologic model was used to analyze the errors in the estimation of soil moisture using the data collected during Huntsville '96 microwave remote sensing experiment in Huntsville, Alabama. Root mean square errors (RMSE) in soil moisture estimation increase by 22% with increase in the model input interval from 6 hr to 12 hr for the grass-covered plot. RMSEs were reduced for given model time step by 20-50% when model soil moisture estimates were updated using remotely-sensed data. This methodology has a potential to be employed in soil moisture estimation using rainfall data collected by a space-borne sensor, such as the Tropical Rainfall Measuring Mission (TRMM) satellite, if remotely-sensed data are available to update the model estimates.

  7. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.

    PubMed

    Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada

    2013-12-15

    The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.

    2017-01-01

    Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.

  9. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  10. Estimation of traveltime and longitudinal dispersion in streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Messinger, Terence

    2013-01-01

    Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data were not available for streams in the northwestern part of the State. Compiled data were compared with estimates determined from national equations previously published by the USGS. The evaluation summarized procedures and examples for estimating traveltime and dispersion on streams in West Virginia. National equations developed by the USGS can be used to predict traveltime and dispersion for streams located in West Virginia, but the predictions will be less accurate than those made with graphical interpolation between measurements. National equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge had root mean square errors (RMSE) of 0.426 log units (127 percent), 0.505 feet per second (ft/s), and 3.78 hours (h). West Virginia data fit the national equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge with RMSE of 0.139 log units (38 percent), 0.630 ft/s, and 3.38 h, respectively. The national equation for maximum possible velocity of the peak concentration exceeded 99 percent and 100 percent of observed values from the national data set and West Virginia-only data set, respectively. No RMSE was reported for time of passage of a dye cloud, as estimated using the national equation; however, the estimates made using the national equations had a root mean square error of 3.82 h when compared to data gathered for this study. Traveltime and dispersion estimates can be made from the plots of traveltime as a function of streamflow and location for streams with plots available, but estimates can be made using the national equations for streams without plots. The estimating procedures are not valid for regulated stream reaches that were not individually studied or streamflows outside the limits studied. Rapidly changing streamflow and inadequate mixing across the stream channel affect traveltime and dispersion, and reduce the accuracy of estimates. Increases in streamflow typically result in decreases in the peak concentration and traveltime of the peak concentration. Decreases in streamflow typically result in increases in the peak concentration and traveltime of the peak concentration. Traveltimes will likely be less than those determined using the estimating equations and procedures if the spill is in the center of the stream, and traveltimes will likely be greater than those determined using the estimating equations and procedures if the spill is near the streambank.

  11. A comparison of breeding and ensemble transform vectors for global ensemble generation

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan

    2012-02-01

    To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.

  12. Estimating system parameters for solvent-water and plant cuticle-water using quantum chemically estimated Abraham solute parameters.

    PubMed

    Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M

    2018-04-18

    Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.

  13. Narrowing the surface temperature range in CMIP5 simulations over the Arctic

    NASA Astrophysics Data System (ADS)

    Hao, Mingju; Huang, Jianbin; Luo, Yong; Chen, Xin; Lin, Yanluan; Zhao, Zongci; Xu, Ying

    2018-05-01

    Much uncertainty exists in reproducing Arctic temperature using different general circulation models (GCMs). Therefore, evaluating the performance of GCMs in reproducing Arctic temperature is critically important. In our study, 32 GCMs in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) during the period 1900-2005 are used, and several metrics, i.e., bias, correlation coefficient ( R), and root mean square error (RMSE), are applied. The Cowtan data set is adopted as the reference data. The results suggest that the GCMs used can reasonably reproduce the Arctic warming trend during the period 1900-2005, as observed in the observational data, whereas a large variation of inter-model differences exists in modeling the Arctic warming magnitude. With respect to the reference data, most GCMs have large cold biases, whereas others have weak warm biases. Additionally, based on statistical thresholds, the models MIROC-ESM, CSIRO-Mk3-6-0, HadGEM2-AO, and MIROC-ESM-CHEM (bias ≤ ±0.10 °C, R ≥ 0.50, and RMSE ≤ 0.60 °C) are identified as well-performing GCMs. The ensemble of the four best-performing GCMs (ES4), with bias, R, and RMSE values of -0.03 °C, 0.72, and 0.39 °C, respectively, performs better than the ensemble with all 32 members, with bias, R, and RMSE values of -0.04 °C, 0.64, and 0.43 °C, respectively. Finally, ES4 is used to produce projections for the next century under the scenarios of RCP2.6, RCP4.5, and RCP8.0. The uncertainty in the projected temperature is greater in the higher emissions scenarios. Additionally, the projected temperature in the cold half year has larger variations than that in the warm half year.

  14. Clinical anthropometrics and body composition from 3D whole-body surface scans.

    PubMed

    Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A

    2016-11-01

    Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.

  15. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of the Bitterness of Traditional Chinese Medicines using an E-Tongue Coupled with a Robust Partial Least Squares Regression Method.

    PubMed

    Lin, Zhaozhou; Zhang, Qiao; Liu, Ruixin; Gao, Xiaojie; Zhang, Lu; Kang, Bingya; Shi, Junhan; Wu, Zidan; Gui, Xinjing; Li, Xuelin

    2016-01-25

    To accurately, safely, and efficiently evaluate the bitterness of Traditional Chinese Medicines (TCMs), a robust predictor was developed using robust partial least squares (RPLS) regression method based on data obtained from an electronic tongue (e-tongue) system. The data quality was verified by the Grubb's test. Moreover, potential outliers were detected based on both the standardized residual and score distance calculated for each sample. The performance of RPLS on the dataset before and after outlier detection was compared to other state-of-the-art methods including multivariate linear regression, least squares support vector machine, and the plain partial least squares regression. Both R² and root-mean-squares error (RMSE) of cross-validation (CV) were recorded for each model. With four latent variables, a robust RMSECV value of 0.3916 with bitterness values ranging from 0.63 to 4.78 were obtained for the RPLS model that was constructed based on the dataset including outliers. Meanwhile, the RMSECV, which was calculated using the models constructed by other methods, was larger than that of the RPLS model. After six outliers were excluded, the performance of all benchmark methods markedly improved, but the difference between the RPLS model constructed before and after outlier exclusion was negligible. In conclusion, the bitterness of TCM decoctions can be accurately evaluated with the RPLS model constructed using e-tongue data.

  17. JRAero: the Japanese Reanalysis for Aerosol v1.0

    NASA Astrophysics Data System (ADS)

    Yumimoto, Keiya; Tanaka, Taichu Y.; Oshima, Naga; Maki, Takashi

    2017-09-01

    A global aerosol reanalysis product named the Japanese Reanalysis for Aerosol (JRAero) was constructed by the Meteorological Research Institute (MRI) of the Japan Meteorological Agency. The reanalysis employs a global aerosol transport model developed by MRI and a two-dimensional variational data assimilation method. It assimilates maps of aerosol optical depth (AOD) from MODIS onboard the Terra and Aqua satellites every 6 h and has a TL159 horizontal resolution (approximately 1.1° × 1.1°). This paper describes the aerosol transport model, the data assimilation system, the observation data, and the setup of the reanalysis and examines its quality with AOD observations. Comparisons with MODIS AODs that were used for the assimilation showed that the reanalysis showed much better agreement than the free run (without assimilation) of the aerosol model and improved under- and overestimation in the free run, thus confirming the accuracy of the data assimilation system. The reanalysis had a root mean square error (RMSE) of 0.05, a correlation coefficient (R) of 0.96, a mean fractional error (MFE) of 23.7 %, a mean fractional bias (MFB) of 2.8 %, and an index of agreement (IOA) of 0.98. The better agreement of the first guess, compared to the free run, indicates that aerosol fields obtained by the reanalysis can improve short-term forecasts. AOD fields from the reanalysis also agreed well with monthly averaged global AODs obtained by the Aerosol Robotic Network (AERONET) (RMSE = 0.08, R = 0. 90, MFE = 28.1 %, MFB = 0.6 %, and IOA = 0.93). Site-by-site comparison showed that the reanalysis was considerably better than the free run; RMSE was less than 0.10 at 86.4 % of the 181 AERONET sites, R was greater than 0.90 at 40.7 % of the sites, and IOA was greater than 0.90 at 43.4 % of the sites. However, the reanalysis tended to have a negative bias at urban sites (in particular, megacities in industrializing countries) and a positive bias at mountain sites, possibly because of insufficient anthropogenic emissions data, the coarse model resolution, and the difference in representativeness between satellite and ground-based observations.

  18. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    NASA Astrophysics Data System (ADS)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  19. Time-Resolved Intrafraction Target Translations and Rotations During Stereotactic Liver Radiation Therapy: Implications for Marker-based Localization Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertholet, Jenny, E-mail: jennbe@rm.dk; Worm, Esben S.; Fledelius, Walther

    Purpose: Image guided liver stereotactic body radiation therapy (SBRT) often relies on implanted fiducial markers. The target localization accuracy decreases with increased marker-target distance. This may occur partly because of liver rotations. The aim of this study was to examine time-resolved translations and rotations of liver marker constellations and investigate if time-resolved intrafraction rotational corrections can improve localization accuracy in liver SBRT. Methods and Materials: Twenty-nine patients with 3 implanted markers received SBRT in 3 to 6 fractions. The time-resolved trajectory of each marker was estimated from the projections of 1 to 3 daily cone beam computed tomography scans andmore » used to calculate the translation and rotation of the marker constellation. In all cone beam computed tomography projections, the time-resolved position of each marker was predicted from the position of another surrogate marker by assuming that the marker underwent either (1) the same translation as the surrogate marker; or (2) the same translation as the surrogate marker corrected by the rotation of the marker constellation. The localization accuracy was quantified as the root-mean-square error (RMSE) between the estimated and the actual marker position. For comparison, the RMSE was also calculated when the marker's position was estimated as its mean position for all the projections. Results: The mean translational and rotational range (2nd-98th percentile) was 2.0 mm/3.9° (right-left), 9.2 mm/2.9° (superior-inferior), 4.0 mm/4.0° (anterior-posterior), and 10.5 mm (3-dimensional). Rotational corrections decreased the mean 3-dimensional RMSE from 0.86 mm to 0.54 mm (P<.001) and halved the RMSE increase per millimeter increase in marker distance. Conclusions: Intrafraction rotations during liver SBRT reduce the accuracy of marker-guided target localization. Rotational correction can improve the localization accuracy with a factor of approximately 2 for large marker-target distances.« less

  20. Human dental age estimation combining third molar(s) development and tooth morphological age predictors.

    PubMed

    Thevissen, P W; Galiti, D; Willems, G

    2012-11-01

    In the subadult age group, third molar development, as well as age-related morphological tooth information can be observed on panoramic radiographs. The aim of present study was to combine, in subadults, panoramic radiographic data based on developmental stages of third molar(s) and morphological measurements from permanent teeth, in order to evaluate its added age-predicting performances. In the age range between 15 and 23 years, 25 gender-specific radiographs were collected within each age category of 1 year. Third molar development was classified and registered according the 10-point staging and scoring technique proposed by Gleiser and Hunt (1955), modified by Köhler (1994). The Kvaal (1995) measuring technique was applied on the indicated teeth from the individuals' left side. Linear regression models with age as response and third molar-scored stages as explanatory variables were developed, and morphological measurements from permanent teeth were added. From the models, determination coefficients (R (2)) and root-mean-square errors (RMSE) were calculated. Maximal-added age information was reported as a 6 % R² increase and a 0.10-year decrease of RMSE. Forensic dental age estimations on panoramic radiographic data in the subadult group (15-23 year) should only be based on third molar development.

  1. A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Zhang, Yinglong J.; Wang, Harry V.; Friedrichs, Marjorie A. M.; Irby, Isaac D.; Alteljevich, Eli; Valle-Levinson, Arnoldo; Wang, Zhengui; Huang, Hai; Shen, Jian; Du, Jiabi

    2018-07-01

    We extend the 3D unstructured-grid model previously developed for the Upper Chesapeake Bay to cover the entire Bay and its adjacent shelf, and assess its skill in simulating saltwater intrusion and the coastal plume. Recently developed techniques, including a flexible vertical grid system and a 2nd-order, monotone and implicit transport solver are critical in successfully capturing the baroclinic responses. Most importantly, good accuracy is achieved through an accurate representation of the underlying bathymetry, without any smoothing. The model in general exhibits a good skill for all hydrodynamic variables: the averaged root-mean-square errors (RMSE's) in the Bay are 9 cm for sub-tidal frequency elevation, 17 cm/s for 3D velocity time series, 1.5 PSU and 1.9 PSU for surface and bottom salinity respectively, 1.1 °C and 1.6 °C for surface and bottom temperature respectively. On the shelf, the average RMSE for the surface temperature is 1.4 °C. We highlight, through results from sensitivity tests, the central role played by bathymetry in this estuarine system and the detrimental effects, from a common class of bathymetry smoothers, on volumetric and tracer fluxes as well as key processes such as the channel-shoal contrast in the estuary and plume propagation in the coast.

  2. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.

  3. Estimation of end point foot clearance points from inertial sensor data.

    PubMed

    Santhiranayagam, Braveena K; Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2011-01-01

    Foot clearance parameters provide useful insight into tripping risks during walking. This paper proposes a technique for the estimate of key foot clearance parameters using inertial sensor (accelerometers and gyroscopes) data. Fifteen features were extracted from raw inertial sensor measurements, and a regression model was used to estimate two key foot clearance parameters: First maximum vertical clearance (m x 1) after toe-off and the Minimum Toe Clearance (MTC) of the swing foot. Comparisons are made against measurements obtained using an optoelectronic motion capture system (Optotrak), at 4 different walking speeds. General Regression Neural Networks (GRNN) were used to estimate the desired parameters from the sensor features. Eight subjects foot clearance data were examined and a Leave-one-subject-out (LOSO) method was used to select the best model. The best average Root Mean Square Errors (RMSE) across all subjects obtained using all sensor features at the maximum speed for m x 1 was 5.32 mm and for MTC was 4.04 mm. Further application of a hill-climbing feature selection technique resulted in 0.54-21.93% improvement in RMSE and required fewer input features. The results demonstrated that using raw inertial sensor data with regression models and feature selection could accurately estimate key foot clearance parameters.

  4. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    PubMed Central

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  5. Prior-knowledge-based spectral mixture analysis for impervious surface mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinshui; He, Chunyang; Zhou, Yuyu

    2014-01-03

    In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less

  6. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy.

    PubMed

    Lohumi, Santosh; Joshi, Ritu; Kandpal, Lalit Mohan; Lee, Hoonsoo; Kim, Moon S; Cho, Hyunjeong; Mo, Changyeun; Seo, Young-Wook; Rahman, Anisur; Cho, Byoung-Kwan

    2017-05-01

    As adulteration of foodstuffs with Sudan dye, especially paprika- and chilli-containing products, has been reported with some frequency, this issue has become one focal point for addressing food safety. FTIR spectroscopy has been used extensively as an analytical method for quality control and safety determination for food products. Thus, the use of FTIR spectroscopy for rapid determination of Sudan dye in paprika powder was investigated in this study. A net analyte signal (NAS)-based methodology, named HLA/GO (hybrid linear analysis in the literature), was applied to FTIR spectral data to predict Sudan dye concentration. The calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results had a high determination coefficient (R 2 ) of 0.98 and low root mean square error (RMSE) of 0.026% for the calibration set, and an R 2 of 0.97 and RMSE of 0.05% for the validation set. The model was further validated using a second validation set and through the figures of merit, such as sensitivity, selectivity, and limits of detection and quantification. The proposed technique of FTIR combined with HLA/GO is rapid, simple and low cost, making this approach advantageous when compared with the main alternative methods based on liquid chromatography (LC) techniques.

  7. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    NASA Astrophysics Data System (ADS)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  8. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India

    NASA Astrophysics Data System (ADS)

    Santra, Priyabrata; Kumar, Mahesh; Kumawat, R. N.; Painuli, D. K.; Hati, K. M.; Heuvelink, G. B. M.; Batjes, N. H.

    2018-04-01

    Characterization of soil water retention, e.g., water content at field capacity (FC) and permanent wilting point (PWP) over a landscape plays a key role in efficient utilization of available scarce water resources in dry land agriculture; however, direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ( N=370) was used to develop PTFs. The developed PTFs were tested in two independent datasets from arid regions of India ( N=36) and an arid region of USA ( N=1789). While testing these PTFs using independent data from India, root mean square error (RMSE) was found to be 2.65 and 1.08 for FC and PWP, respectively, whereas for most of the tested `established' PTFs, the RMSE was >3.41 and >1.15, respectively. Performance of the developed PTFs from the independent dataset from USA was comparable with estimates derived from `established' PTFs. For wide applicability of the developed PTFs, a user-friendly soil moisture calculator was developed. The PTFs developed in this study may be quite useful to farmers for scheduling irrigation water as per soil type.

  9. Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

    NASA Astrophysics Data System (ADS)

    Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.

    2017-09-01

    Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  10. Retrieving topsoil moisture using RADARSAT-2 data, a novel approach applied at the east of the Netherlands

    NASA Astrophysics Data System (ADS)

    Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.

    2017-12-01

    This manuscript proposes an approach for estimating soil moisture content over corn fields using C-band SAR data acquired by RADARSAT-2 satellite. An image based approach is employed to remove the vegetation contribution to the satellite signals. In particular, the absolute difference between like and cross polarized signals (ADLC) is employed for segmenting the canopy growth cycle into tiny stages. Each stage is represented by a Cumulative Distribution Function (CDF) of the like polarized signals. For periods of bare soils and vegetation cover, CDFs are compared and the vegetation contribution is quantified. The portion which represent the soil contributions (σHHsoil°) to the satellite signals; are employed for inversely running Oh model and the water cloud model for estimating soil moisture, canopy water content and canopy height respectively. The proposed approach shows satisfactory performance where high correlation of determination (R2) is detected between the field observations and the corresponding retrieved soil moisture, canopy water content and canopy height (R2 = 0.64, 0.97 and 0.98 respectively). Soil moisture retrieval is associated with root mean square error (RMSE) of 0.03 m3 m-3 while estimating canopy water content and canopy height have RMSE of 0.38 kg m-2 and 0.166 m respectively.

  11. Calibration methods influence quantitative material decomposition in photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Curtis, Tyler E.; Roeder, Ryan K.

    2017-03-01

    Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.

  12. Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques

    NASA Astrophysics Data System (ADS)

    El Kenawy, A.

    2009-09-01

    This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.

  13. Application of Molecular Dynamics Simulations in Molecular Property Prediction II: Diffusion Coefficient

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2011-01-01

    In this work, we have evaluated how well the General AMBER force field (GAFF) performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, 5 organic compounds in aqueous solutions, 4 proteins in aqueous solutions, and 9 organic compounds in non-aqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned error (AUE) and the root-mean-square error (RMSE) are 0.137 and 0.171 ×10−5 cm−2s−1, respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for 8 organic solvents with experimental data (R2 = 0.784), 4 proteins in aqueous solutions (R2 = 0.996) and 9 organic compounds in non-aqueous solutions (R2 = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide (DMSO) and cyclohexane have been studied. The major MD settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement (MSD) collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. PMID:21953689

  14. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  15. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    PubMed

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of 2.29%. Additional evaluation of SRSNV was carried out using diffuse reflection NIR spectra of marzipan and corn samples, and PLSR models based on SRSNV spectra showed good prediction results. These evaluation results indicate that SRSNV is effective in baseline correction of diffuse reflection NIR spectra and provides regression models with good prediction accuracy.

  16. Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys.

    PubMed

    Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael

    2017-03-01

    Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.

  17. Evaluation of image quality and radiation dose by adaptive statistical iterative reconstruction technique level for chest CT examination.

    PubMed

    Hong, Sun Suk; Lee, Jong-Woong; Seo, Jeong Beom; Jung, Jae-Eun; Choi, Jiwon; Kweon, Dae Cheol

    2013-12-01

    The purpose of this research is to determine the adaptive statistical iterative reconstruction (ASIR) level that enables optimal image quality and dose reduction in the chest computed tomography (CT) protocol with ASIR. A chest phantom with 0-50 % ASIR levels was scanned and then noise power spectrum (NPS), signal and noise and the degree of distortion of peak signal-to-noise ratio (PSNR) and the root-mean-square error (RMSE) were measured. In addition, the objectivity of the experiment was measured using the American College of Radiology (ACR) phantom. Moreover, on a qualitative basis, five lesions' resolution, latitude and distortion degree of chest phantom and their compiled statistics were evaluated. The NPS value decreased as the frequency increased. The lowest noise and deviation were at the 20 % ASIR level, mean 126.15 ± 22.21. As a result of the degree of distortion, signal-to-noise ratio and PSNR at 20 % ASIR level were at the highest value as 31.0 and 41.52. However, maximum absolute error and RMSE showed the lowest deviation value as 11.2 and 16. In the ACR phantom study, all ASIR levels were within acceptable allowance of guidelines. The 20 % ASIR level performed best in qualitative evaluation at five lesions of chest phantom as resolution score 4.3, latitude 3.47 and the degree of distortion 4.25. The 20 % ASIR level was proved to be the best in all experiments, noise, distortion evaluation using ImageJ and qualitative evaluation of five lesions of a chest phantom. Therefore, optimal images as well as reduce radiation dose would be acquired when 20 % ASIR level in thoracic CT is applied.

  18. Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses.

    PubMed

    Lee, Heeyoung; Kim, Kyungmi; Lee, Soomin; Han, Minkyung; Yoon, Yohan

    2014-05-01

    In this study, we developed mathematical models to describe the growth kinetics of Staphylococcus aureus on natural cheeses. A five-strain mixture of Staph. aureus was inoculated onto 15 g of Brie and Camembert cheeses at 4 log CFU/g. The samples were then stored at 4, 10, 15, 25, and 30 °C for 2-60 d, with a different storage time being used for each temperature. Total bacterial and Staph. aureus cells were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of Staph. aureus to calculate kinetic parameters such as the maximum growth rate in log CFU units (r max; log CFU/g/h) and the lag phase duration (λ; h). The effects of temperature on the square root of r max and on the natural logarithm of λ were modelled in the second stage (secondary model). Independent experimental data (observed data) were compared with prediction and the respective root mean square error compared with the RMSE of the fit on the original data, as a measure of model performance. The total growth of bacteria was observed at 10, 15, 25, and 30 °C on both cheeses. The r max values increased with storage temperature (P<0·05), but a significant effect of storage temperature on λ values was only observed between 4 and 15 °C (P<0·05). The square root model and linear equation were found to be appropriate for description of the effect of storage temperature on growth kinetics (R 2=0·894-0·983). Our results indicate that the models developed in this study should be useful for describing the growth kinetics of Staph. aureus on Brie and Camembert cheeses.

  19. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables

    NASA Astrophysics Data System (ADS)

    Nurminen, Kimmo; Karjalainen, Mika; Yu, Xiaowei; Hyyppä, Juha; Honkavaara, Eija

    2013-09-01

    Recent research results have shown that the performance of digital surface model extraction using novel high-quality photogrammetric images and image matching is a highly competitive alternative to laser scanning. In this article, we proceed to compare the performance of these two methods in the estimation of plot-level forest variables. Dense point clouds extracted from aerial frame images were used to estimate the plot-level forest variables needed in a forest inventory covering 89 plots. We analyzed images with 60% and 80% forward overlaps and used test plots with off-nadir angles of between 0° and 20°. When compared to reference ground measurements, the airborne laser scanning (ALS) data proved to be the most accurate: it yielded root mean square error (RMSE) values of 6.55% for mean height, 11.42% for mean diameter, and 20.72% for volume. When we applied a forward overlap of 80%, the corresponding results from aerial images were 6.77% for mean height, 12.00% for mean diameter, and 22.62% for volume. A forward overlap of 60% resulted in slightly deteriorated RMSE values of 7.55% for mean height, 12.20% for mean diameter, and 22.77% for volume. According to our results, the use of higher forward overlap produced only slightly better results in the estimation of these forest variables. Additionally, we found that the estimation accuracy was not significantly impacted by the increase in the off-nadir angle. Our results confirmed that digital aerial photographs were about as accurate as ALS in forest resources estimation as long as a terrain model was available.

  20. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis–NIR Spectroscopy

    PubMed Central

    Xu, Shengxiang; Shi, Xuezheng; Wang, Meiyan; Zhao, Yongcun

    2016-01-01

    Assessment and monitoring of soil organic matter (SOM) quality are important for understanding SOM dynamics and developing management practices that will enhance and maintain the productivity of agricultural soils. Visible and near-infrared (Vis–NIR) diffuse reflectance spectroscopy (350–2500 nm) has received increasing attention over the recent decades as a promising technique for SOM analysis. While heterogeneity of sample sets is one critical factor that complicates the prediction of soil properties from Vis–NIR spectra, a spectral library representing the local soil diversity needs to be constructed. The study area, covering a surface of 927 km2 and located in Yujiang County of Jiangsu Province, is characterized by a hilly area with different soil parent materials (e.g., red sandstone, shale, Quaternary red clay, and river alluvium). In total, 232 topsoil (0–20 cm) samples were collected for SOM analysis and scanned with a Vis–NIR spectrometer in the laboratory. Reflectance data were related to surface SOM content by means of a partial least square regression (PLSR) method and several data pre-processing techniques, such as first and second derivatives with a smoothing filter. The performance of the PLSR model was tested under different combinations of calibration/validation sets (global and local calibrations stratified according to parent materials). The results showed that the models based on the global calibrations can only make approximate predictions for SOM content (RMSE (root mean squared error) = 4.23–4.69 g kg−1; R2 (coefficient of determination) = 0.80–0.84; RPD (ratio of standard deviation to RMSE) = 2.19–2.44; RPIQ (ratio of performance to inter-quartile distance) = 2.88–3.08). Under the local calibrations, the individual PLSR models for each parent material improved SOM predictions (RMSE = 2.55–3.49 g kg−1; R2 = 0.87–0.93; RPD = 2.67–3.12; RPIQ = 3.15–4.02). Among the four different parent materials, the largest R2 and the smallest RMSE were observed for the shale soils, which had the lowest coefficient of variation (CV) values for clay (18.95%), free iron oxides (15.93%), and pH (1.04%). This demonstrates the importance of a practical subsetting strategy for the continued improvement of SOM prediction with Vis–NIR spectroscopy. PMID:26974821

  1. Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation

    NASA Astrophysics Data System (ADS)

    Bližňák, Vojtěch; Sokol, Zbyněk; Zacharov, Petr

    2017-02-01

    An evaluation of convective cloud forecasts performed with the numerical weather prediction (NWP) model COSMO and extrapolation of cloud fields is presented using observed data derived from the geostationary satellite Meteosat Second Generation (MSG). The present study focuses on the nowcasting range (1-5 h) for five severe convective storms in their developing stage that occurred during the warm season in the years 2012-2013. Radar reflectivity and extrapolated radar reflectivity data were assimilated for at least 6 h depending on the time of occurrence of convection. Synthetic satellite imageries were calculated using radiative transfer model RTTOV v10.2, which was implemented into the COSMO model. NWP model simulations of IR10.8 μm and WV06.2 μm brightness temperatures (BTs) with a horizontal resolution of 2.8 km were interpolated into the satellite projection and objectively verified against observations using Root Mean Square Error (RMSE), correlation coefficient (CORR) and Fractions Skill Score (FSS) values. Naturally, the extrapolation of cloud fields yielded an approximately 25% lower RMSE, 20% higher CORR and 15% higher FSS at the beginning of the second forecasted hour compared to the NWP model forecasts. On the other hand, comparable scores were observed for the third hour, whereas the NWP forecasts outperformed the extrapolation by 10% for RMSE, 15% for CORR and up to 15% for FSS during the fourth forecasted hour and 15% for RMSE, 27% for CORR and up to 15% for FSS during the fifth forecasted hour. The analysis was completed by a verification of the precipitation forecasts yielding approximately 8% higher RMSE, 15% higher CORR and up to 45% higher FSS when the NWP model simulation is used compared to the extrapolation for the first hour. Both the methods yielded unsatisfactory level of precipitation forecast accuracy from the fourth forecasted hour onward.

  2. Derivation of formulas for root-mean-square errors in location, orientation, and shape in triangulation solution of an elongated object in space

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1974-01-01

    Formulas are derived for the root-mean-square (rms) displacement, slope, and curvature errors in an azimuth-elevation image trace of an elongated object in space, as functions of the number and spacing of the input data points and the rms elevation error in the individual input data points from a single observation station. Also, formulas are derived for the total rms displacement, slope, and curvature error vectors in the triangulation solution of an elongated object in space due to the rms displacement, slope, and curvature errors, respectively, in the azimuth-elevation image traces from different observation stations. The total rms displacement, slope, and curvature error vectors provide useful measure numbers for determining the relative merits of two or more different triangulation procedures applicable to elongated objects in space.

  3. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  4. Impact of sensor's point spread function on land cover characterization: Assessment and deconvolution

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.

    2002-01-01

    Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.

  5. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  6. Prediction of plantar shear stress distribution by artificial intelligence methods.

    PubMed

    Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

    2009-09-01

    Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.

  7. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  8. Retrieval of the aerosol optical thickness from UV global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Costa, M. J.; Salgueiro, V.; Bortoli, D.; Obregón, M. A.; Antón, M.; Silva, A. M.

    2015-12-01

    The UV irradiance is measured at Évora since several years, where a CIMEL sunphotometer integrated in AERONET is also installed. In the present work, measurements of UVA (315 - 400 nm) irradiances taken with Kipp&Zonen radiometers, as well as satellite data of ozone total column values, are used in combination with radiative transfer calculations, to estimate the aerosol optical thickness (AOT) in the UV. The retrieved UV AOT in Évora is compared with AERONET AOT (at 340 and 380 nm) and a fairly good agreement is found with a root mean square error of 0.05 (normalized root mean square error of 8.3%) and a mean absolute error of 0.04 (mean percentage error of 2.9%). The methodology is then used to estimate the UV AOT in Sines, an industrialized site on the Atlantic western coast, where the UV irradiance is monitored since 2013 but no aerosol information is available.

  9. Development of Solar Drying Model for Selected Cambodian Fish Species

    PubMed Central

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  10. [Seedling index of Salvia miltiorrhiza and its simulation model].

    PubMed

    Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan

    2012-10-01

    Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.

  11. Least Square Approach for Estimating of Land Surface Temperature from LANDSAT-8 Satellite Data Using Radiative Transfer Equation

    NASA Astrophysics Data System (ADS)

    Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.

    2017-09-01

    Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.

  12. Improving the Accuracy of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Kumar, Sujay; Chien, Janety Y. L.; Riggs, George A.

    2012-01-01

    The Air Force Weather Agency (AFWA) -- NASA blended snow-cover product, called ANSA, utilizes Earth Observing System standard snow products from the Moderate- Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE with SWE values calculated from snow depths reported at 1500 National Climatic Data Center (NCDC) co-op stations in the Lower Great Lakes Basin. Compared to station data, the ANSA significantly underestimates SWE in densely-forested areas. We use two methods to remove some of the bias observed in forested areas to reduce the root-mean-square error (RMSE) between the ANSA- and station-derived SWE. First, we calculated a 5- year mean ANSA-derived SWE for the winters of 2005-06 through 2009-10, and developed a five-year mean bias-corrected SWE map for each month. For most of the months studied during the five-year period, the 5-year bias correction improved the agreement between the ANSA-derived and station-derived SWE. However, anomalous months such as when there was very little snow on the ground compared to the 5-year mean, or months in which the snow was much greater than the 5-year mean, showed poorer results (as expected). We also used a 7-day running mean (7DRM) bias correction method using days just prior to the day in question to correct the ANSA data. This method was more effective in reducing the RMSE between the ANSA- and co-op-derived SWE values, and in capturing the effects of anomalous snow conditions.

  13. Optimal Wavelength Selection on Hyperspectral Data with Fused Lasso for Biomass Estimation of Tropical Rain Forest

    NASA Astrophysics Data System (ADS)

    Takayama, T.; Iwasaki, A.

    2016-06-01

    Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE) of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.

  14. Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging

    NASA Astrophysics Data System (ADS)

    Wang, Zong; Shi, Wenjiao

    2017-03-01

    Soil particle-size fractions (psf) as basic physical variables need to be accurately predicted for regional hydrological, ecological, geological, agricultural and environmental studies frequently. Some methods had been proposed to interpolate the spatial distributions of soil psf, but the performance of compositional kriging and different log-ratio kriging methods is still unclear. Four log-ratio transformations, including additive log-ratio (alr), centered log-ratio (clr), isometric log-ratio (ilr), and symmetry log-ratio (slr), combined with ordinary kriging (log-ratio kriging: alr_OK, clr_OK, ilr_OK and slr_OK) were selected to be compared with compositional kriging (CK) for the spatial prediction of soil psf in Tianlaochi of Heihe River Basin, China. Root mean squared error (RMSE), Aitchison's distance (AD), standardized residual sum of squares (STRESS) and right ratio of the predicted soil texture types (RR) were chosen to evaluate the accuracy for different interpolators. The results showed that CK had a better accuracy than the four log-ratio kriging methods. The RMSE (sand, 9.27%; silt, 7.67%; clay, 4.17%), AD (0.45), STRESS (0.60) of CK were the lowest and the RR (58.65%) was the highest in the five interpolators. The clr_OK achieved relatively better performance than the other log-ratio kriging methods. In addition, CK presented reasonable and smooth transition on mapping soil psf according to the environmental factors. The study gives insights for mapping soil psf accurately by comparing different methods for compositional data interpolation. Further researches of methods combined with ancillary variables are needed to be implemented to improve the interpolation performance.

  15. Quick method (FT-NIR) for the determination of oil and major fatty acids content in whole achenes of milk thistle (Silybum marianum (L.) Gaertn.).

    PubMed

    Koláčková, Pavla; Růžičková, Gabriela; Gregor, Tomáš; Šišperová, Eliška

    2015-08-30

    Calibration models for the Fourier transform-near infrared (FT-NIR) instrument were developed for quick and non-destructive determination of oil and fatty acids in whole achenes of milk thistle. Samples with a range of oil and fatty acid levels were collected and their transmittance spectra were obtained by the FT-NIR instrument. Based on these spectra and data gained by the means of the reference method - Soxhlet extraction and gas chromatography (GC) - calibration models were created by means of partial least square (PLS) regression analysis. Precision and accuracy of the calibration models was verified via the cross-validation of validation samples whose spectra were not part of the calibration model and also according to the root mean square error of prediction (RMSEP), root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV) and the validation coefficient of determination (R(2) ). R(2) for whole seeds were 0.96, 0.96, 0.83 and 0.67 and the RMSEP values were 0.76, 1.68, 1.24, 0.54 for oil, linoleic (C18:2), oleic (C18:1) and palmitic (C16:0) acids, respectively. The calibration models are appropriate for the non-destructive determination of oil and fatty acids levels in whole seeds of milk thistle. © 2014 Society of Chemical Industry.

  16. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  17. A Comparison of the β-Substitution Method and a Bayesian Method for Analyzing Left-Censored Data

    PubMed Central

    Huynh, Tran; Quick, Harrison; Ramachandran, Gurumurthy; Banerjee, Sudipto; Stenzel, Mark; Sandler, Dale P.; Engel, Lawrence S.; Kwok, Richard K.; Blair, Aaron; Stewart, Patricia A.

    2016-01-01

    Classical statistical methods for analyzing exposure data with values below the detection limits are well described in the occupational hygiene literature, but an evaluation of a Bayesian approach for handling such data is currently lacking. Here, we first describe a Bayesian framework for analyzing censored data. We then present the results of a simulation study conducted to compare the β-substitution method with a Bayesian method for exposure datasets drawn from lognormal distributions and mixed lognormal distributions with varying sample sizes, geometric standard deviations (GSDs), and censoring for single and multiple limits of detection. For each set of factors, estimates for the arithmetic mean (AM), geometric mean, GSD, and the 95th percentile (X0.95) of the exposure distribution were obtained. We evaluated the performance of each method using relative bias, the root mean squared error (rMSE), and coverage (the proportion of the computed 95% uncertainty intervals containing the true value). The Bayesian method using non-informative priors and the β-substitution method were generally comparable in bias and rMSE when estimating the AM and GM. For the GSD and the 95th percentile, the Bayesian method with non-informative priors was more biased and had a higher rMSE than the β-substitution method, but use of more informative priors generally improved the Bayesian method’s performance, making both the bias and the rMSE more comparable to the β-substitution method. An advantage of the Bayesian method is that it provided estimates of uncertainty for these parameters of interest and good coverage, whereas the β-substitution method only provided estimates of uncertainty for the AM, and coverage was not as consistent. Selection of one or the other method depends on the needs of the practitioner, the availability of prior information, and the distribution characteristics of the measurement data. We suggest the use of Bayesian methods if the practitioner has the computational resources and prior information, as the method would generally provide accurate estimates and also provides the distributions of all of the parameters, which could be useful for making decisions in some applications. PMID:26209598

  18. A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice

    PubMed Central

    Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai

    2016-01-01

    This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209

  19. Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge.

    PubMed

    Langkammer, Christian; Schweser, Ferdinand; Shmueli, Karin; Kames, Christian; Li, Xu; Guo, Li; Milovic, Carlos; Kim, Jinsuh; Wei, Hongjiang; Bredies, Kristian; Buch, Sagar; Guo, Yihao; Liu, Zhe; Meineke, Jakob; Rauscher, Alexander; Marques, José P; Bilgic, Berkin

    2018-03-01

    The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med 79:1661-1673, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Carbon Sequestration Estimation of Street Trees Based on Point Cloud from Vehicle-Borne Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.

    2017-09-01

    Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.

  1. Subsurface temperature estimation from climatology and satellite SST for the sea around Korean Peninsula 1Bong-Guk, Kim, 1Yang-Ki, Cho, 1Bong-Gwan, Kim, 1Young-Gi, Kim, 1Ji-Hoon, Jung 1School of Earth and Environmental Sciences, Seoul National University

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon

    2015-04-01

    Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.

  2. Accelerated 1 H MRSI using randomly undersampled spiral-based k-space trajectories.

    PubMed

    Chatnuntawech, Itthi; Gagoski, Borjan; Bilgic, Berkin; Cauley, Stephen F; Setsompop, Kawin; Adalsteinsson, Elfar

    2014-07-30

    To develop and evaluate the performance of an acquisition and reconstruction method for accelerated MR spectroscopic imaging (MRSI) through undersampling of spiral trajectories. A randomly undersampled spiral acquisition and sensitivity encoding (SENSE) with total variation (TV) regularization, random SENSE+TV, is developed and evaluated on single-slice numerical phantom, in vivo single-slice MRSI, and in vivo three-dimensional (3D)-MRSI at 3 Tesla. Random SENSE+TV was compared with five alternative methods for accelerated MRSI. For the in vivo single-slice MRSI, random SENSE+TV yields up to 2.7 and 2 times reduction in root-mean-square error (RMSE) of reconstructed N-acetyl aspartate (NAA), creatine, and choline maps, compared with the denoised fully sampled and uniformly undersampled SENSE+TV methods with the same acquisition time, respectively. For the in vivo 3D-MRSI, random SENSE+TV yields up to 1.6 times reduction in RMSE, compared with uniform SENSE+TV. Furthermore, by using random SENSE+TV, we have demonstrated on the in vivo single-slice and 3D-MRSI that acceleration factors of 4.5 and 4 are achievable with the same quality as the fully sampled data, as measured by RMSE of reconstructed NAA map, respectively. With the same scan time, random SENSE+TV yields lower RMSEs of metabolite maps than other methods evaluated. Random SENSE+TV achieves up to 4.5-fold acceleration with comparable data quality as the fully sampled acquisition. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  3. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands.

    PubMed

    Salem, Salem Ibrahim; Higa, Hiroto; Kim, Hyungjun; Kobayashi, Hiroshi; Oki, Kazuo; Oki, Taikan

    2017-07-31

    Numerous algorithms have been proposed to retrieve chlorophyll- a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m -3 , 16.25 mg·m -3 , and 19.05 mg·m -3 , respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll- a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m -3 ), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m -3 ).

  4. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands

    PubMed Central

    Higa, Hiroto; Kobayashi, Hiroshi; Oki, Kazuo

    2017-01-01

    Numerous algorithms have been proposed to retrieve chlorophyll-a concentrations in Case 2 waters; however, the retrieval accuracy is far from satisfactory. In this research, seven algorithms are assessed with different band combinations of multispectral and hyperspectral bands using linear (LN), quadratic polynomial (QP) and power (PW) regression approaches, resulting in altogether 43 algorithmic combinations. These algorithms are evaluated by using simulated and measured datasets to understand the strengths and limitations of these algorithms. Two simulated datasets comprising 500,000 reflectance spectra each, both based on wide ranges of inherent optical properties (IOPs), are generated for the calibration and validation stages. Results reveal that the regression approach (i.e., LN, QP, and PW) has more influence on the simulated dataset than on the measured one. The algorithms that incorporated linear regression provide the highest retrieval accuracy for the simulated dataset. Results from simulated datasets reveal that the 3-band (3b) algorithm that incorporate 665-nm and 680-nm bands and band tuning selection approach outperformed other algorithms with root mean square error (RMSE) of 15.87 mg·m−3, 16.25 mg·m−3, and 19.05 mg·m−3, respectively. The spatial distribution of the best performing algorithms, for various combinations of chlorophyll-a (Chla) and non-algal particles (NAP) concentrations, show that the 3b_tuning_QP and 3b_680_QP outperform other algorithms in terms of minimum RMSE frequency of 33.19% and 60.52%, respectively. However, the two algorithms failed to accurately retrieve Chla for many combinations of Chla and NAP, particularly for low Chla and NAP concentrations. In addition, the spatial distribution emphasizes that no single algorithm can provide outstanding accuracy for Chla retrieval and that multi-algorithms should be included to reduce the error. Comparing the results of the measured and simulated datasets reveal that the algorithms that incorporate the 665-nm band outperform other algorithms for measured dataset (RMSE = 36.84 mg·m−3), while algorithms that incorporate the band tuning approach provide the highest retrieval accuracy for the simulated dataset (RMSE = 25.05 mg·m−3). PMID:28758984

  5. Assessment of predictive models for chlorophyll-a concentration of a tropical lake

    PubMed Central

    2011-01-01

    Background This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes. Results Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring the performance. RMSE is based on the level of error of prediction whereas AUC is based on binary classification task. Conclusions Overall, HEA produced the best performance in terms of RMSE, r, and AUC values. This was followed by FL, RANN, and MLR. PMID:22372859

  6. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States.

    PubMed

    Zhang, Hongliang; Chen, Gang; Hu, Jianlin; Chen, Shu-Hua; Wiedinmyer, Christine; Kleeman, Michael; Ying, Qi

    2014-03-01

    The performance of the Weather Research and Forecasting (WRF)/Community Multi-scale Air Quality (CMAQ) system in the eastern United States is analyzed based on results from a seven-year modeling study with a 4-km spatial resolution. For 2-m temperature, the monthly averaged mean bias (MB) and gross error (GE) values are generally within the recommended performance criteria, although temperature is over-predicted with MB values up to 2K. Water vapor at 2-m is well-predicted but significant biases (>2 g kg(-1)) were observed in wintertime. Predictions for wind speed are satisfactory but biased towards over-prediction with 0

  7. Forecasting currency circulation data of Bank Indonesia by using hybrid ARIMAX-ANN model

    NASA Astrophysics Data System (ADS)

    Prayoga, I. Gede Surya Adi; Suhartono, Rahayu, Santi Puteri

    2017-05-01

    The purpose of this study is to forecast currency inflow and outflow data of Bank Indonesia. Currency circulation in Indonesia is highly influenced by the presence of Eid al-Fitr. One way to forecast the data with Eid al-Fitr effect is using autoregressive integrated moving average with exogenous input (ARIMAX) model. However, ARIMAX is a linear model, which cannot handle nonlinear correlation structures of the data. In the field of forecasting, inaccurate predictions can be considered caused by the existence of nonlinear components that are uncaptured by the model. In this paper, we propose a hybrid model of ARIMAX and artificial neural networks (ANN) that can handle both linear and nonlinear correlation. This method was applied for 46 series of currency inflow and 46 series of currency outflow. The results showed that based on out-of-sample root mean squared error (RMSE), the hybrid models are up to10.26 and 10.65 percent better than ARIMAX for inflow and outflow series, respectively. It means that ANN performs well in modeling nonlinear correlation of the data and can increase the accuracy of linear model.

  8. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  9. Long-term spatial distributions and trends of the latent heat fluxes over the global cropland ecosystem using multiple satellite-based models

    PubMed Central

    Feng, Fei; Yao, Yunjun; Liu, Meng

    2017-01-01

    Estimating cropland latent heat flux (LE) from continental to global scales is vital to modeling crop production and managing water resources. Over the past several decades, numerous LE models were developed, such as the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing-based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL) and the modified satellite-based Priestley-Taylor LE algorithm (MS-PT). However, these LE models have not been directly compared over the global cropland ecosystem using various algorithms. In this study, we evaluated the performances of these four LE models using 34 eddy covariance (EC) sites. The results showed that mean annual LE for cropland varied from 33.49 to 58.97 W/m2 among the four models. The interannual LE slightly increased during 1982–2009 across the global cropland ecosystem. All models had acceptable performances with the coefficient of determination (R2) ranging from 0.4 to 0.7 and a root mean squared error (RMSE) of approximately 35 W/m2. MS-PT had good overall performance across the cropland ecosystem with the highest R2, lowest RMSE and a relatively low bias. The reduced performances of MOD16 and RRS, with R2 ranging from 0.4 to 0.6 and RMSEs from 30 to 39 W/m2, might be attributed to empirical parameters in the structure algorithms and calibrated coefficients. PMID:28837704

  10. A Computational Method to Determine Glucose Infusion Rates for Isoglycemic Intravenous Glucose Infusion Study.

    PubMed

    Choi, Karam; Lee, Jung Chan; Oh, Tae Jung; Kim, Myeungseon; Kim, Hee Chan; Cho, Young Min; Kim, Sungwan

    2016-01-01

    The results of the isoglycemic intravenous glucose infusion (IIGI) study need to mimic the dynamic glucose profiles during the oral glucose tolerance test (OGTT) to accurately calculate the incretin effect. The glucose infusion rates during IIGI studies have historically been determined by experienced research personnel using the manual ad-hoc method. In this study, a computational method was developed to automatically determine the infusion rates for IIGI study based on a glucose-dynamics model. To evaluate the computational method, 18 subjects with normal glucose tolerance underwent a 75 g OGTT. One-week later, Group 1 (n = 9) and Group 2 (n = 9) underwent IIGI studies using the ad-hoc method and the computational method, respectively. Both methods were evaluated using correlation coefficient, mean absolute relative difference (MARD), and root mean square error (RMSE) between the glucose profiles from the OGTT and the IIGI study. The computational method exhibited significantly higher correlation (0.95 ± 0.03 versus 0.86 ± 0.10, P = 0.019), lower MARD (8.72 ± 1.83% versus 13.11 ± 3.66%, P = 0.002), and lower RMSE (10.33 ± 1.99 mg/dL versus 16.84 ± 4.43 mg/dL, P = 0.002) than the ad-hoc method. The computational method can facilitate IIGI study, and enhance its accuracy and stability. Using this computational method, a high-quality IIGI study can be accomplished without the need for experienced personnel.

  11. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling

    NASA Astrophysics Data System (ADS)

    Santosa, H.; Hobara, Y.

    2017-01-01

    The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.

  12. Comparison of parametric methods for modeling corneal surfaces

    NASA Astrophysics Data System (ADS)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  13. Mapping the EORTC QLQ-C30 onto the EQ-5D-3L: assessing the external validity of existing mapping algorithms.

    PubMed

    Doble, Brett; Lorgelly, Paula

    2016-04-01

    To determine the external validity of existing mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses and to establish their generalizability in different types of cancer. A main analysis (pooled) sample of 3560 observations (1727 patients) and two disease severity patient samples (496 and 93 patients) with repeated observations over time from Cancer 2015 were used to validate the existing algorithms. Errors were calculated between observed and predicted EQ-5D-3L utility values using a single pooled sample and ten pooled tumour type-specific samples. Predictive accuracy was assessed using mean absolute error (MAE) and standardized root-mean-squared error (RMSE). The association between observed and predicted EQ-5D utility values and other covariates across the distribution was tested using quantile regression. Quality-adjusted life years (QALYs) were calculated using observed and predicted values to test responsiveness. Ten 'preferred' mapping algorithms were identified. Two algorithms estimated via response mapping and ordinary least-squares regression using dummy variables performed well on number of validation criteria, including accurate prediction of the best and worst QLQ-C30 health states, predicted values within the EQ-5D tariff range, relatively small MAEs and RMSEs, and minimal differences between estimated QALYs. Comparison of predictive accuracy across ten tumour type-specific samples highlighted that algorithms are relatively insensitive to grouping by tumour type and affected more by differences in disease severity. Two of the 'preferred' mapping algorithms suggest more accurate predictions, but limitations exist. We recommend extensive scenario analyses if mapped utilities are used in cost-utility analyses.

  14. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  15. Daily Reservoir Inflow Forecasting using Deep Learning with Downscaled Multi-General Circulation Models (GCMs) Platform

    NASA Astrophysics Data System (ADS)

    Li, D.; Fang, N. Z.

    2017-12-01

    Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.

  16. Characterization of performance-emission indices of a diesel engine using ANFIS operating in dual-fuel mode with LPG

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amitav; Roy, Sumit; Banerjee, Rahul

    2018-03-01

    This experimental work highlights the inherent capability of an adaptive-neuro fuzzy inference system (ANFIS) based model to act as a robust system identification tool (SIT) in prognosticating the performance and emission parameters of an existing diesel engine running of diesel-LPG dual fuel mode. The developed model proved its adeptness by successfully harnessing the effects of the input parameters of load, injection duration and LPG energy share on output parameters of BSFCEQ, BTE, NOX, SOOT, CO and HC. Successive evaluation of the ANFIS model, revealed high levels of resemblance with the already forecasted ANN results for the same input parameters and it was evident that similar to ANN, ANFIS also has the innate ability to act as a robust SIT. The ANFIS predicted data harmonized the experimental data with high overall accuracy. The correlation coefficient (R) values are stretched in between 0.99207 to 0.999988. The mean absolute percentage error (MAPE) tallies were recorded in the range of 0.02-0.173% with the root mean square errors (RMSE) in acceptable margins. Hence the developed model is capable of emulating the actual engine parameters with commendable ranges of accuracy, which in turn would act as a robust prediction platform in the future domains of optimization.

  17. Implications of drying temperature and humidity on the drying kinetics of seaweed

    NASA Astrophysics Data System (ADS)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  18. Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

    NASA Astrophysics Data System (ADS)

    Ebtehaj, Isa; Bonakdari, Hossein

    2017-12-01

    Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.

  19. Determining particle size and water content by near-infrared spectroscopy in the granulation of naproxen sodium.

    PubMed

    Bär, David; Debus, Heiko; Brzenczek, Sina; Fischer, Wolfgang; Imming, Peter

    2018-03-20

    Near-infrared spectroscopy is frequently used by the pharmaceutical industry to monitor and optimize several production processes. In combination with chemometrics, a mathematical-statistical technique, the following advantages of near-infrared spectroscopy can be applied: It is a fast, non-destructive, non-invasive, and economical analytical method. One of the most advanced and popular chemometric technique is the partial least square algorithm with its best applicability in routine and its results. The required reference analytic enables the analysis of various parameters of interest, for example, moisture content, particle size, and many others. Parameters like the correlation coefficient, root mean square error of prediction, root mean square error of calibration, and root mean square error of validation have been used for evaluating the applicability and robustness of these analytical methods developed. This study deals with investigating a Naproxen Sodium granulation process using near-infrared spectroscopy and the development of water content and particle-size methods. For the water content method, one should consider a maximum water content of about 21% in the granulation process, which must be confirmed by the loss on drying. Further influences to be considered are the constantly changing product temperature, rising to about 54 °C, the creation of hydrated states of Naproxen Sodium when using a maximum of about 21% water content, and the large quantity of about 87% Naproxen Sodium in the formulation. It was considered to use a combination of these influences in developing the near-infrared spectroscopy method for the water content of Naproxen Sodium granules. The "Root Mean Square Error" was 0.25% for calibration dataset and 0.30% for the validation dataset, which was obtained after different stages of optimization by multiplicative scatter correction and the first derivative. Using laser diffraction, the granules have been analyzed for particle sizes and obtaining the summary sieve sizes of >63 μm and >100 μm. The following influences should be considered for application in routine production: constant changes in water content up to 21% and a product temperature up to 54 °C. The different stages of optimization result in a "Root Mean Square Error" of 2.54% for the calibration data set and 3.53% for the validation set by using the Kubelka-Munk conversion and first derivative for the near-infrared spectroscopy method for a particle size >63 μm. For the near-infrared spectroscopy method using a particle size >100 μm, the "Root Mean Square Error" was 3.47% for the calibration data set and 4.51% for the validation set, while using the same pre-treatments. - The robustness and suitability of this methodology has already been demonstrated by its recent successful implementation in a routine granulate production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment

    NASA Astrophysics Data System (ADS)

    Kearney, Michael R.; Maino, James L.

    2018-06-01

    Accurate models of soil moisture are vital for solving core problems in meteorology, hydrology, agriculture and ecology. The capacity for soil moisture modelling is growing rapidly with the development of high-resolution, continent-scale gridded weather and soil data together with advances in modelling methods. In particular, the GlobalSoilMap.net initiative represents next-generation, depth-specific gridded soil products that may substantially increase soil moisture modelling capacity. Here we present an implementation of Campbell's infiltration and redistribution model within the NicheMapR microclimate modelling package for the R environment, and use it to assess the predictive power provided by the GlobalSoilMap.net product Soil and Landscape Grid of Australia (SLGA, ∼100 m) as well as the coarser resolution global product SoilGrids (SG, ∼250 m). Predictions were tested in detail against 3 years of root-zone (3-75 cm) soil moisture observation data from 35 monitoring sites within the OzNet project in Australia, with additional tests of the finalised modelling approach against cosmic-ray neutron (CosmOz, 0-50 cm, 9 sites from 2011 to 2017) and satellite (ASCAT, 0-2 cm, continent-wide from 2007 to 2009) observations. The model was forced by daily 0.05° (∼5 km) gridded meteorological data. The NicheMapR system predicted soil moisture to within experimental error for all data sets. Using the SLGA or the SG soil database, the OzNet soil moisture could be predicted with a root mean square error (rmse) of ∼0.075 m3 m-3 and a correlation coefficient (r) of 0.65 consistently through the soil profile without any parameter tuning. Soil moisture predictions based on the SLGA and SG datasets were ≈ 17% closer to the observations than when using a chloropleth-derived soil data set (Digital Atlas of Australian Soils), with the greatest improvements occurring for deeper layers. The CosmOz observations were predicted with similar accuracy (r = 0.76 and rmse of ∼0.085 m3 m-3). Comparisons at the continental scale to 0-2 cm satellite data (ASCAT) showed that the SLGA/SG datasets increased model fit over simulations using the DAAS soil properties (r ∼ 0.63 &rmse 15% vs. r 0.48 &rmse 18%, respectively). Overall, our results demonstrate the advantages of using GlobalSoilMap.net products in combination with gridded weather data for modelling soil moisture at fine spatial and temporal resolution at the continental scale.

  1. Short-term forecasting of meteorological time series using Nonparametric Functional Data Analysis (NPFDA)

    NASA Astrophysics Data System (ADS)

    Curceac, S.; Ternynck, C.; Ouarda, T.

    2015-12-01

    Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed

  2. Photoacoustic signals denoising of the glucose aqueous solutions using an improved wavelet threshold method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Xiong, Zhihua

    2016-10-01

    The photoacoustic signals denoising of glucose is one of most important steps in the quality identification of the fruit because the real-time photoacoustic singals of glucose are easily interfered by all kinds of noises. To remove the noises and some useless information, an improved wavelet threshld function were proposed. Compared with the traditional wavelet hard and soft threshold functions, the improved wavelet threshold function can overcome the pseudo-oscillation effect of the denoised photoacoustic signals due to the continuity of the improved wavelet threshold function, and the error between the denoised signals and the original signals can be decreased. To validate the feasibility of the improved wavelet threshold function denoising, the denoising simulation experiments based on MATLAB programmimg were performed. In the simulation experiments, the standard test signal was used, and three different denoising methods were used and compared with the improved wavelet threshold function. The signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) values were used to evaluate the performance of the improved wavelet threshold function denoising. The experimental results demonstrate that the SNR value of the improved wavelet threshold function is largest and the RMSE value is lest, which fully verifies that the improved wavelet threshold function denoising is feasible. Finally, the improved wavelet threshold function denoising was used to remove the noises of the photoacoustic signals of the glucose solutions. The denoising effect is also very good. Therefore, the improved wavelet threshold function denoising proposed by this paper, has a potential value in the field of denoising for the photoacoustic singals.

  3. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    PubMed

    Zimbelman, Eloise G; Keefe, Robert F

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  4. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation

    PubMed Central

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts. PMID:29324794

  5. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    PubMed Central

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-01-01

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions. PMID:26184191

  6. Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities.

    PubMed

    Trepczynski, Adam; Kutzner, Ines; Bergmann, Georg; Taylor, William R; Heller, Markus O

    2014-05-01

    The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed ) in a sample of subjects across a spectrum of activities. The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting. The effects of the factors "subject" and "activity" on the relationships between Fmed and EAM were quantified using mixed-effects regression analyses in terms of the root mean square error (RMSE) and the slope of the regression. Across subjects and activities a good correlation between peak EAM and Fmed values was observed, with an overall R(2) value of 0.88. However, the slope of the linear regressions varied between subjects by up to a factor of 2. At peak EAM and Fmed , the RMSE of the regression across all subjects was 35% body weight (%BW), while the maximum error was 127 %BW. The relationship between EAM and Fmed is generally good but varies considerably across subjects and activities. These findings emphasize the limitation of relying solely on the EAM to infer medial joint loading when excessive directed cocontraction of muscles exists and call for further investigations into the soft tissue-related mechanisms that modulate the internal forces at the knee. Copyright © 2014 by the American College of Rheumatology.

  7. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.

    PubMed

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-07-08

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.

  8. High Resolution Analysis of Dyke Tips and Segments, Using Drones

    NASA Astrophysics Data System (ADS)

    Dering, G.; Micklethwaite, S.; Cruden, A. R.

    2016-12-01

    We analyse outstanding exposures of dykes from both coastal (Western Australia) and high altitude glacier-polished (Sierra Nevada, California) outcrops, representing intrusion at shallow upper-crustal and mid-crustal conditions respectively. We covered 10,000 m^2 of outcrop area sampling the ground at a scale of 3-5 mm per pixel. Using Structure-from-Motion photogrammetry from ground-based and UAV photographs lacking GPS camera positions (>500 images per study), we generated and calibrated a 3D geometry of dense point clouds by selectively using 25-30 ground control points measured by high precision GPS (40-90 mm error). Ground control points used in the photogrammetric model building process typically yielded a root mean square error (RMSE) of 5 cm. Half the ground control points were withheld from the model building process and when they were compared against the model they yielded RMSE values only 6-10% higher than the points used for georeferencing, suggesting good internal consistency of the dataset and accuracy relative to the reference frame, at least for the purposes of this study. The structural orientations of the dykes and associated fractures were then extracted digitally using the iterative Random Sample Consensus method (RANSAC) and least-squares plane fitting. Furthermore, fracture intensity relative to dykes was measured along a series of scanlines and the running average and variance calculated. All results were compared against field measurements. Results show fracture intensity increases toward the dykes in the shallow crustal examples (West Australia) but no such fractures exist around the mid-crustal (Californian) dykes. Despite this there is a remarkable uniformity of geometry, and by implication process, between the two dyke sets. In order to extract full value from the big visual data now available to us, the near-future requires dedicated research into software solutions for expert-driven, semi-automatic mapping of geology and structure.

  9. Comparison of five methods for the estimation of methane production from vented in vitro systems.

    PubMed

    Alvarez Hess, P S; Eckard, R J; Jacobs, J L; Hannah, M C; Moate, P J

    2018-05-23

    There are several methods for estimating methane production (MP) from feedstuffs in vented in vitro systems. One method (A; "gold standard") measures methane proportions in the incubation bottle's head space (HS) and in the vented gas collected in gas bags. Four other methods (B, C, D and E) measure methane proportion in a single gas sample from HS. Method B assumes the same methane proportion in the vented gas as in HS, method C assumes constant methane to carbon dioxide ratio, method D has been developed based on empirical data and method E assumes constant individual venting volumes. This study aimed to compare the MP predictions from these methods to that of the gold standard method under different incubation scenarios, to validate these methods based on their concordance with a gold standard method. Methods C, D and E had greater concordance (0.85, 0.88 and 0.81), lower root mean square error (RMSE) (0.80, 0.72 and 0.85) and lower mean bias (0.20, 0.35, -0.35) with the gold standard than did method B (concordance 0.67, RMSE 1.49 and mean bias 1.26). Methods D and E were simpler to perform than method C and method D was slightly more accurate than method E. Based on precision, accuracy and simplicity of implementation, it is recommended that, when method A cannot be used, methods D and E are preferred to estimate MP from vented in vitro systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Analysis of S-box in Image Encryption Using Root Mean Square Error Method

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan

    2012-07-01

    The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes

  11. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model

    NASA Astrophysics Data System (ADS)

    Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.

    2017-02-01

    Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the importance of periodicity in drought forecasting and also ascertains that model accuracy scales with geographic/seasonal factors due to complexity of drought and its relationship with inputs and data attributes that can affect the evolution of drought events.

  12. Estimating B1+ in the breast at 7 T using a generic template.

    PubMed

    van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J

    2018-05-01

    Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  13. Estimating B 1 + in the breast at 7 T using a generic template

    PubMed Central

    Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.

    2018-01-01

    Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887

  14. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy.

    PubMed

    Fitamo, T; Triolo, J M; Boldrin, A; Scheutz, C

    2017-08-01

    The anaerobic digestibility of various biomass feedstocks in biogas plants is determined with biochemical methane potential (BMP) assays. However, experimental BMP analysis is time-consuming, costly and challenging to optimise stock management and feeding to achieve improved biogas production. The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting BMP. The coefficient of determination (R 2 ) and root mean square error in prediction (RMSE P ) of the UOW model were 0.88 and 44 mL CH 4 /g VS, while the combined model was 0.89 and 50 mL CH 4 /g VS. Improved model performance was obtained for the two individual models compared to the combined version. The BMP prediction with NIRS was satisfactory and moderately successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV)remote sensing].

    PubMed

    Zhou, Zai Ming; Yang, Yan Ming; Chen, Ben Qing

    2016-12-01

    The effective management and utilization of resources and ecological environment of coastal wetland require investigation and analysis in high precision of the fractional vegetation cover of invasive species Spartina alterniflora. In this study, Sansha Bay was selected as the experimental region, and visible and multi-spectral images obtained by low-altitude UAV in the region were used to monitor the fractional vegetation cover of S. alterniflora. Fractional vegetation cover parameters in the multi-spectral images were then estimated by NDVI index model, and the accuracy was tested against visible images as references. Results showed that vegetation covers of S. alterniflora in the image area were mainly at medium high level (40%-60%) and high level (60%-80%). Root mean square error (RMSE) between the NDVI model estimation values and true values was 0.06, while the determination coefficient R 2 was 0.92, indicating a good consistency between the estimation value and the true value.

  16. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal

    PubMed Central

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-01-01

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal. PMID:26512665

  17. Lee-Carter state space modeling: Application to the Malaysia mortality data

    NASA Astrophysics Data System (ADS)

    Zakiyatussariroh, W. H. Wan; Said, Z. Mohammad; Norazan, M. R.

    2014-06-01

    This article presents an approach that formalizes the Lee-Carter (LC) model as a state space model. Maximum likelihood through Expectation-Maximum (EM) algorithm was used to estimate the model. The methodology is applied to Malaysia's total population mortality data. Malaysia's mortality data was modeled based on age specific death rates (ASDR) data from 1971-2009. The fitted ASDR are compared to the actual observed values. However, results from the comparison of the fitted and actual values between LC-SS model and the original LC model shows that the fitted values from the LC-SS model and original LC model are quite close. In addition, there is not much difference between the value of root mean squared error (RMSE) and Akaike information criteria (AIC) from both models. The LC-SS model estimated for this study can be extended for forecasting ASDR in Malaysia. Then, accuracy of the LC-SS compared to the original LC can be further examined by verifying the forecasting power using out-of-sample comparison.

  18. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    PubMed

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  19. EEG-based emergency braking intention prediction for brain-controlled driving considering one electrode falling-off.

    PubMed

    Huikang Wang; Luzheng Bi; Teng Teng

    2017-07-01

    This paper proposes a novel method of electroencephalography (EEG)-based driver emergency braking intention detection system for brain-controlled driving considering one electrode falling-off. First, whether one electrode falls off is discriminated based on EEG potentials. Then, the missing signals are estimated by using the signals collected from other channels based on multivariate linear regression. Finally, a linear decoder is applied to classify driver intentions. Experimental results show that the falling-off discrimination accuracy is 99.63% on average and the correlation coefficient and root mean squared error (RMSE) between the estimated and experimental data are 0.90 and 11.43 μV, respectively, on average. Given one electrode falls off, the system accuracy of the proposed intention prediction method is significantly higher than that of the original method (95.12% VS 79.11%) and is close to that (95.95%) of the original system under normal situations (i. e., no electrode falling-off).

  20. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992-December 2013) based on evolutionary support vector regression algorithms and gene expression programming

    NASA Astrophysics Data System (ADS)

    Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen

    2014-10-01

    Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.

  2. Influence of a perturbation in the Gyrator domain for a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María. S.; Pérez-Cabré, Elisabet

    2017-08-01

    We present the results of the noise and occlusion tests in the Gyrator domain (GD) for a joint transform correlator-based encryption system. This encryption system was recently proposed and it was implemented by using a fully phase nonzero-order joint transform correlator (JTC) and the Gyrator transform (GT). The decryption system was based on two successive GTs. In this paper, we make several numerical simulations in order to test the performance and robustness of the JTC-based encryption-decryption system in the GD when the encrypted image is corrupted by noise or occlusion. The encrypted image is affected by additive and multiplicative noise. We also test the effect of data loss due to partial occlusion of the encrypted information. Finally, we evaluate the performance and robustness of the encryption-decryption system in the GD by using the metric of the root mean square error (RMSE) between the original image and the decrypted image when the encrypted image is degraded by noise or modified by occlusion.

  3. a Comprehensive Review of Pansharpening Algorithms for GÖKTÜRK-2 Satellite Images

    NASA Astrophysics Data System (ADS)

    Kahraman, S.; Ertürk, A.

    2017-11-01

    In this paper, a comprehensive review and performance evaluation of pansharpening algorithms for GÖKTÜRK-2 images is presented. GÖKTÜRK-2 is the first high resolution remote sensing satellite of Turkey which was designed and built in Turkey, by The Ministry of Defence, TUBITAK-UZAY and Turkish Aerospace Industry (TUSAŞ) collectively. GÖKTÜRK-2 was launched at 18th. December 2012 in Jinguan, China and provides 2.5 meter panchromatic (PAN) and 5 meter multispectral (MS) spatial resolution satellite images. In this study, a large number of pansharpening algorithms are implemented and evaluated for performance on multiple GÖKTÜRK-2 satellite images. Quality assessments are conducted both qualitatively through visual results and quantitatively using Root Mean Square Error (RMSE), Correlation Coefficient (CC), Spectral Angle Mapper (SAM), Erreur Relative Globale Adimensionnelle de Synthése (ERGAS), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Universal Image Quality Index (UIQI).

  4. Retrieving background surface reflectance of Himawari-8/AHI using BRDF modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungwon; Seo, Minji; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    In these days, remote sensing is more important than past. And retrieving surface reflectance in remote sensing is also important. So there are many ways to retrieve surface reflectance by my countries with polar orbit and geostationary satellite. We studied Bidirectional Reflectance Distribution Function (BRDF) which is used to retrieve surface reflectance. In BRDF equation, we calculate surface reflectance using BRD components and angular data. BRD components are to calculate 3 of scatterings, isotropic geometric and volumetric scattering. To make Background Surface Reflectance (BSR) of Himawari-8/AHI. We used 5 bands (band1, band2, band3, band4, band5) with BRDF. And we made 5 BSR for 5 channels. For validation, we compare BSR with Top of canopy (TOC) reflectance of AHI. As a result, bias are from -0.00223 to 0.008328 and Root Mean Square Error (RMSE) are from 0.045 to 0.049. We think BSR can be used to replace TOC reflectance in remote sensing to improve weakness of TOC reflectance.

  5. Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.

    2016-06-01

    Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.

  6. ANFIS multi criteria decision making for overseas construction projects: a methodology

    NASA Astrophysics Data System (ADS)

    Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.

    2018-02-01

    A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.

  7. Fractional kalman filter to estimate the concentration of air pollution

    NASA Astrophysics Data System (ADS)

    Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik

    2018-04-01

    Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).

  8. Recommendation based on trust diffusion model.

    PubMed

    Yuan, Jinfeng; Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.

  9. Recommendation Based on Trust Diffusion Model

    PubMed Central

    Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure. PMID:25009827

  10. Active Guidance of a Handheld Micromanipulator using Visual Servoing.

    PubMed

    Becker, Brian C; Voros, Sandrine; Maclachlan, Robert A; Hager, Gregory D; Riviere, Cameron N

    2009-05-12

    In microsurgery, a surgeon often deals with anatomical structures of sizes that are close to the limit of the human hand accuracy. Robotic assistants can help to push beyond the current state of practice by integrating imaging and robot-assisted tools. This paper demonstrates control of a handheld tremor reduction micromanipulator with visual servo techniques, aiding the operator by providing three behaviors: snap-to, motion-scaling, and standoff-regulation. A stereo camera setup viewing the workspace under high magnification tracks the tip of the micromanipulator and the desired target object being manipulated. Individual behaviors activate in task-specific situations when the micromanipulator tip is in the vicinity of the target. We show that the snap-to behavior can reach and maintain a position at a target with an accuracy of 17.5 ± 0.4μm Root Mean Squared Error (RMSE) distance between the tip and target. Scaling the operator's motions and preventing unwanted contact with non-target objects also provides a larger margin of safety.

  11. Stochastic differential equation (SDE) model of opening gold share price of bursa saham malaysia

    NASA Astrophysics Data System (ADS)

    Hussin, F. N.; Rahman, H. A.; Bahar, A.

    2017-09-01

    Black and Scholes option pricing model is one of the most recognized stochastic differential equation model in mathematical finance. Two parameter estimation methods have been utilized for the Geometric Brownian model (GBM); historical and discrete method. The historical method is a statistical method which uses the property of independence and normality logarithmic return, giving out the simplest parameter estimation. Meanwhile, discrete method considers the function of density of transition from the process of diffusion normal log which has been derived from maximum likelihood method. These two methods are used to find the parameter estimates samples of Malaysians Gold Share Price data such as: Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas, and Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas Shariah. Modelling of gold share price is essential since fluctuation of gold affects worldwide economy nowadays, including Malaysia. It is found that discrete method gives the best parameter estimates than historical method due to the smallest Root Mean Square Error (RMSE) value.

  12. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.

    PubMed

    Bekiaris, Georgios; Triolo, Jin M; Peltre, Clément; Pedersen, Lene; Jensen, Lars S; Bruun, Sander

    2015-12-01

    Biochemical methane potential (BMP) is a very important characteristic of a given feedstock for optimisation of its use in biogas production. However, the long digestion time needed to determine BMP is the main limitation for the use of this assay during the operation of anaerobic digesters to produce biogas. Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) was used to predict the BMP of 87 plant biomasses. The developed calibration model was able to explain 81% of the variance in the measured BMP of a selected test set with a root mean square error (RMSE) of 40NLCH4kg(-1) of volatile solids (VS) and a ratio of performance to deviation (RPD) of 2.38. The interpretation of the regression coefficients used in the calibration revealed a positive correlation of BMP with easily degradable compounds (amorphous cellulose, hemicellulose and aliphatic compounds) and a negative correlation with inhibitors of cellulose hydrolysis (lignin, hemicellulose). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.

    2014-10-01

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study revealsmore » that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.« less

  14. Creation of a Digital Surface Model and Extraction of Coarse Woody Debris from Terrestrial Laser Scans in an Open Eucalypt Woodland

    NASA Astrophysics Data System (ADS)

    Muir, J.; Phinn, S. R.; Armston, J.; Scarth, P.; Eyre, T.

    2014-12-01

    Coarse woody debris (CWD) provides important habitat for many species and plays a vital role in nutrient cycling within an ecosystem. In addition, CWD makes an important contribution to forest biomass and fuel loads. Airborne or space based remote sensing instruments typically do not detect CWD beneath the forest canopy. Terrestrial laser scanning (TLS) provides a ground based method for three-dimensional (3-D) reconstruction of surface features and CWD. This research produced a 3-D reconstruction of the ground surface and automatically classified coarse woody debris from registered TLS scans. The outputs will be used to inform the development of a site-based index for the assessment of forest condition, and quantitative assessments of biomass and fuel loads. A survey grade terrestrial laser scanner (Riegl VZ400) was used to scan 13 positions, in an open eucalypt woodland site at Karawatha Forest Park, near Brisbane, Australia. Scans were registered, and a digital surface model (DSM) produced using an intensity threshold and an iterative morphological filter. The DSMs produced from single scans were compared to the registered multi-scan point cloud using standard error metrics including: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), range, absolute error and signed error. In addition the DSM was compared to a Digital Elevation Model (DEM) produced from Airborne Laser Scanning (ALS). Coarse woody debris was subsequently classified from the DSM using laser pulse properties, including: width and amplitude, as well as point spatial relationships (e.g. nearest neighbour slope vectors). Validation of the coarse woody debris classification was completed using true-colour photographs co-registered to the TLS point cloud. The volume and length of the coarse woody debris was calculated from the classified point cloud. A representative network of TLS sites will allow for up-scaling to large area assessment using airborne or space based sensors to monitor forest condition, biomass and fuel loads.

  15. Comparison of Precipitation from Gauge and Tropical Rainfall Measurement Mission (TRMM) for River Basins of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.

    2017-12-01

    This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test

  16. Modeling Seasonality in Carbon Dioxide Emissions From Fossil Fuel Consumption

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Andres, R. J.

    2004-05-01

    Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels using monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. From these data, the goal is to develop mathematical models that describe the seasonal flux in consumption for each type of fuel, as well as the total emissions for the nation. The time series models have two components. First, the general long-term yearly trend is determined with regression models for the annual totals. After removing the general trend, two alternatives are considered for modeling the seasonality. The first alternative uses the mean of the monthly proportions to predict the seasonal distribution. Because the seasonal patterns are fairly consistent in the United States, this is an effective modeling technique. Such regularity, however, may not be present with data from other nations. Therefore, as a second alternative, an ordinary least squares autoregressive model is used. This model is chosen for its ability to accurately describe dependent data and for its predictive capacity. It also has a meaningful interpretation, as each coefficient in the model quantifies the dependency for each corresponding time lag. Most importantly, it is dynamic, and able to adapt to anomalies and changing patterns. The order of the autoregressive model is chosen by the Akaike Information Criterion (AIC), which minimizes the predicted variance for all models of increasing complexity. To model the monthly fuel consumption, the annual trend is combined with the seasonal model. The models for each fuel type are then summed together to predict the total carbon dioxide emissions. The prediction error is estimated with the root mean square error (RMSE) from the actual estimated emission values. Overall, the models perform very well, with relative RMSE less than 10% for all fuel types, and under 5% for the national total emissions. Development of successful models is important to better understand and predict global environmental impacts from fossil fuel consumption.

  17. Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm

    NASA Astrophysics Data System (ADS)

    Prasad, Ramendra; Deo, Ravinesh C.; Li, Yan; Maraseni, Tek

    2017-11-01

    Forecasting streamflow is vital for strategically planning, utilizing and redistributing water resources. In this paper, a wavelet-hybrid artificial neural network (ANN) model integrated with iterative input selection (IIS) algorithm (IIS-W-ANN) is evaluated for its statistical preciseness in forecasting monthly streamflow, and it is then benchmarked against M5 Tree model. To develop hybrid IIS-W-ANN model, a global predictor matrix is constructed for three local hydrological sites (Richmond, Gwydir, and Darling River) in Australia's agricultural (Murray-Darling) Basin. Model inputs comprised of statistically significant lagged combination of streamflow water level, are supplemented by meteorological data (i.e., precipitation, maximum and minimum temperature, mean solar radiation, vapor pressure and evaporation) as the potential model inputs. To establish robust forecasting models, iterative input selection (IIS) algorithm is applied to screen the best data from the predictor matrix and is integrated with the non-decimated maximum overlap discrete wavelet transform (MODWT) applied on the IIS-selected variables. This resolved the frequencies contained in predictor data while constructing a wavelet-hybrid (i.e., IIS-W-ANN and IIS-W-M5 Tree) model. Forecasting ability of IIS-W-ANN is evaluated via correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe Efficiency (ENS), root-mean-square-error (RMSE), and mean absolute error (MAE), including the percentage RMSE and MAE. While ANN models are seen to outperform M5 Tree executed for all hydrological sites, the IIS variable selector was efficient in determining the appropriate predictors, as stipulated by the better performance of the IIS coupled (ANN and M5 Tree) models relative to the models without IIS. When IIS-coupled models are integrated with MODWT, the wavelet-hybrid IIS-W-ANN and IIS-W-M5 Tree are seen to attain significantly accurate performance relative to their standalone counterparts. Importantly, IIS-W-ANN model accuracy outweighs IIS-ANN, as evidenced by a larger r and WI (by 7.5% and 3.8%, respectively) and a lower RMSE (by 21.3%). In comparison to the IIS-W-M5 Tree model, IIS-W-ANN model yielded larger values of WI = 0.936-0.979 and ENS = 0.770-0.920. Correspondingly, the errors (RMSE and MAE) ranged from 0.162-0.487 m and 0.139-0.390 m, respectively, with relative errors, RRMSE = (15.65-21.00) % and MAPE = (14.79-20.78) %. Distinct geographic signature is evident where the most and least accurately forecasted streamflow data is attained for the Gwydir and Darling River, respectively. Conclusively, this study advocates the efficacy of iterative input selection, allowing the proper screening of model predictors, and subsequently, its integration with MODWT resulting in enhanced performance of the models applied in streamflow forecasting.

  18. Empirical models validation to estimate global solar irradiance on a horizontal plan in Ouargla, Algeria

    NASA Astrophysics Data System (ADS)

    Gougui, Abdelmoumen; Djafour, Ahmed; Khelfaoui, Narimane; Boutelli, Halima

    2018-05-01

    In this paper a comparison between three models for predicting the total solar flux falling on a horizontal surface has been processed. Capderou, Perrin & Brichambaut and Hottel models used to estimate the global solar radiation, the models are identified and evaluated using MATLAB environment. The recorded data have been obtained from a small weather station installed at the LAGE laboratory of Ouargla University, Algeria. Solar radiation data have been recorded using four sample days, every 15thday of the month, (March, April, May and October). The Root Mean Square Error (RMSE), Correlation Coefficient (CC) and Mean Absolute Percentage Error (MAPE) have been also calculated so as that to test the reliability of the proposed models. A comparisons between the measured and the calculated values have been made. The results obtained in this study depict that Perrin & Brichambaut and Capderou models are more effective to estimate the total solar intensity on a horizontal surface for clear sky over Ouargla city (Latitude of 31° 95' N, Longitude of 5° 24' E, and Altitude of 0.141km above Mean Sea Level), these models dedicated from meteorological parameters, geographical location and number of days since the first January. Perrin & Brichambaut and Capderou models give the best tendency with a CC of 0.985-0.999 and 0.932-0.995 consecutively further, Hottel give's a CC of 0.617-0.942.

  19. A Simulation-Based Study on the Comparison of Statistical and Time Series Forecasting Methods for Early Detection of Infectious Disease Outbreaks.

    PubMed

    Yang, Eunjoo; Park, Hyun Woo; Choi, Yeon Hwa; Kim, Jusim; Munkhdalai, Lkhagvadorj; Musa, Ibrahim; Ryu, Keun Ho

    2018-05-11

    Early detection of infectious disease outbreaks is one of the important and significant issues in syndromic surveillance systems. It helps to provide a rapid epidemiological response and reduce morbidity and mortality. In order to upgrade the current system at the Korea Centers for Disease Control and Prevention (KCDC), a comparative study of state-of-the-art techniques is required. We compared four different temporal outbreak detection algorithms: the CUmulative SUM (CUSUM), the Early Aberration Reporting System (EARS), the autoregressive integrated moving average (ARIMA), and the Holt-Winters algorithm. The comparison was performed based on not only 42 different time series generated taking into account trends, seasonality, and randomly occurring outbreaks, but also real-world daily and weekly data related to diarrhea infection. The algorithms were evaluated using different metrics. These were namely, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 score, symmetric mean absolute percent error (sMAPE), root-mean-square error (RMSE), and mean absolute deviation (MAD). Although the comparison results showed better performance for the EARS C3 method with respect to the other algorithms, despite the characteristics of the underlying time series data, Holt⁻Winters showed better performance when the baseline frequency and the dispersion parameter values were both less than 1.5 and 2, respectively.

  20. Developing a regional scale approach for modelling the impacts of fertiliser regime on N2O emissions in Ireland

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; Jones, Michael

    2016-04-01

    Agriculture can be significant contributor to greenhouse gas emissions, this is especially prevalent in Ireland where the agricultural sector accounts for a third of total emissions. The high emissions are linked to both the importance of agriculture in the Irish economy and the focus on dairy and beef production. In order to reduce emissions three main categories are explored: (1) reduction of methane emissions from cattle, (2) reduction of nitrous oxide emissions from fertilisation, and (3) fostering the carbon sequestration potential of soils. The presented research focuses on the latter two categories, especially changes in fertiliser amount and composition. Soil properties and climate conditions measured at the four experimental sites (two silage and two spring barley) were used to parameterise four biogeochemical models (DayCent, ECOSSE, DNDC 9.4, and DNDC 9.5). All sites had a range of different fertiliser regimes applied. This included changes in amount (0 to 500 kg N/ha on grassland and 0 to 200 kg N/ha on arable fields), fertiliser type (calcium ammonium nitrate and urea), and added inhibitors (the nitrification inhibitor DCD, and the urease inhibitor Agrotain). Overall, 20 different treatments were applied to the grassland sites, and 17 to the arable sites. Nitrous oxide emissions, measured in 2013 and 2014 at all sites using closed chambers, were made available to validate model results for these emissions. To assess model performance for the daily measurements, the Root Mean Square Error (RMSE) was compared to the measured 95% confidence interval of the measured data (RMSE95). Bias was tested comparing the relative error (RE) the 95 % confidence interval of the relative error (RE95). Preliminary results show mixed model performance, depending on the model, site, and the fertiliser regime. However, with the exception of urea fertilisation and added inhibitors, all scenarios were reproduced by at least one model with no statistically significant total error (RMSE < RMSE95) or bias (RE< RE95). A general trend observed was that model performance declined with increased fertilisation rates. Overall, DayCent showed the best performance, however it does not provide the possibility to model the addition urease inhibitors. The results suggest that modelling changes in fertiliser regime on a large scale may require a multi-model approach to assure best performance. Ultimately, the research aims to develop a GIS based platform to apply such an approach on a regional scale.

Top