Regulation of root hair initiation and expansin gene expression in Arabidopsis
NASA Technical Reports Server (NTRS)
Cho, Hyung-Taeg; Cosgrove, Daniel J.
2002-01-01
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues. PMID:24223858
Ludwig, Yvonne; Zhang, Yanxiang; Hochholdinger, Frank
2013-01-01
The plant hormone auxin plays a key role in the coordination of many aspects of growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) genes encode instable primary auxin responsive regulators of plant development that display a protein structure with four characteristic domains. In the present study, a comprehensive analysis of the 34 members of the maize Aux/IAA gene family was performed. Phylogenetic reconstructions revealed two classes of Aux/IAA proteins that can be distinguished by alterations in their domain III. Seven pairs of paralogous maize Aux/IAA proteins were discovered. Comprehensive root-type and tissue-specific expression profiling revealed unique expression patterns of the diverse members of the gene family. Remarkably, five of seven pairs of paralogous genes displayed highly correlated expression patterns in roots. All but one (ZmIAA23) tested maize Aux/IAA genes were auxin inducible, displaying two types of auxin induction within three hours of treatment. Moreover, 51 of 55 (93%) differential Aux/IAA expression patterns between different root-types followed the expression tendency: crown roots > seminal roots > primary roots > lateral roots. This pattern might imply root-type-specific regulation of Aux/IAA transcript abundance. In summary, the detailed analysis of the maize Aux/IAA gene family provides novel insights in the evolution and developmental regulation and thus the function of these genes in different root-types and tissues.
USDA-ARS?s Scientific Manuscript database
MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...
Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.).
Li, Yuanya; Liu, Shaojun; Yu, Zhiming; Liu, Yu; Wu, Ping
2013-06-01
Novel root-specific promoters are important for developing methods to drive root-specific gene expression for nutrient and water absorption. RT-PCR (reverse transcription polymerase chain reaction) analysis identified high expression levels of Os03g01700 and Os02g37190 in root tissues across developmental stages in comparison with the constitutive genes OsAct1 (rice Actin1 gene), OsUbi1 (rice polyubiquitin rubi1 gene), and OsCc1 (rice cytochrome c gene). The copy numbers of Os03g01700 and Os02g37190 were evaluated by qRT-PCR. The results showed that Os03g01700 and Os02g37190 transcripts were highly accumulated in the examined root tissues but were not detected in young embryos or leaves at the indicated days after germination or in the panicle, in contrast to the ubiquitous expression of OsAct1, OsUbi1, and OsCc1. Additionally, the promoter regions of these two genes were linked to the GUSplus reporter gene and transformed into rice. GUS staining of the transgenic plants showed that the Os03g01700 and Os02g37190 promoters were active in primary and secondary roots throughout the developmental stages, except in root hairs. The GUSPlus transcript levels were also highly root-specific in the transgenic rice. Overall, the two promoters are highly active in the root tissues of rice and can be useful for the root-specific enhancement of target gene(s). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Li, Kui-Peng; Sun, Xiao-Mei; Han, Hua; Zhang, Shou-Gong
2014-11-10
The full-length cDNA and genomic sequences of the BABY BOOM (BBM) gene, designated LkBBM, were isolated from Larix kaempferi × Larix olgensis. The 3324 bp cDNA was cloned and its open reading frame (ORF) consists of 2370 nucleotides. The deduced 789 amino acid protein contains two AP2 domains and a BBM specific motif. Four conserved motifs between BBM and PLT were identified, which may be conducive to the similar function of BBM and PLT. The three dimensional (3D) structure of LkBBM was predicted and β-sheets in the AP2-R2 domain of LkBBM might recognize the specific base pairs in the major groove. Analysis of the LkBBM gene structure indicates that the gene has eight introns and nine exons. In the 5'-flanking promoter region of LkBBM, many important potential cis-acting elements were identified, such as the TATABOX5 element (a functional TATA element), ROOTMOTIFTAPOX1 element (element of root specificity), AUXREPSIAA4 element (element involved in auxin responsiveness and gene expression in root meristem), MYB1AT element (element involved in MYB recognition), ARR1AT element (element involved in cytokinin responsiveness), GARE1OSREP1 element (element involved in gibberellin responsiveness) and PYRIMIDINEBOXHVEPB1 element (element involved in abscisic acid responsiveness), which all suggested that the expression of LkBBM is highly regulated. Compared with gene expression levels in the stem, stem tip and leaf, LkBBM shows a specific expression in the root, which indicates that LkBBM plays a key role in regulating the development and growth of root in larch. In the processing of larch adventitious root formation, LkBBM started to express on the eighth day after rooting treatment and its transcript level increased continuously afterwards. According to the gene characteristics, LkBBM is proposed as a molecular marker for root primordia of larch, and the initial period of LkBBM expression may be the formation period of root primordia in the processing of adventitious rooting of larch. Copyright © 2014 Elsevier B.V. All rights reserved.
Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé
2016-01-01
Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.
Ihemere, Uzoma E.; Narayanan, Narayanan N.; Sayre, Richard T.
2012-01-01
We have engineered the tropical root crop cassava (Manihot esculenta) to express the Chlamydomonas reinhardtii iron assimilatory gene, FEA1, in its storage roots with the objective of enhancing the root nutritional qualities. Iron levels in mature cassava storage roots were increased from 10 to 36 ppm in the highest iron accumulating transgenic lines. These iron levels are sufficient to meet the minimum daily requirement for iron in a 500 g meal. Significantly, the expression of the FEA1 gene in storage roots did not alter iron levels in leaves. Transgenic plants also had normal levels of zinc in leaves and roots consistent with the specific uptake of ferrous iron mediated by the FEA1 protein. Relative to wild-type plants, fibrous roots of FEA1 expressing plants had reduced Fe (III) chelate reductase activity consistent with the more efficient uptake of iron in the transgenic plants. We also show that multiple cassava genes involved in iron homeostasis have altered tissue-specific patterns of expression in leaves, stems, and roots of transgenic plants consistent with increased iron sink strength in transgenic roots. These results are discussed in terms of strategies for the iron biofortification of plants. PMID:22993514
OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice.
Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok
2007-03-01
Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.
Lauter, F R; Ninnemann, O; Bucher, M; Riesmeier, J W; Frommer, W B
1996-01-01
Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8755617
Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu
2016-01-01
Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles. PMID:27513952
Diversification of Root Hair Development Genes in Vascular Plants.
Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John
2017-07-01
The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.
Diversification of Root Hair Development Genes in Vascular Plants1[OPEN
Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui
2017-01-01
The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. PMID:28487476
Gbadegesin, M A; Beeching, J R
2011-06-07
Cassava can be cultivated on impoverished soils with minimum inputs, and its storage roots are a staple food for millions in Africa. However, these roots are low in bioavailable nutrients and in protein content, contain cyanogenic glycosides, and suffer from a very short post-harvest shelf-life, and the plant is susceptible to viral and bacterial diseases prevalent in Africa. The demand for improvement of cassava with respect to these traits comes from both farmers and national agricultural institutions. Genetic improvement of cassava cultivars by molecular biology techniques requires the availability of appropriate genes, a system to introduce these genes into cassava, and the use of suitable gene promoters. Cassava root-specific promoter for auxin-repressed protein was isolated using the gene walking approach, starting with a cDNA sequence. In silico analysis of promoter sequences revealed putative cis-acting regulatory elements, including root-specific elements, which may be required for gene expression in vascular tissues. Research on the activities of this promoter is continuing, with the development of plant expression cassettes for transformation into major African elite lines and farmers' preferred cassava cultivars to enable testing of tissue-specific expression patterns in the field.
Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi
2011-10-01
The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.
Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F
2012-12-01
In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.
Luschnig, Christian; Gaxiola, Roberto A.; Grisafi, Paula; Fink, Gerald R.
1998-01-01
The EIR1 gene of Arabidopsis is a member of a family of plant genes with similarities to bacterial membrane transporters. This gene is expressed only in the root, which is consistent with the phenotypes of the eir1 mutants—the roots are agravitropic and have a reduced sensitivity to ethylene. The roots of eir1 mutants are also insensitive to the excess auxin produced by alf1-1 and fail to induce an auxin-inducible gene in the expansion zone. Although they fail to respond to internally generated auxin, they respond normally to externally applied auxin. Expression of the EIR1 gene in Saccharomyces cerevisiae confers resistance to fluorinated indolic compounds. Taken together, these data suggest that the EIR1 protein has a root-specific role in the transport of auxin. PMID:9679062
Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.
Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice1[C][W
Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok
2007-01-01
Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice. PMID:17259288
Cho, Hyun-Min
2017-01-01
ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage. PMID:28087829
Complexity and specificity of the maize (Zea mays L.) root hair transcriptome.
Hey, Stefan; Baldauf, Jutta; Opitz, Nina; Lithio, Andrew; Pasha, Asher; Provart, Nicholas; Nettleton, Dan; Hochholdinger, Frank
2017-04-01
Root hairs are tubular extensions of epidermis cells. Transcriptome profiling demonstrated that the single cell-type root hair transcriptome was less complex than the transcriptome of multiple cell-type primary roots without root hairs. In total, 831 genes were exclusively and 5585 genes were preferentially expressed in root hairs [false discovery rate (FDR) ≤1%]. Among those, the most significantly enriched Gene Ontology (GO) functional terms were related to energy metabolism, highlighting the high energy demand for the development and function of root hairs. Subsequently, the maize homologs for 138 Arabidopsis genes known to be involved in root hair development were identified and their phylogenetic relationship and expression in root hairs were determined. This study indicated that the genetic regulation of root hair development in Arabidopsis and maize is controlled by common genes, but also shows differences which need to be dissected in future genetic experiments. Finally, a maize root view of the eFP browser was implemented including the root hair transcriptome of the present study and several previously published maize root transcriptome data sets. The eFP browser provides color-coded expression levels for these root types and tissues for any gene of interest, thus providing a novel resource to study gene expression and function in maize roots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Siddique, Shahid; Wieczorek, Krzysztof; Szakasits, Dagmar; Kreil, David P; Bohlmann, Holger
2011-10-01
The beet cyst nematode Heterodera schachtii induces a feeding site, called syncytium, in roots of host plants. In Arabidopsis, one of the genes whose expression is strongly induced in these structures is Pdf2.1 which codes for an antimicrobial plant defensin. Arabidopsis has 13 plant defensin genes. Besides Pdf2.1, the Pdf2.2 and Pdf2.3 genes were strongly expressed in syncytia and therefore the expression of all three Pdf genes was studied in detail. The promoter of the Pdf2.1 gene turned out to be an interesting candidate to drive a syncytium-specific expression of foreign genes as RT-PCR showed that apart from the feeding site it was only expressed in siliques (seeds). The Pdf2.2 and Pdf2.3 genes were in addition expressed in seedlings, roots, leaves, stems, and flowers. These results were supported by the analysis of promoter::GUS lines. After infection with H. schachtii all GUS lines showed a strong staining in syncytia at 5 and 15 dpi. This expression pattern was confirmed by in situ RT-PCR. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent
2016-01-01
Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936
Kakrana, Atul; Kumar, Anil; Satheesh, Viswanathan; Abdin, M. Z.; Subramaniam, Kuppuswamy; Bhattacharya, R. C.; Srinivasan, Ramamurthy; Sirohi, Anil; Jain, Pradeep K.
2017-01-01
The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS) promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants. PMID:29312363
Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé
2016-01-01
Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants. PMID:27375649
Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu
2015-01-01
The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.
Repressor-mediated tissue-specific gene expression in plants
Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA
2009-02-17
Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.
Huang, Kan; Mellor, Karolina E; Paul, Shom N; Lawson, Mark J; Mackey, Aaron J; Timko, Michael P
2012-08-17
Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most domesticated forms of cowpea are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at the early (6 days post-inoculation (dpi)) and late (13 dpi) stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z. Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301-SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host's defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-01-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518
Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.
Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.
Zhou, Zhe; Cong, Peihua; Tian, Yi; Zhu, Yanmin
2017-01-01
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.
Using RNA-seq data to select reference genes for normalizing gene expression in apple roots
Zhou, Zhe; Cong, Peihua; Tian, Yi
2017-01-01
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization. PMID:28934340
Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi
2015-09-01
All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.
2014-01-01
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032
Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim
2010-06-01
A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.
Regulation of rice root development by a retrotransposon acting as a microRNA sponge.
Cho, Jungnam; Paszkowski, Jerzy
2017-08-26
It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.
Loebers, Andreas; Müller-Uri, Frieder; Kreis, Wolfgang
2014-03-01
The pungent taste of horseradish is caused by isothiocyanates which are released from glucosinolates by myrosinases. These enzymes are encoded by genes belonging to one of two subfamilies, termed MYR I and MYR II, respectively. A MYR II-type myrosinase gene was identified for the first time in horseradish. The gene termed ArMY2 was only expressed in young roots. A full-length cDNA encoding a myrosinase termed ArMy2 was isolated and heterologously expressed in Pichia pastoris. The recombinant His-tagged enzyme was characterized biochemically. Substrate affinity was 5 times higher towards gluconasturtiin than towards sinigrin. Gluconasturtiin was found to be the most abundant glucosinolate in young horseradish roots while sinigrin dominated in storage roots and leaves. This indicates that a specialized glucosinolate-myrosinase defense system might be active in young roots. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Lee, Wan Sin; Gudimella, Ranganath; Wong, Gwo Rong; Tammi, Martti Tapani; Khalid, Norzulaani; Harikrishna, Jennifer Ann
2015-01-01
Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana. PMID:25993649
Lee, Wan Sin; Gudimella, Ranganath; Wong, Gwo Rong; Tammi, Martti Tapani; Khalid, Norzulaani; Harikrishna, Jennifer Ann
2015-01-01
Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
Liu, Qin; Dang, Huijie; Chen, Zhijian; Wu, Junzheng; Chen, Yinhua; Chen, Songbi; Luo, Lijuan
2018-03-26
The sugar transporter ( STP ) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava ( Manihot esculenta ) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes ( MeSTP1 - 20 ) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast ( Saccharomyces cerevisiae ) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.
Roy, Sushmita
2017-01-01
Arbuscular mycorrhizal (AM) associations enhance the phosphorous and nitrogen nutrition of host plants, but little is known about their role in potassium (K+) nutrition. Medicago truncatula plants were cocultured with the AM fungus Rhizophagus irregularis under high and low K+ regimes for 6 weeks. We determined how K+ deprivation affects plant development and mineral acquisition and how these negative effects are tempered by the AM colonization. The transcriptional response of AM roots under K+ deficiency was analyzed by whole-genome RNA sequencing. K+ deprivation decreased root biomass and external K+ uptake and modulated oxidative stress gene expression in M. truncatula roots. AM colonization induced specific transcriptional responses to K+ deprivation that seem to temper these negative effects. A gene network analysis revealed putative key regulators of these responses. This study confirmed that AM associations provide some tolerance to K+ deprivation to host plants, revealed that AM symbiosis modulates the expression of specific root genes to cope with this nutrient stress, and identified putative regulators participating in these tolerance mechanisms. PMID:28159827
2011-01-01
Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389
Canales, Javier; Moyano, Tomás C.; Villarroel, Eva; Gutiérrez, Rodrigo A.
2014-01-01
Nitrogen (N) is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than 2000 genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and 11 highly co-expressed gene clusters (modules). Four of these gene network modules have robust nitrate responsive functions such as transport, signaling, and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants. PMID:24570678
Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota
Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia
2013-01-01
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569
2012-01-01
Background Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most domesticated forms of cowpea are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. Results Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at the early (6 days post-inoculation (dpi)) and late (13 dpi) stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z. Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301 – SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. Conclusion Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host’s defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds. PMID:22900582
Genome organization and characteristics of soybean microRNAs
2012-01-01
Background microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development. PMID:22559273
Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank
2015-01-01
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.; ...
2016-10-04
We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino-Kyker, Sarah R.; Kluber, Laurel A.; Coyle, Kaitlin P.
We present the majority of terrestrial plant roots are colonized by arbuscular mycorrhizal (AM) fungi that, in exchange for carbon, provide plants with enhanced nutrient uptake — most notably inorganic phosphate (P i). To mediate the uptake of Pi from the soil, AM fungi possess high affinity inorganic phosphate transporters (PTs). Under laboratory conditions, P i concentrations have been shown to regulate AM fungal-specific PT gene expression. The relationship between PT expression and P i in the field remains unexplored. Here we quantify AM fungal-specific PTs from maple tree roots in situ. In an effort to limit edaphic parameters, rootmore » samples were collected from manipulated forested plots that had elevated soil P i availability, either through direct P i application or elevating pH to lower exchangeable aluminum. The aim of the study was to examine AM fungal-specific PT gene expression both prior to and following soil P i amendment; however, a direct correlation between soil P i concentration and PT gene expression was not observed. PT transcripts were detected to a greater extent under elevated pH and, while our results are confounded by an overall low detection of PT genes (23 % of all samples collected), our findings raise interesting questions regarding the role of soil pH on PT function. In conclusion, our study is a first step in understanding how edaphic properties influence PT expression and plant P acquisition in mature tree roots.« less
Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G
2013-12-01
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.
Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj
2018-02-01
Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.
Transposon tagging and the study of root development in Arabidopsis
NASA Technical Reports Server (NTRS)
Tsugeki, R.; Olson, M. L.; Fedoroff, N. V.
1998-01-01
The maize Ac-Ds transposable element family has been used as the basis of transposon mutagenesis systems that function in a variety of plants, including Arabidopsis. We have developed modified transposons and methods which simplify the detection, cloning and analysis of insertion mutations. We have identified and are analyzing two plant lines in which genes expressed either in the root cap cells or in the quiescent cells, cortex/endodermal initial cells and columella cells of the root cap have been tagged with a transposon carrying a reporter gene. A gene expressed in root cap cells tagged with an enhancer-trap Ds was isolated and its corresponding EST cDNA was identified. Nucleotide and deduced amino acid sequences of the gene show no significant similarity to other genes in the database. Genetic ablation experiments have been done by fusing a root cap-specific promoter to the diphtheria toxin A-chain gene and introducing the fusion construct into Arabidopsis plants. We find that in addition to eliminating gravitropism, root cap ablation inhibits elongation of roots by lowering root meristematic activities.
Changes in ABA and gene expression in cold-acclimated sugar maple.
Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R
1997-01-01
To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.
Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan
2013-01-01
On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266
Sojikul, Punchapat; Kongsawadworakul, Panida; Viboonjun, Unchera; Thaiprasit, Jittrawan; Intawong, Burapat; Narangajavana, Jarunya; Svasti, Mom Rajawong Jisnuson
2010-10-01
Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis. Copyright © Physiologia Plantarum 2010.
de Souza, C R; Aragão, F J; Moreira, E C O; Costa, C N M; Nascimento, S B; Carvalho, L J
2009-03-24
Cassava is one of the most important tropical food crops for more than 600 million people worldwide. Transgenic technologies can be useful for increasing its nutritional value and its resistance to viral diseases and insect pests. However, tissue-specific promoters that guarantee correct expression of transgenes would be necessary. We used inverse polymerase chain reaction to isolate a promoter sequence of the Mec1 gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in cassava storage roots. In silico analysis revealed putative cis-acting regulatory elements within this promoter sequence, including root-specific elements that may be required for its expression in vascular tissues. Transient expression experiments showed that the Mec1 promoter is functional, since this sequence was able to drive GUS expression in bean embryonic axes. Results from our computational analysis can serve as a guide for functional experiments to identify regions with tissue-specific Mec1 promoter activity. The DNA sequence that we identified is a new promoter that could be a candidate for genetic engineering of cassava roots.
Wan, Shen; Johnson, Amanda M; Altosaar, Illimar
2012-01-01
The nitrous oxide (N2O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N2O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N2OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N2OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N2OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 µmol N2O reduced min−1 g−1 root protein. Another event, plant line 1.9, also demonstrated high specific activity of N2OR, 13.2 µmol N2O reduced min−1 g−1 root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N2O that has continued to increase linearly (about 0.26% year−1) over the past half-century. PMID:22423324
Zhao, Qing; Zhang, Yang; Wang, Gang; Hill, Lionel; Weng, Jing-Ke; Chen, Xiao-Ya; Xue, Hongwei; Martin, Cathie
2016-01-01
Wogonin and baicalein are bioactive flavones in the popular Chinese herbal remedy Huang-Qin (Scutellaria baicalensis Georgi). These specialized flavones lack a 4′-hydroxyl group on the B ring (4′-deoxyflavones) and induce apoptosis in a wide spectrum of human tumor cells in vitro and inhibit tumor growth in vivo in different mouse tumor models. Root-specific flavones (RSFs) from Scutellaria have a variety of reported additional beneficial effects including antioxidant and antiviral properties. We describe the characterization of a new pathway for the synthesis of these compounds, in which pinocembrin (a 4′-deoxyflavanone) serves as a key intermediate. Although two genes encoding flavone synthase II (FNSII) are expressed in the roots of S. baicalensis, FNSII-1 has broad specificity for flavanones as substrates, whereas FNSII-2 is specific for pinocembrin. FNSII-2 is responsible for the synthesis of 4′-deoxyRSFs, such as chrysin and wogonin, wogonoside, baicalein, and baicalin, which are synthesized from chrysin. A gene encoding a cinnamic acid–specific coenzyme A ligase (SbCLL-7), which is highly expressed in roots, is required for the synthesis of RSFs by FNSII-2, as demonstrated by gene silencing. A specific isoform of chalcone synthase (SbCHS-2) that is highly expressed in roots producing RSFs is also required for the synthesis of chrysin. Our studies reveal a recently evolved pathway for biosynthesis of specific, bioactive 4′-deoxyflavones in the roots of S. baicalensis. PMID:27152350
Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.
2010-01-01
Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855
Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie
2010-07-01
*Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.
Wang, Min; Wang, Qinglian; Zhang, Baohong
2013-11-01
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions. © 2013.
Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi
2007-01-01
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.
Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich
2012-07-01
Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant's chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature.
Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich
2012-01-01
Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491
Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops
Schiefelbein, John; Huang, Ling; Zheng, Xiaohua
2014-01-01
The specification of distinct cell types in multicellular organisms is accomplished via establishment of differential gene expression. A major question is the nature of the mechanisms that establish this differential expression in time and space. In plants, the formation of the hair and non-hair cell types in the root epidermis has been used as a model to understand regulation of cell specification. Recent findings show surprising complexity in the number and the types of regulatory interactions between the multiple transcription factor genes/proteins influencing root epidermis cell fate. Here, we describe this regulatory network and the importance of the multiple feedback loops for its establishment and maintenance. PMID:24596575
Delay, Christina; Imin, Nijat; Djordjevic, Michael A
2013-12-01
The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.
The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Que; Ma, Wei; Yang, Haibing
WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less
The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots
Kong, Que; Ma, Wei; Yang, Haibing; ...
2017-08-26
WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in themore » wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis.« less
2010-01-01
Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is co-expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are involved in root and nodule development. Conclusions The genome scale analysis of P450s in soybean reveals many unique features of these important enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide important leads toward functional genomics studies of soybean P450s and their regulatory network through the integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific P450s and their further exploitation may help us to better understand the intriguing process of soybean and rhizobium interaction. PMID:21062474
Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules
Limpens, Erik; Moling, Sjef; Hooiveld, Guido; Pereira, Patrícia A.; Bisseling, Ton; Becker, Jörg D.; Küster, Helge
2013-01-01
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies. PMID:23734198
Plasencia, Anna; Soler, Marçal; Dupas, Annabelle; Ladouce, Nathalie; Silva-Martins, Guilherme; Martinez, Yves; Lapierre, Catherine; Franche, Claudine; Truchet, Isabelle; Grima-Pettenati, Jacqueline
2016-06-01
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Ying, Mengchao; Kidou, Shin-Ichiro
2017-07-01
To adapt to cold conditions, barley plants rely on specific mechanisms, which have not been fully understood. In this study, we characterized a novel barley cold-induced gene identified using a PCR-based high coverage gene expression profiling method. The identified gene encodes a small protein that we named CISP1 (Cold-induced Small Protein 1). Homology searches of sequence databases revealed that CISP1 homologs (CISP2 and CISP3) exist in barley genome. Further database analyses showed that the CISP1 homologs were widely distributed in cold-tolerant plants such as wheat and rye. Quantitative reverse transcription PCR analyses indicated that the expression of barley CISP genes was markedly increased in roots exposed to cold conditions. In situ hybridization analyses showed that the CISP1 transcripts were localized in the root tip and lateral root primordium. We also demonstrated that the CISP1 protein bound to RNA. Taken together, these findings indicate that CISP1 and its homologs encoding small RNA-binding proteins may serve as RNA chaperones playing a vital role in the cold adaptation of barley root. This is the first report describing the likely close relationship between root-specific genes and the cold adaptation process, as well as the potential function of the identified genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Pankievicz, V C S; Camilios-Neto, D; Bonato, P; Balsanelli, E; Tadra-Sfeir, M Z; Faoro, H; Chubatsu, L S; Donatti, L; Wajnberg, G; Passetti, F; Monteiro, R A; Pedrosa, F O; Souza, E M
2016-04-01
Herbaspirillum seropedicae is a diazotrophic and endophytic bacterium that associates with economically important grasses promoting plant growth and increasing productivity. To identify genes related to bacterial ability to colonize plants, wheat seedlings growing hydroponically in Hoagland's medium were inoculated with H. seropedicae and incubated for 3 days. Total mRNA from the bacteria present in the root surface and in the plant medium were purified, depleted from rRNA and used for RNA-seq profiling. RT-qPCR analyses were conducted to confirm regulation of selected genes. Comparison of RNA profile of root attached and planktonic bacteria revealed extensive metabolic adaptations to the epiphytic life style. These adaptations include expression of specific adhesins and cell wall re-modeling to attach to the root. Additionally, the metabolism was adapted to the microxic environment and nitrogen-fixation genes were expressed. Polyhydroxybutyrate (PHB) synthesis was activated, and PHB granules were stored as observed by microscopy. Genes related to plant growth promotion, such as auxin production were expressed. Many ABC transporter genes were regulated in the bacteria attached to the roots. The results provide new insights into the adaptation of H. seropedicae to the interaction with the plant.
Gene profiling of the red light signalling pathways in roots.
Molas, Maria Lia; Kiss, John Z; Correll, Melanie J
2006-01-01
Red light, acting through the phytochromes, controls numerous aspects of plant development. Many of the signal transduction elements downstream of the phytochromes have been identified in the aerial portions of the plant; however, very few elements in red-light signalling have been identified specifically for roots. Gene profiling studies using microarrays and quantitative Real-Time PCR were performed to characterize gene expression changes in roots of Arabidopsis seedlings exposed to 1 h of red light. Several factors acting downstream of phytochromes in red-light signalling in roots were identified. Some of the genes found to be differentially expressed in this study have already been characterized in the red-light-signalling pathway for whole plants. For example, PHYTOCHROME KINASE 1 (PKS1), LONG HYPOCOTYL 5 (HY5), EARLY FLOWERING 4 (ELF4), and GIGANTEA (GI) were all significantly up-regulated in roots of seedlings exposed to 1 h of red light. The up-regulation of SUPPRESSOR OF PHYTOCHROME A RESPONSES 1 (SPA1) and CONSTITUTIVE PHOTOMORPHOGENIC 1-like (COP1-like) genes suggests that the PHYA-mediated pathway was attenuated by red light. In addition, genes involved in lateral root and root hair formation, root plastid development, phenylpropanoid metabolism, and hormone signalling were also regulated by exposure to red light. Interestingly, members of the RPT2/NPH3 (ROOT PHOTOTROPIC 2/NON PHOTOTROPIC HYPOCOTYL 3) family, which have been shown to mediate blue-light-induced phototropism, were also differentially regulated in roots in red light. Therefore, these results suggest that red and blue light pathways interact in roots of seedlings and that many elements involved in red-light-signalling found in the aerial portions of the plant are differentially expressed in roots within 1 h of red light exposure.
Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank
2014-09-01
The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Positional signaling mediated by a receptor-like kinase in Arabidopsis.
Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John
2005-02-18
The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.
Liu, Bin; Liu, Xingwang; Liu, Ying; Xue, Shudan; Cai, Yanling; Yang, Sen; Dong, Mingming; Zhang, Yaqi; Liu, Huiling; Zhao, Binyu; Qi, Changhong; Zhu, Ning; Ren, Huazhong
2016-01-01
Cucumber (Cucumis sativus L.) is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita). However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D) reduced root-knot nematode (RKN) parasitism. It is known that Actin-Depolymerizing Factor (ADF) affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF) genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I), and CsADF6 (Subclass III) have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes), and CsADF5 (Subclass IV) in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2, and CsADF2-3), with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI) with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2) showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III) showed a specific induction at 21 DAI, while CsADF5 (Subclass IV) was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately 2-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection. PMID:27695469
Mustroph, Angelika; Bailey-Serres, Julia
2010-03-01
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.
Li, Wenfeng; Lan, Ping
2015-01-01
Root hairs, tubular-shaped outgrowths from root epidermal cells, play important roles in the acquisition of nutrients and water, interaction with microbe, and in plant anchorage. As a specialized cell type, root hairs, especially in Arabidopsis, provide a pragmatic research system for various aspects of studies. Here, we re-analyzed the RNA-seq transcriptome profile of Arabidopsis root hair cells by Tophat software and used Cufflinks program to mine the differentially expressed genes. Results showed that ERD14, RIN4, AT5G64401 were among the most abundant genes in the root hair cells; while ATGSTU2, AT5G54940, AT4G30530 were highly expressed in non-root hair tissues. In total, 5409 genes, with a fold change greater than two-fold (FDR adjusted P < 0.05), showed differential expression between root hair cells and non-root hair tissues. Of which, 61 were expressed only in root hair cells. One hundred and thirty-six out of 5409 genes have been reported to be “core” root epidermal genes, which could be grouped into nine clusters according to expression patterns. Gene ontology (GO) analysis of the 5409 genes showed that processes of “response to salt stress,” “ribosome biogenesis,” “protein phosphorylation,” and “response to water deprivation” were enriched. Whereas only process of “intracellular signal transduction” was enriched in the subset of 61 genes expressed only in the root hair cells. One hundred and twenty-one unannotated transcripts were identified and 14 of which were shown to be differentially expressed between root hair cells and non-root hair tissues, with transcripts XLOC_000763, XLOC_031361, and XLOC_005665 being highly expressed in the root hair cells. The comprehensive transcriptomic analysis provides new information on root hair gene activity and sets the stage for follow-up experiments to certify the biological functions of the newly identified genes and novel transcripts in root hair cell morphogenesis. PMID:26106402
Kulichikhin, Konstantin; Yamauchi, Takaki; Watanabe, Kohtaro; Nakazono, Mikio
2014-10-01
The formation of a barrier to radial oxygen (O2 ) loss (ROL) in the root is an important adaptation of plants to root flooding, but the biochemical changes in plant roots where the barrier is formed are unclear. In this study, we analysed metabolic profiles and gene expression profiles in roots of rice (Oryza sativa L.) plants grown under stagnant deoxygenated conditions, which induce suberization in the outer cell layers of the roots and formation of barrier to ROL. Under these conditions, two distinctive biochemical features of the roots were the accumulations of malic acid and very long chain fatty acids (VLCFAs). We also showed that the expressions of some genes encoding plastid-localized enzymes, which convert malic acid to acetyl coenzyme A (AcCoA), were simultaneously up-regulated under stagnant conditions. The expression levels of these genes in specific root tissues isolated by laser microdissection suggested that malic acid is converted to AcCoA predominantly in the plastids in the outer cell layers of rice roots. We propose that the physiological role of malic acid accumulation in rice roots grown under stagnant conditions is to provide a substrate for the biosynthesis of fatty acids, which, in turn, are used in the biosynthesis of suberin. © 2014 John Wiley & Sons Ltd.
Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs.
Hossain, Md Shakhawat; Kawakatsu, Taiji; Kim, Kyung Do; Zhang, Ning; Nguyen, Cuong T; Khan, Saad M; Batek, Josef M; Joshi, Trupti; Schmutz, Jeremy; Grimwood, Jane; Schmitz, Robert J; Xu, Dong; Jackson, Scott A; Ecker, Joseph R; Stacey, Gary
2017-04-01
Chromatin modifications, such as cytosine methylation of DNA, play a significant role in mediating gene expression in plants, which affects growth, development, and cell differentiation. As root hairs are single-cell extensions of the root epidermis and the primary organs for water uptake and nutrients, we sought to use root hairs as a single-cell model system to measure the impact of environmental stress. We measured changes in cytosine DNA methylation in single-cell root hairs as compared with multicellular stripped roots, as well as in response to heat stress. Differentially methylated regions (DMRs) in each methylation context showed very distinct methylation patterns between cell types and in response to heat stress. Intriguingly, at normal temperature, root hairs were more hypermethylated than were stripped roots. However, in response to heat stress, both root hairs and stripped roots showed hypomethylation in each context, especially in the CHH context. Moreover, expression analysis of mRNA from similar tissues and treatments identified some associations between DMRs, genes and transposons. Taken together, the data indicate that changes in DNA methylation are directly or indirectly associated with expression of genes and transposons within the context of either specific tissues/cells or stress (heat). © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Rothe, Grit; Hachiya, Akira; Yamada, Yasuyuki; Hashimoto, Takashi; Dräger, Birgit
2003-09-01
Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.
Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank
2014-09-01
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
He, Bin; Tao, Xiang; Gu, Yinghong; Wei, Changhe; Cheng, Xiaojie; Xiao, Suqin; Cheng, Zaiquan; Zhang, Yizheng
2015-01-01
Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93–11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana. PMID:26640944
Facchini, Peter J.; Penzes-Yost, Catherine; Samanani, Nailish; Kowalchuk, Brett
1998-01-01
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species. PMID:9733527
Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...
2018-04-24
Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian
Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less
Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki
2018-01-01
In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818
Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.
Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T
2016-01-15
Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.
Pei, Jinli; Wang, Huijun; Xia, Zhiqiang; Liu, Chen; Chen, Xin; Ma, Pingan; Lu, Cheng; Wang, Wenquan
2015-08-01
Starch branching enzyme (SBE) is one of the key enzymes involved in starch biosynthetic metabolism. In this study, six SBE family genes were identified from the cassava genome. Phylogenetic analysis divided the MeSBE family genes into dicot family A, B, C, and the new group. Tissue-specific analysis showed that MeSBE2.2 was strongly expressed in leaves, stems cortex, and root stele, and MeSBE3 had high expression levels in stem cortex and root stele of plants in the rapid growth stage under field condition, whereas the expression levels of MeSBE2.1, MeSBE4, and MeSBE5 were low except for in stems cortex. The transcriptional activity of MeSBE2.2 and MeSBE3 was higher compared with other members and gradually increased in the storage roots during root growth process, while the other MeSBE members normally remained low expression levels. Expression of MeSBE2.2 could be induced by salt, drought, exogenous abscisic acid, jasmonic acid, and salicylic acid signals, while MeSBE3 had positive response to drought, salt, exogenous abscisic acid, and salicylic acid in leaves but not in storage root, indicating that they might be more important in starch biosynthesis pathway under diverse environments.
Chen, Ke; de Borne, François Dorlhac; Julio, Emilie; Obszynski, Julie; Pale, Patrick; Otten, Léon
2016-08-01
Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua
2015-05-01
Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the change in TIA accumulation does not correlate with expression of the associated genes. Our previous research found significant accumulation of vinblastine in response to high concentration of ethylene and Cu suggesting the involvement of posttranscriptional and posttranslational mechanisms in a spatial and temporal manner. In this study, meta-analysis reveals ERF and MPK form a positive feedback loop connecting two pathways actively involved in response of TIA pathway genes to ethylene and copper in C. roseus.
Expression pattern of salt tolerance-related genes in Aegilops cylindrica.
Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit
2018-02-01
Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.
NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.
Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M
1993-11-01
NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.
NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.
Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M
1993-01-01
NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933
Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao
2013-01-01
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127
Wieckowski, Yana; Schiefelbein, John
2012-07-01
Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.
Wieckowski, Yana; Schiefelbein, John
2012-01-01
Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development. PMID:22829145
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.
Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando
2015-09-01
Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.
de Almeida, Márcia Rodrigues; de Bastiani, Daniela; Gaeta, Marcos Letaif; de Araújo Mariath, Jorge Ernesto; de Costa, Fernanda; Retallick, Jeffrey; Nolan, Lana; Tai, Helen H; Strömvik, Martina V; Fett-Neto, Arthur Germano
2015-10-01
Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yazaki, Kazufumi; Matsuoka, Hideaki; Shimomura, Koichiro; Bechthold, Andreas; Sato, Fumihiko
2001-01-01
Lithospermum erythrorhizon produces red naphthoquinone pigments that are shikonin derivatives. They are accumulated exclusively in the roots of this plant. The biosynthesis of shikonin is strongly inhibited by light, even though other environmental conditions are optimized. Thus, L. erythrorhizon dark-inducible genes (LeDIs) were isolated to investigate the regulatory mechanism of shikonin biosynthesis. LeDI-2, showing the strict dark-specific expression, was further characterized by use of cell suspension cultures and hairy root cultures as model systems. Its mRNA accumulation showed a similar pattern with that of shikonin. In the intact plants LeDI-2 expression was observed solely in the root, and the longitudinal distribution of its mRNA was also in accordance to that of shikonin. LeDI-2 encoded a very hydrophobic polypeptide of 114 amino acids that shared significant similarities with some root-specific polypeptides such as ZRP3 (maize) and RcC3 (rice). Reduction of LeDI-2 expression by its antisense DNA in hairy roots of L. erythrorhizon decreased the shikonin accumulation, whereas other biosynthetic enzymes, e.g. p-hydroxybenzoic acid:geranyltransferase, which catalyzed a critical biosynthetic step, showed similar activity as the wild-type clone. This is the first report of the gene that is involved in production of secondary metabolites without affecting biosynthetic enzyme activities. PMID:11299363
Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J
2010-05-01
A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.
Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng
2018-05-01
PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.
Xue, Renfeng; Wu, Xingbo; Wang, Yingjie; Zhuang, Yan; Chen, Jian; Wu, Jing; Ge, Weide; Wang, Lanfen; Wang, Shumin; Blair, Matthew W
2017-07-01
Plant peroxidases (POXs) are one of the most important redox enzymes in the defense responses. However, the large number of different plant POX genes makes it necessary to carefully confirm the function of each paralogous POX gene in specific tissues and disease interactions. Fusarium wilt is a devastating disease of common bean caused by Fusarium oxysporum f. sp. phaseoli. In this study, we evaluated a peroxidase gene, PvPOX1, from a resistant common bean genotype, CAAS260205 and provided direct evidence for PvPOX1's role in resistance by transforming the resistant allele into a susceptible common bean genotype, BRB130, via hairy root transformation using Agrobacterium rhizogenes. Analysis of PvPOX1 gene over-expressing hairy roots showed it increased resistance to Fusarium wilt both in the roots and the rest of transgenic plants. Meanwhile, the PvPOX1 expressive level, the peroxidase activity and hydrogen peroxide (H 2 O 2 ) accumulation were also enhanced in the interaction. The result showed that the PvPOX1 gene played an essential role in Fusarium wilt resistance through the occurrence of reactive oxygen species (ROS) induced hypersensitive response. Therefore, PvPOX1 expression was proven to be a valuable gene for further analysis which can strengthen host defense response against Fusarium wilt through a ROS activated resistance mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
Villarino, Gonzalo H.; Hu, Qiwen; Scanlon, Michael J.; Mueller, Lukas; Mattson, Neil S.
2017-01-01
One of the primary objectives of plant biotechnology is to increase resistance to abiotic stresses, such as salinity. Salinity is a major abiotic stress and increasing crop resistant to salt continues to the present day as a major challenge. Salt stress disturbs cellular environment leading to protein misfolding, affecting normal plant growth and causing agricultural losses worldwide. The advent of state-of-the-art technologies such as high throughput mRNA sequencing (RNA-seq) has revolutionized whole-transcriptome analysis by allowing, with high precision, to measure changes in gene expression. In this work, we used tissue-specific RNA-seq to gain insight into the Petunia hybrida transcriptional responses under NaCl stress using a controlled hydroponic system. Roots and leaves samples were taken from a continuum of 48 h of acute 150 mM NaCl. This analysis revealed a set of tissue and time point specific differentially expressed genes, such as genes related to transport, signal transduction, ion homeostasis as well as novel and undescribed genes, such as Peaxi162Scf00003g04130 and Peaxi162Scf00589g00323 expressed only in roots under salt stress. In this work, we identified early and late expressed genes in response to salt stress while providing a core of differentially express genes across all time points and tissues, including the trehalose-6-phosphate synthase 1 (TPS1), a glycosyltransferase reported in salt tolerance in other species. To test the function of the novel petunia TPS1 allele, we cloned and showed that TPS1 is a functional plant gene capable of complementing the trehalose biosynthesis pathway in a yeast tps1 mutant. The list of candidate genes to enhance salt tolerance provided in this work constitutes a major effort to better understand the detrimental effects of salinity in petunia with direct implications for other economically important Solanaceous species. PMID:28771200
Chiou, Chung-Yi; Wu, Keqiang; Yeh, Kai-Wun
2008-10-01
Tissue-specific promoters are required for plant molecular breeding to drive a target gene in the appropriate location in plants. A chromoplast-specific, carotenoid-associated gene (OgCHRC) and its promoter (Pchrc) were isolated from Oncidium orchid and characterized. Northern blot analysis revealed that OgCHRC is specifically expressed in flowers, not in roots and leaves. Transient expression assay of Pchrc by bombardment transformation confirmed its differential expression pattern in floral tissues of different horticulture plants and cell-type location in conical papillate cells of adaxial epidermis of flower. These results suggest that Pchrc could serve as a useful tool in ornamental plant biotechnology to modify flower color.
Genetic ablation of root cap cells in Arabidopsis
NASA Technical Reports Server (NTRS)
Tsugeki, R.; Fedoroff, N. V.
1999-01-01
The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.
Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria
2016-08-12
To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.
Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo
2014-10-01
Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.
Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K
2014-01-01
Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.
Journet, Etienne-Pascal; van Tuinen, Diederik; Gouzy, Jérome; Crespeau, Hervé; Carreau, Véronique; Farmer, Mary-Jo; Niebel, Andreas; Schiex, Thomas; Jaillon, Olivier; Chatagnier, Odile; Godiard, Laurence; Micheli, Fabienne; Kahn, Daniel; Gianinazzi-Pearson, Vivienne; Gamas, Pascal
2002-12-15
We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.
Transcriptional profiling of Medicago truncatula meristematic root cells
Holmes, Peta; Goffard, Nicolas; Weiller, Georg F; Rolfe, Barry G; Imin, Nijat
2008-01-01
Background The root apical meristem of crop and model legume Medicago truncatula is a significantly different stem cell system to that of the widely studied model plant species Arabidopsis thaliana. In this study we used the Affymetrix Medicago GeneChip® to compare the transcriptomes of meristem and non-meristematic root to identify root meristem specific candidate genes. Results Using mRNA from root meristem and non-meristem we were able to identify 324 and 363 transcripts differentially expressed from the two regions. With bioinformatics tools developed to functionally annotate the Medicago genome array we could identify significant changes in metabolism, signalling and the differentially expression of 55 transcription factors in meristematic and non-meristematic roots. Conclusion This is the first comprehensive analysis of M. truncatula root meristem cells using this genome array. This data will facilitate the mapping of regulatory and metabolic networks involved in the open root meristem of M. truncatula and provides candidates for functional analysis. PMID:18302802
Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua
2016-10-01
In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.
Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar
2015-01-01
Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389
Deguchi, Yuichi; Banba, Mari; Shimoda, Yoshikazu; Chechetka, Svetlana A.; Suzuri, Ryota; Okusako, Yasuhiro; Ooki, Yasuhiro; Toyokura, Koichi; Suzuki, Akihiro; Uchiumi, Toshiki; Higashi, Shiro; Abe, Mikiko; Kouchi, Hiroshi; Izui, Katsura; Hata, Shingo
2007-01-01
Abstract To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT–PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs. PMID:17634281
Plasticity of DNA methylation and gene expression under zinc deficiency in Arabidopsis roots.
Chen, Xiaochao; Schönberger, Brigitte; Menz, Jochen; Ludewig, Uwe
2018-05-25
DNA methylation is a heritable chromatin modification that maintains chromosome stability, regulates transposon silencing and appears to be involved in gene expression in response to environmental conditions. Environmental stress alters DNA methylation patterns that are correlated with gene expression differences. Here, genome-wide differential DNA-methylation was identified upon prolonged Zn deficiency, leading to hypo- and hyper-methylated chromosomal regions. Preferential CpG methylation changes occurred in gene promoters and gene bodies, but did not overlap with transcriptional start sites. Methylation changes were also prominent in transposable elements. By contrast, non-CG methylation differences were exclusively found in promoters of protein coding genes and in transposable elements. Strongly Zn deficiency-induced genes and their promoters were mostly non-methylated, irrespective of Zn supply. Differential DNA methylation in the CpG and CHG, but not in the CHH context, was found close to a few up-regulated Zn-deficiency genes. However, the transcriptional Zn-deficiency response in roots appeared little correlated with associated DNA methylation changes in promoters or gene bodies. Furthermore, under Zn deficiency, developmental defects were identified in an Arabidopsis mutant lacking non-CpG methylation. The root methylome thus responds specifically to a micro-nutrient deficiency and is important for efficient Zn utilization at low availability, but the relationship of differential methylation and differentially expressed genes is surprisingly poor.
Köllmer, Ireen; Werner, Tomáš; Schmülling, Thomas
2011-08-15
The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light. Copyright © 2011 Elsevier GmbH. All rights reserved.
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-01-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-07-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.
Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Toyota, Masatsugu
2017-01-01
During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2. We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. PMID:28765510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less
Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.; ...
2017-05-30
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less
Singh, Akanksha; Khurana, Paramjit
2017-09-28
Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.
Ishida, Juliane K; Wakatake, Takanori; Yoshida, Satoko; Takebayashi, Yumiko; Kasahara, Hiroyuki; Wafula, Eric; dePamphilis, Claude W; Namba, Shigetou; Shirasu, Ken
2016-08-01
Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum. © 2016 American Society of Plant Biologists. All rights reserved.
Gravitropic mechanisms derived from space experiments and magnetic gradients.
NASA Astrophysics Data System (ADS)
Hasenstein, Karl H.; Park, Myoung Ryoul
2016-07-01
Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex and different responses to microgravity conditions, induced curvature, ground controls, clinorotation, and magnetic field exposure.
Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T
2014-09-29
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.
Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.
2014-01-01
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars. PMID:25268626
2011-01-01
Background Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. Results 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. Conclusions This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms. PMID:22108245
Mahomed, Waheed; Berg, Noëlani van den
2011-11-23
Avocado (Persea americana) belongs to the Lauraceae family and is an important commercial fruit crop in over 50 countries. The most serious pathogen affecting avocado production is Phytophthora cinnamomi which causes Phytophthora root rot (PRR). Root pathogens such as P. cinnamomi and their interactions with hosts are poorly understood and despite the importance of both the avocado crop and the effect Phytophthora has on its cultivation, there is a lack of molecular knowledge underpinning our understanding of defence strategies against the pathogen. In order to initiate a better understanding of host-specific defence we have generated EST data using 454 pyrosequencing and profiled nine defence-related genes from Pc-infected avocado roots. 2.0 Mb of data was generated consisting of ~10,000 reads on a single lane of the GS FLX platform. Using the Newbler assembler 371 contigs were assembled, of which 367 are novel for Persea americana. Genes were classified according to Gene Ontology terms. In addition to identifying root-specific ESTs we were also able to identify and quantify the expression of nine defence-related genes that were differentially regulated in response to P. cinnamomi. Genes such as metallothionein, thaumatin and the pathogenesis related PsemI, mlo and profilin were found to be differentially regulated. This is the first study in elucidating the avocado root transcriptome as well as identifying defence responses of avocado roots to the root pathogen P. cinnamomi. Our data is currently the only EST data that has been generated for avocado rootstocks, and the ESTs identified in this study have already been useful in identifying defence-related genes as well as providing gene information for other studies looking at processes such as ROS regulation as well as hypoxia in avocado roots. Our EST data will aid in the elucidation of the avocado transcriptome and identification of markers for improved rootstock breeding and screening. The characterization of the avocado transcriptome will furthermore form a basis for functional genomics of basal angiosperms.
Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana
Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal
2015-01-01
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...
2017-07-07
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
Bowrin, Valerie; Sutton, Fedora
2016-01-01
Cassava (M. esculenta) gives rise to unique underground stem tubers when stem cuttings are planted in an inverted orientation. The nutritional profile of the stem and root tubers were similar except for protein content which was higher in stem than in root tubers. RT-PCR revealed that several key genes (Mec1, RZF, SuSy1 and PIN2) involved in root tuberization were also expressed in these stem tubers. At five weeks post planting, these genes were expressed in roots and underground stems as in the mature tubers. However at 15 weeks post planting, they were expressed in both root and stem tubers but not in adventitious roots or in the non-tuberized stems. Expression of, the root auxin efflux carrier gene PIN2 in the stem tubers indicate a role for auxin in the stem tuberization process.
Velliquette, Rodney A; Rajgopal, Arun; Rebhun, John; Glynn, Kelly
2018-01-01
To examine specific molecular mechanisms involved in modulating hepatic lipogenesis and mitochondria biogenesis signals by Lithospermum erythrorhizon (gromwell) root extract. Stable cell lines with luciferase reporter constructs were generated to examine sterol regulatory element binding protein 1c (SREBP1c) and peroxisome proliferator-activated receptor gamma, coactivator 1 (PGC1) α promoter activity and estrogen-related receptor (ERR) α response element activity. Gene expression of SREBP1c, stearoyl coenzyme A desaturase 1, and PGC1α was measured by using reverse transcription polymerase chain reaction. Lipogenesis was measured in human hepatoma cells with Nile red staining and flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) α was determined by using ELISA and Western blot. Gromwell root extract and its naphthoquinones dose-dependently repressed high glucose and liver X receptor α induction of SREBP1c promoter activity and gene expression. Hepatic lipogenesis was repressed, and PGC1α promoter and gene expression and ERRα response element activity were increased by gromwell root extract. Gromwell root extract, shikonin, and α-methyl-n-butyrylshikonin increased AMPKα phosphorylation, and inhibition of AMPK blunted the repression in SREBP1c promoter activity by gromwell root extract and its naphthoquinones. Data suggest that gromwell root extract and its naphthoquinones repress lipogenesis by increasing the phosphorylated state of AMPKα and stimulating mitochondrial biogenesis signals. © 2017 The Obesity Society.
Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere
Matilla, Miguel A; Espinosa-Urgel, Manuel; Rodríguez-Herva, José J; Ramos, Juan L; Ramos-González, María Isabel
2007-01-01
Background Mutualistic interactions less well known than those between rhizobia and legumes are commonly found between plants and bacteria, frequently pseudomonads, which colonize roots and adjacent soil areas (the rhizosphere). Results A global analysis of Pseudomonas putida genes expressed during their interaction with maize roots revealed how a bacterial population adjusts its genetic program to this lifestyle. Differentially expressed genes were identified by comparing rhizosphere-colonizing populations with three distinct controls covering a variety of nutrients, growth phases and life styles (planktonic and sessile). Ninety rhizosphere up-regulated (rup) genes, which were induced relative to all three controls, were identified, whereas there was no repressed gene in common between the experiments. Genes involved in amino acid uptake and metabolism of aromatic compounds were preferentially expressed in the rhizosphere, which reflects the availability of particular nutrients in root exudates. The induction of efflux pumps and enzymes for glutathione metabolism indicates that adaptation to adverse conditions and stress (oxidative) response are crucial for bacterial life in this environment. The finding of a GGDEF/EAL domain response regulator among the induced genes suggests a role for the turnover of the secondary messenger c-diGMP in root colonization. Several mutants in rup genes showed reduced fitness in competitive root colonization. Conclusion Our results show the importance of two selective forces of different nature to colonize the rhizosphere: stress adaptation and availability of particular nutrients. We also identify new traits conferring bacterial survival in this niche and open a way to the characterization of specific signalling and regulatory processes governing the plant-Pseudomonas association. PMID:17784941
Peng, Wenting; Wu, Weiwei; Peng, Junchu; Li, Jiaojiao; Lin, Yan; Wang, Yanan; Tian, Jiang; Sun, Lili; Liang, Cuiyue; Liao, Hong
2018-03-01
A potential mechanism to enhance utilization of sparingly soluble forms of phosphorus (P) is the root secretion of malate, which is mainly mediated by the ALMT gene family in plants. In this study, a total of 34 GmALMT genes were identified in the soybean genome. Expression patterns diverged considerably among GmALMTs in response to phosphate (Pi) starvation in leaves, roots and flowers, with expression altered by P availability in 26 of the 34 GmALMTs. One root-specific GmALMT whose expression was significantly enhanced by Pi-starvation, GmALMT5, was studied in more detail to determine its possible role in soybean P nutrition. Analysis of GmALMT5 tissue expression patterns, subcellular localization, and malate exudation from transgenic soybean hairy roots overexpressing GmALMT5, demonstrated that GmALMT5 is a plasma membrane protein that mediates malate efflux from roots. Furthermore, both growth and P content of transgenic Arabidopsis overexpressing GmALMT5 were significantly increased when sparingly soluble Ca-P was used as the external P source. Taken together, these results indicate that members of the soybean GmALMT gene family exhibit diverse responses to Pi starvation. One member of this family, GmALMT5, might contribute to soybean P efficiency by enhancing utilization of sparingly soluble P sources under P limited conditions. © 2017 Institute of Botany, Chinese Academy of Sciences.
Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Moumeni, Ali; Venuprasad, Ramiah; Serraj, Rachid; Kumar, Arvind; Leung, Hei; Attia, Kotb; Kikuchi, Shoshi
2012-05-01
The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.
Faës, Pascal; Deleu, Carole; Aïnouche, Abdelkader; Le Cahérec, Françoise; Montes, Emilie; Clouet, Vanessa; Gouraud, Anne-Marie; Albert, Benjamin; Orsel, Mathilde; Lassalle, Gilles; Leport, Laurent; Bouchereau, Alain; Niogret, Marie-Françoise
2015-02-01
Six BnaProDH1 and two BnaProDH2 genes were identified in Brassica napus genome. The BnaProDH1 genes are mainly expressed in pollen and roots' organs while BnaProDH2 gene expression is associated with leaf vascular tissues at senescence. Proline dehydrogenase (ProDH) catalyzes the first step in the catabolism of proline. The ProDH gene family in oilseed rape (Brassica napus) was characterized and compared to other Brassicaceae ProDH sequences to establish the phylogenetic relationships between genes. Six BnaProDH1 genes and two BnaProDH2 genes were identified in the B. napus genome. Expression of the three paralogous pairs of BnaProDH1 genes and the two homoeologous BnaProDH2 genes was measured by real-time quantitative RT-PCR in plants at vegetative and reproductive stages. The BnaProDH2 genes are specifically expressed in vasculature in an age-dependent manner, while BnaProDH1 genes are strongly expressed in pollen grains and roots. Compared to the abundant expression of BnaProDH1, the overall expression of BnaProDH2 is low except in roots and senescent leaves. The BnaProDH1 paralogs showed different levels of expression with BnaA&C.ProDH1.a the most strongly expressed and BnaA&C.ProDH1.c the least. The promoters of two BnaProDH1 and two BnaProDH2 genes were fused with uidA reporter gene (GUS) to characterize organ and tissue expression profiles in transformed B. napus plants. The transformants with promoters from different genes showed contrasting patterns of GUS activity, which corresponded to the spatial expression of their respective transcripts. ProDHs probably have non-redundant functions in different organs and at different phenological stages. In terms of molecular evolution, all BnaProDH sequences appear to have undergone strong purifying selection and some copies are becoming subfunctionalized. This detailed description of oilseed rape ProDH genes provides new elements to investigate the function of proline metabolism in plant development.
Park, Nam Il; Park, Jee Hee; Park, Sang Un
2012-02-01
Angelica gigas is a medicinal plant that produces pyranocoumarins, including decursin (D) and decursinol angelate (DA), which have neuroprotective, anticancer, and antiandrogenic effects. In this study, the coumarin biosynthetic pathway was engineered to increase the production of DA. Specifically, a vector was constructed which contained the A. gigas phenylalanine ammonia-lyase (AgPAL) and cinnamate 4-hydroxylase (AgC4H) genes that were driven by the cauliflower mosaic virus (CaMV) 35S promoter. Transgenic hairy roots that overexpressed AgPAL or AgC4H genes were obtained by using an Agrobacterium rhizogenes-mediated transformation system. Among them, only AgC4H-transgenic hairy root lines produced more DA than control transgenic hairy root lines. The enhanced gene expression corresponded to elevated C4H activities. This study showed the importance of C4H in the production of DA in A. gigas hairy root culture.
Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing
2018-01-01
Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Thao, Nguyen Phuong; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Van Ha, Chien; Tran, Lam-Son Phan
2013-01-01
The plant-specific NAC transcription factors play important roles in plant response to drought stress. Here, we have compared the expression levels of a subset of GmNAC genes in drought-tolerant DT51 and drought-sensitive MTD720 under both normal and drought stress conditions aimed at identifying correlation between GmNAC expression levels and drought tolerance degree, as well as potential GmNAC candidates for genetic engineering. The expression of 23 selected dehydration-responsive GmNACs was assessed in both stressed and unstressed root tissues of DT51 and MTD720 using real-time quantitative PCR. The results indicated that expression of GmNACs was genotype-dependent. Seven and 13 of 23 tested GmNACs showed higher expression levels in roots of DT51 in comparison with MTD720 under normal and drought stress conditions, respectively, whereas none of them displayed lower transcript levels under any conditions. This finding suggests that the higher drought tolerance of DT51 might be positively correlated with the higher induction of the GmNAC genes during water deficit. The drought-inducible GmNAC011 needs to be mentioned as its transcript accumulation was more than 76-fold higher in drought-stressed DT51 roots relative to MTD720 roots. Additionally, among the GmNAC genes examined, GmNAC085, 092, 095, 101 and 109 were not only drought-inducible but also more highly up-regulated in DT51 roots than in that of MTD720 under both treatment conditions. These data together suggest that GmNAC011, 085, 092, 095, 101 and 109 might be promising candidates for improvement of drought tolerance in soybean by biotechnological approaches. PMID:24322442
Sapeta, Helena; Lourenço, Tiago; Lorenz, Stefan; Grumaz, Christian; Kirstahler, Philipp; Barros, Pedro M; Costa, Joaquim Miguel; Sohn, Kai; Oliveira, M Margarida
2016-02-01
Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Tanaka, Hirokazu; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao
2017-08-01
During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1 / LAZY1-LIKE1 ( LZY1 ) and AtDRO3 / AtNGR1 / LZY2 We showed that LZY1 , LZY2 , and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. © 2017 American Society of Plant Biologists. All rights reserved.
Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L
2017-05-01
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.
Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi
2018-01-01
The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.
Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots
USDA-ARS?s Scientific Manuscript database
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...
Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K
2006-07-01
The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.
Differential expression of cysteine desulfurases in soybean
2011-01-01
Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069
Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M
1990-01-01
The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158
An, Q; Dong, Y; Wang, W; Li, Y; Li, J
2007-09-01
This study was undertaken to investigate whether a nitrogen-fixing bacterium Enterobacter gergoviae 57-7, which was isolated from surface-sterilized maize (Zea mays L.) roots, can colonize in roots and whether constitutive expression of the nifA gene encoding the transcriptional activator of nitrogenase genes can activate nif gene expression in planta. Maize seedlings grown in an agar medium were inoculated with Ent. gergoviae strains containing the green fluorescent protein reporter gene. Root colonization and expression of the dinitrogenase reductase gene (nifH) by Ent. gergoviae were observed by confocal laser scanning microscopy. gfp-tagged Ent. gergoviae was observed to colonize predominantly in cortical aerenchyma of primary and lateral roots and in stellar parenchyma cells and xylem vessels of primary roots. In planta nifH :: gfp expression was not detected but after a constitutively expressed nifA gene was introduced into Ent. gergoviae. Enterobacter gergoviae 57-7 is an opportunistic endophyte because it can live in soil and colonize in maize roots in the gnotobiotic agar culture. In agreement with previous (15)N-dilution evidence that Ent. gergoviae 57-7 did not fix N(2) in association with maize in pots whereas a derivative E7 containing a constitutively expressed nifA gene promoted plant growth partly through associative nitrogen fixation, constitutive expression of the nifA gene can activate bacterial nif gene expression in planta. This study and our previous studies suggest that manipulation of the promoter of the nifA gene in a nitrogen-fixing bacterium having a high colonization competence is a practical and promising approach to achieve a stable associative nitrogen fixation for cereals.
Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari
2012-08-01
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.
Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji
2009-11-01
Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.
Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda
2017-01-01
Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251
Kim, Chul Min
2016-01-01
Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519
ASR5 is involved in the regulation of miRNA expression in rice.
Neto, Lauro Bücker; Arenhart, Rafael Augusto; de Oliveira, Luiz Felipe Valter; de Lima, Júlio Cesar; Bodanese-Zanettini, Maria Helena; Margis, Rogerio; Margis-Pinheiro, Márcia
2015-11-01
The work describes an ASR knockdown transcriptomic analysis by deep sequencing of rice root seedlings and the transactivation of ASR cis-acting elements in the upstream region of a MIR gene. MicroRNAs are key regulators of gene expression that guide post-transcriptional control of plant development and responses to environmental stresses. ASR (ABA, Stress and Ripening) proteins are plant-specific transcription factors with key roles in different biological processes. In rice, ASR proteins have been suggested to participate in the regulation of stress response genes. This work describes the transcriptomic analysis by deep sequencing two libraries, comparing miRNA abundance from the roots of transgenic ASR5 knockdown rice seedlings with that of the roots of wild-type non-transformed rice seedlings. Members of 59 miRNA families were detected, and 276 mature miRNAs were identified. Our analysis detected 112 miRNAs that were differentially expressed between the two libraries. A predicted inverse correlation between miR167abc and its target gene (LOC_Os07g29820) was confirmed using RT-qPCR. Protoplast transactivation assays showed that ASR5 is able to recognize binding sites upstream of the MIR167a gene and drive its expression in vivo. Together, our data establish a comparative study of miRNAome profiles and is the first study to suggest the involvement of ASR proteins in miRNA gene regulation.
Xing, Xuexia; Li, Xiaohui; Zhang, Mingzhen; Wang, Yuan; Liu, Bingyang; Xi, Qiliang; Zhao, Ke; Wu, Yunjie; Yang, Tiezhao
2017-01-22
The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco. Copyright © 2016 Elsevier Inc. All rights reserved.
Duan, Jianfeng; Tian, Hui; Drijber, Rhae A; Gao, Yajun
2015-11-01
Previous studies have reported that the expression of phosphate (Pi) or nitrogen (N) transporter genes in roots of plants could be regulated by arbuscular mycorrhizal (AM) fungi, but little is known whether the regulation is systemic or not. The present study investigated the systemic and local regulation of multiple phosphate and nitrogen transporter genes by four AM fungal species belonging to four genera in the roots of winter wheat. A split-root culture system with AM inoculated (MR) and non-inoculated root compartments (NR) was used to investigate the systemic or local responses of phosphate and nitrogen transporter genes to colonization by four AM fungi in the roots of wheat. The expression of four Pi transporter, five nitrate transporter, and three ammonium transporter genes was quantified using real-time PCR. Of the four AM fungi tested, all locally increased expression of the AM-inducible Pi transporter genes, and most locally decreased expression of a Pi-starvation inducible Pi transporter gene. The addition of N in soil increased the expression of either Pi starvation inducible Pi transporters or AM inducible Pi transporters. Inoculation with AM fungi either had no effect, or could locally or systemically down-regulate expression of nitrogen transporter genes depending on gene type and AM fungal species. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2016-02-01
The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Høgslund, Niels; Radutoiu, Simona; Krusell, Lene; Voroshilova, Vera; Hannah, Matthew A.; Goffard, Nicolas; Sanchez, Diego H.; Lippold, Felix; Ott, Thomas; Sato, Shusei; Tabata, Satoshi; Liboriussen, Poul; Lohmann, Gitte V.; Schauser, Leif; Weiller, Georg F.; Udvardi, Michael K.; Stougaard, Jens
2009-01-01
Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set. PMID:19662091
USDA-ARS?s Scientific Manuscript database
A greenhouse experiment was conducted to study the expression of two phosphate (P) transporter genes ZEAma:Pht1;3 (epidermal-expressed) and ZEAma:Pht1;6 (AM specific induced, and expressed around arbuscules) in maize root to colonization by different arbuscular mycorrhizal (AM) fungal inoculants. No...
Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio
2012-10-01
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Jiang, Nong-hui; Jiang, Bo; Zhang, Yong-yan; Wu, Bo; Hu, Min-lun; Zeng, Ji-wu; Yan, Hua-xue; Yi, Gan-jun; Zhong, Guang-yan
2015-01-01
Root samples of ‘Sanhu’ red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings. PMID:26046530
Harrison, M J
1996-04-01
A cDNA clone encoding a hexose transporter has been isolated from a library prepared from Medicago truncatula roots colonized by the mycorrhizal fungus Glomus versiforme. The clone (Mtst1) represents a M. truncatula gene and expression studies in yeast indicate that the encoded protein transports glucose and fructose but not sucrose. Transcripts corresponding to Mtst1 are expressed in leaves, stems and roots of M. truncatula, with the highest levels of expression in roots. In the roots, Mtst1 transcripts were detected in two distinct locations; the phloem fiber cells of the vascular tissue, and the cells of the root tip. Mtst1 expression in the roots is regulated in response to colonization by G. versiforme; transcript levels increased two- to fourfold in both M. truncatula and M. sativa following colonization by G. versiforme but did not increase during the unsuccessful interaction between G. versiforme and a M. sativa myc- mutant, suggesting that the increase in Mtst1 transcripts in the successful mycorrhizal interaction is correlated with internal growth of the fungus and potentially with a functioning symbiosis. Mtst1 transcripts were also detected in the cortical cells of the mycorrhizal root, specifically in areas of the root that were highly colonized by the mycorrhizal fungus. Thus, the formation of a symbiotic association with a VA mycorrhizal fungus is accompanied by a change in the cell type-specific expression of a transporter that potentially functions to supply sugars to root cells critically involved in the symbiotic association.
Hsieh, En-Jung; Waters, Brian M.
2016-01-01
Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716
Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.
Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A
2015-05-01
Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.
2011-01-01
Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the genes identified are known to be up-regulated in response to osmotic stress in pine and other plant species and encode proteins involved in both signal transduction and stress tolerance. Gene expression levels returned to control values within a 48-hour recovery period in all but 76 transcripts. Correlation network analysis indicates a scale-free network topology for the pine root transcriptome and identifies central nodes that may serve as drivers of drought-responsive transcriptome dynamics in the roots of loblolly pine. PMID:21609476
DRO1 influences root system architecture in Arabidopsis and Prunus species.
Guseman, Jessica M; Webb, Kevin; Srinivasan, Chinnathambi; Dardick, Chris
2017-03-01
Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Genomic Inventory and Transcriptional Analysis of Medicago truncatula Transporters1[W][OA
Benedito, Vagner A.; Li, Haiquan; Dai, Xinbin; Wandrey, Maren; He, Ji; Kaundal, Rakesh; Torres-Jerez, Ivone; Gomez, S. Karen; Harrison, Maria J.; Tang, Yuhong; Zhao, Patrick X.; Udvardi, Michael K.
2010-01-01
Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identified 3,830 transporters and classified 2,673 of these into 113 families and 146 subfamilies. Analysis of gene expression data for 2,611 of these transporters identified 129 that are expressed in an organ-specific manner, including 50 that are nodule specific and 36 specific to mycorrhizal roots. Further analysis uncovered 196 transporters that are induced at least 5-fold during nodule development and 44 in roots during arbuscular mycorrhizal symbiosis. Among the nodule- and mycorrhiza-induced transporter genes are many candidates for known transport activities in these beneficial symbioses. The data presented here are a unique resource for the selection and functional characterization of legume transporters. PMID:20023147
SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
Pietra, Stefano; Lang, Patricia; Grebe, Markus
2015-03-01
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
Jin, Xiao-Lin; Ma, Cui-Lan; Yang, Lin-Tong; Chen, Li-Song
2016-07-01
Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.
Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M
1999-07-01
The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.
Molecular analysis of SCARECROW genes expressed in white lupin cluster roots
Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll
2010-01-01
The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized. PMID:20167612
Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja
2016-01-01
Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several ‘knot’-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion. PMID:23086810
Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun
2016-06-28
Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.
McElrone, A. J.
2012-01-01
Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp r), % aquaporin contribution to Lp r, scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp r and % aquaporin contribution to Lp r determined under both osmotic (Lp r Osm) and hydrostatic (Lp r Hyd) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp r Osm and Lp r Hyd even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp r. These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp r and increased root surface area. PMID:23136166
Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer.
Khorolragchaa, Altanzul; Kim, Yu-Jin; Rahimi, Shadi; Sukweenadhi, Johan; Jang, Moon-Gi; Yang, Deok-Chun
2014-02-15
Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively. © 2013 Elsevier B.V. All rights reserved.
A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation.
Gao, Bin; Wen, Chao; Fan, Lusheng; Kou, Yaping; Ma, Nan; Zhao, Liangjun
2014-12-01
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
Vijayakumar, Priya; Datta, Sourav; Dolan, Liam
2016-12-01
ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un
2014-01-01
To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA. PMID:25153629
Hsieh, En-Jung; Waters, Brian M
2016-10-01
Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Pérez-Tienda, Jacob; Corrêa, Ana; Azcón-Aguilar, Concepción; Ferrol, Nuria
2014-02-01
Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of many land plants. AM roots have two pathways for nutrient uptake, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. Recent studies demonstrated that the AM symbiosis modifies the expression of plant transporter genes and that NH₄⁺ is the main form of N transported in the symbiosis. The aim of the present work was to get insights into the mycorrhizal N uptake pathway in Oryza sativa by analysing the expression of genes encoding ammonium transporters (AMTs), glutamine synthase (GS) and glutamate synthase (GOGAT) in roots colonized by the AM fungus Rhizophagus irregularis and grown under two N regimes. We found that the AM symbiosis down-regulated OsAMT1;1 and OsAMT1;3 expression at low-N, but not at high-N conditions, and induced, independently of the N status of the plant, a strong up-regulation of OsAMT3;1 expression. The AM-inducible NH₄⁺ transporter OsAMT3;1 belongs to the family 2 of plant AMTs and is phylogenetically related to the AM-inducible AMTs of other plant species. Moreover, for the first time we provide evidence of the specific induction of a GOGAT gene upon colonization with an AM fungus. These data suggest that OsAMT3;1 is likely involved in the mycorrhizal N uptake pathway in rice roots and that OsGOGAT2 plays a role in the assimilation of the NH₄⁺ supplied via the OsAMT3;1 AM-inducible transporter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Yu, Peng; Li, Xuexian; Yuan, Lixing; Li, Chunjian
2014-01-01
Approximately 35-55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate-rich and nitrate-poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g(-1)) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate-rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate-rich and nitrate-poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply. © 2013 Scandinavian Plant Physiology Society.
Huang, Xuan; Yao, Jingwen; Zhao, Yangyang; Xie, Dengfeng; Jiang, Xue; Xu, Ziqin
2016-01-01
Transformed hairy roots had been efficiently induced from the seedlings of Fagopyrum tataricum Gaertn. due to the infection of Agrobacterium rhizogenes. Hairy roots were able to display active elongation with high root branching in 1/2 MS medium without growth regulators. The stable introduction of rolB and aux1 genes of A. rhizogenes WT strain 15834 into F. tataricum plants was confirmed by PCR analysis. Besides, the absence of virD gene confirmed hairy root was bacteria-free. After six different media and different sources of concentration were tested, the culturing of TB7 hairy root line in 1/2 MS liquid medium supplemented with 30 g l-1 sucrose for 20 days resulted in a maximal biomass accumulation (13.5 g l-1 fresh weight, 1.78 g l-1 dry weight) and rutin content (0.85 mg g-1). The suspension culture of hairy roots led to a 45-fold biomass increase and a 4.11-fold rutin content increase in comparison with the suspension culture of non-transformed roots. The transformation frequency was enhanced through preculturing for 2 days followed by infection for 20 min. The UV-B stress treatment of hairy roots resulted in a striking increase of rutin and quercetin production. Furthermore, the hairy root lines of TB3, TB7, and TB28 were chosen to study the specific effects of UV-B on flavonoid accumulation and flavonoid biosynthetic gene expression by qRT-PCR. This study has demonstrated that the UV-B radiation was an effective elicitor that dramatically changed in the transcript abundance of ftpAL, FtCHI, FtCHS, FtF3H, and FtFLS-1 in F. tataricum hairy roots. PMID:26870075
de Almeida, Márcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G
2010-09-20
Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation.
2010-01-01
Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation. PMID:20854682
Identification of a core set of rhizobial infection genes using data from single cell-types.
Chen, Da-Song; Liu, Cheng-Wu; Roy, Sonali; Cousins, Donna; Stacey, Nicola; Murray, Jeremy D
2015-01-01
Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia (NP). More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4',4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.
Lu, Shun-Wen; Chen, Shiyan; Wang, Jianying; Yu, Hang; Chronis, Demosthenis; Mitchum, Melissa G; Wang, Xiaohong
2009-09-01
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X
2016-06-24
Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.
Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana.
Siemens, Johannes; González, Maria-Cruz; Wolf, Sebastian; Hofmann, Christina; Greiner, Steffen; DU, Yejie; Rausch, Thomas; Roitsch, Thomas; Ludwig-Müller, Jutta
2011-04-01
Clubroot disease of Brassicaceae is caused by an obligate biotrophic protist, Plasmodiophora brassicae. During root gall development, a strong sink for assimilates is developed. Among other genes involved in sucrose and starch synthesis and degradation, the increased expression of invertases has been observed in a microarray experiment, and invertase and invertase inhibitor expression was confirmed using promoter::GUS lines of Arabidopsis thaliana. A functional approach demonstrates that invertases are important for gall development. Different transgenic lines expressing an invertase inhibitor under the control of two root-specific promoters, Pyk10 and CrypticT80, which results in the reduction of invertase activity, showed clearly reduced clubroot symptoms in root tissue with highest promoter expression, whereas hypocotyl galls developed normally. These results present the first evidence that invertases are important factors during gall development, most probably in supplying sugars to the pathogen. In addition, root-specific repression of invertase activity could be used as a tool to reduce clubroot symptoms. © 2010 The Authors. Molecular Plant Pathology © 2010 BSPP and Blackwell Publishing Ltd.
Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.
1998-01-01
A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543
miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.
Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine
2013-06-01
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Ge, Lei; Chen, Hui; Jiang, Jia-Fu; Zhao, Yuan; Xu, Ming-Li; Xu, Yun-Yuan; Tan, Ke-hui; Xu, Zhi-Hong; Chong, Kang
2004-01-01
There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1∷GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1∷GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature. PMID:15247372
Lee, M M; Schiefelbein, J
1999-11-24
The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.
Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio
2017-04-01
Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.
Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami
2018-05-29
Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.
Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini1
Carpin, Sabine; Crèvecoeur, Michèle; Greppin, Hubert; Penel, Claude
1999-01-01
A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level. PMID:10398715
From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis.
Rodríguez-Llorente, Ignacio D; Pérez-Hormaeche, Javier; El Mounadi, Kaoutar; Dary, Mohammed; Caviedes, Miguel A; Cosson, Viviane; Kondorosi, Adam; Ratet, Pascal; Palomares, Antonio J
2004-08-01
While the biology of nitrogen-fixing root nodules has been extensively studied, little is known about the evolutionary events that predisposed legume plants to form symbiosis with rhizobia. We have studied the presence and the expression of two pectic gene families in Medicago, polygalacturonases (PGs) and pectin methyl esterases (PMEs) during the early steps of the Sinorhizobium meliloti-Medicago interaction and compared them with related pollen-specific genes. First, we have compared the expression of MsPG3, a PG gene specifically expressed during the symbiotic interaction, with the expression of MsPG11, a highly homologous pollen-specific gene, using promoter-gus fusions in transgenic M. truncatula and tobacco plants. These results demonstrated that the symbiotic promoter functions as a pollen-specific promoter in the non-legume host. Second, we have identified the presence of a gene family of at least eight differentially expressed PMEs in Medicago. One subfamily is represented by one symbiotic gene (MtPER) and two pollen-expressed genes (MtPEF1 and MtPEF2) that are clustered in the M. truncatula genome. The promoter-gus studies presented in this work and the homology between plant PGs, together with the analysis of the PME locus structure and MtPER expression studies, suggest that the symbiotic MsPG3 and MtPER could have as ancestors pollen-expressed genes involved in polar tip growth processes during pollen tube elongation. Moreover, they could have been recruited after gene duplication in the symbiotic interaction to facilitate polar tip growth during infection thread formation.
Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana
2017-04-01
Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.
Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang
2017-01-01
Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.
Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang
2017-01-01
Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots. PMID:28798764
Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants.
Roncato-Maccari, Lauren D B; Ramos, Humberto J O; Pedrosa, Fabio O; Alquini, Yedo; Chubatsu, Leda S; Yates, Marshall G; Rigo, Liu U; Steffens, Maria Berenice R; Souza, Emanuel M
2003-07-01
Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.
Nitrate-Regulated Glutaredoxins Control Arabidopsis Primary Root Growth1[OPEN
Walters, Laura A.; Cooper, Andrew M.; Olvera, Jocelyn G.; Rosas, Miguel A.; Rasmusson, Allan G.
2016-01-01
Nitrogen is an essential soil nutrient for plants, and lack of nitrogen commonly limits plant growth. Soil nitrogen is typically available to plants in two inorganic forms: nitrate and ammonium. To better understand how nitrate and ammonium differentially affect plant metabolism and development, we performed transcriptional profiling of the shoots of ammonium-supplied and nitrate-supplied Arabidopsis (Arabidopsis thaliana) plants. Seven genes encoding class III glutaredoxins were found to be strongly and specifically induced by nitrate. RNA silencing of four of these glutaredoxin genes (AtGRXS3/4/5/8) resulted in plants with increased primary root length (approximately 25% longer than the wild type) and decreased sensitivity to nitrate-mediated inhibition of primary root growth. Increased primary root growth is also a well-characterized phenotype of many cytokinin-deficient plant lines. We determined that nitrate induction of glutaredoxin gene expression was dependent upon cytokinin signaling and that cytokinins could activate glutaredoxin gene expression independent of plant nitrate status. In addition, crosses between “long-root” cytokinin-deficient plants and “long-root” glutaredoxin-silenced plants generated hybrids that displayed no further increase in primary root length (i.e. epistasis). Collectively, these findings suggest that AtGRXS3/4/5/8 operate downstream of cytokinins in a signal transduction pathway that negatively regulates plant primary root growth in response to nitrate. This pathway could allow Arabidopsis to actively discriminate between different nitrogen sources in the soil, with the preferred nitrogen source, nitrate, acting to suppress primary root growth (vertical dimension) in concert with its well-characterized stimulatory effect on lateral root growth (horizontal dimension). PMID:26662603
Zhou, Ying; Zhou, Yu; Yang, Jie
2016-01-01
The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nelumbo nucifera), analyzed their physical and chemical characteristics and performed phylogenetic analysis using the GRAS genes from eight representative plant species to show the evolution of GRAS genes in Planta. In addition, the gene structures and motifs of the sacred lotus GRAS proteins were characterized in detail. Comparative analysis identified 42 orthologous and 9 co-orthologous gene pairs between sacred lotus and Arabidopsis, and 35 orthologous and 22 co-orthologous gene pairs between sacred lotus and rice. Based on publically available RNA-seq data generated from leaf, petiole, rhizome and root, we found that most of the sacred lotus GRAS genes exhibited a tissue-specific expression pattern. Eight of the ten PAT1-clade GRAS genes, particularly NnuGRAS-05, NnuGRAS-10 and NnuGRAS-25, were preferentially expressed in rhizome and root. In summary, this is the first in silico analysis of the GRAS gene family in sacred lotus, which will provide valuable information for further molecular and biological analyses of this important gene family. PMID:27635351
Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.
Lin, Y; Schiefelbein, J
2001-10-01
A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.
Jung, Harin; Chung, Pil Joong; Park, Su-Hyun; Redillas, Mark Christian Felipe Reveche; Kim, Youn Shic; Suh, Joo-Won; Kim, Ju-Kon
2017-10-01
The AP2/ERF family is a plant-specific transcription factor family whose members have been associated with various developmental processes and stress tolerance. Here, we functionally characterized the drought-inducible OsERF48, a group Ib member of the rice ERF family with four conserved motifs, CMI-1, -2, -3 and -4. A transactivation assay in yeast revealed that the C-terminal CMI-1 motif was essential for OsERF48 transcriptional activity. When OsERF48 was overexpressed in an either a root-specific (ROX O s ERF 48 ) or whole-body (OX O s ERF 48 ) manner, transgenic plants showed a longer and denser root phenotype compared to the nontransgenic (NT) controls. When plants were grown on a 40% polyethylene glycol-infused medium under in vitro drought conditions, ROX O s ERF 48 plants showed a more vigorous root growth than OX O s ERF 48 and NT plants. In addition, the ROX O s ERF 48 plants exhibited higher grain yield than OX O s ERF 48 and NT plants under field-drought conditions. We constructed a putative OsERF48 regulatory network by cross-referencing ROX O s ERF 48 root-specific RNA-seq data with a co-expression network database, from which we inferred the involvement of 20 drought-related genes in OsERF48-mediated responses. These included genes annotated as being involved in stress signalling, carbohydrate metabolism, cell-wall proteins and drought responses. They included, OsCML16, a key gene in calcium signalling during abiotic stress, which was shown to be a direct target of OsERF48 by chromatin immunoprecipitation-qPCR analysis and a transient protoplast expression assay. Our results demonstrated that OsERF48 regulates OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
He, Mingyan; Hou, Jiayun; Wang, Lingyan; Zheng, Minghuan; Fang, Tingting; Wang, Xiangdong; Xia, Jinglin
2017-06-27
Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3'-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-01-01
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693
The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.
Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare
2008-07-15
Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.
Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun
2017-01-01
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes. PMID:28207830
Tian, Hui; Yuan, Xiaolei; Duan, Jianfeng; Li, Wenhu; Zhai, Bingnian; Gao, Yajun
2017-01-01
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.
Janiak, Agnieszka; Kwasniewski, Miroslaw; Sowa, Marta; Gajek, Katarzyna; Żmuda, Katarzyna; Kościelniak, Janusz; Szarejko, Iwona
2018-01-01
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley. PMID:29375595
Janiak, Agnieszka; Kwasniewski, Miroslaw; Sowa, Marta; Gajek, Katarzyna; Żmuda, Katarzyna; Kościelniak, Janusz; Szarejko, Iwona
2017-01-01
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Tseng, I-Chieh; Hong, Chwan-Yang; Yu, Su-May; Ho, Tuan-Hua David
2013-01-01
In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX1PX2 motifs, RePRP1 and RePRP2. RePRP orthologs exist only in monocotyledonous plants, and their functions are virtually unknown. Rice RePRPs are heavily glycosylated with arabinose and glucose on multiple hydroxyproline residues. They are significantly different from arabinogalactan proteins that have glycan chains composed of arabinose and galactose. Transient and stable expressions of RePRP-green fluorescent protein reveal that a fraction of this protein is localized to the plasma membrane. In rice roots, ABA treatment increases RePRP expression preferentially in the elongation zone. Overexpression of RePRP in transgenic rice reduces root cell elongation in the absence of ABA, similar to the effect of ABA on wild-type roots. Conversely, simultaneous knockdown of the expression of RePRP1 and RePRP2 reduces the root sensitivity to ABA, indicating that RePRP proteins play an essential role in ABA/stress regulation of root growth and development. Moreover, rice RePRPs specifically interact with a polysaccharide, arabinogalactan, in a dosage-dependent manner. It is suggested that RePRP1 and RePRP2 are functionally redundant suppressors of root cell expansion and probably act through interactions with cell wall components near the plasma membrane. PMID:23886623
Ezaki, Bunichi; Suzuki, Masakatsu; Motoda, Hirotoshi; Kawamura, Masako; Nakashima, Susumu; Matsumoto, Hideaki
2004-01-01
The gene expression of two Al-induced Arabidopsis glutathione S-transferase genes, AtGST1 and AtGST11, was analyzed to investigate the mechanism underlying the response to Al stress. An approximately 1-kb DNA fragment of the 5′-upstream region of each gene was fused to a β-glucuronidase (GUS) reporter gene (pAtGST1::GUS and pAtGST11::GUS) and introduced into Arabidopsis ecotype Landsberg erecta. The constructed transgenic lines showed a time-dependent gene expression to a different degree in the root and/or leaf by Al stress. The pAtGST1::GUS gene was induced after a short Al treatment (maximum expression after a 2-h exposure), while the pAtGST11::GUS gene was induced by a longer Al treatment (approximately 8 h for maximum expression). Since the gene expression was observed in the leaf when only the root was exposed to Al stress, a signaling system between the root and shoot was suggested in Al stress. A GUS staining experiment using an adult transgenic line carrying the pAtGST11::GUS gene supported this suggestion. Furthermore, Al treatment simultaneously with various Ca depleted conditions in root region enhanced the gene expression of the pAtGST11::GUS in the shoot region. This result suggested that the degree of Al toxicity in the root reflects the gene response of pAtGST11::GUS in the shoot via the deduced signaling system. Both transgenic lines also showed an increase of GUS activity after cold stress, heat stress, metal toxicity, and oxidative damages, suggesting a common induction mechanism in response to the tested stresses including Al stress. PMID:15047894
Fuentes, Alejandra; Ortiz, Javier; Saavedra, Nicolás; Salazar, Luis A; Meneses, Claudio; Arriagada, Cesar
2016-04-01
The gene expression stability of candidate reference genes in the roots and leaves of Solanum lycopersicum inoculated with arbuscular mycorrhizal fungi was investigated. Eight candidate reference genes including elongation factor 1 α (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), protein phosphatase 2A (PP2Acs), ribosomal protein L2 (RPL2), β-tubulin (TUB), ubiquitin (UBI) and actin (ACT) were selected, and their expression stability was assessed to determine the most stable internal reference for quantitative PCR normalization in S. lycopersicum inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. The stability of each gene was analysed in leaves and roots together and separated using the geNorm and NormFinder algorithms. Differences were detected between leaves and roots, varying among the best-ranked genes depending on the algorithm used and the tissue analysed. PGK, TUB and EF1 genes showed higher stability in roots, while EF1 and UBI had higher stability in leaves. Statistical algorithms indicated that the GAPDH gene was the least stable under the experimental conditions assayed. Then, we analysed the expression levels of the LePT4 gene, a phosphate transporter whose expression is induced by fungal colonization in host plant roots. No differences were observed when the most stable genes were used as reference genes. However, when GAPDH was used as the reference gene, we observed an overestimation of LePT4 expression. In summary, our results revealed that candidate reference genes present variable stability in S. lycopersicum arbuscular mycorrhizal symbiosis depending on the algorithm and tissue analysed. Thus, reference gene selection is an important issue for obtaining reliable results in gene expression quantification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan
2016-01-12
Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong
2011-08-01
Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes. © 2011 Blackwell Publishing Ltd.
Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L
2008-10-01
HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.
Bowman, Megan J.; Park, Wonkeun; Bauer, Philip J.; Udall, Joshua A.; Page, Justin T.; Raney, Joshua; Scheffler, Brian E.; Jones, Don. C.; Campbell, B. Todd
2013-01-01
An RNA-Seq experiment was performed using field grown well-watered and naturally rain fed cotton plants to identify differentially expressed transcripts under water-deficit stress. Our work constitutes the first application of the newly published diploid D5 Gossypium raimondii sequence in the study of tetraploid AD1 upland cotton RNA-seq transcriptome analysis. A total of 1,530 transcripts were differentially expressed between well-watered and water-deficit stressed root tissues, in patterns that confirm the accuracy of this technique for future studies in cotton genomics. Additionally, putative sequence based genome localization of differentially expressed transcripts detected A2 genome specific gene expression under water-deficit stress. These data will facilitate efforts to understand the complex responses governing transcriptomic regulatory mechanisms and to identify candidate genes that may benefit applied plant breeding programs. PMID:24324815
Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J
2009-01-01
Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifsmore » in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.« less
Li, Wen-Yan; Chen, Bing-Xian; Chen, Zhong-Jian; Gao, Yin-Tao; Chen, Zhuang; Liu, Jun
2017-01-01
Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS) regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs) are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI), a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the regulation of NOX family gene expression in germinating seeds of monocot cereals. PMID:28098759
Parallel evolution of storage roots in morning glories (Convolvulaceae).
Eserman, Lauren A; Jarret, Robert L; Leebens-Mack, James H
2018-05-29
Storage roots are an ecologically and agriculturally important plant trait that have evolved numerous times in angiosperms. Storage roots primarily function to store carbohydrates underground as reserves for perennial species. In morning glories, storage roots are well characterized in the crop species sweetpotato, where starch accumulates in storage roots. This starch-storage tissue proliferates, and roots thicken to accommodate the additional tissue. In morning glories, storage roots have evolved numerous times. The primary goal of this study is to understand whether this was through parallel evolution, where species use a common genetic mechanism to achieve storage root formation, or through convergent evolution, where storage roots in distantly related species are formed using a different set of genes. Pairs of species where one forms storage roots and the other does not were sampled from two tribes in the morning glory family, the Ipomoeeae and Merremieae. Root anatomy in storage roots and fine roots was examined. Furthermore, we sequenced total mRNA from storage roots and fine roots in these species and analyzed differential gene expression. Anatomical results reveal that storage roots of species in the Ipomoeeae tribe, such as sweetpotato, accumulate starch similar to species in the Merremieae tribe but differ in vascular tissue organization. In both storage root forming species, more genes were found to be upregulated in storage roots compared to fine roots. Further, we find that fifty-seven orthologous genes were differentially expressed between storage roots and fine roots in both storage root forming species. These genes are primarily involved in starch biosynthesis, regulation of starch biosynthesis, and transcription factor activity. Taken together, these results demonstrate that storage roots of species from both morning glory tribes are anatomically different but utilize a common core set of genes in storage root formation. This is consistent with a pattern of parallel evolution, thus highlighting the importance of examining anatomy together with gene expression to understand the evolutionary origins of ecologically and economically important plant traits.
Bonin, Christopher P; Freshour, Glenn; Hahn, Michael G; Vanzin, Gary F; Reiter, Wolf-Dieter
2003-06-01
l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.
Ye, Xia; Fu, Mengmeng; Liu, Yu; An, Dongliang; Zheng, Xianbo; Tan, Bin; Li, Jidong; Cheng, Jun; Wang, Wei; Feng, Jiancan
2018-05-04
Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene. Copyright © 2018 Elsevier GmbH. All rights reserved.
Malhotra, Nikhil; Sood, Hemant; Chauhan, Rajinder Singh
2016-12-01
Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.
Lenoir, Ingrid; Fontaine, Joël; Tisserant, Benoît; Laruelle, Frédéric; Lounès-Hadj Sahraoui, Anissa
2017-07-01
Arbuscular mycorrhizal fungi are able to improve plant establishment in polluted soils but little is known about the genes involved in the plant protection against pollutant toxicity by mycorrhization, in particular in the presence of polycyclic aromatic hydrocarbons (PAH). The present work aims at studying in both symbiotic partners, Medicago truncatula and Rhizophagus irregularis: (i) expression of genes putatively involved in PAH tolerance (MtSOD, MtPOX, MtAPX, MtGST, MtTFIIS, and MtTdp1α), (ii) activities of antioxidant (SOD, POX) and detoxification (GST) enzymes, and (iii) H 2 O 2 and the heavy PAH, benzo[a]pyrene (B[a]P) accumulation. In the presence of B[a]P, whereas induction of the enzymatic activities was detected in R. irregularis and non-mycorrhizal roots as well as upregulation of the gene expressions in the non-mycorrhizal roots, downregulation of the gene expressions and decrease of enzyme activities were observed in mycorrhizal roots. Moreover, B[a]P increased H 2 O 2 production in non-mycorrhizal roots and in R. irregularis but not in mycorrhizal roots. In addition, a lower B[a]P bioaccumulation in mycorrhizal roots was measured in comparison with non-mycorrhizal roots. Being less affected by pollutant toxicity, mycorrhizal roots did not activate any defense mechanism either at the gene expression regulation level or at the enzymatic level.
Conserved Gene Expression Programs in Developing Roots from Diverse Plants.
Huang, Ling; Schiefelbein, John
2015-08-01
The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. © 2015 American Society of Plant Biologists. All rights reserved.
Boursiac, Yann; Chen, Sheng; Luu, Doan-Trung; Sorieul, Mathias; van den Dries, Niels; Maurel, Christophe
2005-01-01
Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lpr) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lpr and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots under stress. Treatment of plants by 100 mm NaCl was perceived as an osmotic stimulus and induced a rapid (half-time, 45 min) and significant (70%) decrease in Lpr, which was maintained for at least 24 h. Macroarray experiments with gene-specific tags were performed to investigate the expression of all 35 genes of the Arabidopsis aquaporin family. Transcripts from 20 individual aquaporin genes, most of which encoded members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies, were detected in nontreated roots. All PIP and TIP aquaporin transcripts with a strong expression signal showed a 60% to 75% decrease in their abundance between 2 and 4 h following exposure to salt. The use of antipeptide antibodies that cross-reacted with isoforms of specific aquaporin subclasses revealed that the abundance of PIP1s decreased by 40% as early as 30 min after salt exposure, whereas PIP2 and TIP1 homologs showed a 20% to 40% decrease in abundance after 6 h of treatment. Expression in transgenic plants of aquaporins fused to the green fluorescent protein revealed that the subcellular localization of TIP2;1 and PIP1 and PIP2 homologs was unchanged after 45 min of exposure to salt, whereas a TIP1;1-green fluorescent protein fusion was relocalized into intracellular spherical structures tentatively identified as intravacuolar invaginations. The appearance of intracellular structures containing PIP1 and PIP2 homologs was occasionally observed after 2 h of salt treatment. In conclusion, this work shows that exposure of roots to salt induces changes in aquaporin expression at multiple levels. These changes include a coordinated transcriptional down-regulation and subcellular relocalization of both PIPs and TIPs. These mechanisms may act in concert to regulate root water transport, mostly in the long term (≥6 h). PMID:16183846
Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction
Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; ...
2016-01-19
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less
Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less
Kahlon, Jagroop Gill; Jacobsen, Hans-Jörg; Cahill, James F; Hall, Linda M
2017-10-01
Genetically modified crops have raised concerns about unintended consequences on non-target organisms including beneficial soil associates. Pea transformed with four antifungal genes 1-3 β glucanase, endochitinase, polygalacturonase-inhibiting proteins, and stilbene synthase is currently under field-testing for efficacy against fungal diseases in Canada. Transgenes had lower expression in the roots than leaves in greenhouse experiment. To determine the impact of disease-tolerant pea or gene products on colonization by non-target arbuscular mycorrhizae and nodulation by rhizobium, a field trial was established. Transgene insertion, as single gene or stacked genes, did not alter root colonization by arbuscular mycorrhiza fungus (AMF) or root nodulation by rhizobium inoculation in the field. We found no effect of transgenes on the plant growth and performance although, having a dual inoculant with both AMF and rhizobium yielded higher fresh weight shoot-to-root ratio in all the lines tested. This initial risk assessment of transgenic peas expressing antifungal genes showed no deleterious effect on non-target organisms.
Tian, Hui; Drijber, Rhae A; Li, Xiaolin; Miller, Daniel N; Wienhold, Brian J
2013-08-01
Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26-135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in non-mycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma:Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3.
Singh, Vikash K.; Jain, Mukesh; Garg, Rohini
2014-01-01
Growth hormone auxin regulates various cellular processes by altering the expression of diverse genes in plants. Among various auxin-responsive genes, GH3 genes maintain endogenous auxin homeostasis by conjugating excess of auxin with amino acids. GH3 genes have been characterized in many plant species, but not in legumes. In the present work, we identified members of GH3 gene family and analyzed their chromosomal distribution, gene structure, gene duplication and phylogenetic analysis in different legumes, including chickpea, soybean, Medicago, and Lotus. A comprehensive expression analysis in different vegetative and reproductive tissues/stages revealed that many of GH3 genes were expressed in a tissue-specific manner. Notably, chickpea CaGH3-3, soybean GmGH3-8 and -25, and Lotus LjGH3-4, -5, -9 and -18 genes were up-regulated in root, indicating their putative role in root development. In addition, chickpea CaGH3-1 and -7, and Medicago MtGH3-7, -8, and -9 were found to be highly induced under drought and/or salt stresses, suggesting their role in abiotic stress responses. We also observed the examples of differential expression pattern of duplicated GH3 genes in soybean, indicating their functional diversification. Furthermore, analyses of three-dimensional structures, active site residues and ligand preferences provided molecular insights into function of GH3 genes in legumes. The analysis presented here would help in investigation of precise function of GH3 genes in legumes during development and stress conditions. PMID:25642236
Ha, Chien Van; Watanabe, Yasuko; Tran, Uyen Thi; Le, Dung Tien; Tanaka, Maho; Nguyen, Kien Huu; Seki, Motoaki; Nguyen, Dong Van; Tran, Lam-Son Phan
2015-01-01
The economically important DT2008 and the model Williams 82 (W82) soybean cultivars were reported to have differential drought-tolerant degree to dehydration and drought, which was associated with root trait. Here, we used 66K Affymetrix Soybean Array GeneChip to compare the root transcriptomes of DT2008 and W82 seedlings under normal, as well as mild (2 h treatment) and severe (10 h treatment) dehydration conditions. Out of the 38172 soybean genes annotated with high confidence, 822 (2.15%) and 632 (1.66%) genes showed altered expression by dehydration in W82 and DT2008 roots, respectively, suggesting that a larger machinery is required to be activated in the drought-sensitive W82 cultivar to cope with the stress. We also observed that long-term dehydration period induced expression change of more genes in soybean roots than the short-term one, independently of the genotypes. Furthermore, our data suggest that the higher drought tolerability of DT2008 might be attributed to the higher number of genes induced in DT2008 roots than in W82 roots by early dehydration, and to the expression changes of more genes triggered by short-term dehydration than those by prolonged dehydration in DT2008 roots vs. W82 roots. Differentially expressed genes (DEGs) that could be predicted to have a known function were further analyzed to gain a basic understanding on how soybean plants respond to dehydration for their survival. The higher drought tolerability of DT2008 vs. W82 might be attributed to differential expression in genes encoding osmoprotectant biosynthesis-, detoxification- or cell wall-related proteins, kinases, transcription factors and phosphatase 2C proteins. This research allowed us to identify genetic components that contribute to the improved drought tolerance of DT2008, as well as provide a useful genetic resource for in-depth functional analyses that ultimately leads to development of soybean cultivars with improved tolerance to drought. PMID:26300889
Sepiol, Caroline J.; Yu, Jaeju; Dhaubhadel, Sangeeta
2017-01-01
Soybean (Glycine max [L.] Merr) is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars’ worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR) which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding. PMID:29270182
NASA Astrophysics Data System (ADS)
Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.
1987-05-01
Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.
Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu
2016-12-01
Turnip (Brassica rapa ssp. rapa) is an important vegetable crop producing glucosinolates (GSLs) and phenolic compounds. The GSLs, phenolic compound contents and transcript levels in hairy root cultures, as well as their antioxidant, antimicrobial and anticancer activity were studied in turnip. Transgenic hairy root lines were confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR. GSLs levels (glucoallysin, glucobrassicanapin, gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and 4-hydroxyglucobrassicin) and their gene expression levels (BrMYB28, BrMYB29, BrMYB34, BrMYB51, BrMYB122, CYP79 and CYP83) significantly increased in hairy roots compared with that in non-transformed roots. Furthermore, hairy roots efficiently produced several important individual phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids). Colorimetric analysis revealed that the highest levels of total phenol, flavonoid contents, and their gene expression levels (PAL, CHI and FLS) in hairy roots than non-transformed roots. Our study provides beneficial information on the molecular and physiological active processes that are associated with the phytochemical content and biosynthetic gene expression in turnip. Moreover, antioxidant activity, as measured by DPPH scavenging activity, reducing potential, phosphomolybdenum and ferrous ion chelating ability assays was significantly higher in hairy roots. Hairy root extracts exhibited higher antimicrobial activity against bacterial and fungal species. The extract of hairy roots showed inhibition of human breast and colon cancer cell lines.
Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong
2012-09-01
Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.
Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M
2013-06-01
Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.
Hong, Joon Ki; Kim, Jin A; Kim, Jung Sun; Lee, Soo In; Koo, Bon Sung; Lee, Yeon-Hee
2012-08-01
S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.
Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864
Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.
[Effects of aconite root on energy metabolism and expression of related genes in rats].
Yu, Huayun; Ji, Xuming; Wu, Zhichun; Wang, Shijun
2011-09-01
To study the influence of aconite root, a Chinese medicinal herb with hot property, on energy metabolism and gene expression spectrum, and to analyze the possible mechanism of it effect. Thirty two SPF Wistar rats were randomly divided into aconite root group and control group. Decoction of aconite root and NS were intragastrically administrated with the concentration of 10 mL x kg(-1) respectively once a day for 20 days. Temperature, energy intake (EI), digestive energy (DE) and metabolic energy (ME) were measured. The activity of ATPase and succinate dehydrogenase (SDH) in liver was detected by colorimetry. The gene expression of liver was detected with Illumina's rat ref-12 gene array. The differential expression genes were selected, annotated and classified based on gene ontology (GO). Real-time quantitative reverse-transcriptase PCR (Q-RT-PCR) was used to test the accuracy of the array results. Compared with the control group, the toe temperature (TT) on the 10th and 20th day after the administration,the EI/BM( body mass), DE/BM, ME/BM and the activity of Na+ - K+ - ATPase, Ca2+ - Mg2+ - ATPase and SDH of liver in the aconite root group increased significantly (P<0.05). There were 592 differential expression genes in aconite root group compared with the control group. Based on Go analysis, the most significant genes was related to metabolic process (lgP = - 15.5897). Aconite root could improve the energy metabolism in rats, by influencing the metabolic process of sugar, lipid and amino acid, which may be the main molecular mechanism of warming yang and dispelling cold for the treatment of the cold syndrome according to Chinese medicine theory.
Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping
2016-10-01
A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chen, Feng; Ro, Dae-Kyun; Petri, Jana; Gershenzon, Jonathan; Bohlmann, Jörg; Pichersky, Eran; Tholl, Dorothea
2004-01-01
Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the characterization of a monoterpene synthase encoded by two identical, closely linked genes, At3g25820 and At3g25830. Transcripts of these genes were detected almost exclusively in roots. An At3g25820/At3g25830 cDNA was expressed in Escherichia coli, and the protein thus produced was shown to catalyze the formation of 10 volatile monoterpenes from geranyl diphosphate, with 1,8-cineole predominating. This protein was therefore designated AtTPS-Cin. The purified recombinant AtTPS-Cin displayed similar biochemical properties to other known monoterpene synthases, except for a relatively low Km value for geranyl diphosphate of 0.2 μm. At3g25820/At3g25830 promoter activity, measured with a β-glucuronidase (GUS) reporter gene, was primarily found in the epidermis, cortex, and stele of mature primary and lateral roots, but not in the root meristem or the elongation zone. Although the products of AtTPS-Cin were not detected by direct extraction of plant tissue, the recent report of 1,8-cineole as an Arabidopsis root volatile (Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM [2004] Plant Physiol 135: 47–58) suggests that the enzyme products may be released into the rhizosphere rather than accumulated. Among Arabidopsis TPSs, AtTPS-Cin is most similar to the TPS encoded by At3g25810, a closely linked gene previously shown to be exclusively expressed in flowers. At3g25810 TPS catalyzes the formation of a set of monoterpenes that is very similar to those produced by AtTPS-Cin, but its major products are myrcene and (E)-β-ocimene, and it does not form 1,8-cineole. These data demonstrate that divergence of organ expression pattern and product specificity are ongoing processes within the Arabidopsis TPS family. PMID:15299125
Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian
2013-07-01
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.
Wang, Miao-Ying; Zhao, Pi-Ming; Cheng, Huan-Qing; Han, Li-Bo; Wu, Xiao-Min; Gao, Peng; Wang, Hai-Yun; Yang, Chun-Lin; Zhong, Nai-Qin; Zuo, Jian-Ru; Xia, Gui-Xian
2013-01-01
Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells. PMID:23715527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Hua; Sichuan Tourism College, Chengdu, 610000, Sichuan; He, Xiujing
The heavy metal cadmium (Cd), acts as a widespread environmental contaminant, which has shown to adversely affect human health, food safety and ecosystem safety in recent years. However, research on how plant respond to various kinds of heavy metal stress is scarcely reported, especially for understanding of complex molecular regulatory mechanisms and elucidating the gene networks of plant respond to Cd stress. Here, transcriptomic changes during Mo17 and B73 seedlings development responsive to Cd pollution were investigated and comparative RNAseq-based approach in both genotypes were performed. 115 differential expression genes (DEGs) with significant alteration in expression were found co-modulated inmore » both genotypes during the maize seedling development; of those, most of DGEs were found comprised of stress and defense responses proteins, transporters, as well as transcription factors, such as thaumatin-like protein, ZmOPR2 and ZmOPR5. More interestingly, genotype-specific transcriptional factors changes induced by Cd stress were found contributed to the regulatory mechanism of Cd sensitivity in both different genotypes. Moreover, 12 co-expression modules associated with specific biological processes or pathways (M1 to M12) were identified by consensus co-expression network. These results will expand our understanding of complex molecular mechanism of response and defense to Cd exposure in maize seedling roots. - Highlights: • Transcriptomic changes responsive to Cd pollution using comparative RNAseq-based approach. • 115 differential expression genes (DEGs) were found co-modulated in both genotypes. • Most of DGEs belong to stress and defense responses proteins, transporters, transcription factors. • 12 co-expression modules associated with specific biological processes or pathways. • Genotype-specific transcriptional factors changes induced by Cd stress were found.« less
Genome-wide analysis reveals phytohormone action during cassava storage root initiation.
Sojikul, Punchapat; Saithong, Treenut; Kalapanulak, Saowalak; Pisuttinusart, Nuttapat; Limsirichaikul, Siripan; Tanaka, Maho; Utsumi, Yoshinori; Sakurai, Tetsuya; Seki, Motoaki; Narangajavana, Jarunya
2015-08-01
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
Xu, Mouzhong; Schnorr, Jon; Keibler, Brandon; Simon, Holly M
2012-04-01
We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the "root" clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized.
Moura, Daniel S.
2014-01-01
Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000
Sun, Li; Di, Dongwei; Li, Guangjie; Kronzucker, Herbert J; Shi, Weiming
2017-05-01
Ammonium (NH 4 + ) is the predominant nitrogen (N) source in many natural and agricultural ecosystems, including flooded rice fields. While rice is known as an NH 4 + -tolerant species, it nevertheless suffers NH 4 + toxicity at elevated soil concentrations. NH 4 + excess rapidly leads to the disturbance of various physiological processes that ultimately inhibit shoot and root growth. However, the global transcriptomic response to NH 4 + stress in rice has not been examined. In this study, we mapped the spatio-temporal specificity of gene expression profiles in rice under excess NH 4 + and the changes in gene expression in root and shoot at various time points by RNA-Seq (Quantification) using Illumina HiSeqTM 2000. By comparative analysis, 307 and 675 genes were found to be up-regulated after 4h and 12h of NH 4 + exposure in the root, respectively. In the shoot, 167 genes were up-regulated at 4h, compared with 320 at 12h. According to KEGG analysis, up-regulated DEGs mainly participate in phenylpropanoid (such as flavonoid) and amino acid (such as proline, cysteine, and methionine) metabolism, which is believed to improve NH 4 + stress tolerance through adjustment of energy metabolism in the shoot, while defense and signaling pathways, guiding whole-plant acclimation, play the leading role in the root. We furthermore critically assessed the roles of key phytohormones, and found abscisic acid (ABA) and ethylene (ET) to be the major regulatory molecules responding to excess NH 4 + and activating the MAPK (mitogen-activated protein kinase) signal-transduction pathway. Moreover, we found up-regulated hormone-associated genes are involved in regulating flavonoid biosynthesis and are regulated by tissue flavonoid accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Viana, Antonio A B; Fragoso, Rodrigo R; Guimarães, Luciane M; Pontes, Naiara; Oliveira-Neto, Osmundo B; Artico, Sinara; Nardeli, Sarah M; Alves-Ferreira, Marcio; Batista, João A N; Silva, Maria C M; Grossi-de-Sa, Maria F
2011-11-24
Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.
2011-01-01
Background Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. Results Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. Conclusions uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues. PMID:22115195
Yamaji, Naoki; Huang, Chao Feng; Nagao, Sakiko; Yano, Masahiro; Sato, Yutaka; Nagamura, Yoshiaki; Ma, Jian Feng
2009-10-01
Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.
Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John
2009-01-01
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis. PMID:19395683
Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John
2009-04-01
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.
Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi
2016-02-01
The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Fournier, Joëlle; Imanishi, Leandro; Chabaud, Mireille; Abdou-Pavy, Iltaf; Genre, Andrea; Brichet, Lukas; Lascano, Hernán Ramiro; Muñoz, Nacira; Vayssières, Alice; Pirolles, Elodie; Brottier, Laurent; Gherbi, Hassen; Hocher, Valérie; Svistoonoff, Sergio; Barker, David G; Wall, Luis G
2018-05-23
Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain
2009-12-01
Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.
Differences of Cd uptake and expression of OAS and IRT genes in two varieties of ryegrasses.
Chi, Sunlin; Qin, Yuli; Xu, Weihong; Chai, Yourong; Feng, Deyu; Li, Yanhua; Li, Tao; Yang, Mei; He, Zhangmi
2018-06-16
Pot experiment was conducted to study the difference of cadmium uptake and OAS and IRT genes' expression between the two ryegrass varieties under cadmium stress. The results showed that with the increase of cadmium levels, the dry weights of roots of the two ryegrass varieties, and the dry weights of shoots and plants of Abbott first increased and then decreased. When exposed to 75 mg kg -1 Cd, the dry weights of shoot and plant of Abbott reached the maximum, which increased by 11.13 and 10.67% compared with the control. At 75 mg kg -1 Cd, cadmium concentrations in shoot of the two ryegrass varieties were higher than the critical value of Cd hyperaccumulator (100 mg kg -1 ), 111.19 mg kg -1 (Bond), and 133.69 mg kg -1 (Abbott), respectively. The OAS gene expression in the leaves of the two ryegrass varieties showed a unimodal curve, which was up to the highest at the cadmium level of 150 mg kg -1 , but fell back at high cadmium levels of 300 and 600 mg kg -1 . The OAS gene expression in Bond and Abbott roots showed a bimodal curve. The OAS gene expression in Bond root and Abbott stem mainly showed a unimodal curve. The expression of IRT genes family in the leaves of ryegrass varieties was basically in line with the characteristics of unimodal curve, which was up to the highest at cadmium level of 75 or 150 mg kg -1 , respectively. The IRT expression in the ryegrass stems showed characteristics of bimodal and unimodal curves, while that in the roots was mainly unimodal. The expression of OAS and IRT genes was higher in Bond than that in Abbott due to genotype difference between the two varieties. The expression of OAS and IRT was greater in leaves than that in roots and stems. Ryegrass tolerance to cadmium can be increased by increasing the expression of OAS and IRT genes in roots and stems, and transfer of cadmium from roots and stems to the leaves can be enhanced by increasing expression OAS and IRT in leaves.
Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism.
Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng
2016-01-22
Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.
A bacterial-type ABC transporter is involved in aluminum tolerance in rice.
Huang, Chao Feng; Yamaji, Naoki; Mitani, Namiki; Yano, Masahiro; Nagamura, Yoshiaki; Ma, Jian Feng
2009-02-01
Aluminum (Al) toxicity is a major factor limiting crop production in acidic soil, but the molecular mechanisms of Al tolerance are poorly understood. Here, we report that two genes, STAR1 (for sensitive to Al rhizotoxicity1) and STAR2, are responsible for Al tolerance in rice. STAR1 encodes a nucleotide binding domain, while STAR2 encodes a transmembrane domain, of a bacterial-type ATP binding cassette (ABC) transporter. Disruption of either gene resulted in hypersensitivity to aluminum toxicity. Both STAR1 and STAR2 are expressed mainly in the roots and are specifically induced by Al exposure. Expression in onion epidermal cells, rice protoplasts, and yeast showed that STAR1 interacts with STAR2 to form a complex that localizes to the vesicle membranes of all root cells, except for those in the epidermal layer of the mature zone. When expressed together in Xenopus laevis oocytes, STAR1/2 shows efflux transport activity specific for UDP-glucose. Furthermore, addition of exogenous UDP-glucose rescued root growth in the star1 mutant exposed to Al. These results indicate that STAR1 and STAR2 form a complex that functions as an ABC transporter, which is required for detoxification of Al in rice. The ABC transporter transports UDP-glucose, which may be used to modify the cell wall.
Thatcher, Louise F.; Powell, Jonathan J.; Aitken, Elizabeth A.B.; Kazan, Kemal; Manners, John M.
2012-01-01
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling. PMID:22786889
Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments
Gifford, Miriam L.; Banta, Joshua A.; Katari, Manpreet S.; Hulsmans, Jo; Chen, Lisa; Ristova, Daniela; Tranchina, Daniel; Purugganan, Michael D.; Coruzzi, Gloria M.; Birnbaum, Kenneth D.
2013-01-01
Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments? When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such “tunability” in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment. PMID:24039603
Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter
2013-01-01
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241
Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano
2015-12-01
Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.
Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John
2015-01-01
Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.
TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana
Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John
2015-01-01
Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts. PMID:26451798
Yang, Yun-Wei; Chen, Hung-Chi; Jen, Wei-Fu; Liu, Li-Yu; Chang, Men-Chi
2015-01-01
Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress. PMID:26133169
Welander, Margareta; Geier, Thomas; Smolka, Anders; Ahlman, Annelie; Fan, Jing; Zhu, Li-Hua
2014-02-01
Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Shakoor, Nadia; Nair, Ramesh; Crasta, Oswald; Morris, Geoffrey; Feltus, Alex; Kresovich, Stephen
2014-01-23
Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.
2014-01-01
Background Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community. PMID:24456189
Meng, Delong; Fricke, Wieland
2017-04-01
The aim of the present work was to assess the significance of changes in root AQP gene expression and hydraulic conductivity (Lp) in the regulation of water balance in two hydroponically-grown rice cultivars (Azucena, Bala) which differ in root morphology, stomatal regulation and aquaporin (AQP) isoform expression. Plants were exposed to NaCl (25 mM, 50 mM) and osmotic stress (5%, 10% PEG6000). Root Lp was determined for exuding root systems (osmotic forces driving water uptake; 'exudation Lp') and transpiring plants (hydrostatic forces dominating; 'transpiration-Lp'). Gene expression was analysed by qPCR. Stress treatments caused a consistent and significant decrease in plant growth, transpirational water loss, stomatal conductance, shoot-to-root surface area ratio and root Lp. Comparison of exudation-with transpiration-Lp supported a significant contribution of AQP-facilitated water flow to root water uptake. Changes in root Lp in response to treatments were correlated much stronger with root morphological characteristics, such as the number of main and lateral roots, surface area ratio of root to shoot and plant transpiration rate than with AQP gene expression. Changes in root Lp, involving AQP function, form an integral part of the plant hydraulic response to stress and facilitate changes in the root-to-shoot surface area ratio, transpiration and stomatal conductance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Burleigh, S H; Harrison, M J
1997-05-01
A cDNA clone (Mt4) was isolated as a result of a differential screen to identify genes showing altered expression during the interaction between Medicago truncatula and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus versiforme. Mt4 represents a M. truncatula mRNA that contains numerous short open reading frames, the two longest of which are predicted to encode polypeptides of 51 amino acids each. One of these open reading frames shares a short region of identity with a phosphate starvation-inducible gene from tomato. Mt4 gene expression is regulated in response to colonization by mycorrhizal fungi: transcripts were detected in non-colonized roots and levels decreased in both M. truncatula and M. sativa (alfalfa) roots after colonization by G. versiforme. Transcript levels also decreased during the incomplete interaction between G. versiforme and a M. sativa mycorrhizal minus (myc-) line, indicating that the down-regulation of this gene occurs early during the interaction between the fungus and its host plant. Phosphate levels in the nutrient media also affected the expression of the Mt4 gene: transcripts were present in the roots of plants grown under phosphate-deficient conditions, but were undetectable in the roots of plants grown under phosphate sufficient conditions. Furthermore, expression was only observed when plants were grown under nitrogen-sufficient conditions. Northern blot analyses indicate that Mt4 transcripts are present primarily in roots and barely detectable in stems or leaves. Thus, Mt4 represents a M. truncatula gene whose expression is regulated in response to both colonization by mycorrhizal fungi and to the phosphate status of the plant.
Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.
Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F
2013-04-25
The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.
Domergue, Frédéric; Vishwanath, Sollapura J.; Joubès, Jérôme; Ono, Jasmine; Lee, Jennifer A.; Bourdon, Matthieu; Alhattab, Reem; Lowe, Christine; Pascal, Stéphanie; Lessire, René; Rowland, Owen
2010-01-01
Suberin is a protective hydrophobic barrier consisting of phenolics, glycerol, and a variety of fatty acid derivatives, including C18:0-C22:0 primary fatty alcohols. An eight-member gene family encoding alcohol-forming fatty acyl-coenzyme A reductases (FARs) has been identified in Arabidopsis (Arabidopsis thaliana). Promoter-driven expression of the β-glucuronidase reporter gene indicated that three of these genes, FAR1(At5g22500), FAR4(At3g44540), and FAR5(At3g44550), are expressed in root endodermal cells. The three genes were transcriptionally induced by wounding and salt stress. These patterns of gene expression coincide with known sites of suberin deposition. We then characterized a set of mutants with T-DNA insertions in FAR1, FAR4, or FAR5 and found that the suberin compositions of roots and seed coats were modified in each far mutant. Specifically, C18:0-OH was reduced in far5-1, C20:0-OH was reduced in far4-1, and C22:0-OH was reduced in far1-1. We also analyzed the composition of polymer-bound lipids of leaves before and after wounding and found that the basal levels of C18:0-C22:0 primary alcohols in wild-type leaves were increased by wounding. In contrast, C18:0-OH and C22:0-OH were not increased by wounding in far5-1 and far1-1 mutants, respectively. Heterologous expression of FAR1, FAR4, and FAR5 in yeast confirmed that they are indeed active alcohol-forming FARs with distinct, but overlapping, chain length specificities ranging from C18:0 to C24:0. Altogether, these results indicate that Arabidopsis FAR1, FAR4, and FAR5 generate the fatty alcohols found in root, seed coat, and wound-induced leaf tissue. PMID:20571114
A Transcriptional Program for Arbuscule Degeneration during AM Symbiosis Is Regulated by MYB1.
Floss, Daniela S; Gomez, S Karen; Park, Hee-Jin; MacLean, Allyson M; Müller, Lena M; Bhattarai, Kishor K; Lévesque-Tremblay, Veronique; Maldonado-Mendoza, Ignacio E; Harrison, Maria J
2017-04-24
During the endosymbiosis formed between plants and arbuscular mycorrhizal (AM) fungi, the root cortical cells are colonized by branched hyphae called arbuscules, which function in nutrient exchange with the plant [1]. Despite their positive function, arbuscules are ephemeral structures, and their development is followed by a degeneration phase, in which the arbuscule and surrounding periarbuscular membrane and matrix gradually disappear from the root cell [2, 3]. Currently, the root cell's role in this process and the underlying regulatory mechanisms are unknown. Here, by using a Medicago truncatula pt4 mutant in which arbuscules degenerate prematurely [4], we identified arbuscule degeneration-associated genes, of which 38% are predicted to encode secreted hydrolases, suggesting a role in disassembly of the arbuscule and interface. Through RNAi and analysis of an insertion mutant, we identified a symbiosis-specific MYB-like transcription factor (MYB1) that suppresses arbuscule degeneration in mtpt4. In myb1, expression of several degeneration-associated genes is reduced. Conversely, in roots constitutively overexpressing MYB1, expression of degeneration-associated genes is increased and subsequent development of symbiosis is impaired. MYB1-regulated gene expression is enhanced by DELLA proteins and is dependent on NSP1 [5], but not NSP2 [6]. Furthermore, MYB1 interacts with DELLA and NSP1. Our data identify a transcriptional program for arbuscule degeneration and reveal that its regulators include MYB1 in association with two transcriptional regulators, NSP1 and DELLA, both of which function in preceding phases of the symbiosis. We propose that the combinatorial use of transcription factors enables the sequential expression of transcriptional programs for arbuscule development and degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siebers, Tyche; Catarino, Bruno; Agusti, Javier
2017-03-01
We have identified new potential regulators of xylem cell-type determination and cellular proliferation in cassava and studied their expression in roots. Results are highly relevant for cassava biotechnology. Cassava's root system is composed of two types of root that coexist in every individual: the fibrous and the storage roots. Whether a root becomes fibrous or storage depends on the xylem cell types that it develops: fibrous roots develop xylem fibres and vessels while storage roots develop parenchyma xylem, the starch-storing tissue. A crucial question in cassava root development is how the specific xylem cell types differentiate and proliferate in the fibrous and storage roots. Using phylogenetic, protein sequence and synteny analyses we identified (1) MeVND6, MeVND7.1, MeVND7.2, MeNST3.1 and MeNST3.2 as the potential cassava orthologues of the Arabidopsis regulators of xylem cell type determination AtVND6, AtVND7 and AtNST3; and (2) MeWOX4.1 and MeWOX4.2 as the potential cassava orthologues of the Arabidopsis cambium regulator AtWOX4. Fibrous and storage roots were anatomically characterised and tested for the expression of the identified genes. Results revealed that (1) MeVND7.1 and MeVND7.2 are expressed in the fibrous but not in the storage roots; (2) MeVND6 shows low expression in both root types; (3) MeNST3.1 is not expressed in the fibrous or storage roots, while MeNST3.2 is highly expressed in both root-types and (4) MeWOX4.1 and, to a higher level, MeWOX4.2 are expressed in both the fibrous and storage roots. Results open new avenues for research in cassava root development and for food security-oriented biotechnology programmes.
Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY
Ohashi-Ito, Kyoko; Bergmann, Dominique C.
2011-01-01
Complex organisms consist of a multitude of cell types arranged in precise spatial relation to each other. Arabidopsis roots generally exhibit radial tissue organization; however, within a tissue layer, cells are not identical. Specific vascular cell types are arranged in diametrically opposed longitudinal files that maximize the distance between them and create a bilaterally symmetric (diarch) root. Mutations in the LONESOME HIGHWAY (LHW) gene eliminate bilateral symmetry and reduce the number of cells in the center of the root, resulting in roots with only single and xylem and phloem poles. LHW does not appear to be required for the creation of any specific cell type, but coordinately controls the number of all vascular cell types by regulating the size of the pool of cells from which they arise. We cloned LHW and found that it encodes a protein with weak sequence similarity to basic helix-loop-helix (bHLH) domain proteins. LHW is a transcriptional activator in vitro. In plants, LHW is nuclear localized and is expressed in the root meristems where we hypothesize it acts independently of other known root patterning genes to promote the production of stele cells, but may also indirectly feed into established regulatory networks for the maintenance of the root meristem. PMID:17626058
Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M; Trapero-Casas, José L; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A; Pliego-Alfaro, Fernando
2018-01-01
The antifungal protein (AFP) produced by Aspergillus giganteus , encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix , was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae .
Stegemann, Thomas; Sievert, Christian
2017-01-01
Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey (Symphytum officinale; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. PMID:28275146
Das, Sayan; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A
2010-08-19
The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN) in cowpea (Vigna unguiculata). Based on histological and reactive oxygen species (ROS) profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction. Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk) were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi). At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue) and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue). At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively. In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism.
Wubben, Martin J; Callahan, Franklin E; Velten, Jeff; Burke, John J; Jenkins, Johnie N
2015-02-01
Transgene-based analysis of the MIC-3 gene provides the first report of a cotton gene having a direct role in mediating cotton resistance to root-knot nematode. Major quantitative trait loci have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita); however, nearly nothing is known regarding the underlying molecular determinants of this RKN-resistant phenotype. Multiple lines of circumstantial evidence have strongly suggested that the MIC (Meloidogyne Induced Cotton) gene family plays an integral role in mediating cotton resistance to RKN. In this report, we demonstrate that overexpression of MIC-3 in the RKN-susceptible genetic background Coker 312 reduces RKN egg production by ca. 60-75 % compared to non-transgenic controls and transgene-null sibling lines. MIC-3 transcript and protein overexpression were confirmed in root tissues of multiple independent transgenic lines with each line showing a similar level of increased resistance to RKN. In contrast to RKN fecundity, transgenic lines showed RKN-induced root galling similar to the susceptible controls. In addition, we determined that this effect of MIC-3 overexpression was specific to RKN as no effect was observed on reniform nematode (Rotylenchulus reniformis) reproduction. Transgenic lines did not show obvious alterations in growth, morphology, flowering, or fiber quality traits. Gene expression analyses showed that MIC-3 transcript levels in uninfected transgenic roots exceeded levels observed in RKN-infected roots of naturally resistant plants and that overexpression did not alter the regulation of native MIC genes in the genome. These results are the first report describing a direct role for a specific gene family in mediating cotton resistance to a plant-parasitic nematode.
Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters.
Guo, B; Jin, Y; Wussler, C; Blancaflor, E B; Motes, C M; Versaw, W K
2008-01-01
The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busov, Victor
Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula - Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in mostmore » transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses. We studied the poplar C(19) gibberellin 2-oxidase (GA2ox) gene subfamily. We show that a set of paralogous gene pairs differentially regulate shoot and root development. ? PtGA2ox4 and its paralogous gene PtGA2ox5 are primarily expressed in aerial organs, and overexpression of PtGA2ox5 produced a strong dwarfing phenotype characteristic of GA deficiency. Suppression of PtGA2ox4 and PtGA2ox5 led to increased biomass growth, but had no effect on root development. By contrast, the PtGA2ox2 and PtGA2ox7 paralogous pair was predominantly expressed in roots, and when these two genes were RNAi-suppressed it led to a decrease of root biomass. ? The morphological changes in the transgenic plants were underpinned by tissue-specific increases in bioactive GAs that corresponded to the predominant native expression of the targeted paralogous gene pair. Although RNAi suppression of both paralogous pairs led to changes in wood development, they were much greater in the transgenics with suppressed PtGA2ox4 and PtGA2ox5. The degree of gene suppression in independent events was strongly associated with phenotypes, demonstrating dose-dependent control of growth by GA2ox RNA concentrations. ? The expression and transgenic modifications reported here show that shoot- and leaf-expressed PtGA2ox4 and PtGA2ox5 specifically restrain aerial shoot growth, while root-expressed PtGA2ox2 and PtGA2ox7 promote root development. Genes controlling plant growth and form are of considerable interest, because they affect survival and productivity traits, and are largely unknown or poorly characterized. The SHORT INTERNODES(SHI) gene is one of a 10-member SHI-RELATED SEQUENCE (SRS) gene family in Arabidopsis that includes important developmental regulators. ? Using comparative sequence analysis of the SRS gene families in poplar and Arabidopsis, we identified two poplar proteins that are most similar to SHI and its closely related gene STYLISH1 (STY1). The two poplar genes are very similar in sequence and expression and are therefore probably paralogs with redundant functions. ? RNAi suppression of the two Populus genes enhanced shoot and root growth, whereas the overexpression of Arabidopsis SHI in poplar reduced internode and petiole length. The suppression of the two genes increased fiber length and the proportion of xylem tissue, mainly through increased xylem cell proliferation. The transgenic modifications were also associated with significant changes in the concentrations of gibberellins and cytokinin. ? We conclude that Populus SHI-RELATED SEQUENCE (SRS) genes play an important role in the regulation of vegetative growth, including wood formation, and thus could be useful tools for the modification of biomass productivity, wood quality or plant form. We studied the effects on plant growth from insertion of five cisgenes that encode proteins involved in gibberellin metabolism or signalling. Intact genomic copies of PtGA20ox7, PtGA2ox2,Pt RGL1_1, PtRGL1_2 and PtGAI1 genes from the genome-sequenced Populus trichocarpa clone Nisqually-1 were transformed into Populus tremula - alba (clone INRA 717-1B4), and growth, morphology and xylem cell size characterized in the greenhouse. Each cisgene encompassed 1-2?kb of 5' and 1?kb of 3' flanking DNA, as well as all native exons and introns. Large numbers of independent insertion events per cisgene (19-38), including empty vector controls, were studied. Three of the cisgenic modifications had significant effects on plant growth rate, morphology or wood properties. The PtGA20ox7 cisgene increased rate of shoot regeneration in vitro, accelerated early growth, and variation in growth rate was correlated with PtGA20ox7 gene expression. PtRGL1_1 and PtGA2ox2 caused reduced growth, while PtRGL1_2 gave rise to plants that grew normally but had significantly longer xylem fibres. RT-PCR studies suggested that the lack of growth inhibition observed in PtRGL1_2 cisgenic plants was a result of co-suppression. PtGAI1 slowed regeneration rate and both PtGAI1 and PtGA20ox7 gave rise to increased variance among events for early diameter and volume index, respectively. Our work suggests that cisgenic insertion of additional copies of native genes involved in growth regulation may provide tools to help modify plant architecture, expand the genetic variance in plant architecture available to breeders and accelerate transfer of alleles between difficult-to-cross species. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.« less
A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots.
Nakayama, Takuya; Shinohara, Hidefumi; Tanaka, Mina; Baba, Koki; Ogawa-Ohnishi, Mari; Matsubayashi, Yoshikatsu
2017-01-20
Plants achieve mineral ion homeostasis by means of a hydrophobic barrier on endodermal cells called the Casparian strip, which restricts lateral diffusion of ions between the root vascular bundles and the soil. We identified a family of sulfated peptides required for contiguous Casparian strip formation in Arabidopsis roots. These peptide hormones, which we named Casparian strip integrity factor 1 (CIF1) and CIF2, are expressed in the root stele and specifically bind the endodermis-expressed leucine-rich repeat receptor kinase GASSHO1 (GSO1)/SCHENGEN3 and its homolog, GSO2. A mutant devoid of CIF peptides is defective in ion homeostasis in the xylem. CIF genes are environmentally responsive. Casparian strip regulation is not merely a passive process driven by root developmental cues; it also serves as an active strategy to cope with adverse soil conditions. Copyright © 2017, American Association for the Advancement of Science.
Yang, Jun; An, Dong; Zhang, Peng
2011-03-01
Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement. © 2011 Institute of Botany, Chinese Academy of Sciences.
Ara, Neelam; Nakkanong, Korakot; Lv, Wenhui; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang
2013-01-01
The elucidation of heat tolerance mechanisms is required to combat the challenges of global warming. This study aimed to determine the antioxidant enzyme responses to heat stress, at the enzymatic activity and gene expression levels, and to investigate the antioxidative alterations associated with heat tolerance in the stems and roots of squashes using three genotypes differing in heat tolerance. Plants of heat-tolerant “C. moschata”, thermolabile “C. maxima” and moderately heat-tolerant interspecific inbred line “Maxchata” genotypes were exposed to moderate (37 °C) and severe (42 °C) heat shocks. “C. moschata” exhibited comparatively little oxidative damage, with the lowest hydrogen peroxide (H2O2), superoxide (O2−) and malondialdehyde (MDA) contents in the roots compared to stems, followed by “Maxchata”. The enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) were found to be increased with heat stress in tolerant genotypes. The significant inductions of FeSOD, MnSOD, APX2, CAT1 and CAT3 isoforms in tolerant genotypes suggested their participation in heat tolerance. The differential isoform patterns of SOD, APX and CAT between stems and roots also indicated their tissue specificity. Furthermore, despite the sequence similarity of the studied antioxidant genes among “C. maxima” and “Maxchata”, most of these genes were highly induced under heat stress in “Maxchata”, which contributed to its heat tolerance. This phenomenon also indicated the involvement of other unknown genetic and/or epigenetic factors in controlling the expression of these antioxidant genes in squashes, which demands further exploration. PMID:24336062
Chinnapandi, Bharathiraja; Bucki, Patricia; Braun Miyara, Sigal
2017-12-02
The fluctuation of tomato's WRKY defense regulators during infection by the root knot nematode Meloidogyne javanica was analyzed: and the spatial and temporal expression of SlWRKY45 was studied in depth with regard to its response to nematode infection, phytohormones, and wounding. Expression of WRKY45 increased substantially within 5 d upon infection and continued through feeding-site development and gall maturation. Histological analysis of nematode feeding sites indicated that WRKY45 was highly expressed within the feeding cells and associated vascular parenchyma cells. Responses of SlWRKY45 promoters to several phytohormones showed that WRKY45 was highly induced by specific phytohormones, including cytokinin, auxin, and the defense-signaling molecule salicylic acid (SA), but not by the jasmonates. Overexpressing tomato lines were generated, and infection tests showed that, significantly, roots over-expressing SlWRKY45 contained substantially increased number of females, indicating that WRKY45 overexpression supported faster nematode development. qRT-PCR tests have shown roots overexpressing WRKY45 suppressed the jasmonic acid and salicylic acid marker genes, proteinase inhibitor (PI), and pathogenesis related protein (PR1), respectively, and also the cytokinin response factors CRF1 and CRF6. Overall, this study indicated SlWRKY45 to be a potential transcription factor whose manipulation by the invading nematode might be critical for coordination of hormone signals supporting favorable condition for nematode development in root tissue.
Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun
2018-03-15
Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.
Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w
Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara
2004-01-01
In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392
Wang, Guanglong; Huang, Wei; Li, Mengyao; Xu, Zhisheng; Wang, Feng; Xiong, Aisheng
2016-09-01
Jasmonates (JAs) are recognized as essential regulators in response to environmental stimuli and plant development. Carrot is an Apiaceae vegetable with great value and undergoes significant size changes over the course of plant growth. However, JA accumulation and its potential roles in carrot growth remain unclear. Here, methyl JA (MeJA) levels and expression profiles of JA-related genes were analyzed in carrot roots and leaves at five developmental stages. MeJA levels in the roots and leaves were the highest at the first stage and decreased as carrot growth proceeded. Transcript levels of several JA-related genes (Dc13-LOX1, Dc13-LOX2, DcAOS, DcAOC, DcOPR2, DcOPR3, DcOPCL1, DcJAR1, DcJMT, DcCOI1, DcJAZ1, DcJAZ2, DcMYC2, DcCHIB/PR3, DcLEC, and DcVSP2) were not well correlated with MeJA accumulation during carrot root and leaf development. In addition, some JA-related genes (DcJAR1, DcJMT, DcCOI1, DcMYC2, and DcVSP2) showed differential expression between roots and leaves. These results suggest that JAs may regulate carrot plant growth in stage-dependent and organ-specific manners. Our work provides novel insights into JA accumulation and its potential roles during carrot growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju
2017-01-11
Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.
Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H
2014-09-01
Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.
Mobile small RNAs regulate genome-wide DNA methylation.
Lewsey, Mathew G; Hardcastle, Thomas J; Melnyk, Charles W; Molnar, Attila; Valli, Adrián; Urich, Mark A; Nery, Joseph R; Baulcombe, David C; Ecker, Joseph R
2016-02-09
RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession.
Mergaert, Peter; Nikovics, Krisztina; Kelemen, Zsolt; Maunoury, Nicolas; Vaubert, Danièle; Kondorosi, Adam; Kondorosi, Eva
2003-01-01
Transcriptome analysis of Medicago truncatula nodules has led to the discovery of a gene family named NCR (nodule-specific cysteine rich) with more than 300 members. The encoded polypeptides were short (60–90 amino acids), carried a conserved signal peptide, and, except for a conserved cysteine motif, displayed otherwise extensive sequence divergence. Family members were found in pea (Pisum sativum), broad bean (Vicia faba), white clover (Trifolium repens), and Galega orientalis but not in other plants, including other legumes, suggesting that the family might be specific for galegoid legumes forming indeterminate nodules. Gene expression of all family members was restricted to nodules except for two, also expressed in mycorrhizal roots. NCR genes exhibited distinct temporal and spatial expression patterns in nodules and, thus, were coupled to different stages of development. The signal peptide targeted the polypeptides in the secretory pathway, as shown by green fluorescent protein fusions expressed in onion (Allium cepa) epidermal cells. Coregulation of certain NCR genes with genes coding for a potentially secreted calmodulin-like protein and for a signal peptide peptidase suggests a concerted action in nodule development. Potential functions of the NCR polypeptides in cell-to-cell signaling and creation of a defense system are discussed. PMID:12746522
Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier
2016-01-01
ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species emerged from a bacterial population by acquiring specific functions that allowed them to outcompete their closest relatives. In conclusion, bacterial species could be defined not only as genomic species but also as ecological species. PMID:27060117
Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.
2016-01-01
Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305
Mira, Mohamed M; Huang, Shuanglong; Kapoor, Karuna; Hammond, Cassandra; Hill, Robert D; Stasolla, Claudio
2017-11-28
Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio
2017-04-01
Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.
Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
Siritunga, Dimuth; Sayre, Richard
2004-11-01
Cassava is the major root crop for a quarter billion subsistence farmers in sub-Saharan Africa. It is valued for its ability to grow in adverse environments and the food security it provides. Cassava contains potentially toxic levels of cyanogenic glycosides (linamarin) which protect the plant from herbivory and theft. The cyanogens, including linamarin and its deglycosylated product, acetone cyanohydrin, can be efficiently removed from the root by various processing procedures. Short-cuts in processing, which may occur during famines, can result in only partial removal of cyanogens. Residual cyanogens in cassava foods may cause neurological disorders or paralysis, particularly in nutritionally compromised individuals. To address this problem and to further understand the function of cyanogenic glycosides in cassava, we have generated transgenic cassava in which cyanogenic glycoside synthesis has been selectively inhibited in leaves and roots by antisense expression of CYP79D1/D2 gene fragments. The CYP79D1/D2 genes encode two highly similar cytochrome P450s that catalyze the first-dedicated step in cyanogenic glycoside synthesis. Transgenic plants in which the expression of these genes was selectively inhibited in leaves had substantially reduced (60- 94% reduction) linamarin leaf levels. Surprisingly, these plants also had a greater than a 99% reduction in root linamarin content. In contrast, transgenic plants in which the CYP79D1/D2 transcripts were reduced to non-detectable levels in roots had normal root linamarin levels. These results demonstrate that linamarin synthesized in leaves is transported to the roots and accounts for nearly all of the root linamarin content. Importantly, transgenic plants having reduced leaf and root linamarin content were unable to grow in the absence of reduced nitrogen (NH3) . Cassava roots have previously been demonstrated to have an active cyanide assimilation pathway leading to the synthesis of amino acids. We propose that cyanide derived from linamarin is a major source of reduced nitrogen for cassava root protein synthesis. Disruption of linamarin transport from leaves in CYP79D1/D2 anti-sense plants prevents the growth of cassava roots in the absence of an alternate source of reduced nitrogen. An alternative strategy for reducing cyanogen toxicity in cassava foods is to accelerate cyanogenesis and cyanide volatilization during food processing. To achieve this objective, we have expressed the leaf-specific enzyme hydroxynitrile lyase (HNL) in roots. HNL catalyzes the breakdown of acetone cyanohydrin to cyanide. Expression of HNL in roots accelerated cyanogenesis by more than three-fold substantially reducing the accumulation of acetone cyanohydrin during processing relative to wild-type roots.
Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko
2017-06-06
Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.
Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O
2011-05-01
The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.
Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R
2014-01-01
Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.
Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.
2014-01-01
Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID:25400641
Conserved Non-Coding Regulatory Signatures in Arabidopsis Co-Expressed Gene Modules
Spangler, Jacob B.; Ficklin, Stephen P.; Luo, Feng; Freeling, Michael; Feltus, F. Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome. PMID:23024789
Conserved non-coding regulatory signatures in Arabidopsis co-expressed gene modules.
Spangler, Jacob B; Ficklin, Stephen P; Luo, Feng; Freeling, Michael; Feltus, F Alex
2012-01-01
Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.
Differential expression of members of the annexin multigene family in Arabidopsis
NASA Technical Reports Server (NTRS)
Clark, G. B.; Sessions, A.; Eastburn, D. J.; Roux, S. J.
2001-01-01
Although in most plant species no more than two annexin genes have been reported to date, seven annexin homologs have been identified in Arabidopsis, Annexin Arabidopsis 1-7 (AnnAt1--AnnAt7). This establishes that annexins can be a diverse, multigene protein family in a single plant species. Here we compare and analyze these seven annexin gene sequences and present the in situ RNA localization patterns of two of these genes, AnnAt1 and AnnAt2, during different stages of Arabidopsis development. Sequence analysis of AnnAt1--AnnAt7 reveals that they contain the characteristic four structural repeats including the more highly conserved 17-amino acid endonexin fold region found in vertebrate annexins. Alignment comparisons show that there are differences within the repeat regions that may have functional importance. To assess the relative level of expression in various tissues, reverse transcription-PCR was carried out using gene-specific primers for each of the Arabidopsis annexin genes. In addition, northern blot analysis using gene-specific probes indicates differences in AnnAt1 and AnnAt2 expression levels in different tissues. AnnAt1 is expressed in all tissues examined and is most abundant in stems, whereas AnnAt2 is expressed mainly in root tissue and to a lesser extent in stems and flowers. In situ RNA localization demonstrates that these two annexin genes display developmentally regulated tissue-specific and cell-specific expression patterns. These patterns are both distinct and overlapping. The developmental expression patterns for both annexins provide further support for the hypothesis that annexins are involved in the Golgi-mediated secretion of polysaccharides.
Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha
2013-06-01
Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.
Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia
2015-01-01
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625
Actinomyces spp. gene expression in root caries lesions
Dame-Teixeira, Naile; Parolo, Clarissa Cavalcanti Fatturi; Maltz, Marisa; Tugnait, Aradhna; Devine, Deirdre; Do, Thuy
2016-01-01
Background The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design The oral biofilms from exposed sound root surface (SRS; n=10) and active root caries (RC; n=30) samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA) libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]<0.001). Results Actinomyces spp. had similar numbers of reads (Mann-Whitney U-test; p>0.05), except for Actinomyces OT178 (p=0.001) and Actinomyces gerencseriae (p=0.004), which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL), enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase), adhesion (Type-2 fimbrial and collagen-binding protein), and cell growth (EF-Tu) were highly – but not differentially (p>0.001) – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17). The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05). Conclusion There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic due to survival mechanisms that allow them to exist in acid environments and to metabolize sugars, saving energy. PMID:27640531
Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel
2017-06-01
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei
2016-01-01
Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01–0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20–20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be regulated by multiple expansin genes at different developmental stages. Therefore, we conclude that the effects of DADS on the root growth of tomato seedlings are likely caused by changes associated with cell division, phytohormones, and the expression levels of expansin genes. PMID:27555862
Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M.; Trapero-Casas, José L.; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A.; Pliego-Alfaro, Fernando
2018-01-01
The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. ‘Picual’ were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae. PMID:29875785
Saraiva, Kátia D C; Fernandes de Melo, Dirce; Morais, Vanessa D; Vasconcelos, Ilka M; Costa, José H
2014-09-01
The EF1α genes were stable in the large majority of soybean tissues during development and in specific tissues/conditions under stress. Quantitative real-time PCR (qPCR) analysis strongly depends on transcript normalization using stable reference genes. Reference genes are generally encoded by multigene families and are used in qPCR normalization; however, little effort has been made to verify the stability of different gene members within a family. Here, the expression stability of members of the soybean EF1α gene family (named EF1α 1a1, 1a2, 1b, 2a, 2b and 3) was evaluated in different tissues during plant development and stress exposure (SA and PEG). Four genes (UKN1, SKIP 16, EF1β and MTP) already established as stably expressed were also used in the comparative analysis. GeNorm analyses revealed different combinations of reference genes as stable in soybean tissues during development. The EF1α genes were the most stable in cotyledons (EF1α 3 and EF1α 1b), epicotyls (EF1α 1a2, EF1α 2b and EF1α 1a1), hypocotyls (EF1α 1a1 and EF1β), pods (EF1α 2a and EF1α 2b) and roots (EF1α 2a and UKN1) and less stable in tissues such as trifoliate and unifoliate leaves and germinating seeds. Under stress conditions, no suitable combination including only EF1α genes was found; however, some genes were relatively stable in leaves (EF1α 1a2) and roots (EF1α 1a1) treated with SA as well as in roots treated with PEG (EF1α 2b). EF1α 2a was the most stably expressed EF1α gene in all soybean tissues under stress. Taken together, our data provide guidelines for the selection of EF1α genes for use as reference genes in qPCR expression analyses during plant development and under stress conditions.
Logan, C; Wingate, R J; McKay, I J; Lumsden, A
1998-07-15
Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.
Contreras-López, Orlando; Moyano, Tomás C; Soto, Daniela C; Gutiérrez, Rodrigo A
2018-01-01
The rapid increase in the availability of transcriptomics data generated by RNA sequencing represents both a challenge and an opportunity for biologists without bioinformatics training. The challenge is handling, integrating, and interpreting these data sets. The opportunity is to use this information to generate testable hypothesis to understand molecular mechanisms controlling gene expression and biological processes (Fig. 1). A successful strategy to generate tractable hypotheses from transcriptomics data has been to build undirected network graphs based on patterns of gene co-expression. Many examples of new hypothesis derived from network analyses can be found in the literature, spanning different organisms including plants and specific fields such as root developmental biology.In order to make the process of constructing a gene co-expression network more accessible to biologists, here we provide step-by-step instructions using published RNA-seq experimental data obtained from a public database. Similar strategies have been used in previous studies to advance root developmental biology. This guide includes basic instructions for the operation of widely used open source platforms such as Bio-Linux, R, and Cytoscape. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be easily adapted to work with RNA-seq data from any organism.
Yamamura, Yoshimi; Taguchi, Yukari; Ichitani, Kei; Umebara, Io; Ohshita, Ayako; Kurosaki, Fumiya; Lee, Jung-Bum
2018-03-01
Gibberellins (GAs) are ubiquitous diterpenoids in higher plants, whereas some higher plants produce unique species-specific diterpenoids. In GA biosynthesis, ent-kaurene synthase (KS) and ent-kaurene oxidase (KO) are key players which catalyze early step(s) of the cyclization and oxidation reactions. We have studied the functional characterization of gene products of a KS (SdKS) and two KOs (SdKO1 and SdKO2) involved in GA biosynthesis in Scoparia dulcis. Using an in vivo heterologous expression system of Escherichia coli, we found that SdKS catalyzed a cyclization reaction from ent-CPP to ent-kaurene and that the SdKOs oxidized ent-kaurene to ent-kaurenoic acid after modification of the N-terminal region for adaptation to the E. coli expression system. The real-time PCR results showed that the SdKS, SdKO1 and SdKO2 genes were mainly expressed in the root and lateral root systems, which are elongating tissues. Based on these results, we suggest that these three genes may be responsible for the metabolism of GAs in S. dulcis.
Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism
Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng
2016-01-01
Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism. PMID:26797310
Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.
Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando
2008-11-01
A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.
Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology
Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone
2008-01-01
A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429
Yamazaki, Mami; Mochida, Keiichi; Asano, Takashi; Nakabayashi, Ryo; Chiba, Motoaki; Udomson, Nirin; Yamazaki, Yasuyo; Goodenowe, Dayan B.; Sankawa, Ushio; Yoshida, Takuhiro; Toyoda, Atsushi; Totoki, Yasushi; Sakaki, Yoshiyuki; Góngora-Castillo, Elsa; Buell, C. Robin; Sakurai, Tetsuya; Saito, Kazuki
2013-01-01
The Rubiaceae species, Ophiorrhiza pumila, accumulates camptothecin, an anti-cancer alkaloid with a potent DNA topoisomerase I inhibitory activity, as well as anthraquinones that are derived from the combination of the isochorismate and hemiterpenoid pathways. The biosynthesis of these secondary products is active in O. pumila hairy roots yet very low in cell suspension culture. Deep transcriptome analysis was conducted in O. pumila hairy roots and cell suspension cultures using the Illumina platform, yielding a total of 2 Gb of sequence for each sample. We generated a hybrid transcriptome assembly of O. pumila using the Illumina-derived short read sequences and conventional Sanger-derived expressed sequence tag clones derived from a full-length cDNA library constructed using RNA from hairy roots. Among 35,608 non-redundant unigenes, 3,649 were preferentially expressed in hairy roots compared with cell suspension culture. Candidate genes involved in the biosynthetic pathway for the monoterpenoid indole alkaloid camptothecin were identified; specifically, genes involved in post-strictosamide biosynthetic events and genes involved in the biosynthesis of anthraquinones and chlorogenic acid. Untargeted metabolomic analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) indicated that most of the proposed intermediates in the camptothecin biosynthetic pathway accumulated in hairy roots in a preferential manner compared with cell suspension culture. In addition, a number of anthraquinones and chlorogenic acid preferentially accumulated in hairy roots compared with cell suspension culture. These results suggest that deep transcriptome and metabolome data sets can facilitate the identification of genes and intermediates involved in the biosynthesis of secondary products including camptothecin in O. pumila. PMID:23503598
Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C
2018-05-08
The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.
2011-01-01
Background In rice, the major part of the post-embryonic root system is made of stem-derived roots named crown roots (CR). Among the few characterized rice mutants affected in root development, crown rootless1 mutant is unable to initiate crown root primordia. CROWN ROOTLESS1 (CRL1) is induced by auxin and encodes an AS2/LOB-domain transcription factor that acts upstream of the gene regulatory network controlling CR development. Results To identify genes involved in CR development, we compared global gene expression profile in stem bases of crl1 mutant and wild-type (WT) plants. Our analysis revealed that 250 and 236 genes are down- and up-regulated respectively in the crl1 mutant. Auxin induces CRL1 expression and consequently it is expected that auxin also alters the expression of genes that are early regulated by CRL1. To identify genes under the early control of CRL1, we monitored the expression kinetics of a selected subset of genes, mainly chosen among those exhibiting differential expression, in crl1 and WT following exogenous auxin treatment. This analysis revealed that most of these genes, mainly related to hormone, water and nutrient, development and homeostasis, were likely not regulated directly by CRL1. We hypothesized that the differential expression for these genes observed in the crl1 mutant is likely a consequence of the absence of CR formation. Otherwise, three CRL1-dependent auxin-responsive genes: FSM (FLATENNED SHOOT MERISTEM)/FAS1 (FASCIATA1), GTE4 (GENERAL TRANSCRIPTION FACTOR GROUP E4) and MAP (MICROTUBULE-ASSOCIATED PROTEIN) were identified. FSM/FAS1 and GTE4 are known in rice and Arabidopsis to be involved in the maintenance of root meristem through chromatin remodelling and cell cycle regulation respectively. Conclusion Our data showed that the differential regulation of most genes in crl1 versus WT may be an indirect consequence of CRL1 inactivation resulting from the absence of CR in the crl1 mutant. Nevertheless some genes, FAS1/FSM, GTE4 and MAP, require CRL1 to be induced by auxin suggesting that they are likely directly regulated by CRL1. These genes have a function related to polarized cell growth, cell cycle regulation or chromatin remodelling. This suggests that these genes are controlled by CRL1 and involved in CR initiation in rice. PMID:21806801
Ludueña, Liliana M; Anzuay, Maria S; Magallanes-Noguera, Cynthia; Tonelli, Maria L; Ibañez, Fernando J; Angelini, Jorge G; Fabra, Adriana; McIntosh, Matthew; Taurian, Tania
2017-10-01
The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Fang, Rongjun; Zou, Ailan; Zhao, Hua; Wu, Fengyao; Zhu, Yu; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Pang, Yanjun; Yang, Rongwu; Wang, Xiaoming; Qi, Jinliang; Lu, Guihua; Yang, Yonghua
2016-05-26
The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.
Wild tobacco genomes reveal the evolution of nicotine biosynthesis.
Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T
2017-06-06
Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.
Zamora-Briseño, Jesus A.; Ayala-Sumuano, Jorge T.; Gonzalez-Mendoza, Victor M.; Espadas-Gil, Francisco; Alcaraz, Luis D.; Castaño, Enrique; Keb-Llanes, Miguel A.; Sanchez-Teyer, Felipe
2017-01-01
Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69–290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species. PMID:29228055
Ramos, Javier; Matamoros, Manuel A; Naya, Loreto; James, Euan K; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2009-01-01
Despite the multiple roles played by antioxidants in rhizobia-legume symbioses, little is known about glutathione peroxidases (GPXs) in legumes. Here the characterization of six GPX genes of Lotus japonicus is reported. Expression of GPX genes was analysed by quantitative reverse transcription-polymerase chain reaction in L. japonicus and Lotus corniculatus plants exposed to various treatments known to generate reactive oxygen and/or nitrogen species. LjGPX1 and LjGPX3 were the most abundantly expressed genes in leaves, roots and nodules. Compared with roots, LjGPX1 and LjGPX6 were highly expressed in leaves and LjGPX3 and LjGPX6 in nodules. In roots, salinity decreased GPX4 expression, aluminium decreased expression of the six genes, and cadmium caused up-regulation of GPX3, GPX4 and GPX5 after 1 h and down-regulation of GPX1, GPX2, GPX4 and GPX6 after 3-24 h. Exposure of roots to sodium nitroprusside (a nitric oxide donor) for 1 h increased the mRNA levels of GPX4 and GPX6 by 3.3- and 30-fold, respectively. Thereafter, the GPX6 mRNA level remained consistently higher than that of the control. Immunogold labelling revealed the presence of GPX proteins in root and nodule amyloplasts and in leaf chloroplasts of L. japonicus and other legumes. Labelling was associated with starch grains. These results underscore the differential regulation of GPX expression in response to cadmium, aluminium and nitric oxide, and strongly support a role for GPX6 and possibly other GPX genes in stress and/or metabolic signalling.
Wang, Zhengrui; Straub, Daniel; Yang, Huaiyu; Kania, Angelika; Shen, Jianbo; Ludewig, Uwe; Neumann, Günter
2014-07-01
Lupinus albus serves as model plant for root-induced mobilization of sparingly soluble soil phosphates via the formation of cluster-roots (CRs) that mediate secretion of protons, citrate, phenolics and acid phosphatases (APases). This study employed next-generation sequencing to investigate the molecular mechanisms behind these complex adaptive responses at the transcriptome level. We compared different stages of CR development, including pre-emergent (PE), juvenile (JU) and the mature (MA) stages. The results confirmed that the primary metabolism underwent significant modifications during CR maturation, promoting the biosynthesis of organic acids, as had been deduced from physiological studies. Citrate catabolism was downregulated, associated with citrate accumulation in MA clusters. Upregulation of the phenylpropanoid pathway reflected the accumulation of phenolics. Specific transcript expression of ALMT and MATE transporter genes correlated with the exudation of citrate and flavonoids. The expression of transcripts related to nucleotide degradation and APases in MA clusters coincided with the re-mobilization and hydrolysis of organic phosphate resources. Most interestingly, hormone-related gene expression suggested a central role of ethylene during CR maturation. This was associated with the upregulation of the iron (Fe)-deficiency regulated network that mediates ethylene-induced expression of Fe-deficiency responses in other species. Finally, transcripts related to abscisic acid and jasmonic acid were upregulated in MA clusters, while auxin- and brassinosteroid-related genes and cytokinin receptors were most strongly expressed during CR initiation. Key regulations proposed by the RNA-seq data were confirmed by quantitative real-time polymerase chain reaction (RT-qPCR) and some physiological analyses. A model for the gene network regulating CR development and function is presented. © 2014 Scandinavian Plant Physiology Society.
Jain, Shalu; Chittem, Kishore; Brueggeman, Robert; Osorno, Juan M; Richards, Jonathan; Nelson, Berlin D
2016-01-01
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) reproduces on the roots of common bean (Phaseolus vulgaris L.) and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70-90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in common bean.
Jain, Shalu; Chittem, Kishore; Brueggeman, Robert; Osorno, Juan M.; Richards, Jonathan; Nelson, Berlin D.
2016-01-01
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) reproduces on the roots of common bean (Phaseolus vulgaris L.) and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70–90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in common bean. PMID:27441552
USDA-ARS?s Scientific Manuscript database
We explored the role of host genotype in three aspects of the wheat-Pseudomonas biocontrol interaction: rhizosphere population density, accumulation of rhizosphere 2,4-diacetylphloroglucinol (DAPG), and Pseudomonas-mediated changes in root gene expression. Wheat cultivars varied in ability to suppo...
Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning.
Ursache, Robertas; Miyashima, Shunsuke; Chen, Qingguo; Vatén, Anne; Nakajima, Keiji; Carlsbecker, Annelie; Zhao, Yunde; Helariutta, Ykä; Dettmer, Jan
2014-03-01
The development and growth of higher plants is highly dependent on the conduction of water and minerals throughout the plant by xylem vessels. In Arabidopsis roots the xylem is organized as an axis of cell files with two distinct cell fates: the central metaxylem and the peripheral protoxylem. During vascular development, high and low expression levels of the class III HD-ZIP transcription factors promote metaxylem and protoxylem identities, respectively. Protoxylem specification is determined by both mobile, ground tissue-emanating miRNA165/6 species, which downregulate, and auxin concentrated by polar transport, which promotes HD-ZIP III expression. However, the factors promoting high HD-ZIP III expression for metaxylem identity have remained elusive. We show here that auxin biosynthesis promotes HD-ZIP III expression and metaxylem specification. Several auxin biosynthesis genes are expressed in the outer layers surrounding the vascular tissue in Arabidopsis root and downregulation of HD-ZIP III expression accompanied by specific defects in metaxylem development is seen in auxin biosynthesis mutants, such as trp2-12, wei8 tar2 or a quintuple yucca mutant, and in plants treated with L-kynurenine, a pharmacological inhibitor of auxin biosynthesis. Some of the patterning defects can be suppressed by synthetically elevated HD-ZIP III expression. Taken together, our results indicate that polar auxin transport, which was earlier shown to be required for protoxylem formation, is not sufficient to establish a proper xylem axis but that root-based auxin biosynthesis is additionally required.
Han, Zhaofen; Yu, Huimin; Zhao, Zhong; Hunter, David; Luo, Xinjuan; Duan, Jun; Tian, Lining
2016-01-01
The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.
Rowland, Owen; Zheng, Huanquan; Hepworth, Shelley R.; Lam, Patricia; Jetter, Reinhard; Kunst, Ljerka
2006-01-01
A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a β-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots. PMID:16980563
Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong
2008-06-01
A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.
GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAVIS J M
2007-10-11
Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, themore » ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.« less
Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G
2017-01-01
The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.
Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.
2017-01-01
The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033
Metabolic characterization of Hyoscyamus niger root-specific putrescine N-methyltransferase.
Geng, Chen; Zhao, Tengfei; Yang, Chunxian; Zhang, Qiaozhuo; Bai, Feng; Zeng, Junlan; Zhang, Fangyuan; Liu, Xiaoqiang; Lan, Xiaozhong; Chen, Min; Liao, Zhihua
2018-03-02
N-methylputrescine is the precursor of nicotine and pharmaceutical tropane alkaloids such as hyoscyamine. Putrescine N-methyltransferase (PMT) catalyzes the N-methylation of putrescine to form N-methylputrescine. While the role of PMT in nicotine biosynthesis is clear, knowledge of PMT in the biosynthesis of tropane alkaloids (TAs) and the regulation of polyamines remains limited. We characterized a PMT gene from Hyoscyamus niger, designated HnPMT that was specifically expressed in roots, especially in the secondary roots and dramatically induced by methyl jasmonate (MeJA). The GUS gene was specifically expressed in Arabidopsis roots or in the vascular tissues, including pericycles and endodermis, of the H. niger hairy root cultures, when it was driven by the 5'-flanking promoter region of HnPMT. The recombinant HnPMT was purified for enzymatic assays. HnPMT converted putrescine to form N-methylputrescine, as confirmed by LC-MS. The kinetics analysis revealed that HnPMT had high affinity with putrescine but low catalytic activity, suggesting that it was a rate-limiting enzyme. When HnPMT was suppressed in the H. niger plants by using the VIGS approach, the contents of N-methylputrescine and hyoscyamine were markedly decreased, but the contents of putrescine, spermidine and a mixture of spermine and thermospermine were significantly increased; this suggested that HnPMT was involved in the biosynthesis of tropane alkaloids and played a competent role in regulating the biosynthesis of polyamines. Functional identification of HnPMT facilitated the understanding of TA biosynthesis and thus implied that the HnPMT-catalyzed step might be a target for metabolic engineering of the TA production in H. niger. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke
2017-01-01
HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913
Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage
Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong
2016-01-01
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris. PMID:27853303
Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.
Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong
2016-11-17
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.
Lasserre, Eric; Jobet, Edouard; Llauro, Christel; Delseny, Michel
2008-12-01
An inverse genetic approach was used to gain insight into the role of AP2/ERF-type transcription factors genes during plant development in Arabidopsis thaliana. Here we show that the expression pattern of AtERF38, which is, among the organs tested, more intensively expressed in mature siliques and floral stems, is closely associated with tissues that undergo secondary cell wall modifications. Firstly, public microarray data sets analysis indicates that AtERF38 is coregulated with several genes involved in secondary wall thickening. Secondly, this was experimentally confirmed in different types of cells expressing a Pro(AtERF38)::GUS fusion: histochemical analysis revealed strong and specific GUS activity in outer integument cells of mature seeds, endodermal cells of the roots in the primary developmental stage and some sclerified cells of mature inflorescence stems. All of these cells are known or shown here to be characterized by a reinforced wall. The latter, which have not been well characterized to date in Arabidopsis and may be suberized, could benefit of the use of AtERF38 as a specific marker. We were not able to detect any phenotype in an insertion line in which ectopic expression of AtERF38 is caused by the insertion of a T-DNA in its promoter. Nevertheless, AtERF28 may be considered as a candidate regulator of secondary wall metabolism in particular cell types that are not reinforced by the typical deposition of lignin and cellulose, but that have at least in common accumulation of suberin-like lipid polyesters in their walls.
de Dios Barajas-López, Juan; Serrato, Antonio Jesús; Olmedilla, Adela; Chueca, Ana; Sahrawy, Mariam
2007-11-01
Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.
Influence of rol genes in floriculture.
Casanova, Eva; Trillas, Maria Isabel; Moysset, Lluïsa; Vainstein, Alexander
2005-01-01
Traditionally, new traits have been introduced into ornamental plants through classical breeding. However, genetic engineering now enables specific alterations of single traits in already successful varieties. New or improved varieties of floricultural crops can be obtained by acting on floral traits, such as color, shape or fragrance, on vase life in cut-flower species, and on rooting potential or overall plant morphology. Overexpression of the rol genes of the Ri plasmid of Agrobacterium rhizogenes in plants alters several of the plant's developmental processes and affects their architecture. Both A. rhizogenes- and rol-transgenic plants display the "hairy-root phenotype", although specific differences are found between species and between transgenic lines. In general, these plants show a dwarfed phenotype, reduced apical dominance, smaller, wrinkled leaves, increased rooting, altered flowering and reduced fertility. Among the rol genes, termed rolA, B, C and D, rolC has been the most widely studied because its effects are the most advantageous in terms of improving ornamental and horticultural traits. In addition to the dwarfness and the increase in lateral shoots that lead to a bushy phenotype, rolC-plants display more, smaller flowers, and advanced flowering; surprisingly, these plants may have better rooting capacity and they show almost no undesirable traits. rolD, the least studied among the rol genes, offers promising applications due to its promotion of flowering. Although the biochemical functions of rol genes remain poorly understood, they are useful tools for improving ornamental flowers, as their expression in transgenic plants yields many beneficial traits.
Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.)
Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young
2015-01-01
The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops. PMID:25979997
Ku, Amy Tsu; Huang, Yi-Shiuan; Wang, Yu-Shu; Ma, Daifu; Yeh, Kai-Wun
2008-01-01
Background and Aims The tuberization mechanism of sweet potato (Ipomoea batatas) has long been studied using various approaches. Morphological data have revealed that the tuberizing events result from the activation of the cambium, followed by cell proliferation. However, uncertainties still remain regarding the regulators participating in this signal-transduction pathway. An attempt was made to characterize the role of one MADS-box transcription factor, which was preferentially expressed in sweet potato roots at the early tuberization stage. Methods A differential expression level of IbMADS1 (Ipomoea batatas MADS-box 1) was detected temporally and spatially in sweet potato tissues. IbMADS1 responses to tuberization-related hormones were assessed. In order to identify the evolutionary significance, the expression pattern of IbMADS1 was surveyed in two tuber-deficient Ipomoea relatives, I. leucantha and I. trifida, and compared with sweet potato. In functional analyses, potato (Solanum tuberosum) was employed as a heterologous model. The resulting tuber morphogenesis was examined anatomically in order to address the physiological function of IbMADS1, which should act similarly in sweet potato. Key Results IbMADS1 was preferentially expressed as tuberous root development proceeded. Its expression was inducible by tuberization-related hormones, such as jasmonic acid and cytokinins. In situ hybridization data showed that IbMADS1 transcripts were specifically distributed around immature meristematic cells within the stele and lateral root primordia. Inter-species examination indicated that IbMADS1 expression was relatively active in sweet potato roots, but undetectable in tuber-deficient Ipomoea species. IbMADS1-transformed potatoes exhibited tuber morphogenesis in the fibrous roots. The partial swellings along fibrous roots were mainly due to anomalous proliferation and differentiation in the xylem. Conclusions Based on this study, it is proposed that IbMADS1 is an important integrator at the initiation of tuberization. As a result, the initiation and development of tuberous roots seems to be well regulated by a network involving a MADS-box gene in which such hormones as jasmonic acid and cytokinins may act as trigger factors. PMID:18463111
O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P
2015-07-07
Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.
Yi, Yanglei; de Jong, Anne; Frenzel, Elrike; Kuipers, Oscar P
2017-01-01
Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides , a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability in the two environments. Altogether, the presented transcriptome profiles provide highly improved insights into the life strategies of plant-associated endophytes and soil isolates of B. mycoides .
Lourenço, Tiago F.; Serra, Tânia S.; Cordeiro, André M.; Swanson, Sarah J.; Gilroy, Simon; Saibo, Nelson J.M.; Oliveira, M. Margarida
2015-01-01
Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs. PMID:26381316
Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan
2015-02-03
The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.
GENOME ENABLED MODIFICATION OF POPLAR ROOT DEVELOPMENT FOR INCREASED CARBON SEQUESTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busov, Victor
DR5 as a reporter system to study auxin response in Populus Plant Cell Reports 32:453-463 Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stemmore » sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar. The Populus AINTEGUMENTA LIKE 1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia. Plant Physiol. 160: 1996-2006 Adventitious rooting is an essential but sometimes rate-limiting step in the clonal multiplication of elite tree germplasm, because the ability to form roots declines rapidly with age in mature adult plant tissues. In spite of the importance of adventitious rooting, the mechanism behind this developmental process remains poorly understood. We have described the transcriptional profiles that are associated with the developmental stages of adventitious root formation in the model tree poplar (Populus trichocarpa). Transcriptome analyses indicate a highly specific temporal induction of the AINTEGUMENTA LIKE1 (PtAIL1) transcription factor of the AP2 family during adventitious root formation. Transgenic poplar samples that overexpressed PtAIL1 were able to grow an increased number of adventitious roots, whereas RNA interference mediated the down-expression of PtAIL1 expression, which led to a delay in adventitious root formation. Microarray analysis showed that the expression of 15 genes, including the transcription factors AGAMOUS-Like6 and MYB36, was overexpressed in the stem tissues that generated root primordia in PtAIL1-overexpressing plants, whereas their expression was reduced in the RNA interference lines. These results demonstrate that PtAIL1 is a positive regulator of poplar rooting that acts early in the development of adventitious roots. Genomes. 7: 91-101 Knowledge of the functional relationship between genes and organismal phenotypes in perennial plants is extremely limited. Using a population of 627 independent events, we assessed the feasibility of activation tagging as a forward genetics tool for Populus. Mutant identification after 2 years of field testing was nearly sevenfold (6.5%) higher than in greenhouse studies that employed Arabidopsis and identical transformation vectors. Approximately two thirds of all mutant phenotypes were not seen in vitro and in the greenhouse; they were discovered only after the second year of field assessment. The trees? large size (5-10 m in height), perennial growth, and interactions with the natural environment are factors that are thought to have contributed to the high rate of observable phenotypes in the field. The mutant phenotypes affected a variety of morphological and physiological traits, including leaf size and morphology, crown architecture, stature, vegetative dormancy, and tropic responses. Characterization of the insertion in more than 100 events with and without mutant phenotypes showed that tags predominantly (70%) inserted in a 13-Kbp region up- and downstream of the genes? coding regions with approximately even distribution among the 19 chromosomes. Transcriptional activation was observed in many proximal genes studied. Successful phenotype recapitulation was observed in 10 of 12 retransformed genes tested, indicating true tagging and a functional relationship between the genes and observed phenotypes for most activation lines. Our studies indicate that in addition to associating mapping and QTL approaches, activation tagging can be used successfully as an effective forward gene discovery tool in Populus. This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells. Species within the genus Populus are among the fastest growing trees in regions with a temperate climate. Not only are they an integral component of ecosystems, but they are also grown commercially for fuel, fiber, and forest products in rural areas of the world. In the late 1970s, they were designated as a bioenergy crop by the U.S. Department of Energy, as a result of research following the oil embargo. Populus species also serve as model trees for plant molecular biology research. In this article, we will review recent progress in the genetic improvement of Populus, considering both classical breeding and genetic engineering for bioenergy, as well as in using transgenics to elucidate gene functionality. A perspective for future improvement of Populus via functional genomics will also be presented. The role of gibberellins (GAs) in regulation of lateral root development is poorly understood. We show that GA-deficient (35S:PcGA2ox1) and GA-insensitive (35S:rgl1) transgenic Populus exhibited increased lateral root proliferation and elongation under in vitro and greenhouse conditions, and these effects were reversed by exogenous GA treatment. In addition, RNA interference suppression of two poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For example, AINTEGUMENTA, ARGOS (auxin-regulated gene controlling organ size), and growth-regulating factors (GRFs) are strong modifiers of leaf and/or flower size. Plants overexpressing these genes had increased organ size and did not display negative pleiotropic effects in glasshouse environments. TCP-domain genes such as CINCINNATA, and the associated regulatory miRNAs such as miRJAW, may provide useful means to modulate leaf curvature and other foliage properties. There are considerable opportunities for comparative and translational genomics in nonmodel plant systems.« less
Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.
Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe
2017-01-11
Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Fengqing; Suo, Yanfei; Wei, He; Li, Mingjie; Xie, Caixia; Wang, Lina; Chen, Xinjian; Zhang, Zhongyi
2015-01-01
The v-myb avian myeloblastosis viral oncogene homolog (MYB) superfamily constitutes one of the most abundant groups of transcription factors (TFs) described in plants. To date, little is known about the MYB genes in Rehmannia glutinosa. Forty unique MYB genes with full-length cDNA sequences were isolated. These 40 genes were grouped into five categories, one R1R2R3-MYB, four TRFL MYBs, four SMH MYBs, 25 R2R3-MYBs, and six MYB-related members. The MYB DNA-binding domain (DBD) sequence composition was conserved among proteins of the same subgroup. As expected, most of the closely related members in the phylogenetic tree exhibited common motifs. Additionally, the gene structure and motifs of the R. glutinosa MYB genes were analyzed. MYB gene expression was analyzed in the leaf and the tuberous root under two abiotic stress conditions. Expression profiles showed that most R. glutinosa MYB genes were expressed in the leaf and the tuberous root, suggesting that MYB genes are involved in various physiological and developmental processes in R. glutinosa. Seven MYB genes were up-regulated in response to shading in at least one tissue. Two MYB genes showed increased expression and 13 MYB genes showed decreased expression in the tuberous root under continuous cropping. This investigation is the first comprehensive study of the MYB gene family in R. glutinosa. PMID:26147429
Metabolic engineering of Escherichia coli for production of valerenadiene.
Nybo, S Eric; Saunders, Jacqueline; McCormick, Sean P
2017-11-20
Valeriana officinalis is a medicinal herb which produces a suite of compounds in its root tissue useful for treatment of anxiety and insomnia. The sesquiterpene components of the root extract, valerenic acid and valerena-1,10-diene, are thought to contribute to most of the observed anxiolytic of Valerian root preparations. However, valerenic acid and its biosynthetic intermediates are only produced in low quantities in the roots of V. officinalis. Thus, in this report, Escherichia coli was metabolically engineered to produce substantial quantities of valerena-1,10-diene in shake flask fermentations with decane overlay. Expression of the wildtype valerenadiene synthase gene (pZE-wvds) resulted in production of 12μg/mL in LB cultures using endogenous FPP metabolism. Expression of a codon-optimized version of the valerenadiene synthase gene (pZE-cvds) resulted in 3-fold higher titers of valerenadiene (32μg/mL). Co-expression of pZE-cvds with an engineered methyl erythritol phosphate (MEP) pathway improved valerenadiene titers 65-fold to 2.09mg/L valerenadiene. Optimization of the fermentation medium to include glycerol supplementation enhanced yields by another 5.5-fold (11.0mg/L valerenadiene). The highest production of valerenadiene resulted from engineering the codon-optimized valerenadiene synthase gene under strong P trc and P T7 promoters and via co-expression of an exogenous mevalonate (MVA) pathway. These efforts resulted in an E. coli production strain that produced 62.0mg/L valerenadiene (19.4mg/L/OD 600 specific productivity). This E. coli production platform will serve as the foundation for the synthesis of novel valerenic acid analogues potentially useful for the treatment of anxiety disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Muries, Beatriz; Faize, Mohamed; Carvajal, Micaela; Martínez-Ballesta, María Del Carmen
2011-04-01
Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs and their water transport capacity in broccoli (Brassica oleracea) plants. In this study, the cDNAs of isoforms of Plasma Membrane Intrinsic Proteins (PIPs), a class of aquaporins, from broccoli roots have been partially sequenced. Thus, sequencing experiments led to the identification of eight PIP1 and three PIP2 genes encoding PIPs in B. oleracea plants. The occurrence of different gene products encoding PIPs suggests that they may play different roles in plants. The screening of their expression as well as the expression of two specific PIP2 isoforms (BoPIP2;2 and BoPIP2;3), in different organs and under different salt-stress conditions in two varieties, has helped to unravel the function and the regulation of PIPs in plants. Thus, a high degree of BoPIP2;3 expression in mature leaves suggests that this BoPIP2;3 isoform plays important roles, not only in root water relations but also in the physiology and development of leaves. In addition, differences between gene and protein patterns led us to consider that mRNA synthesis is inhibited by the accumulation of the corresponding encoded protein. Therefore, transcript levels, protein abundance determination and the integrated hydraulic architecture of the roots must be considered in order to interpret the response of broccoli to salinity.
Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María
2015-01-01
The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592
Li, You-Zhi; Pan, Ying-Hua; Sun, Chang-Bin; Dong, Hai-Tao; Luo, Xing-Lu; Wang, Zhi-Qiang; Tang, Ji-Liang; Chen, Baoshan
2010-12-01
A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5'-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no 'hits' against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no 'hits'. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.
Elashry, Abdelnaser; Okumoto, Sakiko; Siddique, Shahid; Koch, Wolfgang; Kreil, David P; Bohlmann, Holger
2013-09-01
The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Sinha, Pallavi; Singh, Vikas K.; Suryanarayana, V.; Krishnamurthy, L.; Saxena, Rachit K.; Varshney, Rajeev K.
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions. PMID:25849964
Sinha, Pallavi; Singh, Vikas K; Suryanarayana, V; Krishnamurthy, L; Saxena, Rachit K; Varshney, Rajeev K
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.
Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.
Cosme, Marco; Ramireddy, Eswarayya; Franken, Philipp; Schmülling, Thomas; Wurst, Susanne
2016-10-01
The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used transgenic tobacco (Nicotiana tabacum) with a root-specific or constitutive expression of CK-degrading CKX genes and the corresponding wild-type to investigate whether a lowered content of CK in roots or in both roots and shoots influences the interaction with the AM fungus Rhizophagus irregularis. Our data indicates that shoot CK has a positive impact on AM fungal development in roots and on the root transcript level of an AM-responsive phosphate transporter gene (NtPT4). A reduced CK content in roots caused shoot and root growth depression following AM colonization, while neither the uptake of phosphorus or nitrogen nor the root transcript levels of NtPT4 were significantly affected. This suggests that root CK may restrict the C availability from the roots to the fungus thus averting parasitism by AM fungi. Taken together, our study indicates that shoot- and root-borne CK have distinct roles in AM symbiosis. We propose a model illustrating how plants may employ CK to regulate nutrient exchange with the ubiquitous AM fungi.
Development of marker genes for jasmonic acid signaling in shoots and roots of wheat
Liu, Hongwei; Carvalhais, Lilia Costa; Kazan, Kemal; Schenk, Peer M.
2016-01-01
ABSTRACT The jasmonic acid (JA) signaling pathway plays key roles in a diverse array of plant development, reproduction, and responses to biotic and abiotic stresses. Most of our understanding of the JA signaling pathway derives from the dicot model plant Arabidopsis thaliana, while corresponding knowledge in wheat is somewhat limited. In this study, the expression of 41 genes implicated in the JA signaling pathway has been assessed on 10 day-old bread wheat seedlings, 24 h, 48 h, and 72 h after methyl-jasmonate (MeJA) treatment using quantitative real-time PCR. The examined genes have been previously reported to be involved in JA biosynthesis and catabolism, JA perception and signaling, and pathogen defense in wheat shoots and roots. This study provides evidence to suggest that the effect of MeJA treatment is more prominent in shoots than roots of wheat seedlings, and substantial regulation of the JA pathway-dependent defense genes occurs at 72 h after MeJA treatment. Results show that the expression of 22 genes was significantly affected by MeJA treatment in wheat shoots. However, only PR1.1 and PR3 were significantly differentially expressed in wheat roots, both at 24 h post-MeJA treatment, with other genes showing large variation in their gene expression in roots. While providing marker genes on JA signaling in wheat, future work may focus on elucidating the regulatory function of JA-modulated transcription factors, some of which have well-studied potential orthologs in Arabidopsis. PMID:27115051
Jeena, Gajendra Singh; Fatima, Shahnoor; Tripathi, Pragya; Upadhyay, Swati; Shukla, Rakesh Kumar
2017-06-28
Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related to triterpenoid sapogenin which is one of the most important pharmacologically active secondary metabolite present in Bacopa monnieri. The identified transcripts in this study will establish a foundation for future studies related to carrying out the metabolic engineering for increasing the bacosides biosynthesis and its regulation for human health benefits.
The involvement of J-protein AtDjC17 in root development in Arabidopsis
Petti, Carloalberto; Nair, Meera; DeBolt, Seth
2014-01-01
In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971
A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.
Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian
2016-07-01
Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. © 2016 American Society of Plant Biologists. All Rights Reserved.
Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam
2015-07-21
Land plants develop filamentous cells-root hairs, rhizoids, and caulonemata-at the interface with the soil. Members of the group XI basic helix-loop-helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago.
Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam
2015-01-01
Land plants develop filamentous cells—root hairs, rhizoids, and caulonemata—at the interface with the soil. Members of the group XI basic helix–loop–helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago. PMID:26150509
NASA Astrophysics Data System (ADS)
Egnin, M.; Gao, H.; He, G.; Woullard, F.; Mortley, D.; Scoffield, J.; Bey, B.; Quain, M.; Prakash, C. S.; Bonsi, C.
Environment is known to have significant effects on the nutrient content and quality of crop plants especially through its impact on the temporal and spatial expression of genes Little is known about the molecular changes and harvest index in plants in response to microgravity Sweetpotato underline Ipomoea underline batatas L Lam is one of the most important root crops and an excellent NASA crop for space farming to provide essential nutrients to sustain human life on long-term space missions The initiation and development of storage root formation is one of the most critical processes determining yield of sweetpotato The molecular mechanism of storage root initiation and development in sweetpotato is poorly understood To this end knowledge of gravity perception the genetic and molecular nature of the induction process of storage root will tremendously help improve on sweetpotato harvest index for space farming cDNA-AFLP techniques were employed to investigate temporal and spatial expressions to gain molecular insights and identify transcripts differentially expressed during early stages of sweetpotato storage root development Two hydroponically grown cultivars using Nutrient Film Technology NFT and microstorage roots were evaluated TU-82-155 an early maturing 90 DAP with orange flesh and tinge red skin and PI318846-3 a late maturing 135 DAP with white flesh and off-yellow skin were compared for differential genes expression during storage root development at 14 21 28 35 and 45 DAP Total RNA was isolated from
Veronico, Pasqua; Melillo, M Teresa; Saponaro, Concetta; Leonetti, Paola; Picardi, Ernesto; Jones, John T
2011-04-01
A cDNA of 312 bp, similar to polygalacturonase-inhibiting proteins (PGIPs), was isolated by cDNA-amplified fragment length polymorphism (cDNA-AFLP) from pea roots infected with the cyst nematode Heterodera goettingiana. The deduced amino acid sequence obtained from the complete Pspgip1 coding sequence was very similar to PGIPs described from several other plant species, and was identical in both MG103738 and Progress 9 genotypes, resistant and susceptible to H. goettingiana, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) expression analysis revealed the differential regulation of the Pspgip1 gene in the two genotypes in response to wounding and nematode challenge. Mechanical wounding induced Pspgip1 expression in MG103738 within 8 h, but this response was delayed in Progress 9. In contrast, the response to nematode infection was more complex. The transcription of Pspgip1 was triggered rapidly in both genotypes, but the expression level returned to levels observed in uninfected plants more quickly in susceptible than in resistant roots. In addition, in situ hybridization showed that Pspgip1 was expressed in the cortical cells damaged as a result of nematode invasion in both genotypes. However, it was specifically localized in the cells bordering the nematode-induced syncytia in resistant roots. This suggests a role for this gene in counteracting nematode establishment inside the root. © 2010 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2010 BSPP AND BLACKWELL PUBLISHING LTD.
Moreno-Alvarado, Marcos; García-Morales, Soledad; Trejo-Téllez, Libia Iris; Hidalgo-Contreras, Juan Valente; Gómez-Merino, Fernando Carlos
2017-01-01
Aluminum (Al) is a beneficial element for some plant species, especially when used at low concentrations. Though some transcription factors are induced by exposure to this element, no data indicate that Al regulates the expression of NAC genes in rice. In this study we tested the effect of applying 200 μM Al on growth, chlorophyll, amino acids, sugars, macronutrient concentration and regulation of NAC transcription factors gene expression in 24-day-old plants of four rice (Oryza sativa ssp. indica) cultivars: Cotaxtla, Tres Ríos, Huimanguillo and Temporalero, grown hydroponically under greenhouse conditions. Twenty days after treatment, we observed that Al enhanced growth in the four cultivars studied. On average, plants grown in the presence of Al produced 140% more root dry biomass and were 30% taller than control plants. Cotaxtla and Temporalero showed double the root length, while Huimanguillo and Cotaxtla had three times more root fresh biomass and 2.5 times more root dry biomass. Huimanguillo plants showed 1.5 times more shoot height, while Cotaxtla had almost double the root dry biomass. With the exception of Tres Ríos, the rest of the cultivars had almost double the chlorophyll concentration when treated with Al, whereas amino acid and proline concentrations were not affected by Al. Sugar concentration was also increased in plants treated with Al, almost 11-fold in comparison to the control. Furthermore, we observed a synergic response of Al application on P and K concentration in roots, and on Mg concentration in shoots. Twenty-four hours after Al treatment, NAC transcription factors gene expression was measured in roots by quantitative RT-PCR. Of the 57 NAC transcription factors genes primer-pairs tested, we could distinguish that 44% (25 genes) showed different expression patterns among rice cultivars, with most of the genes induced in Cotaxtla and Temporalero plants. Of the 25 transcription factors up-regulated, those showing differential expression mostly belonged to the NAM subfamily (56%). We conclude that Al improves growth, increases sugar concentration, P and K concentrations in roots, and Mg concentration in shoots, and report, for the first time, that Al differentially regulates the expression of NAC transcription factors in rice. PMID:28261224
Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis.
Andrio, Emilie; Marino, Daniel; Marmeys, Anthony; de Segonzac, Marion Dunoyer; Damiani, Isabelle; Genre, Andrea; Huguet, Stéphanie; Frendo, Pierre; Puppo, Alain; Pauly, Nicolas
2013-04-01
Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T
2015-06-01
Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.
Yeoh, K-A; Othman, A; Meon, S; Abdullah, F; Ho, C-L
2013-01-01
Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru
2015-01-01
Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.
Li, Xiaohua; Bok Kim, Yeon; Romij Uddin, Md; Kim, Sun Ju; Suzuki, Tatsuro; Park, Nam Il; Park, Sang Un
2013-01-01
Buckwheat, Fagopyrum tataricum Gaertn., is an important medicinal plant, which contains several phenolic compounds, including one of the highest content of rutin, a phenolic compound with anti-inflammatory properties. An experiment was conducted to investigate the level of expression of various genes in the phenylpropanoid biosynthetic pathway to analyze in vitro production of anthocyanin and phenolic compounds from hairy root cultures derived from 2 cultivars of tartary buckwheat (Hokkai T8 and T10). A total of 47 metabolites were identified by gas chromatography–time-of-flight mass spectrometry (GC-TOFMS) and subjected to principal component analysis (PCA) in order to fully distinguish between Hokkai T8 and T10 hairy roots. The expression levels of phenylpropanoid biosynthetic pathway genes, through qRT-PCR, showed higher expression for almost all the genes in T10 than T8 hairy root except for FtF3’H-2 and FtFLS-2. Rutin, quercetin, gallic acid, caffeic acid, ferulic acid, 4-hydroxybenzoic acid, and 2 anthocyanin compounds were identified in Hokkai T8 and T10 hairy roots. The concentration of rutin and anthocyanin in Hokkai T10 hairy roots of tartary buckwheat was several-fold higher compared with that obtained from Hokkai T8 hairy root. This study provides useful information on the molecular and physiological dynamic processes that are correlated with phenylpropanoid biosynthetic gene expression and phenolic compound content in F. tataricum species. PMID:23799007
Xu, Xiaozhao; Li, Xu; Hu, Xingwang; Wu, Ting; Wang, Yi; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai
2017-01-01
Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings. PMID:28674551
Wang, Le; Wu, Shu-Ming; Zhu, Yue; Fan, Qiang; Zhang, Zhen-Nan; Hu, Guang; Peng, Qing-Zhong; Wu, Jia-He
2017-03-01
The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zawaski, Christine; Ma, Cathleen; Strauss, Steven H; French, Darla; Meilan, Richard; Busov, Victor B
2012-09-01
This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.
Busov, Victor B.
2012-01-01
This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells. PMID:22915748
AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.
2006-01-01
• Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296
Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan
2013-07-01
Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Méndez, Alejandro; Matamoros, Manuel A; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2011-07-01
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.
Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus1[W][OA
Tovar-Méndez, Alejandro; Matamoros, Manuel A.; Bustos-Sanmamed, Pilar; Dietz, Karl-Josef; Cejudo, Francisco Javier; Rouhier, Nicolas; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2011-01-01
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thiol-disulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules. PMID:21562331
Yaish, Mahmoud W; Patankar, Himanshu V; Assaha, Dekoum V M; Zheng, Yun; Al-Yahyai, Rashid; Sunkar, Ramanjulu
2017-03-22
Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakoor, N; Nair, R; Crasta, O
2014-01-23
Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specificmore » probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.« less
Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh
2018-01-01
The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues. PMID:29709017
Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra
2018-01-01
The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK), sigma factor binding protein1 (SIB1) and with other WRKY members including WRKY70, WRKY1, and WRKY40, to respond various biotic and abiotic stresses. The STRING results were further validated through Predicted Tomato Interactome Resource (PTIR) database. The CELLO2GO web server revealed the functional gene ontology annotation and protein subcellular localization, which predicted that SolyWRKY33 is involved in amelioration of biological stress (39.3%) and other metabolic processes (39.3%). The protein (SolyWRKY33) most probably located inside the nucleus (91.3%) with having transcription factor binding activity. We conclude that the defense response following the Fol challenge was accompanied by differential expression of the SolyWRKY4(↓), SolyWRKY33(↑) and SolyWRKY37(↑) transcripts. The biochemical changes are occupied by elicitation of H2O2 generation and accumulation and enhanced lignified tissues.
Aritua, Valente; Achor, Diann; Gmitter, Frederick G; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection.
Aritua, Valente; Achor, Diann; Gmitter, Frederick G.; Albrigo, Gene; Wang, Nian
2013-01-01
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection. PMID:24058486
miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.).
Li, Jing; Guo, Guanghui; Guo, Weiwei; Guo, Ganggang; Tong, Dan; Ni, Zhongfu; Sun, Qixin; Yao, Yingyin
2012-11-21
MicroRNAs are a class of small, non-coding RNAs that regulate gene expression by binding target mRNA, which leads to cleavage or translational inhibition. The NAC proteins, which include NAM, ATAF, and CUC, are a plant-specific transcription factor family with diverse roles in development and stress regulation. It has been reported that miR164 negatively regulates NAC1 expression, which in turn affects lateral root development in Arabidopsis; however, little is known about the involvement of the maize NAC family and miR164 in lateral root development. We collected 175 maize transcripts with NAC domains. Of these, 7 ZmNACs were putative targets for regulation by miR164. We isolated one gene, called TC258020 (designated ZmNAC1) from 2 maize inbred lines, 87-1 and Zong3. ZmNAC1 had a high expression level in roots and showed higher abundance (1.8 fold) in Zong3 relative to 87-1, which had less lateral roots than Zong3. There was a significant correlation between the expression level of ZmNAC1 and the lateral root density in the recombinant inbred line (RIL) population. Transgenic Arabidopsis that overexpressed ZmNAC1 had increased lateral roots in comparison to the wild type. These findings suggest that ZmNAC1 played a significant role in lateral root development. An allelic expression assay showed that trans-regulatory elements were the dominant mediators of ZmNAC1 differential expression in 87-1 and Zong3, and further analysis revealed that miR164 was a trans-element that guided the cleavage of endogenous ZmNAC1 mRNA. Both mature miR164 and miR164 precursors had higher expression in 87-1 than Zong3, which was the opposite of the expression pattern of ZmNAC1. Additionally, the allelic assay showed that the cis-regulatory element most likely affected Zm-miR164b's expression pattern. A β-glucuronidase (GUS) assay showed that the Zm-miR164b promoter had higher GUS activity in 87-1 than in Zong3. In addition, we detected miR164b expression in the RIL population, and the results indicated that miR164b had a higher expression level in the RILs containing 87-1 promoter than those containing Zong3 promoter. Our results indicate one possible pathway in maize by which differences in miR164b promoter activity resulted in a different expression pattern for mature miR164 which negatively regulates ZmNAC1 expression in 87-1 and Zong3, thereby contributing to a significantly different lateral root phenotype.
A stele-enriched gene regulatory network in the Arabidopsis root
Brady, Siobhan M; Zhang, Lifang; Megraw, Molly; Martinez, Natalia J; Jiang, Eric; Yi, Charles S; Liu, Weilin; Zeng, Anna; Taylor-Teeples, Mallorie; Kim, Dahae; Ahnert, Sebastian; Ohler, Uwe; Ware, Doreen; Walhout, Albertha J M; Benfey, Philip N
2011-01-01
Tightly controlled gene expression is a hallmark of multicellular development and is accomplished by transcription factors (TFs) and microRNAs (miRNAs). Although many studies have focused on identifying downstream targets of these molecules, less is known about the factors that regulate their differential expression. We used data from high spatial resolution gene expression experiments and yeast one-hybrid (Y1H) and two-hybrid (Y2H) assays to delineate a subset of interactions occurring within a gene regulatory network (GRN) that determines tissue-specific TF and miRNA expression in plants. We find that upstream TFs are expressed in more diverse cell types than their targets and that promoters that are bound by a relatively large number of TFs correspond to key developmental regulators. The regulatory consequence of many TFs for their target was experimentally determined using genetic analysis. Remarkably, molecular phenotypes were identified for 65% of the TFs, but morphological phenotypes were associated with only 16%. This indicates that the GRN is robust, and that gene expression changes may be canalized or buffered. PMID:21245844
T-lymphocyte and cytokine expression in human inflammatory periapical lesions.
de Brito, Luciana Carla Neves; Teles, Flávia Rocha Fonseca; Teles, Ricardo Palmier; Totola, Antônio Helvécio; Vieira, Leda Quércia; Sobrinho, Antônio Paulino Ribeiro
2012-04-01
Lymphocytes, among many cells, express different sets of cytokines, chemokines, and receptors, which are considered important mediators of periapical immune response to infection. The aim of this study was to evaluate the mRNA expression of CD4(+)CD28(+) and CD8(+) T genes and the gene expression of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-17A, IL-10, CCL2/MCP-1, CCL4, CCL5, CXCR4, CCR5, and receptor activator for nuclear factor kappa B ligand (RANKL) in periapical interstitial fluid from human root canal infections. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions. Real-time polymerase chain reaction demonstrated significantly higher levels of CD4(+)CD28(+) and CD8(+) T-cell markers in the former root canal condition and an increase of IL-10 and CXCR4, followed by a decrease of proinflammatory cytokines such as RANKL, interferon-γ, IL-1β, and CCL5. Analyses of T-lymphocyte and cytokine expression in periapical area were able to show that distinct root canal conditions might play regulatory roles in controlling local immune/inflammatory processes. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Epidermal patterning genes are active during embryogenesis in Arabidopsis.
Costa, Silvia; Dolan, Liam
2003-07-01
Epidermal cells in the root of Arabidopsis seedling differentiate either as hair or non-hair cells, while in the hypocotyl they become either stomatal or elongated cells. WEREWOLF (WER) and GLABRA2 (GL2) are positive regulators of non-hair and elongated cell development. CAPRICE (CPC) is a positive regulator of hair cell development in the root. We show that WER, GL2 and CPC are expressed and active during the stages of embryogenesis when the pattern of cells in the epidermis of the root-hypocotyl axis forms. GL2 is first expressed in the future epidermis in the heart stage embryo and its expression is progressively restricted to those cells that will acquire a non-hair identity in the transition between torpedo and mature stage. The expression of GL2 at the heart stage requires WER function. WER and CPC are transiently expressed throughout the root epidermal layer in the torpedo stage embryo when the cell-specific pattern of GL2 expression is being established in the epidermis. We also show that WER positively regulates CPC transcription and GL2 negatively regulates WER transcription in the mature embryo. We propose that the restriction of GL2 to the future non-hair cells in the root epidermis can be correlated with the activities of WER and CPC during torpedo stage. In the embryonic hypocotyl we show that WER controls GL2 expression. We also provide evidence indicating that CPC may also regulate GL2 expression in the hypocotyl.
Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases
Ried, Martina Katharina; Antolín-Llovera, Meritxell; Parniske, Martin
2014-01-01
Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development. DOI: http://dx.doi.org/10.7554/eLife.03891.001 PMID:25422918
García, María J; Romera, Francisco J; Stacey, Minviluz G; Stacey, Gary; Villar, Eduardo; Alcántara, Esteban; Pérez-Vicente, Rafael
2013-01-01
Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.
Payá-Milans, Miriam; Nunez, Gerardo H; Olmstead, James W; Rinehart, Timothy A; Staton, Margaret
2017-08-07
Blueberries are one of the few horticultural crops adapted to grow in acidic soils. Neutral to basic soil pH is detrimental to all commonly cultivated blueberry species, including Vaccinium corymbosum (VC). In contrast, the wild species V. arboreum (VA) is able to tolerate a wider range of soil pH. To assess the molecular mechanisms involved in near neutral pH stress response, plants from pH-sensitive VC (tetraploid) and pH-tolerant VA (diploid) were grown at near neutral pH 6.5 and at the preferred pH of 4.5. Transcriptome sequencing of root RNA was performed for 4 biological replications per species x pH level interaction, for a total of 16 samples. Reads were mapped to the reference genome from diploid V. corymbosum, transforming ~55% of the reads to gene counts. A quasi-likelihood F test identified differential expression due to pH stress in 337 and 4867 genes in VA and VC, respectively. Both species shared regulation of genes involved in nutrient homeostasis and cell wall metabolism. VA and VC exhibited differential regulation of signaling pathways related to abiotic/biotic stress, cellulose and lignin biosynthesis, and nutrient uptake. The specific responses in VA likely facilitate tolerance to higher soil pH. In contrast, response in VC, despite affecting a greater number of genes, is not effective overcoming the stress induced by pH. Further inspection of those genes with differential expression that are specific in VA may provide insight on the mechanisms towards tolerance.
Krusell, Lene; Krause, Katja; Ott, Thomas; Desbrosses, Guilhem; Krämer, Ute; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; James, Euan K.; Sandal, Niels; Stougaard, Jens; Kawaguchi, Masayoshi; Miyamoto, Ai; Suganuma, Norio; Udvardi, Michael K.
2005-01-01
Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose. PMID:15805486
Kang, Yeon Hee; Song, Sang-Kee; Schiefelbein, John; Lee, Myeong Min
2013-01-01
Cell fate determination and differentiation are central processes in the development of multicellular organisms, and the Arabidopsis (Arabidopsis thaliana) root epidermis provides a model system to study the molecular basis of these processes. A lateral inhibition mechanism mediated by an R3 single-repeat MYB protein, CAPRICE (CPC), has been proposed to explain the specification of the two types of root epidermal cells (hair cells and nonhair cells). However, it is not clear how CPC acts preferentially in the H-position cells, rather than the N-position cells, where its gene is expressed. To explore this issue, we examined the effect of misexpressed CPC on cell fate specification and CPC localization in the root epidermis. We show that CPC is able to move readily within the root epidermis when its expression level is high and that CPC can induce the hair cell fate in a cell-autonomous manner. We provide evidence that CPC is capable of moving from the stele tissue in the center of the root to the outermost epidermal layer, where it can induce the hair cell fate. In addition, we show that CPC protein accumulates primarily in the nuclei of H-position cells in the early meristematic region, and this localization requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3) basic helix-loop-helix transcription factor. These results suggest that cell-cell movement of CPC occurs readily within the meristematic region of the root and that EGL3 preferentially traps the CPC protein in the H-position cells of the epidermis. PMID:23832626
Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia
2018-02-17
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.
The multifunctional nuclear pore complex: a platform for controlling gene expression
Ptak, Christopher; Aitchison, John D.; Wozniak, Richard W.
2014-01-01
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes. PMID:24657998
Short, Eleri; Leighton, Margaret; Imriz, Gul; Liu, Dongbin; Cope-Selby, Naomi; Hetherington, Flora; Smertenko, Andrei; Hussey, Patrick J; Topping, Jennifer F; Lindsey, Keith
2018-05-15
The epidermis is hypothesized to play a signalling role during plant development. One class of mutants showing defects in signal transduction and radial patterning are those in sterol biosynthesis. The expectation is that living cells require sterols, but it is not clear that all cell types express sterol biosynthesis genes. The HYDRA1 ( HYD1 ) gene of Arabidopsis encodes sterol Δ8-Δ7 isomerase, and although hyd1 seedlings are defective in radial patterning across several tissues, we show that the HYD1 gene is expressed most strongly in the root epidermis. Transgenic activation of HYD1 transcription in the epidermis of hyd1 null mutants reveals a major role in root patterning and growth. HYD1 expression in the vascular tissues and root meristem, though not endodermis or pericycle, also leads to some phenotypic rescue. Phenotypic rescue is associated with rescued patterning of the PIN1 and PIN2 auxin efflux carriers. The importance of the epidermis in controlling root growth and development is proposed to be, in part, due to its role as a site for sterol biosynthesis, and auxin is a candidate for the non-cell-autonomous signal. © 2018. Published by The Company of Biologists Ltd.
Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...
Liao, Hui-Ling; Chen, Yuan; Vilgalys, Rytas
2016-01-01
Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction) with white pine hosts (subgenus Strobus), but were incompatible with other pine hosts (subgenus Pinus). Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions. PMID:27736883
Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome
NASA Astrophysics Data System (ADS)
Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara
2016-04-01
Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation in association with rice roots.
Cai, Li; Zhang, Lu; Fu, Qiantang; Xu, Zeng-Fu
2018-01-01
The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha . Cytokinin levels are directly regulated by isopentenyl transferase (IPT), cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CKX). In this study, we cloned six IPT genes, one JcCYP735A gene, and seven JcCKX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JcIPT1 was primarily expressed in roots and seeds, JcIPT2 was expressed in roots, apical meristems, and mature leaves, JcIPT3 was expressed in stems and mature leaves, JcIPT5 was expressed in roots and mature leaves, JcIPT6 was expressed in seeds at 10 days after pollination, and JcIPT9 was expressed in mature leaves. JcCYP735A was mainly expressed in roots, flower buds, and seeds. The seven JcCKX genes also showed different expression patterns in different organs of Jatropha . In addition, CK levels were detected in flower buds and seeds at different stages of development. The concentration of N 6 -(Δ 2 -isopentenyl)-adenine (iP), iP-riboside, and trans -zeatin (tZ) increased with flower development, and the concentration of iP decreased with seed development, while that of tZ increased. We further analyzed the function of JcCYP735A using the CRISPR-Cas9 system, and found that the concentrations of tZ and tZ-riboside decreased significantly in the Jccyp735a mutants, which showed severely retarded growth. These findings will be helpful for further studies of the functions of cytokinin metabolic genes and understanding the roles of cytokinins in Jatropha growth and development.
Cai, Li; Zhang, Lu
2018-01-01
The seed oil of Jatropha curcas is considered a potential bioenergy source that could replace fossil fuels. However, the seed yield of Jatropha is low and has yet to be improved. We previously reported that exogenous cytokinin treatment increased the seed yield of Jatropha. Cytokinin levels are directly regulated by isopentenyl transferase (IPT), cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A), and cytokinin oxidase/dehydrogenase (CKX). In this study, we cloned six IPT genes, one JcCYP735A gene, and seven JcCKX genes. The expression patterns of these 14 genes in various organs were determined using real-time quantitative PCR. JcIPT1 was primarily expressed in roots and seeds, JcIPT2 was expressed in roots, apical meristems, and mature leaves, JcIPT3 was expressed in stems and mature leaves, JcIPT5 was expressed in roots and mature leaves, JcIPT6 was expressed in seeds at 10 days after pollination, and JcIPT9 was expressed in mature leaves. JcCYP735A was mainly expressed in roots, flower buds, and seeds. The seven JcCKX genes also showed different expression patterns in different organs of Jatropha. In addition, CK levels were detected in flower buds and seeds at different stages of development. The concentration of N6-(Δ2-isopentenyl)-adenine (iP), iP-riboside, and trans-zeatin (tZ) increased with flower development, and the concentration of iP decreased with seed development, while that of tZ increased. We further analyzed the function of JcCYP735A using the CRISPR-Cas9 system, and found that the concentrations of tZ and tZ-riboside decreased significantly in the Jccyp735a mutants, which showed severely retarded growth. These findings will be helpful for further studies of the functions of cytokinin metabolic genes and understanding the roles of cytokinins in Jatropha growth and development. PMID:29785355
Qian, Wenjun; Yue, Chuan; Wang, Yuchun; Cao, Hongli; Li, Nana; Wang, Lu; Hao, Xinyuan; Wang, Xinchao; Xiao, Bin; Yang, Yajun
2016-11-01
Fourteen invertase genes were identified in the tea plant, all of which were shown to participate in regulating growth and development, as well as in responding to various abiotic stresses. Invertase (INV) can hydrolyze sucrose into glucose and fructose, which plays a principal role in regulating plant growth and development as well as the plants response to various abiotic and biotic stresses. However, currently, there is a lack of reported information, regarding the roles of INVs in either tea plant development or in the tea plants response to various stresses. In this study, 14 INV genes were identified from the transcriptome data of the tea plant (Camellia sinensis (L.) O. Kuntze), and named CsINV1-5 and CsINV7-15. Based on the results of a Blastx search and phylogenetic analysis, the CsINV genes could be clustered into 6 acid invertase (AI) genes and 8 alkaline/neutral invertase (A/N-Inv) genes. The results of tissue-specific expression analysis showed that the transcripts of all the identified CsINV genes are detectable in various tissues. Under various abiotic stress conditions, the expression patterns of the 14 CsINV genes were diverse in both the leaves and roots, and some of them were shown to be significantly expressed. Overall, we hypothesize that the identified CsINV genes all participate in regulating growth and development in the tea plant, and most likely through different signaling pathways that regulate the carbohydrate allocation and the ratio of hexose and sucrose for improving the resistance of the leaves and the roots of the tea plant to various abiotic stresses.
Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare).
Ligaba, Ayalew; Katsuhara, Maki; Shibasaka, Mineo; Djira, Gemechis
2011-02-01
In one of the most important crops, barley (Hordeum vulgare L.), gene expression and physiological roles of most major intrinsic proteins (MIPs) remained to be elucidated. Here we studied expression of five tonoplast intrinsic protein isoforms (HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3 and HvTIP4;1), a NOD26-like intrinsic protein (HvNIP2;1) and a plasma membrane intrinsic protein (HvPIP2;1) by using the quantitative real-time RT-PCR. Five-day-old seedlings were exposed to abiotic stresses (salt, heavy metals and nutrient deficiency), abscisic acid (ABA) and gibberellic acid (GA) for 24 h. Treatment with 100 mM NaCl, 0.1 mM ABA and 1 mM GA differentially regulated gene expression in roots and shoots. Nitrogen and prolonged P-deficiency downregulated expression of most MIP genes in roots. Intriguingly, gene expression was restored to the values in the control three days after nutrient supply was resumed. Heavy metals (0.2 mM each of Cd, Cu, Zn and Cr) downregulated the transcript levels by 60-80% in roots, whereas 0.2 mM Hg upregulated expressions of most genes in roots. This was accompanied by a 45% decrease in the rate of transpiration. In order to study the physiological role of the MIPs, cDNA of three genes (HvTIP2;1, HvTIP2;3 and HvNIP2;1) have been cloned and heterologous expression was performed in Xenopus laevis oocytes. Osmotic water permeability was determined by a swelling assay. However, no water uptake activity was observed for the three proteins. Hence, the possible physiological role of the proteins is discussed. Copyright © 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Gonçalves, Patricia F; Lima, Liana L; Sallum, Enilson A; Casati, Márcio Z; Nociti, Francisco H
2008-02-01
Previous data demonstrated that root cementum may affect periodontal regeneration. As such, this study aimed to explore further possible mechanisms involved in this process by investigating in humans whether root cementum modulates gene expression in the regenerating tissue formed under membrane-protected intrabony defects. Thirty subjects with deep intrabony defects (> or =5 mm; 2- or 3-wall) were selected and assigned to the control or test group. The control group received scaling and root planing with the removal of granulation tissue and root cementum; the test group underwent removal of granulation tissue and soft microbial deposits by cleaning the root surface with a microbrush and saline solution, aiming at cementum preservation. Guided tissue regeneration (GTR) was applied to both groups. Twenty-one days later, the newly formed tissue under the membrane was assessed for the expression of the following genes: alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN), platelet-derived growth factor-alpha (PDGFA), bone sialoprotein (BSP), and basic fibroblast growth factor (bFGF). Data analysis demonstrated that mRNA levels for PDGFA, BSP, and bFGF were higher in the sites where root cementum was kept in place compared to the sites where root cementum was removed completely as part of the periodontal therapy (P <0.05); in contrast, OCN levels were lower (P <0.05). No difference for ALP or OPN was observed between the control and test groups (P >0.05). Root cementum may modulate the expression of growth and mineral-associated factors during periodontal regeneration.
Roots Stimulate Expression of Decomposition Transcripts in the Soil Microbiome
NASA Astrophysics Data System (ADS)
Nuccio, E. E.; Karaoz, U.; Zhou, J.; Brodie, E.; Firestone, M.; Pett-Ridge, J.
2016-12-01
The soil surrounding plant roots, the rhizosphere, has long been recognized as a zone of great functional importance in terrestrial ecosystems. Rhizosphere microorganisms can affect the breakdown of plant tissues and root litter, and can accelerate the decomposition of detrital plant biomass, which is a process commonly described as "priming." However, the molecular mechanisms underlying rhizosphere C cycling are poorly understood, and the carbohydrate and lignolytic gene transcripts mediating the decomposition of root litter in soil are largely unidentified. We hypothesized that root exudates stimulate the expression of enzymes that are involved in decomposition of macromolecular C compounds. To assess how the abundance and diversity of decomposition enzymes differs in the rhizosphere relative to the surrounding bulk soil, we sequenced the community gene expression (metatranscriptomes) and single cell genomes of rhizosphere and bulk soil associated with wild oat (Avena fatua) over time (3, 6, 12, and 22 days). To isolate roots of a defined age in a mature plant, we used microcosms with a transparent experimental sidecar to track roots as they grew. Our results showed that a large number of C decomposition enzymes were more highly expressed in the rhizosphere compared to bulk soil, and that overall, transcripts tended to be elevated in younger roots than older roots. Genes relevant to aromatic C breakdown (nitroreductase, 4-hydroxybenzoate degradation, pectin methylesterase) and organic N cycling (ammonification) were elevated in the rhizosphere. This work identifies the potential molecular mechanisms that underpin priming in rhizosphere soil.
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080
Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B
2018-01-01
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
The spatial expression and regulation of transcription factors IDEF1 and IDEF2
Kobayashi, Takanori; Ogo, Yuko; Aung, May Sann; Nozoye, Tomoko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.
2010-01-01
Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. Key Results IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. Conclusions IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for sensing and transmitting iron-deficiency signals. PMID:20197292
Brentner, Laura B; Mukherji, Sachiyo T; Merchie, Kate M; Yoon, Jong Moon; Schnoor, Jerald L; Van Aken, Benoit
2008-10-01
Twelve Populus genes were identified from Arabidopsis thaliana sequences previously shown to be induced by exposure to 2,4,6-trinitrotoluene (TNT). Using the resources of the Poplar Genome Project and National Center for Biotechnology Information databases, Populus conserved domains were identified and used to design gene specific primers. RNA extracted from root tissues of TNT-exposed hydroponic poplar plants was used to quantify the expression of genes by reverse-transcriptase real-time polymerase chain reaction. Cyclophilin and 18S ribosomal DNA genes were used as internal standards. Exposure to TNT resulted in a significant increase of gene expression of two glutathione S-transferases (GST), peaking at levels of 25.0 +/- 13.1 and 10 +/- 0.7 fold the expression level of non-exposed plants after 24 h for each of the GST genes, respectively. This paper demonstrates the use of functional genomics information from the model plant species, Arabidopsis, to identify genes which may be important in detoxification of TNT in the model phytoremediation species, Populus trichocarpa.
Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi
2018-04-11
Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.
Manimaran, P; Raghurami Reddy, M; Bhaskar Rao, T; Mangrauthia, Satendra K; Sundaram, R M; Balachandran, S M
2015-12-01
Pollen-specific expression. Promoters comprise of various cis-regulatory elements which control development and physiology of plants by regulating gene expression. To understand the promoter specificity and also identification of functional cis-acting elements, progressive 5' deletion analysis of the promoter fragments is widely used. We have evaluated the activity of regulatory elements of 5' promoter deletion sequences of anther-specific gene OSIPP3, viz. OSIPP3-∆1 (1504 bp), OSIPP3-∆2 (968 bp), OSIPP3-∆3 (388 bp) and OSIPP3-∆4 (286 bp) through the expression of transgene GUS in rice. In silico analysis of 1504-bp sequence harboring different copy number of cis-acting regulatory elements such as POLLENLELAT52, GTGANTG10, enhancer element of LAT52 and LAT56 indicated that they were essential for high level of expression in pollen. Histochemical GUS analysis of the transgenic plants revealed that 1504- and 968-bp fragments directed GUS expression in roots and anthers, while the 388- and 286-bp fragments restricted the GUS expression to only pollen, of which 388 bp conferred strong GUS expression. Further, GUS staining analysis of different panicle development stages (P1-P6) confirmed that the GUS gene was preferentially expressed only at P6 stage (late pollen stage). The qRT-PCR analysis of GUS transcript revealed 23-fold higher expression of GUS transcript in OSIPP3-Δ1 followed by OSIPP3-Δ2 (eightfold) and OSIPP3-Δ3 (threefold) when compared to OSIPP3-Δ4. Based on our results, we proposed that among the two smaller fragments, the 388-bp upstream regulatory region could be considered as a promising candidate for pollen-specific expression of agronomically important transgenes in rice.
Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor
2013-07-01
The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.
Shirazi, Zahra; Aalami, Ali; Tohidfar, Masoud; Sohani, Mohammad Mehdi
2018-06-01
Glycyrrhiza glabra is one of the most important and well-known medicinal plants which produces various triterpene saponins such as glycyrrhizin. Beta-amyrin 11-oxidase (CYP88D6) plays a key role in engineering pathway of glycyrrhizin production and converts an intermediated beta-amyrin compound to glycyrrhizin. In this study, pBI121 GUS-9 :CYP88D6 construct was transferred to G. glabra using Agrobacterium rhizogene ATCC 15834. The quantitation of transgene was measured in putative transgenic hairy roots using qRT-PCR. The amount of glycyrrhizin production was measured by HPLC in transgenic hairy root lines. Gene expression analysis demonstrated that CYP88D6 was over-expressed only in one of transgenic hairy root lines and was reduced in two others. Beta-amyrin 24-hydroxylase (CYP93E6) was significantly expressed in one of the control hairy root lines. The amount of glycyrrhizin metabolite in over-expressed line was more than or similar to that of control hairy root lines. According to the obtained results, it would be recommended that multi-genes of glycyrrhizin biosynthetic pathway be transferred simultaneously to the hairy root in order to increase glycyrrhizin content.
Sahu, Binod B.; Baumbach, Jordan L.; Singh, Prashant; Srivastava, Subodh K.; Yi, Xiaoping
2017-01-01
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, ‘Essex’, was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen. PMID:28095498
Sahu, Binod B; Baumbach, Jordan L; Singh, Prashant; Srivastava, Subodh K; Yi, Xiaoping; Bhattacharyya, Madan K
2017-01-01
Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.
Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
Li, Bai; Li, Yu-Ying; Wu, Hua-Mao; Zhang, Fang-Fang; Li, Chun-Jie; Li, Xue-Xian; Lambers, Hans; Li, Long
2016-01-01
Plant diversity in experimental systems often enhances ecosystem productivity, but the mechanisms causing this overyielding are only partly understood. Intercropping faba beans (Vicia faba L.) and maize (Zea mays L.) result in overyielding and also, enhanced nodulation by faba beans. By using permeable and impermeable root barriers in a 2-y field experiment, we show that root–root interactions between faba bean and maize significantly increase both nodulation and symbiotic N2 fixation in intercropped faba bean. Furthermore, root exudates from maize promote faba bean nodulation, whereas root exudates from wheat and barley do not. Thus, a decline of soil nitrate concentrations caused by intercropped cereals is not the sole mechanism for maize promoting faba bean nodulation. Intercropped maize also caused a twofold increase in exudation of flavonoids (signaling compounds for rhizobia) in the systems. Roots of faba bean treated with maize root exudates exhibited an immediate 11-fold increase in the expression of chalcone–flavanone isomerase (involved in flavonoid synthesis) gene together with a significantly increased expression of genes mediating nodulation and auxin response. After 35 d, faba beans treated with maize root exudate continued to show up-regulation of key nodulation genes, such as early nodulin 93 (ENOD93), and promoted nitrogen fixation. Our results reveal a mechanism for how intercropped maize promotes nitrogen fixation of faba bean, where maize root exudates promote flavonoid synthesis in faba bean, increase nodulation, and stimulate nitrogen fixation after enhanced gene expression. These results indicate facilitative root–root interactions and provide a mechanism for a positive relationship between species diversity and ecosystem productivity. PMID:27217575
Cloning and expression analysis of Zmglp1, a new germin-like protein gene in maize.
Fan, Zhanmin; Gu, Hongya; Chen, Xiaowei; Song, Hui; Wang, Qian; Liu, Meihua; Qu, Li-Jia; Chen, Zhangliang
2005-06-17
The cDNA and genomic DNA of a green tissue-specific gene were cloned from maize (Zea mays L.) using cDNA-amplified fragment length polymorphism (cDNA-AFLP) and library screening. The deduced protein was highly similar to Hordeum vulgare germin-like protein 1 (HvGLP1), and the maize gene was therefore designated Zmglp1. Northern blot specifically detected the mRNA of Zmglp1 in young whorl leaves at the early-whorl stage. However, at the late-whorl, tassel, and silk stages, Zmglp1 transcripts were highly abundant in young whorl leaves; less abundant in mature leaves, young tassels, and cobs; and not detectable in roots, immature kernels, and stalks. RNA in situ hybridization revealed that Zmglp1 expressed only in mesophyllous, phloem, and guard cells in the young whorl leaves. Deletion analysis of the promoter in transgenic Arabidopsis resulted in the identification of several regions containing important regulatory cis-elements controlling the expression levels and circadian rhythm-oscillated patterns of Zmglp1.
Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings
Tanaka, Kiwamu; Cho, Sung-Hwan; Lee, Hyeyoung; Pham, An Q.; Batek, Josef M.; Cui, Shiqi; Qiu, Jing; Khan, Saad M.; Joshi, Trupti; Zhang, Zhanyuan J.; Xu, Dong; Stacey, Gary
2015-01-01
Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulated after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. The data indicate that LCO can directly impact maize root growth and gene expression. PMID:26049159
Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat
2012-11-01
The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in acquisition of nutrients from energy-rich carbon compounds leaked from the germinating seeds and roots.
Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance
Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.
2014-01-01
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294
Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian
2002-11-18
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.
Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang
2017-01-01
Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519
de Vries, Jan; Fischer, Angela Melanie; Roettger, Mayo; Rommel, Sophie; Schluepmann, Henriette; Bräutigam, Andrea; Carlsbecker, Annelie; Gould, Sven Bernhard
2016-01-01
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis[W
Gutierrez, Laurent; Mongelard, Gaëlle; Floková, Kristýna; Păcurar, Daniel I.; Novák, Ondřej; Staswick, Paul; Kowalczyk, Mariusz; Păcurar, Monica; Demailly, Hervé; Geiss, Gaia; Bellini, Catherine
2012-01-01
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways. PMID:22730403
Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng
2016-01-01
There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353
Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu
2017-01-01
Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.
Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes
2009-07-01
Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.
GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems
Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R
2015-01-01
Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479
GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems
Rellan-Alvarez, Ruben; Lobet, Guillaume; Lindner, Heike; ...
2015-08-19
Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow themore » spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.« less
Fan, Sheng; Zhang, Dong; Zhang, Lizhi; Gao, Cai; Xin, Mingzhi; Tahir, Muhammad Mobeen; Li, Youmei; Ma, Juanjuan; Han, Mingyu
2017-10-27
The plant-specific gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant development. However, little is known about these genes, particularly in fruit tree species. We identified 15 putative Arabidopsis thaliana GASA (AtGASA) and 26 apple GASA (MdGASA) genes. The identified genes were then characterized (e.g., chromosomal location, structure, and evolutionary relationships). All of the identified A. thaliana and apple GASA proteins included a conserved GASA domain and exhibited similar characteristics. Specifically, the MdGASA expression levels in various tissues and organs were analyzed based on an online gene expression profile and by qRT-PCR. These genes were more highly expressed in the leaves, buds, and fruits compared with the seeds, roots, and seedlings. MdGASA genes were also responsive to gibberellic acid (GA 3 ) and abscisic acid treatments. Additionally, transcriptome sequencing results revealed seven potential flowering-related MdGASA genes. We analyzed the expression levels of these genes in response to flowering-related treatments (GA 3 , 6-benzylaminopurine, and sugar) and in apple varieties that differed in terms of flowering ('Nagafu No. 2' and 'Yanfu No. 6') during the flower induction period. These candidate MdGASA genes exhibited diverse expression patterns. The expression levels of six MdGASA genes were inhibited by GA 3 , while the expression of one gene was up-regulated. Additionally, there were expression-level differences induced by the 6-benzylaminopurine and sugar treatments during the flower induction stage, as well as in the different flowering varieties. This study represents the first comprehensive investigation of the A. thaliana and apple GASA gene families. Our data may provide useful clues for future studies and may support the hypotheses regarding the role of GASA proteins during the flower induction stage in fruit tree species.
Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian
2003-04-01
Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.
Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John
1998-01-01
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776
Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh
2015-07-01
The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.
Gupta, Supriya; Gupta, Sanjay Mohan; Gupta, Alok Kumar; Gaur, Vikram Singh; Kumar, Anil
2014-08-10
In order to gain insights into the mechanism of high nitrogen use efficiency (NUE) of finger millet (FM) the role of Dof2 transcription factor (TF), which is a repressor of genes involved in C/N metabolism was investigated. The partial cDNA fragment of EcDof2 (912-bp; GenBank acc. no. KF261117) was isolated and characterized from finger millet (FM) that showed 63% and 58% homology with Dof2 of Zea mays at nucleotide and protein level, respectively. Its expression studies were carried out along with the activator EcDof1 in two genotypes (GE3885, high protein genotype (HPG); GE1437, low protein genotype (LPG)) of FM differing in grain protein contents (13.8% and 6.2%) showed that EcDof2 is expressed in both shoot and root tissues with significantly (p≤0.05) higher expression in the roots. The diurnal expression of both EcDof1 and EcDof2 in shoots was differential having different time of peak expression indicating a differential response to diurnal condition. Under continuous dark conditions, expression of EcDof1 and EcDof2 oscillated in both the genotypes whereas on illumination, the fold expression of EcDof1 was higher as compared to EcDof2. Under increasing nitrate concentration, EcDof2 expression increases in roots and shoots of LPG while it remains unchanged in HPG. However, the EcDof1 expression was found to increase in both genotypes. Further, time kinetics studies under single nitrate concentration revealed that EcDof2 was repressed in the roots of both genotypes whereas EcDof1 oscillated with time. The EcDof1/EcDof2 ratio measured showed differential response under different light and nitrogen conditions. It was higher in the roots of HPG indicating higher activation of genes involved in N uptake and assimilation resulting in high grain protein accumulation. The results indicate that both light and nitrogen concentration influence Dof1 and Dof2 expression and suggests a complex pattern of regulation of genes influenced by these plant specific TFs. In nutshell, the Dof1/Dof2 ratio can serve as an index for measuring the N responsiveness and NUE of crops and can be further validated by Dof2 knock down approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Genes responding to water deficit in apple (Malus × domestica Borkh.) roots.
Bassett, Carole Leavel; Baldo, Angela M; Moore, Jacob T; Jenkins, Ryan M; Soffe, Doug S; Wisniewski, Michael E; Norelli, John L; Farrell, Robert E
2014-07-08
Individual plants adapt to their immediate environment using a combination of biochemical, morphological and life cycle strategies. Because woody plants are long-lived perennials, they cannot rely on annual life cycle strategies alone to survive abiotic stresses. In this study we used suppression subtractive hybridization to identify genes both up- and down-regulated in roots during water deficit treatment and recovery. In addition we followed the expression of select genes in the roots, leaves, bark and xylem of 'Royal Gala' apple subjected to a simulated drought and subsequent recovery. In agreement with studies from both herbaceous and woody plants, a number of common drought-responsive genes were identified, as well as a few not previously reported. Three genes were selected for more in depth analysis: a high affinity nitrate transporter (MdNRT2.4), a mitochondrial outer membrane translocase (MdTOM7.1), and a gene encoding an NPR1 homolog (MpNPR1-2). Quantitative expression of these genes in apple roots, bark and leaves was consistent with their roles in nutrition and defense. Additional genes from apple roots responding to drought were identified using suppression subtraction hybridization compared to a previous EST analysis from the same organ. Genes up- and down-regulated during drought recovery in roots were also identified. Elevated levels of a high affinity nitrate transporter were found in roots suggesting that nitrogen uptake shifted from low affinity transport due to the predicted reduction in nitrate concentration in drought-treated roots. Suppression of a NPR1 gene in leaves of drought-treated apple trees may explain in part the increased disease susceptibility of trees subjected to dehydrative conditions.
Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA
Steffens, Bianka; Sauter, Margret
2009-01-01
In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-γ-S induced epidermal cell death, whereas GDP-β-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904
Safari, Masoumeh; Ghanati, Faezeh; Safarnejad, Mohammad Reza; Chashmi, Najmeh Ahmadian
2018-02-01
Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H + -ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.
Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega
2015-10-01
The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.
Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J
2012-03-27
The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Targeting gene therapy to cancer: a review.
Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J
1997-01-01
In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be discussed is the regulation of therapeutic gene products by tumor-specific gene splicing. Gene expression could also be targeted at conditions specific to the tumor microenvironment, such as glucose deprivation and hypoxia. We have concentrated on hypoxia-targeted gene expression and this report will discuss our progress in detail. Chronic hypoxia occurs in tissue that is more than 100-200 microns away from a functional blood supply. In solid tumors hypoxia is widespread both because cancer cells are more prolific than the invading endothelial cells that make up the blood vessels and because the newly formed blood supply is disorganized. Measurements of oxygen partial pressure in patients' tumors showed a high percentage of severe hypoxia readings (less than 2.5 mmHg), readings not seen in normal tissue. This is a major problem in the treatment of cancer, because hypoxic cells are resistant to radiotherapy and often to chemotherapy. However, severe hypoxia is also a physiological condition specific to tumors, which makes it a potentially exploitable target. We have utilized hypoxia response elements (HRE) derived from the oxygen-regulated phosphoglycerate kinase gene to control gene expression in human tumor cells in vitro and in experimental tumors. The list of genes that have been considered for use in the treatment of cancer is extensive. It includes cytokines and costimulatory cell surface molecules intended to induce an effective systemic immune response against tumor antigens that would not otherwise develop. Other inventive strategies include the use of internally expressed antibodies to target oncogenic proteins (intrabodies) and the use of antisense technology (antisense oligonucleotides, antigenes, and ribozymes). This report will concentrate more on novel genes encoding prodrug activating enzymes, so-called suicide genes (Herpes simplex virus thymidine kinase, Escherichia coli nitroreductase, E. (ABSTRACT TRUNCATED)
Siciliano, Valeria; Genre, Andrea; Balestrini, Raffaella; Cappellazzo, Gilda; deWit, Pierre J.G.M.; Bonfante, Paola
2007-01-01
Information on changes in the plant transcriptome during early interaction with arbuscular mycorrhizal (AM) fungi is still limited since infections are usually not synchronized and plant markers for early stages of colonization are not yet available. A prepenetration apparatus (PPA), organized in epidermal cells during appressorium development, has been reported to be responsible for assembling a trans-cellular tunnel to accommodate the invading fungus. Here, we used PPAs as markers for cell responsiveness to fungal contact to investigate gene expression at this early stage of infection with minimal transcript dilution. PPAs were identified by confocal microscopy in transformed roots of Medicago truncatula expressing green fluorescent protein-HDEL, colonized by the AM fungus Gigaspora margarita. A PPA-targeted suppressive-subtractive cDNA library was built, the cDNAs were cloned and sequenced, and, consequently, 107 putative interaction-specific genes were identified. The expression of a subset of 15 genes, selected by reverse northern dot blot screening, and five additional genes, potentially involved in PPA formation, was analyzed by real-time reverse transcription-polymerase chain reaction and compared with an infection stage, 48 h after the onset of the PPA. Comparison of the expression profile of G. margarita-inoculated wild type and the mycorrhiza-defective dmi3-1 mutant of M. truncatula revealed that an expansin-like gene, expressed in wild-type epidermis during PPA development, can be regarded as an early host marker for successful mycorrhization. A putative Avr9/Cf-9 rapidly elicited gene, found to be up-regulated in the mutant, suggests novel regulatory roles for the DMI3 protein in the early mycorrhization process. PMID:17468219
Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan
2014-01-01
In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. PMID:24942546
Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R
2013-01-01
Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311
Ou, Wenjun; Mao, Xiang; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Wu, Chunlai; Xia, Zhiqiang; Wang, Wenquan; Zhou, Shiyi; Li, Kaimian; Hu, Wei
2018-01-01
KT/HAK/KUP (KUP) family is responsible for potassium ion (K + ) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava ( Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes ( MeKUPs ) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H 2 O 2 , and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP -mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Ying; Gao, Yajun; Jones, Alan M.
The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less
Liang, Ying; Gao, Yajun; Jones, Alan M.
2017-06-13
The three-member family of Arabidopsis extra-large G proteins (XLG1-3) defines the prototype of an atypical Ga subunit in the heterotrimeric G protein complex. Some recent evidence indicate that XLG subunits operate along with its Gbg dimer in root morphology, stress responsiveness, and cytokinin induced development, however downstream targets of activated XLG proteins in the stress pathways are rarely known. In order to assemble a set of candidate XLG-targeted proteins, a yeast two-hybrid complementation-based screen was performed using XLG protein baits to query interactions between XLG and partner protein found in glucose-treated seedlings, roots, and Arabidopsis cells in culture. Seventy twomore » interactors were identified and >60% of a test set displayed in vivo interaction with XLG proteins. Gene co-expression analysis shows that >70% of the interactors are positively correlated with the corresponding XLG partners. Gene Ontology enrichment for all the candidates indicates stress responses and posits a molecular mechanism involving a specific set of transcription factor partners to XLG. Genes encoding two of these transcription factors, SZF1 and 2, require XLG proteins for full NaCl-induced expression. Furthermore, the subcellular localization of the XLG proteins in the nucleus, endosome, and plasma membrane is dependent on the specific interacting partner.« less
Du, Jiancan; Hu, Simin; Yu, Qin; Wang, Chongde; Yang, Yunqiang; Sun, Hang; Yang, Yongping; Sun, Xudong
2017-01-01
The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips ( Brassica rapa ssp. rapa ). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.
Alvarez-Pérez, Marco Antonio; Narayanan, Sampath; Zeichner-David, Margarita; Rodríguez Carmona, Bruno; Arzate, Higinio
2006-03-01
Cementum is a unique mineralized connective tissue that covers the root surfaces of the teeth. The cementum is critical for appropriate maturation of the periodontium, both during development as well as that associated with regeneration of periodontal tissues, IU; however, one major impediment to understand the molecular mechanisms that regulate periodontal regeneration is the lack of cementum markers. Here we report on the identification and characterization of one such differentially human expressed gene, termed "cementum protein-23" (CP-23) that appears to be periodontal ligament and cementum-specific. We screened human cementum tumor-derived cDNA libraries by transient expression in COS-7 cells and "panning" with a rabbit polyclonal antibody against a cementoblastoma conditioned media-derived protein (CP). One isolated cDNA, CP-23, was expressed in E. coli and polyclonal antibodies against the recombinant human CP-23 were produced. Expression of CP-23 protein by cells of the periodontium was examined by Northern blot and in situ hybridization. Expression of CP-23 transcripts in human cementoblastoma-derived cells, periodontal ligament cells, human gingival fibroblasts and alveolar bone-derived cells was determined by RT-PCR. Our results show that we have isolated a 1374-bp human cDNA containing an open reading frame that encodes a polypeptide with 247 amino acid residues, with a predicted molecular mass of 25.9 kDa that represents CP species. The recombinant human CP-23 protein cross-reacted with antibodies against CP and type X collagen. Immunoscreening of human periodontal tissues revealed that CP-23 gene product is localized to the cementoid matrix of cementum and cementoblasts throughout the entire surface of the root, cell subpopulations of the periodontal ligament as well as cells located paravascularly to the blood vessels into the periodontal ligament. Furthermore, 98% of putative cementoblasts and 15% of periodontal ligament cells cultured in vitro expressed CP-23 gene product. Cementoblastoma cells and periodontal ligament cells contained a 5.0 kb CP-23 mRNA. In situ hybridization showed strong expression of CP-23 mRNA on cementoblast, cell subpopulations of the periodontal ligament and cells located around blood vessels into the periodontal ligament. Our results demonstrate that CP-23 represents a novel, tissue-specific-gene product being expressed by periodontal ligament subpopulations and cementoblasts. These findings offer the possibility to determine the cellular and molecular events that regulate the cementogenesis process during root development. Furthermore, it might provide new venues for the design of translational studies aimed at achieving predictable new cementogenesis and regeneration of the periodontal tissues.
Gonzalez, E; Pitre, F E; Pagé, A P; Marleau, J; Guidi Nissim, W; St-Arnaud, M; Labrecque, M; Joly, S; Yergeau, E; Brereton, N J B
2018-03-21
One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Vangelisti, Alberto; Natali, Lucia; Bernardi, Rodolfo; Sbrana, Cristiana; Turrini, Alessandra; Hassani-Pak, Keywan; Hughes, David; Cavallini, Andrea; Giovannetti, Manuela; Giordani, Tommaso
2018-01-08
Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.
Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit
2018-01-01
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998
Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco
2017-01-01
A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.
Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.)
Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu
2015-01-01
The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut. PMID:26125188
Genome-Wide Analysis of the NAC Gene Family in Physic Nut (Jatropha curcas L.).
Wu, Zhenying; Xu, Xueqin; Xiong, Wangdan; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Wu, Guojiang; Jiang, Huawu
2015-01-01
The NAC proteins (NAM, ATAF1/2 and CUC2) are plant-specific transcriptional regulators that have a conserved NAM domain in the N-terminus. They are involved in various biological processes, including both biotic and abiotic stress responses. In the present study, a total of 100 NAC genes (JcNAC) were identified in physic nut (Jatropha curcas L.). Based on phylogenetic analysis and gene structures, 83 JcNAC genes were classified as members of, or proposed to be diverged from, 39 previously predicted orthologous groups (OGs) of NAC sequences. Physic nut has a single intron-containing NAC gene subfamily that has been lost in many plants. The JcNAC genes are non-randomly distributed across the 11 linkage groups of the physic nut genome, and appear to be preferentially retained duplicates that arose from both ancient and recent duplication events. Digital gene expression analysis indicates that some of the JcNAC genes have tissue-specific expression profiles (e.g. in leaves, roots, stem cortex or seeds), and 29 genes differentially respond to abiotic stresses (drought, salinity, phosphorus deficiency and nitrogen deficiency). Our results will be helpful for further functional analysis of the NAC genes in physic nut.
2014-01-01
Background Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. Results RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. Conclusions Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified. PMID:24666749
Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar
2013-01-01
Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity. PMID:23516362
Meng, Zhi Bin; Chen, Li Qian; Suo, Dong; Li, Gui Xin; Tang, Cai Xian; Zheng, Shao Jian
2012-01-01
Background and Aims Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. Methods Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (–P + Fe); (3) 50 µm P and 0 Fe (+P–Fe); and (4) 0 P and 0 Fe (–P–Fe), and these were examined in relation to the formation of cluster roots. Key Results The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under –P + Fe, +P–Fe and –P–Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under –P or –Fe conditions. Conclusions NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin. PMID:22351487
Tian, Shan; Wang, Bei; Zhao, Xusheng
2017-01-01
Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube. PMID:28976994
Changes in Dorsal Root Ganglion Gene Expression in Response to Spinal Cord Stimulation.
Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; DeMaegd, Margaret; Benyamin, Ramsin; Vallejo, Ricardo
Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy. Rats were randomized into experimental or control groups (n = 6 per group). Experimental animals underwent spared-nerve injury, implantation of lead, and continuous SCS (72 hours). Behavioral assessment for mechanical hyperalgesia was conducted to compare responses after injury and treatment. Ipsilateral DRG tissue was collected, and gene expression quantified for interleukin 1b (IL-1b), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), GABA B receptor 1 (GABAbr1), substance P (subP), Integrin alpha M (ITGAM), sodium/potassium ATP-ase (Na/K ATPase), fos proto-oncogene (cFOS), serotonin receptor 3A (5HT3r), galanin (Gal), vasoactive intestinal peptide (VIP), neuropeptide Y (NpY), glial fibrillary acidic protein (GFAP), and brain derived neurotropic factor (BDNF) via quantitative polymerase chain reaction. Statistical significance was established using analysis of variance (ANOVA), independent t tests, and Pearson correlation tests. Expression of IL-1b and IL-6 was reversed following SCS therapy relative to the increase caused by the injury model. Both GABAbr1 and Na/K ATPase were significantly up-regulated upon implantation of the lead, and SCS therapy reversed their expression to within control levels. Pearson correlation analyses reveal that GABAbr1 and Na/K ATPase expression was dependent on the stimulating current intensity. Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition, expression of GABAbr1 and Na/K ATPase was down-regulated to within control levels following SCS and correlates with applied current.
DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming
2015-11-01
Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.
Hussey, Richard S; Huang, Guozhong; Allen, Rex
2011-01-01
Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.
Using next generation transcriptome sequencing to predict an ectomycorrhizal metablome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, P. E.; Sreedasyam, A.; Trivedi, G
Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models usingmore » a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.« less
Expression and Stress-Dependent Induction of Potassium Channel Transcripts in the Common Ice Plant1
Su, Hua; Golldack, Dortje; Katsuhara, Maki; Zhao, Chengsong; Bohnert, Hans J.
2001-01-01
We have characterized transcripts for three potassium channel homologs in the AKT/KAT subfamily (Shaker type) from the common ice plant (Mesembryanthemum crystallinum), with a focus on their expression during salt stress (up to 500 mm NaCl). Mkt1 and 2, Arabidopsis AKT homologs, and Kmt1, a KAT homolog, are members of small gene families with two to three isoforms each. Mkt1 is root specific; Mkt2 is found in leaves, flowers, and seed capsules; and Kmt1 is expressed in leaves and seed capsules. Mkt1 is present in all cells of the root, and in leaves a highly conserved isoform is detected present in all cells with highest abundance in the vasculature. MKT1 for which antibodies were made is localized to the plasma membrane. Following salt stress, MKT1 (transcripts and protein) is drastically down-regulated, Mkt2 transcripts do not change significantly, and Kmt1 is strongly and transiently (maximum at 6 h) up-regulated in leaves and stems. The detection and stress-dependent behavior of abundant transcripts representing subfamilies of potassium channels provides information about tissue specificity and the complex regulation of genes encoding potassium uptake systems in a halophytic plant. PMID:11161018
Genome Enabled Discovery of Carbon Sequestration Genes in Poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping
2007-02-22
The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Completemore » descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral meristem identity gene (APETALA1 or AP1), auxin response factor gene (ETTIN), the gene encoding transcriptional factor of WD40 family (TRANSPARENTTESTAGLABRA1 or TTG1), and the auxin efflux carrier (PIN-FORMED2 or PIN2) gene. More than 220 transgenic lines of the 1st, 2nd and 3rd generations were analyzed for RNAi suppression phenotypes (Filichkin et. al., manuscript submitted). A total of 108 constructs were supplied by ORNL, UF and OSU and used to generate over 1,881 PCR verified transgenic Populus and over 300 PCR verified transgenic Arabidopsis events. The Populus transgenics alone required Agrobacterium co-cultivations of 124.406 explants.« less
Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander
2013-01-01
Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCNA and Cytoscape. Total of 2199 differentially expressed genes (DEGs) were identified in at least three or more tissues, wherein 88 genes have coordinated expression profile among all the six tissues under drought stress. These 88 highly coordinated genes were further subjected to module identification in the coexpression network. Based on chief topological properties we identified 18 hub genes such as ABC transporter, ATP-binding protein, dehydrin, protein phosphatase 2C, LTPL153 - Protease inhibitor, phosphatidylethanolaminebinding protein, lactose permease-related, NADP-dependent malic enzyme, etc. Motif enrichment analysis showed the presence of ABRE cis-elements in the promoters of > 62% of the coordinately expressed genes. Our results suggest that drought stress mediated upregulated gene expression was coordinated through an ABA-dependent signaling pathway across tissues, at least for the subset of genes identified in this study, while down regulation appears to be regulated by tissue specific pathways in rice.
2012-01-01
Background Cowpea (Vigna unguiculata L.) is an important grain and forage legume grown throughout sub-Saharan Africa primarily by subsistence farmers on poor, drought prone soils. Genetic improvement of the crop is being actively pursued and numerous functional genomics studies are underway aimed at characterizing gene controlling key agronomic characteristics for disease and pest resistances. Unfortunately, similar to other legumes, efficient plant transformation technology is a rate-limiting step in analysis of gene function in cowpea. Results Here we describe an optimized protocol for the rapid generation of transformed hairy roots on ex vitro composite plants of cowpea using Agrobacterium rhizogenes. We further demonstrate the applicability of cowpea composite plants to study gene expression involved in the resistance response of the plant roots to attack by the root parasitic weed, Striga gesnerioides. The utility of the new system and critical parameters of the method are described and discussed herein. Conclusions Cowpea composite plants offer a rapid alternative to methods requiring stable transformation and whole plant regeneration for studying gene expression in resistance or susceptibility responses to parasitic weeds. Their use can likely be readily adapted to look at the effects of both ectopic gene overexpression as well as gene knockdown of root associated defense responses and to the study of a broader range of root associated physiological and aphysiological processes including root growth and differentiation as well as interactions with other root pests, parasites, and symbionts. PMID:22741546
Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian
2015-01-01
WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.
Molecular and physiological responses to titanium dioxide ...
- Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b
López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo
2018-03-01
The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.
NASA Technical Reports Server (NTRS)
Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.
2016-01-01
Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
NASA Technical Reports Server (NTRS)
Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.
2016-01-01
Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
Stelpflug, Scott C.; Sekhon, Rajandeep S.; Vaillancourt, Brieanne; ...
2015-12-30
Comprehensive and systematic transcriptome profiling provides valuable insight into biological and developmental processes that occur throughout the life cycle of a plant. We have enhanced our previously published microarray-based gene atlas of maize ( Zea mays L.) inbred B73 to now include 79 distinct replicated samples that have been interrogated using RNA sequencing (RNA-seq). The current version of the atlas includes 50 original array-based gene atlas samples, a time-course of 12 stalk and leaf samples postflowering, and an additional set of 17 samples from the maize seedling and adult root system. The entire dataset contains 4.6 billion mapped reads, withmore » an average of 20.5 million mapped reads per biological replicate, allowing for detection of genes with lower transcript abundance. As the new root samples represent key additions to the previously examined tissues, we highlight insights into the root transcriptome, which is represented by 28,894 (73.2%) annotated genes in maize. Additionally, we observed remarkable expression differences across both the longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the primary root supported by fourfold differential expression of 9353 and 4728 genes, respectively. Among the latter were 1110 genes that encode transcription factors, some of which are orthologs of previously characterized transcription factors known to regulate root development in Arabidopsis thaliana (L.) Heynh., while most are novel, and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. As a result, this comprehensive transcriptome dataset is a powerful tool toward understanding maize development, physiology, and phenotypic diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stelpflug, Scott C.; Sekhon, Rajandeep S.; Vaillancourt, Brieanne
Comprehensive and systematic transcriptome profiling provides valuable insight into biological and developmental processes that occur throughout the life cycle of a plant. We have enhanced our previously published microarray-based gene atlas of maize ( Zea mays L.) inbred B73 to now include 79 distinct replicated samples that have been interrogated using RNA sequencing (RNA-seq). The current version of the atlas includes 50 original array-based gene atlas samples, a time-course of 12 stalk and leaf samples postflowering, and an additional set of 17 samples from the maize seedling and adult root system. The entire dataset contains 4.6 billion mapped reads, withmore » an average of 20.5 million mapped reads per biological replicate, allowing for detection of genes with lower transcript abundance. As the new root samples represent key additions to the previously examined tissues, we highlight insights into the root transcriptome, which is represented by 28,894 (73.2%) annotated genes in maize. Additionally, we observed remarkable expression differences across both the longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the primary root supported by fourfold differential expression of 9353 and 4728 genes, respectively. Among the latter were 1110 genes that encode transcription factors, some of which are orthologs of previously characterized transcription factors known to regulate root development in Arabidopsis thaliana (L.) Heynh., while most are novel, and represent attractive targets for reverse genetics approaches to determine their roles in this important organ. As a result, this comprehensive transcriptome dataset is a powerful tool toward understanding maize development, physiology, and phenotypic diversity.« less
Bustos-Sanmamed, Pilar; Tovar-Méndez, Alejandro; Crespi, Martin; Sato, Shusei; Tabata, Satoshi; Becana, Manuel
2011-02-01
• In legumes, symbiotic leghemoglobins facilitate oxygen diffusion to the bacteroids, but the roles of nonsymbiotic and truncated hemoglobins are largely unknown. Here the five hemoglobin genes of Lotus japonicus have been functionally characterized to gain insight into their regulatory mechanisms. • Plants were exposed to nitric oxide donors, stressful conditions, and hormones. Gene expression profiling was determined by quantitative PCR, and gene activities were localized using in situ hybridization and promoter-reporter gene fusions. • The LjGLB1-1, LjGLB2, and LjGLB3-1 mRNA expression levels were very high in nodules relative to other plant organs. The expression of these genes was localized in the vascular bundles, cortex, and infected tissue. LjGLB1-1 was the only gene induced by nitric oxide. Cytokinins caused nearly complete inactivation of LjGLB2 and LjGLB3-1 in nodules and induction of LjGLB1-1 in roots. Abscisic acid induced LjGLB1-1 in nodules and LjGLB1-2 and LjGLB2 in roots, whereas polyamines and jasmonic acid induced LjGLB1-1 only in roots. • The enhanced expression of the three types of hemoglobins in nodules, the colocalization of gene activities in nodule and root tissues with high metabolic rates, and their distinct regulatory mechanisms point out complementary roles of hemoglobins and strongly support the hypothesis that LjGLB1-1, LjGLB2, and LjGLB3-1 are required for symbiosis. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
Chao, Nan; Liu, Shu-Xin; Liu, Bing-Mei; Li, Ning; Jiang, Xiang-Ning; Gai, Ying
2014-11-01
Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.
Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua
2015-04-01
In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tsai, F Y; Coruzzi, G
1991-01-01
Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a "normal" light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic in nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants. Images PMID:1681424
Fraisier, V; Dorbe, M F; Daniel-Vedele, F
2001-01-01
Higher plants have both high- and low-affinity nitrate uptake systems (HATS and LATS respectively). Here we report the isolation and characterization of two genes, NpNRT1.1 and NpNRT1.2, from Nicotiana plumbaginifolia whose structural features suggest that they both belong to the NRT1 gene family, which is involved in the LATS. Amino acid sequence alignment showed that the N. plumbaginifolia proteins have greater similarity to their corresponding tomato homologues than to each other. Genomic Southern blot analysis indicates that there are probably more than two members of this family in N. plumbaginifolia. Northern blot analysis shows that NpNRT1.2 expression is restricted strictly to roots, whereas NpNRT1.1, in addition to roots, is expressed at a basal level in all other plant organs. Likewise, differential expression in response to external treatments with various N sources was observed for these two genes: NpNRT1.1 can be considered as a constitutively expressed gene whereas NpNRT1.2 expression is dependent strictly on high nitrate concentrations. Finally, over-expression of a gene involved in the HATS does not lead to any modification of LATS gene expression.
Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke
2017-03-01
Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.
Zhou, Gaofeng; Ryan, Peter R.
2014-01-01
Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species. PMID:24692647
Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C.; Yen, Hungchen E.
2016-01-01
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na+ distribution, ice plant likely responds to increased salinity by using Na+ as an osmoticum for cell expansion and guard cell opening. Excessive Na+ could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level. PMID:27555850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less
Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; ...
2016-08-09
The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less
Yordem, Burcu K.; Conte, Sarah S.; Ma, Jian Feng; Yokosho, Kengo; Vasques, Kenneth A.; Gopalsamy, Srinivasa N.; Walker, Elsbeth L.
2011-01-01
Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency. Methods The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography. Key Results Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated. Conclusions PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis. PMID:21831857
Hohnjec, Natalija; Czaja-Hasse, Lisa F; Hogekamp, Claudia; Küster, Helge
2015-11-23
More than 80 % of all terrestrial plant species establish an arbuscular mycorrhiza (AM) symbiosis with Glomeromycota fungi. This plant-microbe interaction primarily improves phosphate uptake, but also supports nitrogen, mineral, and water aquisition. During the pre-contact stage, the AM symbiosis is controled by an exchange of diffusible factors from either partner. Amongst others, fungal signals were identified as a mix of sulfated and non-sulfated lipochitooligosaccharides (LCOs), being structurally related to rhizobial nodulation (Nod)-factor LCOs that in legumes induce the formation of nitrogen-fixing root nodules. LCO signals are transduced via a common symbiotic signaling pathway (CSSP) that activates a group of GRAS transcription factors (TFs). Using complex gene expression fingerprints as molecular phenotypes, this study primarily intended to shed light on the importance of the GRAS TFs NSP1 and RAM1 for LCO-activated gene expression during pre-symbiotic signaling. We investigated the genome-wide transcriptional responses in 5 days old primary roots of the Medicago truncatula wild type and four symbiotic mutants to a 6 h challenge with LCO signals supplied at 10(-7/-8) M. We were able to show that during the pre-symbiotic stage, sulfated Myc-, non-sulfated Myc-, and Nod-LCO-activated gene expression almost exclusively depends on the LysM receptor kinase NFP and is largely controled by the CSSP, although responses independent of this pathway exist. Our results show that downstream of the CSSP, gene expression activation by Myc-LCOs supplied at 10(-7/-8) M strictly required both the GRAS transcription factors RAM1 and NSP1, whereas those genes either co- or specifically activated by Nod-LCOs displayed a preferential NSP1-dependency. RAM1, a central regulator of root colonization by AM fungi, controled genes activated by non-sulfated Myc-LCOs during the pre-symbiotic stage that are also up-regulated in areas with early physical contact, e.g. hyphopodia and infecting hyphae; linking responses to externally applied LCOs with early root colonization. Since both RAM1 and NSP1 were essential for the pre-symbiotic transcriptional reprogramming by Myc-LCOs, we propose that downstream of the CSSP, these GRAS transcription factors act synergistically in the transduction of those diffusible signals that pre-announce the presence of symbiotic fungi.
Genetic Transformation and Analysis of Rice OsAPx2 Gene in Medicago sativa
Guan, Qingjie; Takano, Tetsuo; Liu, Shenkui
2012-01-01
The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H2O2)concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H2O2 content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H2O2, sodium sulfite (Na2SO3), and sodium bicarbonate (NaHCO3). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H2O2 and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained. PMID:22848448
Genetic transformation and analysis of rice OsAPx2 gene in Medicago sativa.
Guan, Qingjie; Takano, Tetsuo; Liu, Shenkui
2012-01-01
The OsAPx2 gene from rice was cloned to produce PBI121::OsAPx2 dual-expression plants, of which expression level would be increasing under stressful conditions. The enzyme ascorbate peroxidase (APX) in the leaves and roots of the plants increased with increasing exposure time to different sodium chloride (NaCl) and hydrogen peroxide (H(2)O(2))concentrations, as indicated by protein gel blot analysis. The increased enzyme yield improved the ability of the plants to resist the stress treatments. The OsAPx2 gene was localized in the cytoplasm of epidermal onion cells as indicated by the instantaneous expression of green fluorescence. An 80% regeneration rate was observed in Medicago sativa L. plants transformed with the OsAPx2 gene using Agrobacterium tumefaciens, as indicated by specific primer PCR. The OsAPx2 gene was expressed at the mRNA level and the individual M. sativa (T#1,T#2,T#5) were obtained through assaying the generation of positive T2 using RNA gel blot analysis. When the seeds of the wild type (WT) and the T2 (T#1,T#5) were incubated in culture containing MS with NaCl for 7 days, the results as shown of following: the root length of transgenic plant was longer than WT plants, the H(2)O(2) content in roots of WT was more than of transgenic plants, the APX activity under stresses increased by 2.89 times compared with the WT, the malondialdehyde (MDA) content of the WT was higher than the transgenic plants, the leaves of the WT turned yellow, but those of the transgenic plants remained green and remained healthy. The chlorophyll content in the WT leaves was less than in the transgenic plants, after soaking in solutions of H(2)O(2), sodium sulfite (Na(2)SO(3)), and sodium bicarbonate (NaHCO(3)). Therefore, the OsAPx2 gene overexpression in transgenic M. sativa improves the removal of H(2)O(2) and the salt-resistance compared with WT plants. A novel strain of M. sativa carrying a salt-resistance gene was obtained.