Sample records for rooting depth leaf

  1. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Treesearch

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  2. A rapid, controlled-environment seedling root screen for wheat correlates well with rooting depths at vegetative, but not reproductive, stages at two field sites

    PubMed Central

    Watt, M.; Moosavi, S.; Cunningham, S. C.; Kirkegaard, J. A.; Rebetzke, G. J.; Richards, R. A.

    2013-01-01

    Background and Aims Root length and depth determine capture of water and nutrients by plants, and are targets for crop improvement. Here we assess a controlled-environment wheat seedling screen to determine speed, repeatability and relatedness to performance of young and adult plants in the field. Methods Recombinant inbred lines (RILs) and diverse genotypes were grown in rolled, moist germination paper in growth cabinets, and primary root number and length were measured when leaf 1 or 2 were fully expanded. For comparison, plants were grown in the field and root systems were harvested at the two-leaf stage with either a shovel or a soil core. From about the four-leaf stage, roots were extracted with a steel coring tube only, placed directly over the plant and pushed to the required depth with a hydraulic ram attached to a tractor. Key Results In growth cabinets, repeatability was greatest (r = 0·8, P < 0·01) when the paper was maintained moist and seed weight, pathogens and germination times were controlled. Scanned total root length (slow) was strongly correlated (r = 0·7, P < 0·01) with length of the two longest seminal axile roots measured with a ruler (fast), such that 100–200 genotypes were measured per day. Correlation to field-grown roots at two sites at two leaves was positive and significant within the RILs and cultivars (r = 0·6, P = 0·01), and at one of the two sites at the five-leaf stage within the RILs (r = 0·8, P = 0·05). Measurements made in the field with a shovel or extracted soil cores were fast (5 min per core) and had significant positive correlations to scanner measurements after root washing and cleaning (>2 h per core). Field measurements at two- and five-leaf stages did not correlate with root depth at flowering. Conclusions The seedling screen was fast, repeatable and reliable for selecting lines with greater total root length in the young vegetative phase in the field. Lack of significant correlation with reproductive stage root system depth at the field sites used in this study reflected factors not captured in the screen such as time, soil properties, climate variation and plant phenology. PMID:23821620

  3. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit.

    Treesearch

    A.C. Franco; M. Bustamante; L.S. Caldas; G. Goldstein; F.C. Meinzer; A.R. Kozovits; P. Rundel; Vera T.R. Coradin

    2005-01-01

    The seasonal savannas (cerrados) of Central Brazil are characterized by a large diversity of evergreen and deciduous trees, which do not show a clear differentiation in terms of active rooting depth. Irrespective of the depth of the root system, expansion of new foliage in deciduous species occurs at the end of the dry season. In this study, we examined a suite of leaf...

  4. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Health of native riparian vegetation and its relation to hydrologic conditions along the Mojave River, southern California

    USGS Publications Warehouse

    Lines, Gregory C.

    1999-01-01

    The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize ground water that has moved upward from the water table into the capillary fringe and into unsaturated soil nearer to land surface. Most precipitation (average is 4 to 6 inches per year) is lost by evaporation and by transpiration of shallow-rooted xeric plants, and very little reaches the root zone of trees along the Mojave River. Water-table depth had no strong correlation to many individual tree-growth characteristics, such as density, diameter, height, and live-crown volume. However, leaf-area index (corrected for stem area) of both healthy and stressed cottonwood?willow woodlands had a highly significant statistical relation to water-table depth, and a curvilinear regression model was defined. As in cottonwood?willow woodlands, leaf-area index of mesquite bosques also decreased with increased water-table depth. However, because of the small number of sites, no significant statistical relation could be defined for mesquite bosques. Because it can be accurately measured repeatedly at the same locations, leaf-area index (corrected for stem area) is recommended as the primary growth characteristic that should be monitored. Future vegetation changes along the Mojave River can be quantified using the sites established for this study. Mortality was as high as 39 percent in healthy cottonwood?willow woodlands, but mortality of 50 to 100 percent was common where water-table depth was greater than about 7 feet or in areas where permanent water-table declines greater than about 5 feet had occurred. At a healthy mesquite bosque where the water-table depth ranged from about 8 to 11 feet, mortality was about 20 percent. Where the water table had been lowered an additional 10 to 25 feet by pumping, mortality of the mesquite was extremely high (80 to 99 percent). On the basis of observations of plant reproduction, it was concluded that established cottonwood?willow woodlands probably will reproduce, mainly by root sprouting of mature trees, if the water-t

  6. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    PubMed

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  7. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-02-01

    In spite of the relative importance of groundwater in coastal dune systems, the number of studies concerning the responsiveness of vegetation to ground water (GW) variability, in particularly in Mediterranean regions, is scarce. In this study, we established 5 study sites within a meso-mediterranean sand dune Pinus pinaster forest on the Atlantic coast of Portugal, taking advantage of natural topographic variability and artificial GW exploitation, which resulted in substantial variability in depth to GW between microsites. Here we identify the degree of usage and dependence on GW of different plant functional groups (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous microsites. Our results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). The species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to microsite differences in GW use in deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring rather than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understorey drought adapted shrub, across seasons and microsites seemed to be independent of water availability. Thus, the susceptibility to changing GW availability in sand dune plant species is variable, being particularly relevant for deep rooted species and phreatophytes, which have typically been less exposed to GW fluctuations.

  8. Seasonal root biomass and nitrogen dynamics of big bluestem (Andropogon gerardii vitman) under wet and dry conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.C.

    1986-01-01

    The relative influences of nitrogen and water deficits on plant responses to drought stress of reduced biomass and leaf nitrogen were assessed. Big blustem rhizomes were transplanted into clear polyvinyl tubes with a capillary breaker placed in the middle of the tube to allow separate watering of the upper and lower soil section. One month later, factorial treatments of nitrogen fertilizer and water deficit by soil section were initiated. Two soil types were used, coarse river sand and a very fine sandy loam. Plants were harvested and biomass and total nitrogen was determined by tissue type. Nitrogen deficit was shownmore » to have more influence on plant responses to drought stress than water deficit. The treatments with no nitrogen added averaged 70% of the leaf biomass and 43% of the total leaf nitrogen of plants with nitrogen fertilizer. The plants with a water deficit averaged 87% of the leaf biomass and 105% of the total leaf nitrogen of plants watered in both soil sections. Root dynamics were studied using root windows at Konza Prairie, a tallgrass prairie site, during a dry year (1984) and a wet year (1985). Amounts, production and disappearance of root length decreased rapidly with the onset of a drought period. Yearly summaries show that amounts, productivity and decomposition were less affected by drought with increasing soil depth. Quantitative biomass data obtained from soil cores were used to provide perspective to the root window study. Results were comparable to previous studies, with an average total root turnover rate of 31%.« less

  9. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    NASA Astrophysics Data System (ADS)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep rooted species and phreatophytes, which seem to depend heavily on access to GW.

  10. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo Goldstein

    2012-01-01

    Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...

  11. Plant root and shoot dynamics during subsurface obstacle interaction

    NASA Astrophysics Data System (ADS)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  12. A tillering inhibition gene influences root–shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments

    PubMed Central

    Hendriks, P.W.; Kirkegaard, J.A.; Lilley, J.M.; Gregory, P.J.; Rebetzke, G.J.

    2016-01-01

    Genetic modification of shoot and root morphology has potential to improve water and nutrient uptake of wheat crops in rainfed environments. Near-isogenic lines (NILs) varying for a tillering inhibition (tin) gene and representing multiple genetic backgrounds were phenotyped in contrasting, controlled environments for shoot and root growth. Leaf area, shoot and root biomass were similar until tillering, whereupon reduced tillering in tin-containing NILs produced reductions of up to 60% in total leaf area and biomass, and increases in total root length of up to 120% and root biomass to 145%. Together, the root-to-shoot ratio increased two-fold with the tin gene. The influence of tin on shoot and root growth was greatest in the cv. Banks genetic background, particularly in the biculm-selected NIL, and was typically strongest in cooler environments. A separate de-tillering study confirmed greater root-to-shoot ratios with regular tiller removal in non-tin-containing genotypes. In validating these observations in a rainfed field study, the tin allele had a negligible effect on seedling growth but was associated with significantly (P<0.05) reduced tiller number (–37%), leaf area index (–26%), and spike number (–35%) to reduce plant biomass (–19%) at anthesis. Root biomass, root-to-shoot ratio at early stem elongation, and root depth at maturity were all increased in tin-containing NILs. Soil water use was slowed in tin-containing NILs, resulting in greater water availability, greater stomatal conductance, cooler canopy temperatures, and maintenance of green leaf area during grain-filling. Together these effects contributed to increases in harvest index and grain yield. In both the controlled and field environments, the tin gene was commonly associated with increased root length and biomass, but the significant influence of genetic background and environment suggests careful assessment of tin-containing progeny in selection for genotypic increases in root growth. PMID:26494729

  13. Root Cortical Aerenchyma Enhances Nitrogen Acquisition from Low-Nitrogen Soils in Maize1[W][OPEN

    PubMed Central

    Saengwilai, Patompong; Nord, Eric A.; Chimungu, Joseph G.; Brown, Kathleen M.; Lynch, Jonathan Paul

    2014-01-01

    Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition. PMID:24891611

  14. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    A trait is defined as a distinct, quantitative property of organisms, usually measured at the individual level and used comparatively across species. Plant quantitative traits are extremely important for understanding the local ecology of any site. Plant height, architecture, root depth, wood density, leaf size and leaf nitrogen concentration control ecosystem processes and define habitat for other taxa. An engineer conjecturing as to how plant traits may directly influence physical processes occurring on sloping land just needs to consider how e.g. canopy architecture and litter properties influence the partitioning of rainfall among interception loss, infiltration and runoff. Plant traits not only influence abiotic processes occurring at a site, but also the habitat for animals and invertebrates. Depending on the goal of the landslide engineer, the immediate and long-term effects of plant traits in an environment must be considered if a site is to remain viable and ecologically successful. When vegetation is considered in models of slope stability, usually the only root parameters taken into consideration are tensile strength and root area ratio. Root system spatial structure is not considered, although the length, orientation and diameter of roots are recognized as being of importance. Thick roots act like soil nails on slopes, reinforcing soil in the same way that concrete is reinforced with steel rods. The spatial position of these thick roots also has an indirect effect on soil fixation in that the location of thin and fine roots will depend on the arrangement of thick roots. Thin and fine roots act in tension during failure on slopes and if they cross the slip surface, are largely responsible for reinforcing soil on slopes. Therefore, the most important trait to consider initially is rooting depth. To stabilize a slope against a shallow landslide, roots must cross the shear surface. The number and thickness of roots in this zone will therefore largely determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  15. Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960

  16. Risk assessment and vertical distribution of thallium in paddy soils and uptake in rice plants irrigated with acid mine drainage.

    PubMed

    Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng

    2016-12-01

    The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government should take various measures to treat Tl contamination, especially the tailings.

  17. Host Genotype and Harvest Practices Shape the Leaf and Root Microbiomes of the Biofuel Crop Switchgrass

    NASA Astrophysics Data System (ADS)

    Singer, E.; Gonzalez, J.; Juenger, T. E.; Woyke, T.

    2016-12-01

    Growing energy demands and concerns for climate change have urgently pushed forward the timeline for the implementation of biofuel energies. Switchgrass (Panicum virgatum) is a leading biofuel crop in the United States. Bacteria living on and inside leaves and roots affect plant health, hence a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. We present a large-scale field experiment to untangle the effects of genotype, environment, soil horizon and harvest treatment practices on prokaryotic and fungal communities associated with leaves and roots of switchgrass. Using V4 16S rRNA and ITS gene as well as metagenome sequencing, we show that host genotype is significant in both, leaves and roots, and varies among sites. Microbiome composition along the rhizosphere also shifts with soil depth. Furthermore, plant harvest significantly changes both, leaf surface and rhizosphere communities, which can be seen a year after the harvest event. Gene function analysis shows that rhizosphere communities are enriched in genes encoding nitrate reduction, carbohydrate transport and metabolism, motility, and sensory and signal transduction proteins relative to leaf surface communities. Our results demonstrate how genotype-environment interactions contribute to the complexity of microbiome assembly in natural environments.

  18. Plant hydraulic traits govern forest water use and growth

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric species, like red maple. Advanced plant hydrodynamic models, including the FETCH2 model, are able to capture the effects that traits regulating water loss (e. g. isohydry/anisohydry, conductivity of woody tissue, and rooting depth) impose upon transpiration at scales of a single tree to a whole forest. The integration of detailed knowledge of species-specific hydraulic traits, available through the TRY Global Plant Trait Database, provides biologically relevant constraints for the governing parameters within these modeling systems. By incorporating the effects of plant hydraulic traits at the leaf, stem, and root levels, with mechanistically based predictions of transpiration, growth, and mortality, we can improve simulations of the surface energy budget and global carbon and water balances.

  19. Industrious leaf cutter ants and their carbon footprints

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Dierick, D.; Trahan, N. A.; Allen, M. F.; Schwendenmann, L.; Harmon, T. C.; Oberbauer, S. F.; Fernandez Bou, A. S.; Zelikova, T. J.

    2017-12-01

    Leaf cutter ants (LCA) are considered ecosystem engineers in Neotropical forest ecosystems because they alter physical and environmental conditions for other organisms. LCA excavate large underground nests, maintaining intricate tunnels and fungal and waste chambers, and they continuously bring in vast amounts of fresh leaf material. In order to understand their ecosystem-wide impacts, we set out to determine whether their engineering activities fundamentally alter soil structure, soil nutrient pools, and gas fluxes in a wet tropical rainforest in Costa Rica. To directly compare LCA nest to non-nest sites, we utilized embedded sensor arrays with series of soil moisture, CO2, O2, and temperature sensors placed at four soil depths and automated minirhizotrons (AMR) to measure root and hyphal production and turnover. We also collected soils for biogeochemical analyses and measured soil CO2 fluxes and carbon isotope ratios of below-ground CO2 for two years. Our measurements confirmed that LCA alter their soil environment to regulate internal soil CO2 concentrations, moisture, and temperature, increasing O2 concentrations in the process. There were marked differences in soil structure inside nests relative to non-nests and these were associated with increased root and hyphal production and turnover in nests. Soil C, N, P, and their respective degrading enzymes were highly variable among sites and between nests and controls but N and P increased with soil depth and were generally higher in nests than controls. Contrary to our expectations, C mineralization rates were lower in nests but CO2 fluxes were high from nest vents and similar to non-nests elsewhere. At the system scale, LCA appear to fundamentally change the soil environment inside their nests and create spatial heterogeneity in biogeochemical processes and root and hyphal growth, influencing the overall C balance of Neotropical forests.

  20. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN

    PubMed Central

    Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.

    2015-01-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  1. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain. Moreover, the acclimated RLA fell within a small range for both crops and trees despite changing environmental conditions, demonstrating an adaptation that was consistent with empiricism on fine roots and thus pointing to a fundamental connection between ecological and hydrological processes.

  2. Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred

    2018-01-01

    Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.

  3. Incorporating Plant Phenology Dynamics in a Biophysical Canopy Model

    NASA Technical Reports Server (NTRS)

    Barata, Raquel A.; Drewry, Darren

    2012-01-01

    The Multi-Layer Canopy Model (MLCan) is a vegetation model created to capture plant responses to environmental change. Themodel vertically resolves carbon uptake, water vapor and energy exchange at each canopy level by coupling photosynthesis, stomatal conductance and leaf energy balance. The model is forced by incoming shortwave and longwave radiation, as well as near-surface meteorological conditions. The original formulation of MLCan utilized canopy structural traits derived from observations. This project aims to incorporate a plant phenology scheme within MLCan allowing these structural traits to vary dynamically. In the plant phenology scheme implemented here, plant growth is dependent on environmental conditions such as air temperature and soil moisture. The scheme includes functionality that models plant germination, growth, and senescence. These growth stages dictate the variation in six different vegetative carbon pools: storage, leaves, stem, coarse roots, fine roots, and reproductive. The magnitudes of these carbon pools determine land surface parameters such as leaf area index, canopy height, rooting depth and root water uptake capacity. Coupling this phenology scheme with MLCan allows for a more flexible representation of the structure and function of vegetation as it responds to changing environmental conditions.

  4. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  5. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  7. Numerical Modeling of Water Fluxes in the Root Zone of Irrigated Pecan

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Deb, S.

    2010-12-01

    Information is still limited on the coupled liquid water, water vapor, heat transport and root water uptake for irrigated pecan. Field experiments were conducted in a sandy loam mature pecan field in Las Cruces, New Mexico. Three pecan trees were chosen to monitor diurnal soil water content under the canopy (approximately half way between trunk and the drip line) and outside the drip line (bare spot) along a transect at the depths of 5, 10, 20, 40, and 60 cm using TDR sensors. Soil temperature sensors were installed at an under-canopy locations and bare spot to monitor soil temperature data at depths of 5, 10, 20, and 40 cm. Simulations of the coupled transport of liquid water, water vapor, and heat with and without root water uptake were carried out using the HYDRUS-1D code. Measured soil hydraulic and thermal properties, continuous meteorological data, and pecan characteristics, e.g. rooting depth, leaf area index, were used in the model simulations. Model calibration was performed for a 26-day period from DOY 204 through DOY 230, 2009 based on measured soil water content and soil temperature data at different soil depths, while the model was validated for a 90-day period from DOY 231 through DOY 320, 2009 at bare spot. Calibrated parameters were also used to apply the model at under-canopy locations for a 116-day period from DOY 204 to 320. HYDRUS-1D simulated water contents and soil temperatures correlated well with the measured data at each depth. Numerical assessment of various transport mechanisms and quantitative estimates of isothermal and thermal water fluxes with and without root water uptake in the unsaturated zone within canopy and bare spot is in progress and will be presented in the conference.

  8. Measurement of Bremsstrahlung radiation for in vivo monitoring of 14C tracer distribution between fruit and roots of kiwifruit (Actinidia arguta) cuttings.

    PubMed

    Black, Marykate Z; Minchin, Peter E H; Gould, Nick; Patterson, Kevin J; Clearwater, Michael J

    2012-10-01

    In vivo measurements of (14)C tracer distribution have usually involved monitoring the β(-) particles produced as (14)C decays. These particles are only detectable over short distances, limiting the use of this technique to thin plant material. In the present experiments, X-ray detectors were used to monitor the Bremsstrahlung radiation emitted since β(-) particles were absorbed in plant tissues. Bremsstrahlung radiation is detectable through larger tissue depths. The aim of these experiments was to demonstrate the Bremsstrahlung method by monitoring in vivo tracer-labelled photosynthate partitioning in small kiwifruit (Actinidia arguta (Siebold & Zucc.) Planch. ex Miq.) plants in response to root pruning. A source shoot, consisting of four leaves, was pulse labelled with (14)CO(2). Detectors monitored import into a fruit and the root system, and export from a source leaf. Repeat pulse labelling enabled the comparison of pre- and post-treatment observations within an individual plant. Diurnal trends were observed in the distribution of tracer, with leaf export reduced at night. Tracer accumulated in the roots declined after approximately 48 h, which may have resulted from export of (14)C from the roots in carbon skeletons. Cutting off half the roots did not affect tracer distribution to the remaining half. Tracer distribution to the fruit was increased after root pruning, demonstrating the higher competitive strength of the fruit than the roots for carbohydrate supply. Increased partitioning to the fruit following root pruning has also been demonstrated in kiwifruit field trials.

  9. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.

  10. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    USGS Publications Warehouse

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, M.; Caldwell, M.M.

    Responses of leaf photosynthesis, root respiration and P uptake by Artemisia tridentata seedlings to study root physiological adjustments to utilize available nutrient resources in a changing soil environment. Root respiration was measured for intact root systems in split-root chambers. Increasing P in 0.2 [times] Hoagland's solution from 0.04 mmol to 2.0 mmol increased leaf photosynthesis by 6% in 3 days, increased nighttime leaf respiration rate by 8% and root respiration by 18%. After PPFD was reduced from 800 to 200 [mu]mol m[sup [minus]2]s[sup [minus]1] leaf photosynthesis deceased by 67%, and root respiration by 26% in the following day but thenmore » decreased by 35% over the next three days. Shading may limit root growth and nutrient uptake by lowering the carbohydrate supply to root systems.« less

  12. Impacts of leaves, roots, and earthworms on soil organic matter composition and distribution in sycamore maple stands

    NASA Astrophysics Data System (ADS)

    Rivera, N.; Mueller, K. E.; Mueller, C. W.; Oleksyn, J.; Hale, C.; Freeman, K. H.; Eissenstat, D.

    2009-12-01

    The relative contributions of leaf and root material to soil organic matter (SOM) are poorly understood despite the importance of constraining SOM sources to conceptual and numeric models of SOM dynamics. Selective ingestion and bioturbation of litter and soil by earthworms can alter the fate and spatial distribution of OM in soils, including stabilization pathways of leaf and root litter. However, studies on the contributions of leaves, roots, and earthworms to SOM dynamics are rare. In 3 stands of sycamore maple (Acer pseudoplatanus) with minimal O horizon development and high earthworm activity, we sampled surface litter (> 2 mm) from the Oi horizon, fine roots (< 2 mm), bulk mineral soils (0-20 cm depth), and earthworm casts from Lumbricus terrestris middens. The chemical composition of these samples was estimated by wet-chemical degradation followed by GC-MS analysis. In addition, elemental analyses (C and N) were performed on bulk soils and earthworm casts, before and after physical fractionation by means of particle size and density. Relative to bulk soils, earthworm casts were highly enriched in organic matter, dominated by large particulate OM, and had lower acid to aldehyde ratios among lignin monomers (a proxy for extent of decomposition), confirming that L. terrestris casts stabilize recent plant litter inputs. Maple fine roots and surface litter were distinguished by different profiles of carboxylic acids estimated by GC-MS, facilitating interpretation of OM sources in bulk soil and earthworm casts. Earthworm casts were characterized by a distribution of carboxylic acids similar to that of surface litter while bulk soils had a carboxylic acid profile much closer to that of roots. These results confirm that L. terrestris is primarily a surface, leaf feeder and suggest that OM in the bulk soil may be dominated by root inputs. In bulk soils, the ratio of lignin to hydroxy- and diacids derived from suberin and cutin was low relative to plant litter, confirming the often-observed selective preservation of aliphatic over aromatic biomolecules. The ratio of lignin to cutin/suberin acids in earthworm casts was also low; based on the minimal extent of decomposition in casts evident by lignin acid to aldehyde ratios, we attribute this to selective ingestion by L. terrestris of leaf litter rich in aliphatic biomolecules at the expense of woody debris and petioles rich in lignin, rather than selective preservation.

  13. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  14. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    PubMed

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  15. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana.

    PubMed

    Veenendaal, Elmar M; Mantlana, Khanyisa B; Pammenter, Norman W; Weber, Piet; Huntsman-Mapila, Phillipa; Lloyd, Jon

    2008-03-01

    We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.

  16. Degradation of mangrove tissues and implications for peat formation in Belizean island forests

    USGS Publications Warehouse

    Middleton, B.A.; McKee, K.L.

    2001-01-01

    1. Macrofaunal leaf consumption and degradation of leaves, woody twigs and roots were studied in mangrove island forests on a Belizean island. Factors influencing accumulation of organic matter deposited both above and below ground in this oligotrophic, autochothonous system were assessed. 2. Leaf degradation rates of Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) measured in mesh bags, were much faster in the lower than the upper intertidal zone. Mass loss was most rapid in A. germinans but zonal effects were much larger than species differences. 3. Exposure to invertebrates such as crabs and amphipods tripled overall rates of leaf litter breakdown. In the lower intertidal, crabs completely consumed some unbagged leaves within 23 days. Crabs also had an effect on some upper intertidal sites, where degradation of leaves placed in artificial burrows was 2.4 times faster than when placed on the soil surface. 4. In contrast to leaves (27??5% remaining after 230 days), roots and woody twigs were highly refractory (40??2% and 51??6% remaining after 584 and 540 days, respectively). Root degradation did not vary by soil depth, zone or species. Twigs of R. mangle and A. germinans degraded faster on the ground than in the canopy, whereas those of L. racemosa were highly resistant to decay regardless of position. 5. Peat formation at Twin Cays has occurred primarily through deposition and slow turnover of mangrove roots, rather than above-ground tissues that are either less abundant (woody twigs) or more readily removed (leaves).

  17. Ginseng leaf-stem: bioactive constituents and pharmacological functions

    PubMed Central

    Wang, Hongwei; Peng, Dacheng; Xie, Jingtian

    2009-01-01

    Ginseng root is used more often than other parts such as leaf stem although extracts from ginseng leaf-stem also contain similar active ingredients with pharmacological functions. Ginseng's leaf-stems are more readily available at a lower cost than its root. This article reviews the pharmacological effects of ginseng leaf-stem on some diseases and adverse effects due to excessive consumption. Ginseng leaf-stem extract contains numerous active ingredients, such as ginsenosides, polysaccharides, triterpenoids, flavonoids, volatile oils, polyacetylenic alcohols, peptides, amino acids and fatty acids. The extract contains larger amounts of the same active ingredients than the root. These active ingredients produce multifaceted pharmacological effects on the central nervous system, as well as on the cardiovascular, reproductive and metabolic systems. Ginseng leaf-stem extract also has anti-fatigue, anti-hyperglycemic, anti-obesity, anti-cancer, anti-oxidant and anti-aging properties. In normal use, ginseng leaf-stem extract is quite safe; adverse effects occur only when it is over dosed or is of poor quality. Extracts from ginseng root and leaf-stem have similar multifaceted pharmacological activities (for example central nervous and cardiovascular systems). In terms of costs and source availability, however, ginseng leaf-stem has advantages over its root. Further research will facilitate a wider use of ginseng leaf-stem. PMID:19849852

  18. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  19. Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar1[C][W][OA

    PubMed Central

    Elias, Ani A.; Busov, Victor B.; Kosola, Kevin R.; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W.; Rood, Stewart B.; Strauss, Steven H.

    2012-01-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. PMID:22904164

  20. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  1. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius.

    PubMed

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed

    2016-06-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius

    PubMed Central

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed

    2016-01-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020

  3. Belowground Plant Dynamics Across an Arctic Landscape

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Iversen, C. M.; Breen, A. L.; Thornton, P. E.; Wullschleger, S.

    2017-12-01

    High-latitude ecosystems are made up of a mosaic of different plant communities, all of which are exposed to warming at a rate double that observed in ecosystems at lower latitudes. Arctic regions are an important component of global Earth system models due to the large amounts of soil carbon (C) currently stored in permafrost as well their potential for increased plant C sequestration under warmer conditions. Losses of C from thawing and decomposing permafrost may be offset by increased plant productivity, but plant allocation to belowground structures and acquisition of limiting nutrients remain key sources of uncertainty in these ecosystems. The relationship between belowground plant traits and environmental conditions is not well understood, nor are tradeoffs between above- and belowground plant traits. To address these knowledge gaps, we sampled above- and belowground plant tissues along the Kougarok Hillslope on the Seward Peninsula, Alaska. The vegetation communities sampled included Alder shrubland, willow birch tundra, tussock tundra, dwarf shrub lichen tundra, and non-acidic mountain complex. Within each plant community, aboveground biomass was quantified and specific leaf area, leaf chemistry (%C, %N, %P and δ15N), and wood density were measured. Belowground fine-root biomass and rooting depth distribution were also determined at the community level. Fine roots from shrubs and graminoids were separated so that specific root area, diameter, and chemistry (%C, %N, %P and δ15N) could be assessed for these contrasting plant functional types. Initial findings indicate fine root biomass pools across the widely varying plant communities are constrained by soil depth, regardless of whether the rooting zone is restricted by permafrost or rock. The presence of Alnus viridis subspp. fruticosa, a deciduous shrub that facilitates nitrogen (N) fixation within its root nodules by Frankia bacteria, in Alder shrubland and willow birch tundra communities was associated with increased soil N availability and altered chemistry in neighboring plants. This research aims to identify sources of variation in belowground plant traits and provide insight into how incorporating belowground plant dynamics into Earth system models may improve our ability to predict the fate of these rapidly warming ecosystems.

  4. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  5. Environmental and physiological effects on grouping of drought-tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought

    PubMed Central

    Henry, Amelia; Wehler, Regina; Grondin, Alexandre; Franke, Rochus; Quintana, Marinell

    2016-01-01

    Background and Aims Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Methods Xylem sap bleeding rates in the field (gsap g–1 shoot) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. Key Results The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K+ concentration and higher bleeding rates in those varieties. Conclusions These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice. PMID:27192712

  6. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  7. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    PubMed Central

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626

  8. BIG LEAF is a regulator of organ size and adventitious root formation in poplar

    DOE PAGES

    Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...

    2017-07-07

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less

  9. BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

    PubMed

    Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B

    2017-01-01

    Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.

  10. Contrasting hydraulic strategies in two tropical lianas and their host trees.

    PubMed

    Johnson, Daniel M; Domec, Jean-Christophe; Woodruff, David R; McCulloh, Katherine A; Meinzer, Frederick C

    2013-02-01

    Tropical liana abundance has been increasing over the past 40 yr, which has been associated with reduced rainfall. The proposed mechanism allowing lianas to thrive in dry conditions is deeper root systems than co-occurring trees, although we know very little about the fundamental hydraulic physiology of lianas. To test the hypothesis that two abundant liana species would physiologically outperform their host tree under reduced water availability, we measured rooting depth, hydraulic properties, plant water status, and leaf gas exchange during the dry season in a seasonally dry tropical forest. We also used a model to compare water use by one of the liana species and the host tree during drought. All species measured were shallowly rooted. The liana species were more vulnerable to embolism than host trees and experienced water potentials that were predicted to result in substantial hydraulic losses in both leaves and stems. Water potentials measured in host trees were not negative enough to result in significant hydraulic losses. Model results predicted the liana to have greater gas exchange than its host tree during drought and nondrought conditions. The host tree species had a more conservative strategy for maintenance of the soil-to-leaf hydraulic pathway than the lianas it supported. The two liana species experienced embolism in stems and leaves, based on vulnerability curves and water potentials. These emboli were presumably repaired before the next morning. However, in the host tree species, reduced stomatal conductance prevented leaf or stem embolism.

  11. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  12. MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa.

    PubMed

    Wei, Shu-Dong; Zhou, Hai-Chao; Lin, Yi-Ming; Liao, Meng-Meng; Chai, Wei-Ming

    2010-06-15

    The structures of the condensed tannins from leaf, stem bark and root bark of Acacia confusa were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and their antioxidant activities were measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing/antioxidant power (FRAP) assays. The results showed that the condensed tannins from stem bark and root bark include propelargonidin and procyanidin, and the leaf condensed tannins include propelargonidin, procyanidin and prodelphinidin, all with the procyanidin dominating. The condensed tannins had different polymer chain lengths, varying from trimers to undecamers for leaf and root bark and to dodecamers for stem bark. The condensed tannins extracted from the leaf, stem bark and root bark all showed a very good DPPH radical scavenging activity and ferric reducing power.

  13. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome.

    PubMed

    Kazi, S; Shultz, J; Afzal, J; Johnson, J; Njiti, V N; Lightfoot, D A

    2008-05-01

    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). "Hartwig", a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar "Flyer". Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R2 = 28.1%; Satt115; P = 0.003, R2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7.

  14. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.

  15. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  16. Hydraulic properties of rice and the response of gas exchange to water stress.

    PubMed

    Stiller, Volker; Lafitte, H Renee; Sperry, John S

    2003-07-01

    We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure in the response of rice (Oryza sativa) gas exchange to water stress. In the field (Philippines), the percentage loss of xylem conductivity (PLC) from cavitation exceeded 60% in leaves even in watered controls. The PLC versus leaf water potential relationship indicated diurnal refilling of cavitated xylem. The leaf water potential causing 50 PLC (P(50)) was -1.6 MPa and did not differ between upland versus lowland rice varieties. Greenhouse-grown varieties (Utah) were more resistant to cavitation with a 50 PLC of -1.9 MPa but also showed no difference between varieties. Six-day droughts caused concomitant reductions in leaf-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated with cavitation-inducing water potentials and the disappearance of nightly root pressure. The return of root pressure after drought was associated with the complete recovery of leaf diffusive conductance, leaf-specific photosynthetic rate, and soil-leaf hydraulic conductance. Root pressure after the 6-d drought (61.2 +/- 8.8 kPa) was stimulated 7-fold compared with well-watered plants before drought (8.5 +/- 3.8 kPa). The results indicate: (a) that xylem cavitation plays a major role in the reduction of plant hydraulic conductance during drought, and (b) that rice can readily reverse cavitation, possibly aided by nocturnal root pressure.

  17. Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species

    PubMed Central

    Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe

    2015-01-01

    Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096

  18. Interactions among cluster-root investment, leaf phosphorus concentration, and relative growth rate in two Lupinus species.

    PubMed

    Wang, Xing; Veneklaas, Erik J; Pearse, Stuart J; Lambers, Hans

    2015-09-01

    Cluster-root (CR) formation is a desirable trait to improve phosphorus (P) acquisition as global P resources are dwindling. CRs in some lupine species are suppressed at higher P status. Whether increased growth rate enhances CR formation due to a "dilution" of leaf P concentration is unknown. We investigated interactive effects of leaf P status and relative growth rate (RGR) on CR formation in two Lupinus species, which differ in their CR biomass investment. Variation in RGR was imposed by varying day length. Lupinus albus and L. pilosus were grown hydroponically with KH2PO4 at a day length of 6, 10, or 14 h. We used a slightly higher P supply at longer day lengths to avoid a decline in leaf P concentration, which would induce CRs. Cluster-root percentage, leaf P concentrations, and RGR were determined at 22, 38, and 52 d after sowing. Lupinus species grown at similar root P availability, but with a faster growth rate, as dependent on day length, showed a greater CR percentage. Because our aim to achieve exactly the same leaf P concentrations at different day lengths was only partially achieved, we carried out a multiple regression analysis. This analysis showed the CR percentage was strongly and negatively correlated with plant P status and only marginally and positively correlated with RGR. The two Lupinus species invariably formed fewer cluster roots at higher leaf P status, irrespective of RGR. Differences in RGR or leaf P concentration cannot explain the species-specific variation in cluster-root investment. © 2015 Botanical Society of America.

  19. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage.

    PubMed

    Tomlinson, Kyle W; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H T; de Bie, Steven; Sterck, Frank J

    2013-08-01

    Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).

  20. Environmental and physiological effects on grouping of drought-tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought.

    PubMed

    Henry, Amelia; Wehler, Regina; Grondin, Alexandre; Franke, Rochus; Quintana, Marinell

    2016-05-02

    Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Xylem sap bleeding rates in the field (g sap g -1 shoot ) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K + concentration and higher bleeding rates in those varieties. These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.

    PubMed

    Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K

    2013-12-01

    Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.

  2. The effect of modifying rooting depths and nitrification inhibitors on nutrient uptake from organic biogas residues in maize

    NASA Astrophysics Data System (ADS)

    Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.

    2017-04-01

    Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in shallower layers, where their effect on plant growth was temporarily most pronounced. At final harvest (21 DAS) however, effects of nitrification inhibitors on plant height were visible only in deeper layers. Furthermore, the statistically significant interaction between the factors time x layer depths x nitrification inhibitors underlined the dynamic influence of nitrification inhibitors on plant growth over time and across rooting depths. This study offers insights into optimizing nutrient uptake and plant productivity by (re-) using residues from the biogas industry. It is among the first to monitor and try to explain the dynamics of nitrification inhibitors on root system architecture over time. A modified N-fertilization application scheme might also serve as a promising tool in optimizing phytoremediation and phytomining techniques through predictably altering root structure in fertilized layers. References: Nagel, K. A. ; Putz, A. ; Gilmer, F. ; Heinz, K. ; Fischbach, A. ; Pfeifer, J. ; Faget, M. ; Blossfeld, S. ; Ernst, M. ; Dimaki, C. ; Kastenholz, B. ; Kleinert, A.-K. ; Galinski, A. ; Scharr, H. ; Fiorani, F. ; Schurr, U. (2012): GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons.
Functional plant biology 39(11), 891-904.

  3. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    PubMed

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants

    PubMed Central

    Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas

    2017-01-01

    Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little tolerant species. Lack of abiotic tolerance might hence constrain accessible resources and thereby impose a stronger synchronization with biotic partners such as pollinators. PMID:28301580

  5. [Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata].

    PubMed

    Zou, Ying-Ning; Wu, Qiang-Sheng; Li, Yan; Huang, Yong-Ming

    2014-04-01

    The effects of inoculation with Glomus mosseae, G. versiforme, and their mixture on plant growth, root system morphology, and sucrose and glucose contents of trifoliate orange (Poncirus trifoliata L.) were studied by pot culture. The results showed that all the inoculated treatments significantly increased the plant height, stem diameter, leaf number, and shoot and root biomass. In addition, the mycorrhizal treatments significantly increased the number of 1st, 2nd, and 3rd lateral roots. Inoculation with arbuscular mycorrhizal fungi significantly increased the root projected area, surface area, volume, and total root length (mainly 0-1 cm root length), but decreased the root average diameter. Meanwhile, G. versiforme showed the best effects. Mycorrhizal inoculation significantly increased the leaf sucrose and root glucose contents, but decreased the leaf glucose and root sucrose contents. Owing to the 'mycorrhizal carbon pool' in roots, inoculation with arbuscular mycorrhizal fungi resulted in high glucose content and low sucrose content of roots, which would facilitate the root growth and development, thereby the establishment of better root system morphology of host plants.

  6. ANTI-ULCER ACTIVITY OF THE ALKALI PREPARATION OF THE ROOT AND FRESH LEAF JUICE OF MORINGA OLEIFERA LAM

    PubMed Central

    Ruckmani, K.; Kavimani, S.; Jayakar, B.; Anandan, R.

    1998-01-01

    The alkali preparation of the root and fresh leaf juice of Moringa oleifera possessed significant dose –depen-dent anti-ulcer activity in experimentally induced acute gastric ulcers with aspirin, the anti-ulcer effect of the alkali preparation of the root seems to be more pronounced than that of the fresh leaf juice. Te anti-ulcer activity of the alkali preparation of the root could be due to its content of alkaloids or its anticholinergic and antihistaminic activities, or a combination of these factors. PMID:22556845

  7. Hypolipidemic and Antioxidant Effects of Dandelion (Taraxacum officinale) Root and Leaf on Cholesterol-Fed Rabbits

    PubMed Central

    Choi, Ung-Kyu; Lee, Ok-Hwan; Yim, Joo Hyuk; Cho, Chang-Won; Rhee, Young Kyung; Lim, Seong-Il; Kim, Young-Chan

    2010-01-01

    Dandelion (Taraxacum officinale), an oriental herbal medicine, has been shown to favorably affect choleretic, antirheumatic and diuretin properties. Recent reports have indicated that excessive oxidative stress contributes to the development of atherosclerosis-linked metabolic syndrome. The objective of this current study was to investigate the possible hypolipidemic and antioxidative effects of dandelion root and leaf in rabbits fed with a high-cholesterol diet. A group of twenty eight male rabbits was divided into four subgroups; a normal diet group, a high-cholesterol diet group, a high-cholesterol diet with 1% (w/w) dandelion leaf group, and a high-cholesterol diet with 1% (w/w) dandelion root group. After the treatment period, the plasma antioxidant enzymes and lipid profiles were determined. Our results show that treatment with dandelion root and leaf positively changed plasma antioxidant enzyme activities and lipid profiles in cholesterol-fed rabbits, and thus may have potential hypolipidemic and antioxidant effects. Dandelion root and leaf could protect against oxidative stress linked atherosclerosis and decrease the atherogenic index. PMID:20162002

  8. The effect of leaf presence on the rooting of stem cutting of bitter melon and on changes in polyamine levels

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to investigate the optimal hormone treatment for rooting in bitter melon and the effect of defoliation on rooting and polyamine levels. Commercial preparation (diluted 1:10 and 1: 20) gave extensive rooting within five days after treatment. The presence of leaf with the stem ...

  9. Different Water Use Strategies of Juvenile and Adult Caragana intermedia Plantations in the Gonghe Basin, Tibet Plateau

    PubMed Central

    Jia, Zhiqing; Zhu, Yajuan; Liu, Liying

    2012-01-01

    Background In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation. Methodology/Principal Findings Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations. Conclusions The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE. PMID:23029303

  10. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  11. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.

    PubMed

    Domec, J-C; Warren, J M; Meinzer, F C; Brooks, J R; Coulombe, R

    2004-09-01

    Hydraulic redistribution (HR), the passive movement of water via roots from moist to drier portions of the soil, occurs in many ecosystems, influencing both plant and ecosystem-water use. We examined the effects of HR on root hydraulic functioning during drought in young and old-growth Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine ( Pinus ponderosa Dougl. Ex Laws) trees growing in four sites. During the 2002 growing season, in situ xylem embolism, water deficit and xylem vulnerability to embolism were measured on medium roots (2-4-mm diameter) collected at 20-30 cm depth. Soil water content and water potentials were monitored concurrently to determine the extent of HR. Additionally, the water potential and stomatal conductance ( g(s)) of upper canopy leaves were measured throughout the growing season. In the site with young Douglas-fir trees, root embolism increased from 20 to 55 percent loss of conductivity (PLC) as the dry season progressed. In young ponderosa pine, root embolism increased from 45 to 75 PLC. In contrast, roots of old-growth Douglas-fir and ponderosa pine trees never experienced more than 30 and 40 PLC, respectively. HR kept soil water potential at 20-30 cm depth above -0.5 MPa in the old-growth Douglas-fir site and -1.8 MPa in the old-growth ponderosa pine site, which significantly reduced loss of shallow root function. In the young ponderosa pine stand, where little HR occurred, the water potential in the upper soil layers fell to about -2.8 MPa, which severely impaired root functioning and limited recovery when the fall rains returned. In both species, daily maximum g(s) decreased linearly with increasing root PLC, suggesting that root xylem embolism acted in concert with stomata to limit water loss, thereby maintaining minimum leaf water potential above critical values. HR appears to be an important mechanism for maintaining shallow root function during drought and preventing total stomatal closure.

  12. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress.

    PubMed

    Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio

    2012-10-01

    We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.

  13. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  14. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation.

    PubMed

    Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak

    2011-06-01

    Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC-MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.

  15. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  16. Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability

    PubMed Central

    Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian

    2012-01-01

    Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721

  17. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  18. A growth analysis of waterlogging damage in mung bean (Phaseolus aureus)

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Vanhoy, M. A.

    1989-01-01

    Mung beans (Phaseolus aureus Roxb.) were grown for 2 weeks in gravel-vermiculite soilless mix in a growth chamber and subjected to a 1-week waterlogging period followed by a 1-week recovery period. Sequential harvests were made to determine the time course of effects of waterlogging and subsequent recovery on growth parameters by techniques of growth analysis. Root dry matter was the first to be affected, along with an increase in leaf dry matter and specific leaf weight. After a 1-week waterlogging period, specific leaf weight had more than doubled in the stressed plants. Leaf area declined in relation to the control plants as did the ratio of root dry matter to shoot dry matter. During the recovery period there was an increase in the dry matter allocation to the roots relative to the shoot. Specific leaf weight fell to control levels although the rate of leaf area elaboration did not increase during this time, suggesting a redistribution of stored assimilates from the leaves. Net assimilation rate increased during the waterlogging period, probably due to a restriction in root metabolism and reduced translocation out of the leaf rather than to an increase in photosynthesis. Net assimilation rate of waterlogged plants was severely reduced compared with control plants during the recovery period. Both relative growth rate and leaf area duration declined during the waterlogging period and declined further subsequent to the waterlogging treatment. The results illustrate the interrelationships between root and shoot carbon budgets in mung bean during response to the stress of waterlogging.

  19. The Distribution of Catalase Activity, Isozyme Protein, and Transcript in the Tissues of the Developing Maize Seedling 1

    PubMed Central

    Redinbaugh, Margaret G.; Sabre, Mara; Scandalios, John G.

    1990-01-01

    The catalase activity, CAT-2 and CAT-3 isozyme protein levels, and the steady-state mRNA levels for each of the three catalase genes were determined in the scutellum, root, epicotyl, and leaf of the developing maize (Zea mays L.) seedling. Catalase activity was highest in the scutellum, with 10-fold lower enzyme activity in the leaf and epicotyl. Very low levels of catalase activity were found in the root. The highest levels of CAT-2 protein were found in the scutellum, with about 10-fold lower levels in the green leaf. CAT-2 protein was present in trace amounts early in root development and no CAT-2 protein was detected in the epicotyl. Shortly after germination, CAT-3 protein was present at high levels in both the epicotyl and green leaf. With development, the amount of CAT-3 protein decreased slowly in the epicotyl and rapidly in the green leaf. Low levels of this isozyme were detected in the scutellum and root. The Cat1 transcript accumulated to low levels in all four tissues during the 14 day developmental period. High levels of the Cat2 transcript were found in the scutellum, with moderate levels of the mRNA in the green leaf. The Cat2 transcript levels were very low in the root and epicotyl. While the Cat3 mRNA level in the scutellum was low, high levels of the Cat3 transcript were detected in the root, epicotyl, and leaf. There was a positive correlation between the accumulation of a catalase isozyme and its transcript, indicating that the tissue specificity of maize catalase gene expression was regulated pretranslationally. Images Figure 3 Figure 4 PMID:16667285

  20. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root density and depth in the soil. We drilled three holes for the plexiglass root-imaging tubes in December 2008 and installed the tubes post-thaw in May 2009, with the initial set of images taken in July 2009 on the day preceding the 4-week long CO2 injection. We collected images weekly thereafter until late August 2009 by inserted a rotating camera into the tube and photographing at 10 cm intervals from the surface to a depth of 75-80 cm. By August 2009, roots were visible at 80 cm below ground. The root-imaging tubes will remain in place so that we can track the roots through the upcoming years at the ZERT site. Each year, we anticipate gathering images in the fall, winter, before the beginning of root growth in the spring, as well as during the summer injections of CO2. The information gained from these images will be useful in linking above and belowground responses of plants to CO2.

  1. The use of biomarkers to trace carbon transformations and input in soils

    NASA Astrophysics Data System (ADS)

    Jansen, Boris; Kalbitz, Karsten

    2015-04-01

    Tracing the origin of soil organic matter is an important tool to unravel mechanisms that lead to (de)stabilization of organic carbon in soil systems. To this end biomarkers, i.e. (groups of) specific molecules that can be linked to (groups of) specific plant species or plant parts are often used. A good example is the use of suberin and cutin as biomarkers to distinguish organic matter with a root origin from organic matter with a leaf origin. However, the use of biomarkers to trace the origin of soil organic matter is also subject of fierce scientific debate. On the one extreme end there are those colleagues who see biomarkers as a cure-all solution to all organic matter tracing problems. On the other end of the spectrum there are experts who claim that the concept of biomarkers is so intrinsically flawed that it can never yield meaningful information about carbon transformations except in the most specific cases. We believe that neither vision is correct. In our presentation we discuss the merits and drawbacks of using biomarkers to trace root versus leaf derived organic matter in soils. For this we use a 1-year incubation experiment with fine root and leaf material of six temperate tree species as a case study. We discuss the abundance, or lack thereof, of root and leaf derived biomarkers and the development of their concentration over time. Specifically, we found that the specificity of root and leaf specific biomarkers depended strongly on the amount and diversity of studied species. For instance, four molecules were identified to be leaf biomarkers for some species, while serving as root biomarkers for others. This could result in serious misjudgment of root and leaf specific biomarkers if the boundary conditions, including species of interest, are not well known. On the other hand, our results show that cutin and suberin derived biomarkers can indeed be successfully used to distinguish root from leaf input in certain situations, such as an ecosystem dominated by the six forest species tested. We will link the incubation study to our experience with the application of biomarkers in podzols and plaggic anthrosols, and place it in the context of similar attempts by other groups . Thus we hope to stimulate a broader discussion about the merits and drawbacks of the use of biomarkers to trace the origin of soil organic matter.

  2. Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Davies, William J

    2008-01-01

    When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.

  3. Biomass and decay rates of roots and detritus in sediments of intermittent coastal plain streams

    Treesearch

    Ken M. Fritz; Jack W. Feminella; Chris Colson; B. Graeme Lockaby; Robin Governo; Robert B. Rummer

    2006-01-01

    Biomass and breakdown of tree roots within streambed sediments were compared with leaf and wood detritus in three Coastal Plain headwater intermittent streams. Three separate riparian forest treatments were applied: thinned, clearcut, and reference. Biomass of roots (live and dead) and leaf/wood was significantly higher in stream banks than in the channel and declined...

  4. Episodic growth and relative shoot:root balance in loblolly pine seedlings

    Treesearch

    A.P. Drew; F. Thomas Ledig

    1980-01-01

    Leaf, root and stem systems of loblolly pine seedlings are characterized by a seasonal periodicity in growth, during which they alternate in spurts of activity. Despite this periodicity, the allometric coefficient describing the ratio of the relative growth rates of leaf to root remains constant for at least the first two years of development. In part, constancy...

  5. Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot.

    PubMed

    Arowosegbe, Sunday; Afolayan, Anthony J

    2012-01-01

    Turnip (Brassica rapa var. rapa L.), beetroot (Beta vulgaris L.) and carrot (Daucus carota L.) are common vegetables in South Africa. The allelopathic potential of aqueous leaf and root extracts of Aloe ferox Mill.- a highly valued medicinal plant- was evaluated against seed germination and seedling growth of the three vegetables in Petri dish experiments. The extracts were tested at concentrations of 2, 4, 6, 8, and 10 mg/mL. Leaf extract concentrations above 4 mg/mL inhibited the germination of all the crops, while the root extract had no significant effect on germination irrespective of concentration. Interestingly, the lowest concentration of leaf extract stimulated root length elongation of beetroot by 31.71%. Other concentrations significantly inhibited both root and shoot growth of the vegetable crops except the turnip shoot. The most sensitive crop was carrot, with percentage inhibition ranging from 29.15 to 100% for root and shoot lengths. Lower percentage inhibition was observed for the root extract than the leaf extract against shoot growth of beetroot and carrot. The results from this study suggested the presence of allelochemicals mostly in the leaves of A. ferox that could inhibit the growth of the turnip, beetroot and carrot.

  6. Seasonal changes of whole root system conductance by a drought-tolerant grape root system.

    PubMed

    Alsina, Maria Mar; Smart, David R; Bauerle, Taryn; de Herralde, Felicidad; Biel, Carme; Stockert, Christine; Negron, Claudia; Save, Robert

    2011-01-01

    The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (A(L):A(R)). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root area (A(R)) and represents a mechanism whereby water supply to demand could be increased. To address this issue, seasonal root proliferation, stomatal conductance (g(s)) and whole root system hydraulic conductance (k(r)) were investigated for a drought-tolerant grape root system (Vitis berlandieri×V. rupestris cv. 1103P) and a non-drought-tolerant root system (Vitis riparia×V. rupestris cv. 101-14Mgt), upon which had been grafted the same drought-sensitive clone of Vitis vinifera cv. Merlot. Leaf water potentials (ψ(L)) for Merlot grafted onto the 1103P root system (-0.91±0.02 MPa) were +0.15 MPa higher than Merlot on 101-14Mgt (-1.06±0.03 MPa) during spring, but dropped by approximately -0.4 MPa from spring to autumn, and were significantly lower by -0.15 MPa (-1.43±0.02 MPa) than for Merlot on 101-14Mgt (at -1.28±0.02 MPa). Surprisingly, g(s) of Merlot on the drought-tolerant root system (1103P) was less down-regulated and canopies maintained evaporative fluxes ranging from 35-20 mmol vine(-1) s(-1) during the diurnal peak from spring to autumn, respectively, three times greater than those measured for Merlot on the drought-sensitive rootstock 101-14Mgt. The drought-tolerant root system grew more roots at depth during the warm summer dry period, and the whole root system conductance (k(r)) increased from 0.004 to 0.009 kg MPa(-1) s(-1) during that same time period. The changes in k(r) could not be explained by xylem anatomy or conductivity changes of individual root segments. Thus, the manner in which drought tolerance was conveyed to the drought-sensitive clone appeared to arise from deep root proliferation during the hottest and driest part of the season, rather than through changes in xylem structure, xylem density or stomatal regulation. This information can be useful to growers on a site-specific basis in selecting rootstocks for grape clonal material (scions) grafted to them.

  7. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Sun, Mei; Goldstein, Guillermo; Cao, Kun-Fang

    2012-04-01

    Despite considerable investigations of diurnal water use characteristics in different plant functional groups, the research on daily water use strategies of woody bamboo grasses remains lacking. We studied the daily water use and gas exchange of Sinarundinaria nitida (Mitford) Nakai, an abundant subtropical bamboo species in Southwest China. We found that the stem relative water content (RWC) and stem hydraulic conductivity (K(s)) of this bamboo species did not decrease significantly during the day, whereas the leaf RWC and leaf hydraulic conductance (K(leaf)) showed a distinct decrease at midday, compared with the predawn values. Diurnal loss of K(leaf) was coupled with a midday decline in stomatal conductance (g(s)) and CO(2) assimilation. The positive root pressures in the different habitats were of sufficient magnitude to refill the embolisms in leaves. We concluded that (i) the studied bamboo species does not use stem water storage for daily transpiration; (ii) diurnal down-regulation in K(leaf) and gs has the function to slow down potential water loss in stems and protect the stem hydraulic pathway from cavitation; (iii) since K(leaf) did not recover during late afternoon, refilling of embolism in bamboo leaves probably fully depends on nocturnal root pressure. The embolism refilling mechanism by root pressure could be helpful for the growth and persistence of this woody monocot species.

  8. Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure.

    PubMed

    Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.

  9. Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, C.M.; Qian, J.H.; Hansen, D.

    1998-10-15

    Reduction of heavy metals in situ by plants may be a useful detoxification mechanism for phytoremediation. Using X-ray spectroscopy, the authors show that Eichhornia crassipes (water hyacinth), supplied with Cr(VI) in nutrient culture, accumulated nontoxic Cr(III) in root and shoot tissues. The reduction of Cr(VI) to Cr(III) appeared to occur in the fine lateral roots. The Cr(III) was subsequently translocated to leaf tissues. Extended X-ray absorption fine structure of Cr in leaf and petiole differed when compared to Cr in roots. In roots, Cr(III) was hydrated by water, but in petiole and more so in leaf, a portion of themore » Cr(III) may be bound to oxalate ligands. This suggests that E. crassipes detoxified Cr(VI) upon root uptake and transported a portion of the detoxified Cr to leaf tissues. Cr-rich crystalline structures were observed on the leaf surface. The chemical species of Cr in other plants, collected from wetlands that contained Cr(VI)-contaminated wastewater, was also found to be Cr(III). The authors propose that this plant-based reduction of Cr(VI) by E. crassipes has the potential to be used for the in situ detoxification of Cr(VI)-contaminated wastestreams.« less

  10. Rooting depth explains [CO2] x drought interaction in Eucalyptus saligna.

    PubMed

    Duursma, Remko A; Barton, Craig V M; Eamus, Derek; Medlyn, Belinda E; Ellsworth, David S; Forster, Michael A; Tissue, David T; Linder, Sune; McMurtrie, Ross E

    2011-09-01

    Elevated atmospheric [CO(2)] (eC(a)) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eC(a) in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their C(a) treatments before a 4-month dry-down. Trees grown in eC(a) were smaller than those grown in ambient C(a) (aC(a)) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between C(a) treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eC(a) treatment compared with aC(a). Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eC(a) involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eC(a). It is essential that these interactions be considered when interpreting experimental results.

  11. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings.

    PubMed

    Bamel, Kiran; Gupta, Shrish Chandra; Gupta, Rajendra

    2007-05-30

    The animal neurotransmitter acetylcholine (ACh) induces rooting and promotes secondary root formation in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby), cultured in vitro on Murashige and Skoog's medium. The roots originate from the midrib of leaf explants and resemble taproot. ACh at 10(-5) M was found to be the optimum over a wide range of effective concentrations between 10(-7) and 10(-3) M. The breakdown products, choline and acetate were ineffective even at 10(-3) M concentration. ACh appears to have a natural role in tomato rhizogenesis because exogenous application of neostigmine, an inhibitor of ACh hydrolysis, could mimic the effect of ACh. Neostigmine, if applied in combination with ACh, potentiated the ACh effect.

  12. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    PubMed

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  13. Use of Herbal Supplements in Chronic Kidney Disease

    MedlinePlus

    ... build up in your body. The herbal supplement market is a multi-million dollar business. You may ... Ginseng Bai Zhi (root) Bitter Melon (fruit, leaf) Black Mustard (leaf) Blessed Thistle Chervit (leaf) Chicory (leaf) ...

  14. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization

    PubMed Central

    Chen, Zongkui; Tao, Xianping; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2018-01-01

    Limitations of soil water and nitrogen (N) are factors which cause a substantial reduction in cotton (Gossypium hirsutum L.) yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC) tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20) or 40 cm (H40) from soil surface and four water-N combinations [deficit irrigation (W55) and no N (N0) (W55N0), W55 and moderate N (N1) (W55N1), moderate irrigation (W75) and N0 (W75N0), W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29–82% and reproductive organs biomass by 47–101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR) activity, potential quantum yield of photosystem (PS) II (Fv/Fm), PSII quantum yield in the light [Y(II)] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II) and stomatal conductance. Hence, shallow irrigation (20 cm) with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs. PMID:29497435

  15. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  16. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  17. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, T.J.; Temple, S.; Sengupta-Gopalan, C.

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels ofmore » GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.« less

  18. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Oosterhuis, D.M.

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leafmore » water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.« less

  19. [Population of Lytechinus variegatus (Echinoidea: Toxopneustidae) and structural characteristics of seagrass of Thalassia testudinum in Mochima Bay, Venezuela)].

    PubMed

    Noriega, Nicida; Cróquer, Aldo; Pauls, Sheila M

    2002-03-01

    To compare the general features of Thalassia testudinum seagrass at Mochima Bay with sea urchin (Lxtechinus variegatus) abundance and distribution, three T. testudinum seagrass beds were selected, from the mouth (strong wave exposure) to the inner bay (calm waters). Each site was surveyed by using 5 line transects (20 m long) parallel to the coast and 1 m2 quadrats. In situ measurements of T. testudinum cover, shoot and leaf density were taken. Estimation of dry biomass for each seagrass fraction (leaves, rhizomes and roots) and leaf length were obtained from 25 vegetation samples extracted per site using cores (15 cm diameter). A multivariate analysis of variance (Manova) and a less significative difference test (LSD) were performed to examine differences between sites and within sites at different depths. A stepwise multiple regression analysis was done, dependent variable was sea urchin density; independent variables: vegetation values at each site. The only seagrass species found in the three sites was T. testudinum, and cover was 56-100%, leaf density 100-1000 leaf/m2, lengths 6-18.8 cm and shoot density 20-475 shoots/m2. The highest sea urchin densities were found at Isla Redonda and Ensenada Toporo (1-3.6 ind/m2), the lowest at Playa Colorada (0.6-0.8 ind/m2). Significant differences in seagrass features between sites were obtained (Manova p < 0.001), but not between depths (Manova p < 0.320). The regression coefficient between sea urchin density and seagrass parameters was statistically significant (r2 = 0.154, p < 0.007), however, total biomass was the only variable with a significant effect on sea urchin distribution (beta = 0.308, p < 0.032). The other variables did not explain satisfactorily L. variegatus abundance and distribution.

  20. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  1. A Comparative Evaluation on Antimicrobial Effect of Honey, Neem Leaf Extract and Sodium Hypochlorite as Intracanal Irrigant: An Ex-Vivo Study

    PubMed Central

    Narayanan, Retna Kumari; Vadakkepurayil, Kannan

    2016-01-01

    Introduction The major determinant of the success of root canal treatment depends on meticulous disinfection of the root canal using intracanal irrigants. The most commonly used root canal irrigant is sodium hypochlorite which has disadvantages of cytotoxicity and unpleasant taste. So there is a need to identify a more biocompatible root canal irrigant. Aim The aim of this ex-vivo study was to evaluate the efficacy of 40% honey, 100% neem leaf extract and 5.25% sodium hypochlorite as an intracanal irrigant against the isolated microorganisms from infected root canal. Materials and Methods The samples were collected from infected root canals of 60 primary molar teeth indicated for pulpectomy. Alpha hemolytic Streptococci, gram negative bacilli, Candida, Staphylococci, Lactobacilli, Enterococci, Spore bearing gram positive bacilli and Micrococci were the microorganisms isolated from the samples. The zone of inhibition against the microbial growth was measured by agar well diffusion method. Statistical analysis was done by Repeated Analysis of Variance (ANOVA) and Bonferroni method. Results Statistical analysis showed that the means of the zones of inhibition measured in this study were 18.56mm, 2.09mm and 1.62mm for sodium hypochlorite, 100% neem leaf extract and 40% honey respectively. The significance was greater between sodium hypochlorite and the other two agents as p-value was <0.001. Conclusion The results indicated that 5.25% sodium hypochlorite is more effective as root canal irrigant when compared with 100% neem leaf extract and 40% honey. It was also observed that 100% neem leaf extract has greater antimicrobial effect than 40% honey. PMID:27656571

  2. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  3. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots1[OPEN

    PubMed Central

    Durand, Mickaël; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-01-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. 14CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  4. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root decomposition rates; only Ledum roots decomposed slower than the other three species and the overall root litter respiration rates increased with the duration of the experiment (in contrast to leaf liter respiration). A fertilized environment had no effect on overall weight loss of the leaf or root litter within the time of our study, but leaf and root litter respiration rates were significantly larger at the end of the study in the fertilized tundra.The temperature sensitivity of leaf respiration was significantly lower for leaf litter respiration than root liter respiration after fist snow melt, but this difference disappeared throughout the first growing season and neither was influenced by species composition or fertilization with N+P. Overall, our results suggest that as arctic vegetation shifts towards shrub-dominated tundra, both species composition and seasonally dependent processes will determine effects of changing vegetation types on carbon turnover in arctic ecosystems.

  5. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1

    PubMed Central

    Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki

    1990-01-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719

  6. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system - combining experimental and modeling approaches

    NASA Astrophysics Data System (ADS)

    Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire

    2018-01-01

    Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep-rooted trees modify OC inputs to soil, a process that deserves further study given its potential effects on SOC dynamics.

  7. Effect of medium composition and light on root and rhinacanthin formation in Rhinacanthus nasutus cultures.

    PubMed

    Panichayupakaranant, P; Meerungrueang, W

    2010-11-01

    Rhinacanthus nasutus (L.) Kurz (Acanthaceae) has long been used in Thai traditional medicine for treatment of tinea versicolor, ringworm, pruritic rash, and abscess. The active constituents are known as a group of naphthoquinone esters, rhinacanthins. This work focused on establishment of R. nasutus root cultures and determination of rhinacanthin production. Induction of R. nasutus root formation was accomplished on solid Gamborg's B5 (B5) medium, supplied with 0.1 mg/L indole-3-butyric acid (IBA) and 20 g/L sucrose. The effects of explants (whole leaf explants and four-side excised leaf explants), light and medium composition on root and rhinacanthin formation were investigated. The root formation from the whole leaf explants was 10 times higher than that from the four-side excised leaf explants. In addition, light possessed an inhibitory effect on the root and rhinacanthin formation of R. nasutus. Medium manipulation found that Murashige and Skoog (MS) medium supplied with 3 mg/L IBA and 30 g/L sucrose was the most suitable for induction of the root formation. Unfortunately, the obtained root cultures produced only rhinacanthin-C in very low amount, 0.026 mg/g dry weight (DW), when they were transferred into the same MS liquid medium. With semisolid medium (4 g/L agar) of the same MS composition, however, the root cultures appeared to produce higher content of rhinacanthin-C, -D and -N (3.45, 0.07 and 0.07 mg/g DW, respectively). Our finding suggests that culturing in semisolid medium is capable of improving of rhinacanthin production in R. nasutus root cultures.

  8. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  9. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Rooting depths of plants relative to biological and environmental factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  11. Carrot injury and yield response to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Oshima, R.J.

    1976-11-01

    Container-grown plants of carrot (Daucus carota L.) exposed intermittently to 0.19 or 0.25 ppm ozone throughout their growth increased in plant height and total number of leaves in spite of the development of chlorotic leaves. Leaf dry weight was unaffected by ozone, but root dry matter decreased 32 to 46%. As a result, the root weight/total dry weight ration and root/shoot ratio declined significantly in the presence of ozone. A regression of root dry weight on chlorotic lead dry weight explained 35% of the root loss and predicted that 1.5 g of root tissue is lost for every g ofmore » chlorotic leaf dry weight casued by ozone injury.« less

  12. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    PubMed

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  13. Demonstration of optical computing logics based on binary decision diagram.

    PubMed

    Lin, Shiyun; Ishikawa, Yasuhiko; Wada, Kazumi

    2012-01-16

    Optical circuits are low power consumption and fast speed alternatives for the current information processing based on transistor circuits. However, because of no transistor function available in optics, the architecture for optical computing should be chosen that optics prefers. One of which is Binary Decision Diagram (BDD), where signal is processed by sending an optical signal from the root through a serial of switching nodes to the leaf (terminal). Speed of optical computing is limited by either transmission time of optical signals from the root to the leaf or switching time of a node. We have designed and experimentally demonstrated 1-bit and 2-bit adders based on the BDD architecture. The switching nodes are silicon ring resonators with a modulation depth of 10 dB and the states are changed by the plasma dispersion effect. The quality, Q of the rings designed is 1500, which allows fast transmission of signal, e.g., 1.3 ps calculated by a photon escaping time. A total processing time is thus analyzed to be ~9 ps for a 2-bit adder and would scales linearly with the number of bit. It is two orders of magnitude faster than the conventional CMOS circuitry, ~ns scale of delay. The presented results show the potential of fast speed optical computing circuits.

  14. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.

    PubMed

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart

    2014-10-22

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit.

    PubMed

    Thomas, C L; Alcock, T D; Graham, N S; Hayden, R; Matterson, S; Wilson, L; Young, S D; Dupuy, L X; White, P J; Hammond, J P; Danku, J M C; Salt, D E; Sweeney, A; Bancroft, I; Broadley, M R

    2016-10-04

    Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.

  16. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  17. What functional strategies drive drought survival and recovery of perennial species from upland grassland?

    PubMed Central

    Zwicke, Marine; Picon-Cochard, Catherine; Morvan-Bertrand, Annette; Prud’homme, Marie-Pascale; Volaire, Florence

    2015-01-01

    Background and Aims Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. Methods Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). Key Results Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m−3). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d−1 and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. Conclusions Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events. PMID:25851134

  18. What functional strategies drive drought survival and recovery of perennial species from upland grassland?

    PubMed

    Zwicke, Marine; Picon-Cochard, Catherine; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Volaire, Florence

    2015-11-01

    Extreme climatic events such as severe droughts are expected to increase with climate change and to limit grassland perennity. The present study aimed to characterize the adaptive responses by which temperate herbaceous grassland species resist, survive and recover from a severe drought and to explore the relationships between plant resource use and drought resistance strategies. Monocultures of six native perennial species from upland grasslands and one Mediterranean drought-resistant cultivar were compared under semi-controlled and non-limiting rooting depth conditions. Above- and below-ground traits were measured under irrigation in spring and during drought in summer (50 d of withholding water) in order to characterize resource use and drought resistance strategies. Plants were then rehydrated and assessed for survival (after 15 d) and recovery (after 1 year). Dehydration avoidance through water uptake was associated with species that had deep roots (>1·2 m) and high root mass (>4 kg m(-3)). Cell membrane stability ensuring dehydration tolerance of roots and meristems was positively correlated with fructan content and negatively correlated with sucrose content. Species that survived and recovered best combined high resource acquisition in spring (leaf elongation rate >9 mm d(-1) and rooting depth >1·2 m) with both high dehydration avoidance and tolerance strategies. Most of the native forage species, dominant in upland grassland, were able to survive and recover from extreme drought, but with various time lags. Overall the results suggest that the wide range of interspecific functional strategies for coping with drought may enhance the resilience of upland grassland plant communities under extreme drought events. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress.

    PubMed

    Torabian, Shahram; Farhangi-Abriz, Salar; Rathjen, Judith

    2018-05-31

    This research was conducted to evaluate effects of biochar (50 and 100 g kg -1 soil) and lignite (50 and 100 g kg -1 soil) treatments on H + -ATPase and H + -PPase activity of root tonoplast, nutrient content, and performance of mung bean under salt stress. High saline conditions increased H + -ATPase and H + -PPase activities in root tonoplast, sodium (Na) content, reactive oxygen species (H 2 O 2 and O 2 - ) generation, relative electrolyte leakage (REL) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity in root and leaf, but decreased relative water content (RWC), chlorophyll content index, leaf area, potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) content of plant tissues, root and shoot dry weight of mung bean. Lignite and biochar treatments decreased the H + -ATPase and H + -PPase activities of root tonoplast under salt stress. Moreover, these treatments increased the cation exchange capacity of soil and nutrient values in plant tissues. Biochar and lignite diminished the generation of reactive oxygen species and DPPH activity in root and leaf cells, and these superior effects improved chlorophyll content index, leaf area and growth of mung bean under both conditions. In general, the results of this study demonstrated that biochar and lignite decreased the entry of Na ion into the cells, enriched plant cells with nutrients, and consequently improved mung bean performance under salt toxicity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Manganese soil and foliar fertilization of olive plantlets: the effect on leaf mineral and phenolic content and root mycorrhizal colonization.

    PubMed

    Pasković, Igor; Ćustić, Mirjana Herak; Pecina, Marija; Bronić, Josip; Ban, Dean; Radić, Tomislav; Pošćić, Filip; Jukić Špika, Maja; Soldo, Barbara; Palčić, Igor; Goreta Ban, Smiljana

    2018-06-08

    The aim of this study was to examine the effect of foliar (Mn_fol) and soil Zeolite-Mn (Mn_ZA) application on leaf mineral, total phenolic and oleuropein content, and mycorrhizae colonization of self-rooted cv. Leccino plantlets grown on calcareous soil. The dissolution of zeolite was 97% when citric acid was applied at 0.05 mM dm -3 , suggesting that organic acids excreted by roots can dissolve modified zeolite (Mn_ZA) making Mn available for plant uptake. The leaf Mn concentration was the highest for Mn_fol treatment at 90 DAT (172 mg kg -1 ) and 150 DAT (70 mg kg -1 ) compared to other treatments. Mn_ZA soil application increased leaf Mn concentration at 150 DAT compared to control and NPK treatment. The oleuropein leaf content was highest for Mn_fol compared to other treatments at 90 DAT and lowest at 150 DAT. Arbuscular mycorrhizal colonization was higher for Mn_fol treatment at 150 DAT compared to all other treatments. Changes in the arbuscular colonization percentage and oleuropein content may be connected to stress conditions provoked by high leaf Mn concentration in Mn_fol treatment at 90 DAT. Mn_ZA application increased leaf Mn concentration at 150 DAT compared to control and NPK treatments. It can be assumed that the dominant mechanism in Mn uptake from modified zeolite is Mn_ZA dissolution through root exudates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  2. Red leaf lettuce breeding line with resistance to corky root, 06-810

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of a breeding line of red leaf lettuce (Lactuca sativa L.), 06-810. The line may be suitable for commercial production, and is suitable for use as a source of resistance to corky root disease in t...

  3. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  4. Survival strategies in semi-arid climate for isohydric and anisohydric species

    NASA Astrophysics Data System (ADS)

    Guerin, M. F.; Gentine, P.; Uriarte, M.

    2013-12-01

    The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.

  5. Redistribution of boron in leaves reduces boron toxicity.

    PubMed

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  6. [Antifungal effects of three medicinal crops on Phytophthora nicotianae].

    PubMed

    He, Da-Min; Chen, Yang; Yang, Shui-Ping; Zhang, Xue; Zhao, Jian; Mo, Jing-Jing; Zhang, Dong-Yan; Zhao, Xin-Mei; Chen, Da-Xia; Ding, Wei

    2017-09-01

    Tobacco black shank is one of the most harmful soil-borne diseases infected by Phytophthora parasitica. In order to probe the control method to this disease, in this study, the mycelial growth rate method was employed to investigate the antifungal effects of extracts from stem-leaf and root, root exudates, and their combination of Scrophularia ningpoensis, Chuanmingshen violaceum and Pinellia ternata The results showed that: ①Stem-leaf and root extracts of S. ningpoensis, C. violaceum and P. ternata exhibited different antifungal activities, and the inhibition increased with the increase of extract concentration. The antifungal effect of S. ningpoensis extracts at 0.5 g•mL⁻¹ was the strongest than other medicinal plants, the inhibition rate of steam-leaf and root extracts reached 74.88%, 69.27%, respectively. The inhibitory effect of C. violaceum and P. ternata was relatively lower, however, there is a significant gain effect after combination of steam-leaf and root extracts of C. violaceum. ②The root exudates of S. ningpoensis, C. violaceum and P. ternata showed fungistasis to Phytophthora nicotianae, and fungistasis was enhanced with the increase of root exudate concentration. The antifungal effect in the order of C. violaceum > S. ningpoensis > P. ternata. ③The antifungal activity of combination of extract and root exudate from S. ningpoensis was similar with the effect of C. violaceum, they were both stronger than P. ternata, and the antifungal activity for three combination were located between the antifungal activity of their extracts and root exudates. S. ningpoensis and C. violaceum can be potentially applied to prevent and control the tobacco black shank. Copyright© by the Chinese Pharmaceutical Association.

  7. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    PubMed

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  8. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana.

    PubMed

    Ruts, Tom; Matsubara, Shizue; Wiese-Klinkenberg, Anika; Walter, Achim

    2012-10-01

    Circadian clocks synchronized with the environment allow plants to anticipate recurring daily changes and give a fitness advantage. Here, we mapped the dynamic growth phenotype of leaves and roots in two lines of Arabidopsis thaliana with a disrupted circadian clock: the CCA1 over-expressing line (CCA1ox) and the prr9 prr7 prr5 (prr975) mutant. We demonstrate leaf growth defects due to a disrupted circadian clock over a 24 h time scale. Both lines showed enhanced leaf growth compared with the wild-type during the diurnal period, suggesting increased partitioning of photosynthates for leaf growth. Nocturnal leaf growth was reduced and growth inhibition occurred by dawn, which may be explained by ineffective starch degradation in the leaves of the mutants. However, this growth inhibition was not caused by starch exhaustion. Overall, these results are consistent with the notion that the defective clock affects carbon and energy allocation, thereby reducing growth capacity during the night. Furthermore, rosette morphology and size as well as root architecture were strikingly altered by the defective clock control. Separate analysis of the primary root and lateral roots revealed strong suppression of lateral root formation in both CCA1ox and prr975, accompanied by unusual changes in lateral root growth direction under light-dark cycles and increased lateral extension of the root system. We conclude that growth of the whole plant is severely affected by improper clock regulation in A. thaliana, resulting not only in altered timing and capacity for growth but also aberrant development of shoot and root architecture. © 2012 Forschungszentrum Jülich. The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. [Effects of precipitation and interspecific competition on Quercus mongolica and pinus koraiensis seedlings growth].

    PubMed

    Wu, Jing-Lian; Wang, Miao; Lin, Fei; Hao, Zhan-Qing; Ji, Lan-Zhu; Liu, Ya-Qin

    2009-02-01

    Aiming at the variation of precipitation pattern caused by global warming, a field simulation experiment was conducted to study the effects of 30% increase (+W) and decrease (-W) of precipitation on the morphology, growth, and biomass partitioning of mono- and mixed cultured seedlings of Quercus mongolica and Pinus koraiensis, the two dominant tree species in temperate broad-leaved Korean pine mixed forest in Changbai Mountains. Comparing with monoculture, mixed culture increased the canopy width and main root length of Q. mongolica seedlings, but decreased the basal diameter, plant height, leaf number, and dry masses of root, stem, leaf and whole plant of P. koraiensis seedlings significantly. Treatment (-W) increased the stem/mass ratio while decreased the main root length of Q. mongolica seedlings, and decreased the main root length, leaf number, dry masses of leaf and whole plant, and leaf/mass ratio, while increased the stem/mass ratio of P. koraiensis seedlings significantly, compared with treatment CK. Treatment (+W) had no significant effect on these indices of the two species. At early growth stage, interspecific competition and precipitation pattern had significant effects on the morphology and growth of the seedlings, and the responses were much stronger for P. koraiensis than for Q. mongolica.

  10. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica.

    PubMed

    Barrientos, Zaidett

    2012-09-01

    Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.

  11. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  12. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  13. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.

    PubMed

    Khatoon, Amana; Rehman, Shafiq; Hiraga, Susumu; Makino, Takahiro; Komatsu, Setsuko

    2012-10-22

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    PubMed

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  16. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances.

    PubMed

    Maseda, Pablo H; Fernández, Roberto J

    2016-02-01

    Water stress modifies plant above- vs belowground biomass allocation, i.e., morphological plasticity. It is known that all species and genotypes reduce their growth rate in response to stress, but in the case of water stress it is unclear whether the magnitude of such reduction is linked to the genotype's growth potential, and whether the reduction can be largely attributed to morphological adjustments such as plant allocation and leaf and root anatomy. We subjected seedlings of six seed sources, three from each of Eucalyptus camaldulensis (potentially fast growing) and E. globulus (inherently slow growing), to three experimental water regimes. Biomass, leaf area and root length were measured in a 6-month glasshouse experiment. We then performed functional growth analysis of relative growth rate (RGR), and aboveground (leaf area ratio (LAR), specific leaf area (SLA) and leaf mass ratio (LMR)) and belowground (root length ratio (RLR), specific root length (SRL) and root mass ratio (RMR)) morphological components. Total biomass, root biomass and leaf area were reduced for all Eucalyptus provenances according to drought intensity. All populations exhibited drought plasticity, while those of greater growth potential (RGRmax) had a larger reduction in growth (discounting the effect of size). A positive correlation was observed between drought sensitivity and RGRmax. Aboveground, drought reduced LAR and LMR; under severe drought a negative correlation was found between LMR and RGRmax. Belowground, drought reduced SRL but increased RMR, resulting in no change in RLR. Under severe drought, a negative correlation was found between RLR, SRL and RGRmax. Our evidence strongly supports the classic ecophysiological trade-off between growth potential and drought tolerance for woody seedlings. It also suggests that slow growers would have a low capacity to adjust their morphology. For shoots, this constraint on plasticity was best observed in partition (i.e., LMR) whereas for roots it was clearest in morphology/anatomy (i.e., SRL). Thus, a low RGRmax would limit plastic response to drought not only at the whole plant level but also at the organ and even the tissue level. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Spatial and Temporal Dynamics of the Leaf Area Index of the Caatinga Biome

    NASA Astrophysics Data System (ADS)

    Alves Rodrigues Pinheiro, Everton; de Jong van Lier, Quirijn; Metselaar, Klaas

    2015-04-01

    Leaf Area Index (LAI) is an important characteristic of ecosystems with a prominent role in processes such as transpiration, photosynthesis and interception. The Caatinga biome is a unique semiarid ecosystem ocurring in a specific region of Brazil. An important main feature of this biome is the leaf shedding and regenerative capacity of its species. The aim of this study was to quantify both spatial and temporal dynamics of the LAI of the Caatinga biome in the Aiuaba Experimental Basin, an integrally-preserved Caatinga reserve, coordinates 6°42'S; 40°17'W. The research site (12 km2) was divided into three main Soil and Vegatation Associations (SVA). For each SVA the soil type and root depth are respectively, Acrisol -0.8 m, Luvisol - 0.6 m and Regosol - 0.4 m. The LAI was estimated by SEBAL algorithm applied to eleven satellite images from Landsat 5. The values of LAI estimated by SEBAL were correlated to the mean soil water content of the 15 days previous to the satellite image date. Eight images were used to generate a simple regression model, yielding a range of coefficient of determination from 0.89 to 0.92. Three other images were used to validate the equations. The Nash-Sutcliffe efficiency coefficient ranged from 0.76 to 0.94. Using the validated correlations, the LAI was calculated over the time for each of the three SVA, from 2004 to 2012. For SVA1, SVA2 and SVA3, the avarage values of LAI during the rainy season were 0.97, 1.12 and 1.07, respectively. During the dry season, the mean values were 0.15 for SVA1 and 0.11 for SVA2 and SVA3. The vegetation showed abrupt LAI changes, and the average previous 15 days soil water content was a good indicator for this. The study has shown that the maximum LAI was relatively stable over the years, occurring between March and April. The spatial behavior of LAI appeared to be similar, independently of the soil type and root depth.

  18. Determination of threshold value of soil water content for field and vegetable plants with lysimeter measurements

    NASA Astrophysics Data System (ADS)

    Knoblauch, S.

    2009-04-01

    Both the potential water consumption of plants and their ability to withdraw soil water are necessary in order to estimate actual evapotranspiration and to predict irrigation timing and amount. In relating to root water uptake the threshold value at which plants reducing evapotranspiration is an important parameter. Since transpiration is linearly correlated to dry matter production, under the condition that the AET/PET-Quotient is smaller than 1.0 (de Wit 1958, Tanner & Sinclair 1983), the dry matter production begins to decline too. Plants respond to drought with biochemical, physiological and morphological modifications in order to avoid damages, for instance by increasing the root water uptake. The objective of the study is to determine threshold values of soil water content and pressure head respectively for different field and vegetable plants with lysimeter measurements and to derive so called reduction functions. Both parameter, potenzial water demand in several growth stages and threshold value of soil water content or pressure head can be determined with weighable field lysimeter. The threshold value is reached, when the evapotranspiration under natural rainfall condition (AET) drop clearly (0.8 PET) below the value under well watered condition (PET). Basis for the presented results is the lysimeter plant Buttelstedt of the Thuringian State Institute of Agriculture. It consist of two lysimeter cellars, each with two weighable monolithic lysimeters. The lysimeter are 2.5 m deep with a surface area of 2 m2 to allow a non-restrictive root growth and to arrange a representative number of plants. The weighing accuracy amounts to 0.05 mm. The percolating water is collected by ceramic suction cups with suction up to 0.3 MPa at a depth of 2.3 m. The soil water content is measured by using neutron probe. One of the two lysimeter cellars represents the will irrigated, the other one the non irrigated and/or reduced irrigated part of field. The soil is a Haplic Phaeozem with silt-loamy texture developed from loess (water content at wilting point amounts between 0.167 and 0.270 cm3/cm3 and at field capacity (0.03 MPa) between 0.286 and 0.342 cm3/cm3). The mean annual temperature is 8.2°C and the mean annual precipitation is 550 mm. Results are as follows: Winter wheat begins to reduce evapotranspiration when the water content in the root zone to a depth of 2.0 m is smaller than 25 % of the available water holding capacity (AWC). That is equal to an amount of soil water of 171 mm. The threshold value of potatoes is 40 % of the AWC to a rooting depth of 0.6 m (49 mm soil water amount). The corresponding value for cabbage is 40 % of the AWC relating to a rooting depth of 1.2 m, for cauli flower 60 % of the AWC relating to a depth of 1.0 m and for onion 80 % of the AWC to a rooting depth of 0.3 m (90, 50 and 5 mm soil water amount). Nevertheless onion attain a maximum rooting depth of 0.9 m. The maximum rooting depths of winter wheat, potatoes, cabbage and cawli flower are 2.0, 1.0, 1.5 und 1.5 m. The date on which the threshold is reached is different, for winter wheat and cabbage just before harvest and for onion in a few days after 8-leaf-stage. However, it is assumed that these values are also the influence of weather reflect, particulary with regard to the transpiration demand of the atmosphere and the amount of rain fall during earlier growth stages which can prefer the development of adaptation mechanism. Although there are great differences between the plant species concerning root water uptake to avoid a decline of biomass production due to drought.

  19. Eleutherococcus senticosus (Araliaceae) leaf morpho-anatomy, essential oil composition and its biological activity against Aedes aegypti (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    The roots of Eleutherococcus senticosus, a well-known medicinal plant from Eastern Asia, are used worldwide for their known beneficial medicinal properties. Recently the leaves have been used as an alternative to the roots. The present study was aimed at exploring the leaf essential oil as a potenti...

  20. DRO1 influences root system architecture in Arabidopsis and Prunus species.

    PubMed

    Guseman, Jessica M; Webb, Kevin; Srinivasan, Chinnathambi; Dardick, Chris

    2017-03-01

    Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Hibernacula and summer den sites of pine snakes (Pituophis melanoleucus) in the New Jersey pine barrens

    USGS Publications Warehouse

    Burger, J.; Zappalorti, R.T.; Gochfeld, M.; Boarman, W.I.; Caffrey, M.; Doig, V.; Garber, S.D.; Lauro, B.; Mikovsky, M.; Safina, C.; Saliva, Jorge

    1988-01-01

    We examined eight summer dens (used only in summer) and seven hibernacula (occupied both in winter and summer) of the snake Pituophis melanoleucus in the New Jersey Pine Barrens, comparing above ground characteristics of hibernacula and summer dens with characteristics at nearby random points. Temperatures at the soil surface and at 10 cm depth were significantly warmer, and there was less leaf cover around the random points compared to the entrances of the hibernacula and summer dens. Hibernacula had significantly more vegetation cover within 5 m, more leaf cover over the burrow entrance, and were closer to trees than were summer dens. Most hibernacula and summer dens were beside old fallen logs (73%), the entrance tunnels following decaying roots into the soil. Excavation of the hibernacula and summer dens indicated that most hibernacula appeared to be dug by the snakes and had an average of eight side chambers and 642 cm of tunnels, compared to less than one side chamber and 122 cm of tunnels for summer dens. Except for hatchlings, most snakes in hibernacula were located in individual chambers off the main tunnel; all snakes were at depths of 50-111 cm (X̄ = 79 cm). Pine snakes may select optimum hibernation sites which reduce winter mortality.

  2. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan

    PubMed Central

    Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-01-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630

  3. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting

    PubMed Central

    Pérez-Pérez, J. G.; Dodd, I. C.

    2015-01-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. PMID:25740924

  4. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    PubMed

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  6. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens *

    PubMed Central

    Peng, Hong-yun; Yang, Xiao-e; Tian, Sheng-ke

    2005-01-01

    Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution. After exposure to 500 μmol/L Cu for 8 d, about 1000 mg/kg Cu were accumulated in the stem and 250 mg/kg Cu in the leaf of E. splendens. At 50 µmol/L Cu, no significant toxicity was observed in the chloroplast and mitochondrion within its leaf cells, but separation appeared at the cytoplasm and the cell wall within the root cells. At >250 µmol/L Cu, both root and leaf organelles in E. splendens were damaged heavily by excessive Cu in vivo. Copper subcellular localization in the plant leaf after 8 days’ exposure to 500 µmol/L Cu using gradient centrifugation techniques was found to be decreased in the order: chloroplast>cell wall>soluble fraction>other organelles. The plant root cell wall was found to be the site of highest Cu localization. Increase of Cu exposure time from 8 d to 16 d, increased slightly Cu concentration in cell wall fraction in roots and leaves, while that in the chloroplast fraction decreased in leaves of the plants grown in both 0.25 μmol/L and 500 μmol/L Cu. TEM confirmed that much more Cu localized in cell walls of E. splendens roots and leaves, but also more Cu localized in E. splendens’ chloroplast when the plant is exposed to Cu levels>250 μmol/L, as compared to those in the plant grown in 0.25 μmol/L Cu. Copper treatment at levels>250 μmol/L caused pronounced damage in the leaf chloroplast and root organelles. Copper localization in cell walls and chloroplasts could mainly account for the high detoxification of Cu in E. splendens. PMID:15822140

  7. [Effects of water supply tension on photosynthetic characteristics and root activity of greenhouse cucumber].

    PubMed

    Li, Shao; Xue, Xu-Zhang; Guo, Wen-Shan; Li, Xia; Chen, Fei

    2010-01-01

    To study the effects of soil water content on the photosynthesis, fluorescence parameters, and root growth of greenhouse cucumber (Cucumis sativus L.), a pot experiment was conducted, using a negative pressure water supplying and controlling device to control soil moisture regime. Seven levels of water supply tension (WST), i. e., 1, 3, 5, 7, 9, 11, and 13 kPa, were designed. The WST was inversely proportional to soil water content, and the gravimetric soil water content was maintained in the range of 14.23%-42.32%. With increasing WST, the leaf net photosynthetic rate (P(n)) in different growth periods showed a parabolic trend, being higher when the WST was 7-11 kPa at initial flowering stage, and was 3-5 kPa at fruiting stage. The reason for the decreased P(n) at 9-13 kPa WST was stomatal limitation. Under 1-5 kPa WST, the actual photochemical efficiency (phi(PS II) had a high value, and the possibility of photo inhibition was small. Both the leaf transpiration rate and the chlorophyll content were positively correlated with leaf P(n) in different growth periods. Root growth and activity also had a parabolic trend with increasing WST. The maximum root dry mass and root activity happened at 7 kPa and 5 kPa WST, respectively. Our results indicated that a WST of 3-7 kPa was more profitable for the leaf photosynthesis and root growth of greenhouse cucumber.

  8. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    PubMed

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  9. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  10. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  11. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  12. Redistribution of boron in leaves reduces boron toxicity

    PubMed Central

    Fitzpatrick, Kate L

    2009-01-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots. PMID:20009556

  13. Absence of plant uptake and translocation of polybrominated biphenyls (PBBs).

    PubMed

    Chou, S F; Jacobs, L W; Penner, D; Tiedje, J M

    1978-04-01

    Studies of polybrominated biphenyl (PBB) uptake by plants have been conducted in hydroponic solutions and in greenhouse experiments with soil. Autoradiograms of corn and soybean seedlings grown in hydroponic solutions showed no translocation of 14C-PBB from 14C-PBB-treated solutions to plant tops or within the leaf from 14C-PBB-treated spots on the upper leaf surface. A significant portion of the 14C-PBB associated with the roots was removed when the roots were dipped in acetone. Three root crops (radishes, carrots, and onions) were grown in two soils, each treated with a mixture of FireMaster BP-6 (PBB) and 14C-PBB to achieve final concentrations of 100 ppm and 100 ppb. All roots showed more PBB when grown in the soil with the lower clay and organic matter content than they did when grown in the soil with more clay and organic matter. In the latter soil (clay loam) no PBB was detected in any roots from the 100 ppb treatment. More PBB was associated with roots of carrot than of radish or onion. Corn leaf whorls containing dust from a PBB contamination soil and washed radishes from a heavily contaminated garden showed no PBB.

  14. [Allelopathy of grape root aqueous extracts].

    PubMed

    Li, Kun; Guo, Xiu-wu; Guo, Yin-shan; Li, Cheng-xiang; Xie, Hong-gang; Hu, Xi-xi; Zhang, Li-heng; Sun, Ying-ni

    2010-07-01

    Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.

  15. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense.

    PubMed

    Fukami, Josiane; Ollero, Francisco Javier; de la Osa, Clara; Valderrama-Fernández, Rocio; Nogueira, Marco Antonio; Megías, Manuel; Hungria, Mariangela

    2018-06-07

    We investigated the effects of Azospirillum brasilense strains Ab-V5 and Ab-V6 in the induction of mechanisms of systemic acquired resistance (SAR) and induced system resistance (ISR) on maize (Zea mays L.) plants. Under normal growth conditions, the treatments consisted of the standard inoculation of cells at sowing, and leaf spray of cells or their metabolites at the V2.5 growth stage; under saline stress (170 mM NaCl), the treatment consisted of standard single and co-inoculation of A. brasilense and Rhizobium tropici. The main compounds in the Azospirillum metabolites were identified as indole-3-acetic acid (IAA) and salicylic acid (SA). Under normal conditions, A. brasilense cells applied at sowing or by leaf spray increased the activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) in leaves, and of ascorbate peroxidase (APX) in roots; however, interestingly, in general the highest activities were observed by leaf spray of metabolites. Under normal conditions, the highest levels of salicylic acid (SA) and jasmonic acid (JA) were achieved in leaves by leaf spray of metabolites, of SA in roots by leaf spray of cells, and of JA in roots by standard inoculation and leaf spray of metabolites. Under saline stress, plant protection occurred via SA and abscisic acid (ABA), but not JA. In general, inoculation resulted in further increases in SA in leaves and roots, and ABA in leaves. We hypothesize that A. brasilense confers protection to maize plants by simultaneous induction of JA and SA pathways, and, under saline stressing conditions, by SA and ABA pathways.

  16. Hydrologic regulation of plant rooting depth

    PubMed Central

    Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-01-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923

  17. Hydrologic regulation of plant rooting depth.

    PubMed

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  18. Hydrologic regulation of plant rooting depth

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  19. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed Central

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A.; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent during normal LR development. PMID:28603536

  20. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19 , slr , and alf4 . Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent during normal LR development.

  1. [Influence of simulated acid rain on nitrogen and phosphorus contents and their stoichiome-tric ratios of tea organs in a red soil region, China].

    PubMed

    Zhang, Yu Fei; Fang, Xiang Min; Chen, Fu Sheng; Zong, Ying Ying; Gu, Han Jiao; Hu, Xiao Fei

    2017-04-18

    A 25-year-old tea plantation in a typical red soil region was selected for an in situ simulated acid rain experiment treated by pH 4.5, 3.5, 2.5 and water (control, CK). Roots with different functions, leaves and twigs with different ages were collected to measure nitrogen (N) and phosphorus (P) contents in the third year after simulated acid rain treatment. The N/P and acid rain sensitivity coefficient of tea plant organs were also calculated. The results indicated that with the increase of acid rain intensity, the soil pH, NO 3 - -N and available P decreased, while the absorption root N content increased. Compared with the control, the N content in absorption root was increased by 32.9% under the treatment of pH 2.5. The P content in storage root significantly decreased with enhanced acid rain intensity, and the acid rain treatment significantly enhanced N/P of absorption root. Young and mature leaf N, P contents were not sensitive to different intensities of acid rain, but the mature leaf N/P was significantly increased under pH 3.5 treatment compared with the control. The effects of acid rain treatments differed with tea twig ages. Compared with the control, low intensity acid treatment (pH 4.5) significantly increased young twig N content and N/P, while no signi-ficant differences in old twig N content and N/P were observed among four acid rain treatments. Acid rain sensitivity coefficients of absorption root, young leaf and twig N contents were higher than that of storage root, old leaf and twig, respectively. And the storage root and leaf P had higher acid rain sensitivity coefficient than other tea organs. In sum, tea organs N content was sensitive to acid rain treatment, and moderate acid rain could increase young organ N content and N/P, and change the cycle and balance of N and P in tea plantation.

  2. Overexpression of OsEXPA8, a Root-Specific Gene, Improves Rice Growth and Root System Architecture by Facilitating Cell Extension

    PubMed Central

    Ma, Nana; Wang, Ying; Qiu, Shichun; Kang, Zhenhui; Che, Shugang; Wang, Guixue; Huang, Junli

    2013-01-01

    Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth. PMID:24124527

  3. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.

    PubMed

    Karuppanapandian, T; Geilfus, C-M; Mühling, K-H; Novák, O; Gloser, V

    2017-02-01

    Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Anatomical investigations on root, stem, and leaf of Gentiana olivieri Griseb

    PubMed Central

    Tüzün, Canan Yağci; Toker, Mehmet Cihat; Toker, Gülnur

    2011-01-01

    Background: Gentiana olivieri Griseb. (Afat) (Gentianaceae), which has many bioactive compounds is used as antidiabetic, hepatoprotective, digestive aid, antidepressant, and antianemic in traditional medicine. Materials and Methods: Root, stem, and leaf sections of G. olivieri were taken free hand or by sliding microtome and examined on light microscope. Results: Anatomical characters of the species were observed to be similar to the usual features of Gentianaceae anatomy. Conclusion: Intraxylary phloem, which was primarily the distinguishing feature between Gentianoideae and Menyanthoideae sub-families was observed in G. olivieri roots. PMID:21472072

  5. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  6. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  7. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  8. Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis1[C][W][OA

    PubMed Central

    Vercruyssen, Liesbeth; Gonzalez, Nathalie; Werner, Tomáš; Schmülling, Thomas; Inzé, Dirk

    2011-01-01

    Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level. PMID:21205622

  9. Exaggerated root respiration accounts for growth retardation in a starchless mutant of Arabidopsis thaliana.

    PubMed

    Brauner, Katrin; Hörmiller, Imke; Nägele, Thomas; Heyer, Arnd G

    2014-07-01

    The knock-out mutation of plastidial phosphoglucomutase (pgm) causes a starchless phenotype in Arabidopsis thaliana, and results in a severe growth reduction of plants cultivated under diurnal conditions. It has been speculated that high soluble sugar levels accumulating during the light phase in leaf mesophyll might cause a reduction of photosynthetic activity or that shortage of reduced carbon during the night is the reason for the slow biomass gain of pgm. Separate simultaneous measurements of leaf net photosynthesis and root respiration demonstrate that photosynthetic activity per unit fresh weight is not reduced in pgm, whereas root respiration is strongly elevated. Comparison with a mutant defective in the dominating vacuolar invertase (AtβFruct4) revealed that high sucrose concentration in the cytosol, but not in the vacuole, of leaf cells is responsible for elevated assimilate transport to the root. Increased sugar supply to the root, as observed in pgm mutants, forces substantial respiratory losses. Because root respiration accounts for 80% of total plant respiration under long-day conditions, this gives rise to retarded biomass formation. In contrast, reduced vacuolar invertase activity leads to reduced net photosynthesis in the shoot and lowered root respiration, and affords an increased root/shoot ratio. The results demonstrate that roots have very limited capacity for carbon storage but exert rigid control of supply for their maintenance metabolism. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata.

    PubMed

    Jin, Xiao-Lin; Ma, Cui-Lan; Yang, Lin-Tong; Chen, Li-Song

    2016-07-01

    Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison

    Treesearch

    Mark E. Harmon; Whendee L. Silver; Becky Fasth; Hua Chen; Ingrid C. Burke; William J. Parton; Stephen C. Hart; William S. Currie; Ariel E. Lugo

    2009-01-01

    Decomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter...

  12. Accumulation of Pb and Cu heavy metals in sea water, sediment, and leaf and root tissue of Enhalus sp. in the seagrass bed of Banten Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauziah, Faiza, E-mail: faiza.fauziah@gmail.com; Choesin, Devi N., E-mail: faiza.fauziah@gmail.com

    2014-03-24

    Banten Bay in Indonesia is a coastal area which has been highly affected by human activity. Previous studies have reported the presence of lead (Pb) and copper (Cu) heavy metals in the seawater of this area. This study was conducted to measure the accumulation of Pb and Cu in seawater, sediment, leaf tissue, and root tissue of the seagrass species Enhalus sp. Sampling was conducted at two observation stations in Banten Bay: Station 1 (St.1) was located closer to the coastline and to industrial plants as source of pollution, while Station 2 (St.2) was located farther away offshore. At eachmore » station, three sampling points were established by random sampling. Field sampling was conducted at two different dates, i.e., on 29 May 2012 and 30 June 2012. Samples were processed by wet ashing using concentrated HNO{sub 3} acid and measured using Atomic Absorption Spectrometry (AAS). Accumulation of Pb was only detected in sediment samples in St.1, while Cu was detected in all samples. Average concentrations of Cu in May were as follows: sediment St.1 = 0.731 ppm, sediment St.2 = 0.383 ppm, seawater St.1 = 0.163 ppm, seawater St.2 = 0.174 ppm, leaf St.1 = 0.102 ppm, leaf St.2 = 0.132 ppm, root St.1= 0.139 ppm, and root St.2 = 0.075 ppm. Average measurements of Cu in June were: sediment St.1 = 0.260 ppm, leaf St.1 = 0.335 ppm, leaf St.2 = 0.301 ppm, root St.1= 0.047 ppm, and root St.2 = 0.060 ppm. In June, Cu was undetected in St.2 sediment and seawater at both stations. In May, Cu concentration in seawater exceeded the maximum allowable threshold for water as determined by the Ministry of the Environment. Spatial and temporal variation in Pb and Cu accumulation were most probably affected by distance from source and physical conditions of the environment (e.g., water current and mixing)« less

  13. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peace, Gerald; Goering, Timothy James; Knight, Paul J.

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less

  14. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.

    PubMed

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-05-01

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment. © 2017 by the Ecological Society of America.

  15. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  16. Root carbon decomposition and microbial biomass response at different soil depths

    NASA Astrophysics Data System (ADS)

    Rumpel, C.

    2012-12-01

    The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.

  17. Combining Metabolic Profiling and Gene Expression Analysis to Reveal the Biosynthesis Site and Transport of Ginkgolides in Ginkgo biloba L.

    PubMed Central

    Lu, Xu; Yang, Hua; Liu, Xinguang; Shen, Qian; Wang, Ning; Qi, Lian-wen; Li, Ping

    2017-01-01

    The most unique components of Ginkgo biloba extracts are terpene trilactones (TTLs) including ginkgolides and bilobalide. Study of TTLs biosynthesis has been stagnant in recent years. Metabolic profiling of 40 compounds, including TTLs, flavonoids, and phenolic acids, were globally analyzed in leaf, fibrous root, main root, old stem and young stem extracts of G. biloba. Most of the flavonoids were mainly distributed in the leaf and old stem. Most of phenolic acids were generally distributed among various tissues. The total content of TTLs decreased in the order of the leaf, fibrous root, main root, old stem and young stem. The TTLs were further analyzed in different parts of the main root and old stem. The content of TTLs decreases in the order of the main root periderm, the main root cortex and phloem and the main root xylem. In old stems, the content of TTLs in the cortex and phloem was much higher than both the old stem periderm and xylem. The expression patterns of five key genes in the ginkgolide biosynthetic pathway were measured by real-time quantitative polymerase chain reaction (RT-Q-PCR). Combining metabolic profiling and RT-Q-PCR, the results showed that the fibrous root and main root periderm tissues were the important biosynthesis sites of ginkgolides. Based on the above results, a model of the ginkgolide biosynthesis site and transport pathway in G. biloba was proposed. In this putative model, ginkgolides are synthesized in the fibrous root and main root periderm, and these compounds are then transported through the old stem cortex and phloem to the leaves. PMID:28603534

  18. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  19. Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities

    PubMed Central

    Kembel, Steven W.; Cahill, James F.

    2011-01-01

    In this study, we used data from temperate grassland plant communities in Alberta, Canada to test two longstanding hypotheses in ecology: 1) that there has been correlated evolution of the leaves and roots of plants due to selection for an integrated whole-plant resource uptake strategy, and 2) that trait diversity in ecological communities is generated by adaptations to the conditions in different habitats. We tested the first hypothesis using phylogenetic comparative methods to test for evidence of correlated evolution of suites of leaf and root functional traits in these grasslands. There were consistent evolutionary correlations among traits related to plant resource uptake strategies within leaf tissues, and within root tissues. In contrast, there were inconsistent correlations between the traits of leaves and the traits of roots, suggesting different evolutionary pressures on the above and belowground components of plant morphology. To test the second hypothesis, we evaluated the relative importance of two components of trait diversity: within-community variation (species trait values relative to co-occurring species; α traits) and among-community variation (the average trait value in communities where species occur; β traits). Trait diversity was mostly explained by variation among co-occurring species, not among-communities. Additionally, there was a phylogenetic signal in the within-community trait values of species relative to co-occurring taxa, but not in their habitat associations or among-community trait variation. These results suggest that sorting of pre-existing trait variation into local communities can explain the leaf and root trait diversity in these grasslands. PMID:21687704

  20. Leaf fall, humus depth, and soil frost in a northern hardwood forest

    Treesearch

    George Hart; Raymond E. Leonard; Robert S. Pierce

    1962-01-01

    In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.

  1. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core.

    PubMed

    Xiong, GuanNan; Zhang, YunHui; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin

    2017-08-01

    Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.

  2. Path analysis of phenotypic traits in young cacao plants under drought conditions.

    PubMed

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.

  3. Path analysis of phenotypic traits in young cacao plants under drought conditions

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René

    2018-01-01

    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854

  4. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Identification of Maize Silicon Influx Transporters

    PubMed Central

    Mitani, Namiki; Yamaji, Naoki; Ma, Jian Feng

    2009-01-01

    Maize (Zea mays L.) shows a high accumulation of silicon (Si), but transporters involved in the uptake and distribution have not been identified. In the present study, we isolated two genes (ZmLsi1 and ZmLsi6), which are homologous to rice influx Si transporter OsLsi1. Heterologous expression in Xenopus laevis oocytes showed that both ZmLsi1 and ZmLsi6 are permeable to silicic acid. ZmLsi1 was mainly expressed in the roots. By contrast, ZmLsi6 was expressed more in the leaf sheaths and blades. Different from OsLsi1, the expression level of both ZmLsi1 and ZmLsi6 was unaffected by Si supply. Immunostaining showed that ZmLsi1 was localized on the plasma membrane of the distal side of root epidermal and hypodermal cells in the seminal and crown roots, and also in cortex cells in lateral roots. In the shoots, ZmLsi6 was found in the xylem parenchyma cells that are adjacent to the vessels in both leaf sheaths and leaf blades. ZmLsi6 in the leaf sheaths and blades also exhibited polar localization on the side facing towards the vessel. Taken together, it can be concluded that ZmLsi1 is an influx transporter of Si, which is responsible for the transport of Si from the external solution to the root cells and that ZmLsi6 mainly functions as a Si transporter for xylem unloading. PMID:18676379

  7. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    PubMed

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids

    PubMed Central

    Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.

    2016-01-01

    Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735

  9. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    PubMed

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter

  10. Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species

    NASA Astrophysics Data System (ADS)

    Ishak, Muhamad Safwan; Sahid, Ismail

    2014-09-01

    A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.

  11. NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis[W

    PubMed Central

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-01-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall–loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. PMID:24363315

  12. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis.

    PubMed

    Rauf, Mamoona; Arif, Muhammad; Fisahn, Joachim; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2013-12-01

    In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.

  13. Incorporation and translocation of 2-deoxy-2-[(18)F]fluoro-D-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system.

    PubMed

    Hattori, Etsuko; Uchida, Hiroshi; Harada, Norihiro; Ohta, Mari; Tsukada, Hideo; Hara, Yasuhiro; Suzuki, Tetsuya

    2008-04-01

    [(18)F]FDG (2-deoxy-2-[(18)F]fluoro-D-glucose) was fed to a sorghum plant [Sorghum bicolor (L.) Moench] from the tip of a leaf and its movement was monitored using a planar positron imaging system (PPIS). [(18)F]FDG was uptaken from the leaf tip and it was translocated to the basal part of the shoots from where it moved to the roots, the tillers and the sheaths. Autoradiographic analysis of the distribution of (18)F, [(18)F]FDG and/or its metabolites showed translocation to the roots, tillers, and to the leaves that were younger than the supplied leaf. Strong labelling was observed in the basal part of the shoots, in the sheaths, the youngest leaf and the root tips. Our results indicate that [(18)F]FDG and/or its metabolites were absorbed from the leaf and translocated to the sites where nutrients are required. This strongly suggests that [(18)F]FDG can be utilised as a tracer to study photoassimilate translocation in the living plant. This is the first report on the use of [(18)F]FDG, which is routinely used as a probe for clinical diagnosis, to study source to sink translocation of metabolites in whole plants in real time.

  14. In vitro antioxidant activities of leaf and root extracts of Albizia antunesiana harms.

    PubMed

    Chipiti, Talent; Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2013-01-01

    The antioxidative activities of the ethanol and aqueous extracts of the leaf and root samples of Albizia antunesiana were determined across a series of four in vitro models. The results showed that all the extracts had reducing power (Fe(3+)- Fe2+), DPPH, hydroxyl and nitric oxide radical scavenging abilities. The ethanol root extract had more potent antioxidant power in all the experimental models and possesses a higher total phenol content of 216.6 +/- 6.7 mg/g. The GC-MS analysis of the aqueous and ethanol extracts of the roots and leaves indicated that several aromatic phenolic compounds, a coumarin and some common triterpenoids were present in these extracts. Data from this study suggest that the leaves and roots of Albizia antunesiana possessed antioxidative activities that varied depending on the solvents.

  15. The chrysanthemum leaf and root transcript profiling in response to salinity stress.

    PubMed

    Cheng, Peilei; Gao, Jiaojiao; Feng, Yitong; Zhang, Zixin; Liu, Yanan; Fang, Weimin; Chen, Sumei; Chen, Fadi; Jiang, Jiafu

    2018-06-23

    RNA-Seq was applied to capture the transcriptome of the leaf and root of non-treated and salinity-treated chrysanthemum cv. 'Jinba' plants. A total of 206,868 unigenes of mean length 849 nt and of N50 length 1363 nt was identified; of these about 64% (>132,000) could be functionally assigned. Depending on the severity of the salinity stress, differential transcription was observed for genes encoding proteins involved in osmotic adjustment, in ion transport, in reactive oxygen species scavenging and in the regulation of abscisic acid (ABA) signaling. The root stress response was dominated by the up-regulation of genes involved in ion transport and homeostasis, while that of the leaf reflected the plant's effort to make osmotic adjustments and to regulate ABA signaling. An array of known transcription factors (WRKY, AP2/ERF, MYB, bHLH and NAC) were differentially transcribed. Copyright © 2018. Published by Elsevier B.V.

  16. Rooting depths of plants on low-level waste disposal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grassesmore » found on LLW sites root below 91 cm. June grass (Koeleria cristata (L.) Pers.) (76 cm) was the shallowest rooting grass and side-oats grama (Bouteloua curtipendula (Michx.) Torr.) was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper (Juniperus monosperma (Engelm) Sarg.) (>6000 cm). Apache plume (Fallugia paradoxa (D. Don) Endl.) rooted to 140 cm, whereas fourwing saltbush (Atriplex canecens (Pursh) Nutt.) rooted to 762 cm.« less

  17. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    PubMed

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  18. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?

    PubMed

    Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B

    2005-08-01

    Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.

  19. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lp r ), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lp rc ), and leaf cell hydraulic conductivity (Lp lc ) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lp r and K leaf were reduced by 29 %, and Lp rc and Lp lc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  20. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species.

    PubMed

    Suriyagoda, Lalith D B; Ryan, Megan H; Renton, Michael; Lambers, Hans

    2012-10-01

    Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species. The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined. The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass. All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.

  1. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined

    PubMed Central

    Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David

    2009-01-01

    Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl− concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat. Conclusions Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl− ‘exclusion’ even in an O2-deficient, saline rooting medium. PMID:18701600

  3. Induction of multiple shoots from leaf segments, in vitro-flowering and fruiting of a dwarf tomato (Lycopersicon esculentum).

    PubMed

    Rao, Kokkirala Venugopal; Kiranmayee, Kasula; Pavan, Umate; Sree, Telakalapalli Jaya; Rao, Alleni V; Sadanandam, Abbagani

    2005-08-01

    Multiple shoots were induced from leaf explants of Lycopersicon esculentum cultivar MicroTom, within 20-25d, on MS medium supplemented with 8.9 microM benzylaminopurine (BAP)+1.14 microM indole-3-acetic acid (IAA). For rooting, elongated microshoots were excised and transferred onto MS medium supplemented with 4.9 microM indole-3-butyric acid (IBA). Well-developed roots and flower raceme were obtained on d 7 and 13, respectively, upon transfer of the microshoots onto rooting medium. The flowers self-fertilized in vitro and produced mature fruits in additional 15-17d of culture.

  4. Botanical medicines for the urinary tract.

    PubMed

    Yarnell, Eric

    2002-11-01

    Four important categories of urologic herbs, their history, and modern scientific investigations regarding them are reviewed. Botanical diuretics are discussed with a focus on Solidago spp (goldenrod) herb, Levisticum officinale (lovage) root, Petroselinum crispus (parsley) fruit, and Urtica dioica (stinging nettle) herb. Urinary antiseptic and anti-adhesion herbs, particularly Arctostaphylos uva-ursi (uva-uri) leaf, Juniperus spp (juniper) leaf, and Vaccinium macrocarpon (cranberry) fruit are reviewed. The antinephrotoxic botanicals Rheum palmatum (Chinese rhubarb) root and Lespedeza capitata (round-head lespedeza) herb are surveyed, followed by herbs for symptoms of benign prostatic hyperplasia, most notably Serenoa repens (saw palmetto) fruit, Urtica dioica root, and Prunus africana (pygeum) bark.

  5. Linking belowground and aboveground phenology in two boreal forests in Northeast China.

    PubMed

    Du, Enzai; Fang, Jingyun

    2014-11-01

    The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.

  6. Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma.

    PubMed

    Maust, B E; Espadas, F; Talavera, C; Aguilar, M; Santamaría, J M; Oropeza, C

    2003-08-01

    ABSTRACT Lethal yellowing (LY), a disease caused by a phytoplasma, is the most devastating disease affecting coconut (Cocos nucifera) in Mexico. Thousands of coconut palm trees have died on the Yucatan peninsula while plantations in Central America and on the Pacific coast of Mexico are severely threatened. Polymerase chain reaction assays enable identification of incubating palm trees (stage 0+, phytoplasma detected but palm asymptomatic). With the development of LY, palm trees exhibit various visual symptoms such as premature nut fall (stage 1), inflorescence necrosis (stages 2 to 3), leaf chlorosis and senescence (stages 4 to 6), and finally palm death. However, physiological changes occur in the leaves and roots prior to onset of visual symptoms. Stomatal conductance, photosynthesis, and root respiration decreased in stages 0+ to 6. The number of active photosystem II (PSII) reaction centers decreased during stage 2, but maximum quantum use efficiency of PSII remained similar until stage 3 before declining. Sugar and starch concentrations in intermediate leaves (leaf 14) and upper leaves (leaf 4) increased from stage 0- (healthy) to stages 2 to 4, while root carbohydrate concentrations decreased rapidly from stage 0- to stage 0+ (incubating phytoplasma). Although photosynthetic rates and root carbohydrate concentrations decreased, leaf carbohydrate concentrations increased, suggesting inhibition of sugar transport in the phloem leading to stress in sink tissues and development of visual symptoms of LY.

  7. Cascara

    MedlinePlus

    ... heart damage. Herbs that contain cardiac glycosides include black hellebore, Canadian hemp roots, digitalis leaf, hedge mustard, ... Other stimulant laxative herbs are aloe, alder buckthorn, black root, blue flag, butternut bark, colocynth, European buckthorn, ...

  8. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.

  9. Leaf and root C-to-N ratios are poor predictors of soil microbial biomass C and respiration across 32 tree species.

    PubMed

    Ferlian, Olga; Wirth, Christian; Eisenhauer, Nico

    2017-11-01

    Soil microorganisms are the main primary decomposers of plant material and drive biogeochemical processes like carbon and nitrogen cycles. Hence, knowledge of their nutritional demands and limitations for activity and growth is of particular importance. However, potential effects of the stoichiometry of soil and plant species on soil microbial activity and carbon use efficiency are poorly understood. Soil properties and plant traits are assumed to drive microbial carbon and community structure. We investigated the associations between C and N concentrations of leaf, root, and soil as well as their ratios and soil microbial biomass C and activity (microbial basal respiration and specific respiratory quotient) across 32 young native angiosperm tree species at two locations in Central Germany. Correlations between C:N ratios of leaves, roots, and soil were positive but overall weak. Only regressions between root and leaf C:N ratios as well as between root and soil C:N ratios were significant at one site. Soil microbial properties differed significantly between the two sites and were significantly correlated with soil C:N ratio across sites. Soil C concentrations rather than N concentrations drove significant effects of soil C:N ratio on soil microbial properties. No significant correlations between soil microbial properties and leaf as well as root C:N ratios were found. We found weak correlations of C:N ratios between plant aboveground and belowground tissues. Furthermore, microorganisms were not affected by the stoichiometry of plant tissues in the investigated young trees. The results suggest that soil stoichiometry represents a consistent determinant of soil microbial biomass and respiration. Our study indicates that stoichiometric relationships among tree organs can be weak and poor predictors of soil microbial properties in young tree stands. Further research in controlled experimental settings with a wide range of tree species is needed to study the role of plant chemical traits like the composition and stoichiometry of root exudates in determining interactions between above- and belowground compartments.

  10. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    PubMed

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  11. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients

    PubMed Central

    Isaac, Marney E.; Martin, Adam R.; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal “Root Economics Spectrum” (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world’s most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another. PMID:28747919

  12. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients.

    PubMed

    Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.

  13. Root and Shoot Phenology May Respond Differently to Warming

    NASA Astrophysics Data System (ADS)

    Radville, L.; Eissenstat, D. M.; Post, E.

    2015-12-01

    Climate change is increasing temperatures and extending the growing season for many organisms. Shifts in phenology have been widely reported in response to global warming and have strong effects on ecosystem processes and greenhouse gas emissions. It is well understood that warming generally advances aboveground plant phenology, but the influence of temperature on root phenology is unclear. Most terrestrial biosphere models assume that root and shoot growth occur at the same time and are influenced by warming in the same way, but recent studies suggest that this may not be the case. Testing this assumption is particularly important in the Arctic where over 70% of plant biomass can be belowground and warming is happening faster than in other ecosystems. In 2013 and 2014 we examined the timing of root growth in the Arctic in plots that had been warmed or unwarmed for 10 years. We found that peak root growth occurred about one month before leaf growth, suggesting that spring root phenology is not controlled by carbon produced during spring photosynthesis. If root phenology is not controlled by photosynthate early in the season, earlier spring leaf growth may not cause earlier spring root growth. In support of this, we found that warming advanced spring leaf cover but did not significantly affect root phenology. Root growth was not significantly correlated with soil temperature and did not appear to be limited by near-freezing temperatures above the permafrost. These results suggest that although shoots are influenced by temperature, roots in this system may be more influenced by photosynthesis and carbon storage. Aboveground phenology, one of the most widely measured aspects of climate change, may not represent whole-plant phenology and may be a poor indicator of the timing of whole-plant carbon fluxes. Additionally, climate model assumptions that roots and shoots grow at the same time may need to be revised.

  14. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    PubMed

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Heat‐tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park

    PubMed Central

    STOUT, RICHARD G.; AL‐NIEMI, THAMIR S.

    2002-01-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (≥40 °C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 °C at 2–5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long‐term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 °C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti‐sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 °C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  16. Long-Term Effects of Season of Prescribed Burn on the Fine-Root Growth, Root Carbohydrates, and Foliar Dynamics of Mature Longleaf Pine

    Treesearch

    Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries

    2004-01-01

    Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...

  17. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.

    PubMed

    Vandeleur, Rebecca K; Sullivan, Wendy; Athman, Asmini; Jordans, Charlotte; Gilliham, Matthew; Kaiser, Brent N; Tyerman, Stephen D

    2014-02-01

    We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo . © 2013 John Wiley & Sons Ltd.

  18. Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha

  19. Aquaporins are major determinants of water use efficiency of rice plants in the field.

    PubMed

    Nada, Reham M; Abogadallah, Gaber M

    2014-10-01

    This study aimed at specifying the reasons of unbalanced water relations of rice in the field at midday which results in slowing down photosynthesis and reducing water use efficiency (WUE) in japonica and indica rice under well-watered and droughted conditions. Leaf relative water content (RWC) decreased in the well-watered plants at midday in the field, but more dramatically in the droughted indica (75.6 and 71.4%) than japonica cultivars (85.5 and 80.8%). Gas exchange was measured at three points during the day (9:00, 13:00 and 17:00). Leaf internal CO2 (Ci) was not depleted when midday stomatal depression was highest indicating that Ci was not limiting to photosynthesis. Most aquaporins were predominantly expressed in leaves suggesting higher water permeability in leaves than in roots. The expression of leaf aquaporins was further induced by drought at 9:00 without comparable responses in roots. The data suggest that aquaporin expression in the root endodermis was limiting to water uptake. Upon removal of the radial barriers to water flow in roots, transpiration increased instantly and photosynthesis increased after 4h resulting in increasing WUE after 4h, demonstrating that WUE in rice is largely limited by the inadequate aquaporin expression profiles in roots. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Drought, Abscisic Acid and Transpiration Rate Effects on the Regulation of PIP Aquaporin Gene Expression and Abundance in Phaseolus vulgaris Plants

    PubMed Central

    AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.

    2006-01-01

    • Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296

  1. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  2. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  3. [Effect of silicon on translocation and morphology distribution of lead in soil-tobacco system].

    PubMed

    Yan, Yi-Hua; Zheng, Zi-Cheng; Li, Ting-Xuan; Zhang, Xi-Zhou; Wang, Yong

    2014-10-01

    Taking tobacco as test material, a pot experiment was conducted to study the effect of silicon on translocation of lead (Pb) form soil to tobacco in order to explore effective measures for reducing Pb concentration in tobacco leaf. The results showed that silicon application promoted the transformation of exchangeable Pb into Fe-Mn oxide-bound Pb in non-rhizospheric soil, and into Fe-Mn oxide-bound Pb and residual Pb in rhizospheric soil, which decreased the availability and mobility of Pb in the soil. Silicon application significantly reduced the Pb uptake of tobacco, with the content of Pb being decreased by 6.5% to 44.0% in tobacco, and 3.1% to 60.4% in leaf. Silicon application promoted the transformation of ethanol-extractable, H2O-extractable Pb and NaCl-extractable Pb into HCl-extractable Pb and residual Pb in root, stem and leaf of tobacco, which reduced the toxicity and mobility of Pb in tobacco. Silicon restricted the transportation of Pb from soil to tobacco leaf by reducing the mobility index of Pb from soil to root and the mobility index of Pb from root to stem in soil-tobacco system. Meanwhile, the mobility index of Pb from stem to leaf in soil-tobacco system showed a rising-and-falling trend with the increase of Pb application. Silicon inhibited the Pb migration from soil to tobacco leaf by reducing availability of Pb, mitigating toxicity of Pb to tobacco, and changing the distribution of Pb forms in tobacco, consequently reducing Pb concentration of tobacco leaf. These results demonstrated silicon application could be effective in reducing translocation of Pb from soil to tobacco.

  4. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Baolong.

    Absorption, translocation, distribution, exudation, and guttation of {sup 14}C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All {sup 14}C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate {sup 14}C-glyphosate after foliage treatment. Resultsmore » indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells.« less

  5. Mycorrhizal inoculation as a tool for sustainable bio-engineering measures in steep alpine environments? - Results of a three year field experiment

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2013-04-01

    Global warming is anticipated to result in an increase of heavy precipitation events. In vegetation-free, steep Alpine areas intense rain fall events have distinct influences on erosional processes on slopes. These processes and (shallow) mass movements are directly linked with torrential rain falls, and for this lead to high erosion rates in those regions, resulting in an increased natural and socio-economic damage potential. For restoring and managing erosion-prone sites, bioengineering measures as a tool for hazard prevention gain more importance. Due to the rough environmental conditions, and hence, reduced germination capability and sprout vigour, it is difficult to establish a dense cover of pioneer vegetation. Thus, the question is what can be done to give planted saplings within bioengineering projects maximum support, to develop their above- and belowground structures to promote slope stabilization. Green-house and laboratory experiments have shown that mycorrhizal inoculum has a positive impact on plant development and soil structure, e.g. the formation of (stable) aggregates within several months. Based on these promising results, we intended to apply mycorrhizal inoculation in a field-experiment. In May 2010, we established experimental plots at an erosion-prone talus slope (inclination: ~40 - 45 °; elevation 1220 - 1360 m a.s.l.), located in the Eastern Swiss Alps. The slope, consisting of moraine and denudation-derived substrate, shows high geomorphic activity (e.g. debris flows, rill erosion). Two slope areas, 10m wide and 32m long, were stabilized with 1200 plants each. Additionally, mycorrhiza inoculum (INOQ Forst, 40 ml/plant) was added to one of the two areas. Within the stabilized areas, a mixture of eight saplings was planted per running meter in 15 rows. The assortment included four saplings of green alder and two of purple willow, as well as one tree (maple, birch, ash) and shrub species (e.g. guelder rose, honeysuckle). Finally, both areas were hand-seeded with an Alpine seed-mixture. In addition, a third was selected but not treated, reflecting the natural conditions and serving as a control. Next to analysing aboveground whole-plant traits (e.g. plant height, crown diameter, stem thickness) and leaf traits (e.g. specific leaf area, leaf size, leaf dry matter content, nitrogen and potassium analyses), we also focused on belowground properties. Undisturbed soil cores (0-20cm in depth) allow a determination of a aggregate stability coefficient, the aggregate-size development, as well as root traits (e.g. root length density, fine(root)diameter). Linear mixed-effect models and testing a posteriori contrasts permit a comparison between the different treatments. Preliminary results indicate, that four months after stabilization plant mortality was high over the two treatments, but it was significantly less on the inoculated treatment. In general plant and leaf traits are showing, that plant vitality is higher at the mycorrhizal-treated plots. Examination of belowground properties yield surprising results; the non-inoculated treatment is showing higher aggregate stability coefficients and higher root length density, which is in contrast to laboratory results. Our contribution will highlight the results of the entire three year field experiment.

  6. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    NASA Astrophysics Data System (ADS)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  7. Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.

    PubMed

    Melakeberhan, H; Ferris, H

    1989-01-01

    Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.

  8. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized.

    PubMed

    Parent, Boris; Suard, Benoît; Serraj, Rachid; Tardieu, François

    2010-08-01

    Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland-adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland- or lowland-adapted. In the considered range of soil water potential (0 to -0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well-watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.

  9. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand. © 2013 John Wiley & Sons Ltd.

  10. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    PubMed

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.

    PubMed

    Sengupta, Debashree; Guha, Anirban; Reddy, Attipalli Ramachandra

    2013-10-05

    The present study investigates the interdependence of plant water status with foliar and root responses in Vigna radiata L.Wilczek under progressive drought. Vegetatively-mature V. radiata plants were subjected to water withdrawal for 3 and 6days (D3 and D6, respectively) and then re-watered subsequently for 6days (6R) for stress-recovery. Changes in plant water status were expressed in terms of leaf and root moisture contents (LMC and RMC, respectively) and leaf relative water content (LRWC). Progressive drought caused apparent decrease in LRWC, LMC and RMC depicting significant level of dehydration of leaf and root tissues. Stomatal limitation alone could not account for the observed decrease in net CO2 assimilation rates (Pn) due to comparatively less decrease in sub-stomatal CO2 (Ci) concentrations with respect to other gas exchange parameters indicating possible involvement of non-stomatal limitations. Analysis of polyphasic chl a fluorescence kinetics during progressive drought showed decreased energy connectivity among PSII units as defined by a positive L-band with highest amplitude during D6. Efficiency of electron flux from OEC towards PSII acceptor side was not significantly affected during drought conditions as evidenced by the absence of a positive K-band. Increasing root-level water-limitation enforced a gradual oxidative stress through H2O2 accumulation and membrane lipid peroxidation in V. radiata roots exhibiting drastic enhancement of proline content and a significant but gradual increase in ascorbic acid content as well as guaiacol peroxidase activity under progressive drought. Expression analysis of Δ(1) pyrroline-5-carboxylate synthetase (P5CS) through real time PCR and enzyme activity studies showed a strong positive correlation between VrP5CS gene expression, enzyme activity and proline accumulation in the roots of V. radiata under progressive drought and recovery. Drought-induced changes in root moisture content (RMC) showed positive linear correlations with leaf water content, stomatal conductance as well as transpirational water loss dynamics and a significant negative correlation with the corresponding drought-induced expression patterns of ascorbate, guaiacol peroxidase and proline in roots of V. radiata. The study provides new insights into the plant water status-dependent interrelationship between photosynthetic performance and major root defense responses of V. radiata under progressive drought conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Developing resilient green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sugarcane Initial Growth with Vinasse Application in Latosol under Gradual Aluminum Stress

    NASA Astrophysics Data System (ADS)

    Marques Viglio, Larissa; Leal Varanda, Leticia; Soares, Marcio Roberto; Casagrande, José Carlos

    2015-04-01

    One of the strategies for overcoming the high acidity of soils and the consequent toxicity of aluminum (Al) is based on the use of varieties adapted to these conditions. In Brazil, the application of vinasse is routine practice in the cultivation of sugarcane due to its fertilizing effect, mainly because of high potassium content. However, the vinasse may also attenuate the toxic effects of Al in the soil by forming complexes with low molecular weight organic acids providing greater depth of the root of sugarcane. The aim of this work was to evaluate the effect of vinasse on the initial growth of three cultivars of sugarcane (RB855453, RB966928 and RB867515), as well as its influence on root depth in a Dystrophic Red-Yellow Latosol (Typic Hapludox) with gradient of saturation by Al. The experiment was conducted in a greenhouse, in totally randomized design with factorial arrangement and three replications. Seedlings of sugarcane were transplanted to PVC columns 0.8 m high, built by stacking four rings (0.2 m high), filled with soil samples, which offered an increasing gradient of saturation by Al (m%) at depth (0-0.2 m (m% = 0,7); 0.2-0.4 m (m% = 7,9); 0.4-0.6 m (m %= 40.8); 0.6-0.8 m (m%= 62.6)). The collection of the experiment was conducted 120 days after planting, with the determination of the stalk diameter (DC), plant height (ALT), leaf nutrient content, dry matter of the aerial part (MSPA) and dry matter of the root system (MSSR). Cultivars of sugarcane and the application of vinasse had effect on DC and the MSSR. Cultivar RB867515 showed higher DC than in other cultivars, with 20.8 mm. The increase of MSSR by sugarcane cultivars varied due to depth. There were no effects of sugarcane cultivars and vinasse application in MSPA. The vinasse application resulted in plants with higher ALT. With the exception of the foliar content of Fe, the N, Ca, Mg, S and Mn content were below those considered appropriate for sugarcane. Unlike other cultivars, the application of vinasse provided adequate foliar content of P for RB867515.

  14. Modern calibration of Tussac grass (Poa flabellata) as a new paleoclimate proxy in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Groff, D. V.; Williams, D. G.; Gill, J. L.

    2017-12-01

    Monospecific stands of Tussac grasses (Poa flabellata) are a peat forming community found along coastal fringes of the Falkland Islands, and other sub-Antarctic islands in the South Atlantic region. Vegetation in peatlands record variation in regional precipitation and temperature in the cellulose of root and leaf plant tissues. A modern proof-of-concept study has determined how modern living P. flabellata records temperature, relative humidity, and precipitation using carbon (δ13C) and oxygen (δ18O) stable isotopes of leaf and root cellulose. At four locations in the Falkland Islands, P. flabellata plants were collected monthly and temperature (°C) and relative humidity (%) were measured continuously between September 1, 2015 to September 1, 2016. Monthly composite precipitation at each location was used to construct a local meteoric water line using δ2H and δ18O. Measurements of δ13C in leaf cellulose positively correlated with monthly average temperature (Pearson's r=0.82) and negatively correlated with relative humidity (Pearson's r = -0.76) across all sites, but not δ13C of root cellulose. Across all sites, the mean summer δ13C of leaf cellulose (-24.28‰) was significantly greater than winter (-26.80‰; t=8.91, df=73, p<0.001), and mean seasonal temperatures range from 9.32°C to 3.68°C for summer and winter, respectively. Measurements of δ18O in precipitation and leaf cellulose indicate a weak negative correlation (Pearson's r = -0.20), as well as δ18O in root cellulose (Pearson's r= -0.30). The δ13C isotope composition in leaf cellulose, along with the abundance of macrofossil P. flabellata leaves in peat deposits spanning the Holocene, supports the use of coastal grasslands formed by P. flabellata in the Falkland Islands as a paleoclimate proxy in the South Atlantic region.

  15. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    PubMed

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  16. Vegetative growth and cluster development in Shiraz grapevines subjected to partial root-zone cooling

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839

  17. Comparative effects of plant growth regulators on leaf and stem explants of Labisia pumila var. alata

    PubMed Central

    Ling, Anna Pick Kiong; Tan, Kinn Poay; Hussein, Sobri

    2013-01-01

    Objective: Labisia pumila var. alata, commonly known as ‘Kacip Fatimah’ or ‘Selusuh Fatimah’ in Southeast Asia, is traditionally used by members of the Malay community because of its post-partum medicinal properties. Its various pharmaceutical applications cause an excessive harvesting and lead to serious shortage in natural habitat. Thus, this in vitro propagation study investigated the effects of different plant growth regulators (PGRs) on in vitro leaf and stem explants of L. pumila. Methods: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L. Results: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34±19.55)% and (70.40±14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00±7.07)% and (77.78±16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5±5.0) and (30.0±8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00±0.00)%) that was obtained in 1 mg/L zeatin after (11.0±2.8) d of culture. Conclusions: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs. PMID:23825148

  18. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells.

    PubMed

    Harris, Cory S; Asim, Muhammad; Saleem, Ammar; Haddad, Pierre S; Arnason, John T; Bennett, Steffany A L

    2012-12-05

    The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control.

  19. Characterizing the cytoprotective activity of Sarracenia purpurea L., a medicinal plant that inhibits glucotoxicity in PC12 cells

    PubMed Central

    2012-01-01

    Background The purple pitcher plant, Sarracenia purpurea L., is a widely distributed species in North America with a history of use as both a marketed pain therapy and a traditional medicine in many aboriginal communities. Among the Cree of Eeyou Istchee in northern Québec, the plant is employed to treat symptoms of diabetes and the leaf extract demonstrates multiple anti-diabetic activities including cytoprotection in an in vitro model of diabetic neuropathy. The current study aimed to further investigate this activity by identifying the plant parts and secondary metabolites that contribute to these cytoprotective effects. Methods Ethanolic extracts of S. purpurea leaves and roots were separately administered to PC12 cells exposed to glucose toxicity with subsequent assessment by two cell viability assays. Assay-guided fractionation of the active extract and fractions was then conducted to identify active principles. Using high pressure liquid chromatography together with mass spectrometry, the presence of identified actives in both leaf and root extracts were determined. Results The leaf extract, but not that of the root, prevented glucose-mediated cell loss in a concentration-dependent manner. Several fractions elicited protective effects, indicative of multiple active metabolites, and, following subfractionation of the polar fraction, hyperoside (quercetin-3-O-galactoside) and morroniside were isolated as active constituents. Phytochemical analysis confirmed the presence of hyperoside in the leaf but not root extract and, although morroniside was detected in both organs, its concentration was seven times higher in the leaf. Conclusion Our results not only support further study into the therapeutic potential and safety of S. purpurea as an alternative and complementary treatment for diabetic complications associated with glucose toxicity but also identify active principles that can be used for purposes of standardization and quality control. PMID:23216659

  20. Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus

    USGS Publications Warehouse

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.

  1. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms

    USDA-ARS?s Scientific Manuscript database

    Upon attack by leaf-herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated this aspect in maize seedlings infested by the specialist root herbivore Diabrotica virgifera. By using...

  2. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.

    PubMed

    Zafar, Hira; Ali, Attarad; Zia, Muhammad

    2017-01-01

    Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

  3. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  4. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-01

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0 mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of Osbnd H in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland.

  5. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas.

  6. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants.

    PubMed

    Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B

    2017-09-01

    Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Proteomic Analysis of the Salt-Responsive Leaf and Root Proteins in the Anticancer Plant Andrographis paniculata Nees

    PubMed Central

    Rafii, Mohd Yusop; Maziah, Mahmood

    2014-01-01

    Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m−1 of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb. PMID:25423252

  8. Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: a comparison of canopy trees of three temperate deciduous angiosperms.

    PubMed

    Loewenstein, Nancy J.; Pallardy, Stephen G.

    1998-07-01

    Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.

  9. The outcome of ecosystem manipulation by elevating atmospheric CO2 is influenced by tree identity and mixture

    NASA Astrophysics Data System (ADS)

    Godbold, Douglas; Smith, Andrew; Lukac, Martin

    2013-04-01

    Free Air Carbon dioxide Enrichment (FACE) has often been used predict the response of forest ecosystems to a future high CO2 world. Many of these investigations have been restricted to exposure of single species or genotypes to elevated CO2. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 for 4 years. Aboveground woody biomass was increased in polyculture under both ambient and elevated CO2, but the response to elevated CO2 was smaller in polyculture than in the monocultures. In some years, a longer leaf retention was shown under high CO2, and is an indication that environmental factors may moderate tree response to high CO2. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were also measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots, and fine root area index. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our results show that the aboveground and belowground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits but also that other environmental factors may induce previously unseen effects.

  10. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability

    PubMed Central

    He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-01-01

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739

  11. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability

    NASA Astrophysics Data System (ADS)

    He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-11-01

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.

  12. Effects of Crown Scorch on Longleaf Pine Fine Roots

    Treesearch

    Mary Anne Sword; James D. Haywood

    1999-01-01

    Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...

  13. 7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...

  14. 7 CFR 201.56-1 - Goosefoot family, Chenopodiaceae, and Carpetweed family, Aizoaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves: Leaf-like cotyledons and... epicotyl usually does not show any development within the test period. (4) Root system: A primary root; secondary roots may develop within the test period. (5) Seedling: Frequent counts should be made on...

  15. Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.

    PubMed

    Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J

    2011-10-01

    Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.

  16. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon)

    PubMed Central

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-01-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8’-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0–2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions. PMID:23630325

  17. Study of cytokinin transport from shoots to roots of wheat plants is informed by a novel method of differential localization of free cytokinin bases or their ribosylated forms by means of their specific fixation.

    PubMed

    Veselov, Stanislav Yu; Timergalina, Leila N; Akhiyarova, Guzel R; Kudoyarova, Guzel R; Korobova, Alla V; Ivanov, Igor; Arkhipova, Tatiana N; Prinsen, Els

    2018-04-10

    The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine. The obtained data show ribosylation of the zeatin applied to the leaves and its elevated level in the phloem sap supported by in vivo localization showing the presence of ribosylated forms of zeatin in leaf vessels. This suggests that conversion of zeatin to its riboside is important for the shoot-to-root transport of zeatin-type cytokinins in wheat. Exogenous isopentenyladenine was not modified, but diffused from the leaves as free base. These metabolic differences may not be universal and may depend on the plant species and age. Although the measurements of cytokinins in the phloem sap and root tissue is the most defining for determining cytokinin transport, study of immunolocalization of either free cytokinin bases or their ribosylated forms may be a valuable source of information for predicting their transport in the phloem and to the roots.

  18. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  19. Carrot yellow leaf virus is associated with carrot internal necrosis.

    PubMed

    Adams, Ian P; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots.

  20. Kynurenic acid content in anti-rheumatic herbs.

    PubMed

    Zgrajka, Wojciech; Turska, Monika; Rajtar, Grażyna; Majdan, Maria; Parada-Turska, Jolanta

    2013-01-01

    The use of herbal medicines is common among people living in rural areas and increasingly popular in urbanized countries. Kynurenic acid (KYNA) is a metabolite of kynurenine possessing anti-inflammatory, anti-oxidative and pain reliving properties. Previous data indicated that the content of KYNA in the synovial fluid of patients with rheumatoid arthritis is lower than in patients with osteoarthritis. Rheumatoid arthritis is a chronic, systemic inflammatory disorder affecting about 1% of the world's population. The aim of the presented study was to investigate the content of KYNA in 11 herbal preparations used in rheumatic diseases. The following herbs were studied: bean pericarp, birch leaf, dandelion root, elder flower, horsetail herb, nettle leaf, peppermint leaf and willow bark. An anti-rheumatic mixture of the herbs Reumatefix and Reumaflos tea were also investigated. The herbs were prepared according to producers' directions. In addition, the herbal supplement Devil's Claw containing root of Harpagophytum was used. KYNA content was measured using the high-performance liquid chromatography method, and KYNA was detected fluorometrically. KYNA was found in all studied herbal preparations. The highest content of KYNA was found in peppermint, nettle, birch leaf and the horsetail herb. The lowest content of KYNA was found in willow bark, dandelion root and in the extract from the root of Harpagophytum. These findings indicate that the use of herbal preparations containing a high level of KYNA can be considered as a supplementary measure in rheumatoid arthritis therapy, as well as in rheumatic diseases prevention.

  1. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Scott, Jessenia M; Jackson, Mariah M Z; Greeman, Esther A; Greenidge, Ariane S; Cohen, Devin O; Volkova, Maia I; Shtessel, Yuri B

    2017-02-01

    Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  3. Using soil microbial inoculations to enhance substrate performance on extensive green roofs.

    PubMed

    Molineux, Chloe J; Gange, Alan C; Newport, Darryl J

    2017-02-15

    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing rooftop conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    PubMed Central

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology. PMID:26368936

  5. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    PubMed

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology.

  6. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Leaf water status and root system water flux of shortleaf pine (Pinus echinata Mill.) seedlings in relation to new root growth after transplanting

    Treesearch

    John C. Brissette; Jim L. Chambers

    1992-01-01

    Water relations and root growth of shortleaf pine (Pinus echinata Mill.) were studied four weeks after seedlings from a half-sib family had been transplanted to one of three regimes of soil water availability at a root zone temperature of either 15 or 20 °C. About one-third of the variation in new root growth was explained by the root zone...

  8. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.

    PubMed

    Khalvati, M A; Hu, Y; Mozafar, A; Schmidhalter, U

    2005-11-01

    Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.

  9. Sorption of polyphenolics (tannins) to natural soils

    USDA-ARS?s Scientific Manuscript database

    Tannins enter soil systems via rainfall through the leaf canopy, leaf litter decomposition, and root exudation and decomposition. For tannins released into soils, the relative importance of sorption to soil; chemical reactions with soil minerals; and biological decomposition is unknown. Determinin...

  10. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.

    PubMed

    Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph

    2008-10-01

    Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.

  11. Internal aeration of paddy field rice (Oryza sativa) during complete submergence---importance of light and floodwater O2.

    PubMed

    Winkel, Anders; Colmer, Timothy D; Ismail, Abdelbagi M; Pedersen, Ole

    2013-03-01

    Flash floods can submerge paddy field rice (Oryza sativa), with adverse effects on internal aeration, sugar status and survival. Here, we investigated the in situ aeration of roots of rice during complete submergence, and elucidated how underwater photosynthesis and floodwater pO(2) influence root aeration in anoxic soil. In the field, root pO(2) was measured using microelectrodes during 2 d of complete submergence. Leaf gas films that formed on the superhydrophobic leaves were left intact, or experimentally removed, to elucidate their effect on internal aeration. In darkness, root pO(2) declined to very low concentrations (0.24 kPa) and was strongly correlated with floodwater pO(2). In light, root pO(2) was high (14 kPa) and primarily a function of the incident light determining the rates of underwater net photosynthesis. Plants with intact leaf gas films maintained higher underwater net photosynthesis relative to plants without gas films when the submerged shoots were in light. During complete submergence, internal aeration of rice in the field relies on underwater photosynthesis during the day and entry of O(2) from the floodwater during the night. Leaf gas films enhance photosynthesis during submergence leading to improved O(2) production and sugar status, and therefore contribute to the submergence tolerance of rice. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  13. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant

    DOE PAGES

    Wagner, Maggie R.; Lundberg, Derek S.; del Rio, Tijana G.; ...

    2016-07-12

    Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome ismore » evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.« less

  14. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations.

    PubMed

    Li, Min-Jing; Xiong, Zhi-Ting; Liu, Hui; Kuo, Yi-Ming; Tong, Lei

    2016-10-02

    Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.

  15. Changes in δ(13)C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants.

    PubMed

    Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Sketriené, Diana; Lamothe-Sibold, Marlène; Werner, Roland A

    2015-01-01

    Carbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.5‰, while root-respired CO2 became (13)C-depleted reaching around -31‰ at the four-leaf stage. The opposite respiratory fractionation in leaves vs. roots already reported for C3 herbs was thus confirmed for peanuts. However, contrarily to beans, the peanut cotyledon-respired CO2 was markedly (13)C-enriched, and its (13)C-depletion was noted from the two-leaf stage onwards only. Carbohydrate amounts being very low in peanut seeds, this cannot be attributed solely to their use as respiratory substrate. The potential role of isotope fractionation during glyoxylate cycle and/or gluconeogenesis on the (13)C-enriched cotyledon-respired CO2 is discussed.

  16. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species

    PubMed Central

    Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.

    2014-01-01

    The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777

  17. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining intraspecific variation in salt tolerance. Plant morphology (size attributes) were strongly associated with salt tolerance in P. hemitomon, weakly associated with salt tolerance in S. patens, and not associated with salt tolerance in S. alterniflora. Highly salt-tolerant populations of Spartina alterniflora displayed the greatest ion selectivity (lower leaf Na+/K+ ratios), which was not displayed by the other two species. These results suggest that plant size attributes can be very important in explaining population differences in salt tolerance in glycophytes, but may be independent of salt tolerance in halophytes, which have specialized physiological (and/or anatomical) adaptations that can confer salinity stress resistance through mechanisms such as selective ion exclusion and secretion. ?? 2001 Elsevier Science B.V. All rights reserved.

  18. Effects of peach tree root system morphology and transpiration on leaf nitrogen and phosphorus

    USDA-ARS?s Scientific Manuscript database

    Adequate mineral nutrition is critical for high fruit quality and sustained yield of fruit trees. It is likely that nutritional competence of a fruit tree depends on several physiological and morphological traits that affect nutrient uptake. Fruit trees with improved root systems (own-rooted or as ...

  19. MINERAL AND BIOCHEMICAL ANALYSIS OF VARIOUS PARTS OF CISSUS QUADRANGULARIS LINN

    PubMed Central

    Udayakumar, R.; Sundaran, M.; Krishna, Raghuram

    2004-01-01

    Ash, minerals and biochemical contents were determined in various parts of root, stem and leaf of Cissus quadrangularis. The maximum ash content was observed in the root. The maximum concentration of carbohydrate and protein in the root and phosphorus, iron, calcium and lipids in the stem were observed. PMID:22557157

  20. [Changes of transport sugar content in different organs of Rehmannia glutinosa].

    PubMed

    Wang, Dong-Hui; Liao, Na; Sun, Peng; Ji, Xue-Qi; Li, Xian-En; Qin, Min-Jian

    2018-04-01

    Raffinose series oligosaccharides are the transport and storage sugars of many plants, Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, medicinal parts ist he roots. Root and tuber of R. glutinosa contains stachyose, raffinose and other oligosaccharides, but the study about the process of growth and development of other organs in the non-structural changes in sugar content is rare.In this study, leaves, stems and roots of R. glutinosa were used as materials to analyze the diurnal variation and the changes of sugar content of sucrose, raffinose and stachyose in different organs of R. glutinosa. The results showed that the content of sucrose in R. glutinosa leaves gradually increased from seedling stage.However, the content of stachyose did not change much at the early stage of growth, and the stachyose rapidly increased at the later stage of growth. The raffinose content gradually decreased throughout the growing season, young leaves of R. glutinosa have higher ability to sucrose synthesis than mature leaves, while mature leaf has higher raffinose and stachyose synthesis ability than young leaves. Sucrose and stachyose content in stem gradually increased, while there was little change in raffinose content. The content of raffinose and stachyose in root increased rapidly from the beginning of fast growing period, while the content of sucrose did not change much. The content of sucrose in leaves of R. glutinosa did not change much at day and night, while the daily changes of raffinose and stachyose contents were very obvious. The contents of raffinose and stachyose in daytime were higher than those at night. The content of raffinose in root and stem was not changed much, but the change of stachyose in root, stem and leaf was very obvious, especially in stem and leaf. In summary, the leaf is the main synthetic organ of raffinose, leaves, stems and roots are stachyose synthesis organ. Sucrose, raffinose and stachyose are the major transport forms of carbohydrates in R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  1. Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005

    USGS Publications Warehouse

    Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.

    2007-01-01

    Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.

  2. Changes in Root Decomposition Rates Across Soil Depths

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Porras, R. C.; Castanha, C.; Torn, M. S.

    2016-12-01

    Over half of global soil organic carbon (SOC) is stored in subsurface soils (>30 cm). Turnover times of soil organic carbon (SOC) increases with depth as evidenced by radiocarbon ages of 1,000 to more than 10,000 years in many deep soil horizons but the reasons for this increase are unclear. Many factors that potentially control SOC decomposition change with depth such as increased protection of SOC in aggregates or organo-mineral complexes and increased spatial heterogeneity of SOC "hotspots" like roots, which limit the accessibility of SOC to microbes. Lower concentrations of organic matter at depth may inhibit microbial activity due to energy limitation, and the microbial community itself changes with depth. To investigate how SOC decomposition differs with depth, we inserted a 13C-labeled fine root substrate into three depths (15, 50, and 90 cm) in a coniferous forest Alfisol and measured the root carbon remaining in particulate (>2 mm), bulk (< 2mm), free light, and mineral soil fractions over 2.5 years. We also characterized how the microbial community and SOC changed with depth. Initial rates of decomposition were unaffected by soil depth—50% of root carbon was lost from all depths within the first year. However, after 2.5 years, decomposition rates were affected by soil depth with only 15% of the root carbon remaining at 15 cm while 35% remained at 90 cm. Microbial communities, based on phospholipid fatty acid analysis, changed with depth—fungal biomarkers decreased whereas actinomycetes biomarkers increased. However, the preferences of different microbial groups for the 13C-labeled root carbon were consistent with depth. In contrast, the amount of mineral-associated SOC did not change with depth. Thus, decreased decomposition rates in this deep soil are not due to mineral associations limiting SOC availability, but may instead be due to changes in microbial communities, particularly in the microbes needed to carry out the later stages of root decomposition.

  3. Machine vision guided sensor positioning system for leaf temperature assessment

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.

  4. Overproduction of Abscisic Acid in Tomato Increases Transpiration Efficiency and Root Hydraulic Conductivity and Influences Leaf Expansion1[OA

    PubMed Central

    Thompson, Andrew J.; Andrews, John; Mulholland, Barry J.; McKee, John M.T.; Hilton, Howard W.; Horridge, Jon S.; Farquhar, Graham D.; Smeeton, Rachel C.; Smillie, Ian R.A.; Black, Colin R.; Taylor, Ian B.

    2007-01-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in δ13C and δ18O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty. PMID:17277097

  5. Growth, allometry and shade tolerance of understory saplings of four subalpine conifers in central Japan.

    PubMed

    Takahashi, Koichi; Obata, Yoshiko

    2014-03-01

    The conifers Abies veitchii, A. mariesii, Picea jezoensis var. hondoensis, Tsuga diversifolia dominate in subalpine forests in central Japan. We expected that species differences in shade tolerance and in aboveground and belowground architecture are important for their coexistence. We examined net production and carbon allocation of understory saplings. Although the four species allocated similar amounts of biomass to roots at a given trunk height, the root-zone area of T. diversifolia was greater than that of the three other species. T. diversifolia often dominates shallow soil sites, such as ridge and rocky slopes, and, therefore, a wide spread of lateral roots would be an adaptation to such edaphic conditions. Crown width and leaf and branch mass were greatest for T. diversifolia and A. mariesii, followed in order by A. veitchii and P. jezoensis var. hondoensis. Although leaf mass of P. jezoensis var. hondoensis was lowest among the four species, species differences were not found in the net production per sapling because net production per leaf mass was greatest for P. jezoensis var. hondoensis. The leaf lifespan was longer in the order A. mariesii, T. diversifolia, P. jezoensis var. hondoensis and A. veitchii. The minimum rate of net production per leaf mass required to maintain the current sapling leaf mass (MRNP(LM)) was lowest in A. mariesii and T. diversifolia, and increased in the order of A. veitchii and P. jezoensis var. hondoensis. A. mariesii and T. diversifolia may survive in shade conditions by a lower MRNP(LM) than the two other species. Therefore, species differences in aboveground and belowground architecture and MRNPLM reflected their shade tolerance and regeneration strategies, which contribute to their coexistence.

  6. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    PubMed

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  7. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice.

    PubMed

    Li, Cheng-Cheng; Dang, Fei; Li, Min; Zhu, Min; Zhong, Huan; Hintelmann, Holger; Zhou, Dong-Mei

    2017-06-01

    The widespread use of silver nanoparticles (AgNPs) raises concerns both about their accumulation in crops and human exposure via crop consumption. Plants take up AgNPs through their leaves and roots, but foliar uptake has been largely ignored. To better understand AgNPs-plant interactions, we compared the uptake, phytotoxicity and size distribution of AgNPs in soybean and rice following root versus foliar exposure. At similar AgNP application levels, foliar exposure led to 17-200 times more Ag bioaccumulation than root exposure. Root but not foliar exposure significantly reduced plant biomass, while root exposure increased the malondialdehyde and H 2 O 2 contents of leaves to a larger extent than did foliar exposure. Following either root or foliar exposure, Ag-containing NPs larger (36.0-48.9 nm) than the originally dosed NPs (17-18 nm) were detected within leaves. These particles were detected using a newly developed macerozyme R-10 tissue extraction method followed by single-particle inductively coupled plasma mass spectrometry. In response to foliar exposure, these NPs were stored in the cell wall and plamalemma of leaves. NPs were also detected in planta following Ag ion exposure, indicating their in vivo formation. Leaf-to-leaf and root-to-leaf translocation of NPs in planta was observed but the former did not alter the size distribution of the NPs. Our observations point to the possibility that fruits, seeds and other edible parts may become contaminated by translocation processes in plants exposed to AgNPs. These results are an important contribution to improve the risk assessment of NPs under environmental exposure scenarios.

  8. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    PubMed

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.

  10. Influence of invasive earthworm activity on carbon dynamics in soils from the Aspen Free Air CO2 Enrichment Experiment

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Top, S. M.; Hopkins, F. M.

    2010-12-01

    The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm) based upon exotic earthworm activity. The isotopic analysis also demonstrates that these invasive ecosystem engineers are bringing up “old” pre-FACE carbon to the surface, diluting the surface soil carbon isotope signature and potentially causing an apparent “slowing” of the rate of accumulation of FACE derived carbon. Our results highlight the complexity of determining soil C dynamics and the important role of invertebrate ecology in this process.

  11. Comparative study of teratogenic potentials of crude ethanolic root bark and leaf extract of Rauwolfia vomitoria (apocynaceae) on the fetal heart

    PubMed Central

    Eluwa, Mokutima A.; Udoaffah, Matilda T.; Vulley, Moses B. G.; Ekanem, Theresa B.; Akpantah, Amabe O.; Asuquo, Olaitan A.; Ekong, Moses B.

    2010-01-01

    Background: Rauwolfia vomitoria, a tropical shrub, is a medicinal plant used in the treatment of a variety of ailments. It is popular to the locals because of its anti-hypertensive and sedative properties. Aim: This is to find the probable teratogenic effects of ethanolic leaf and root bark extracts of Rauwolfia vomitoria on the morphological and histological features of the fetal heart. Material and Methods: Twenty five female rats weighing between 170-200g were used for this study. The rats were divided into five groups labeled A, B, C, D and E, with each group consisting of five rats. Pregnancy was induced by caging the female rats with sexually matured males. The presence of vaginal plug and tail structures in the vaginal smear the following morning confirmed coition, and it was regarded as day 0 of pregnancy. Group A was given sham treatment of distilled water. Group B and C received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic leaf extract of Rauwolfia vomitoria, and those in groups D and E received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic root bark extract of Rauwolfia vomitoria. These treatments were on days 7-11 of gestation (5 days) with the aid of an orogastric tube. On the day 20 of gestation, the rats were sacrificed and the fetuses examined for gross anomalies, preserved and latter process for histological studies. Results: There were no mortality in this study, and no obvious gross malformations in the fetuses. Histological observations of the fetal heart showed marked distortion of the cardiac muscle nuclei and myocardial fibers in the treated groups particularly those whose mothers received 250mg/kg of the extracts. These effects were more pronounced in the groups whose mothers received the root extract when compared with the control and the groups whose mothers received the leaf extract. Conclusion: This result suggests that high doses of ethanolic leaf and root extracts of Rauwolfia vomitoria may be cardiotoxic to the developing rat's heart. PMID:22558573

  12. Comparative study of teratogenic potentials of crude ethanolic root bark and leaf extract of Rauwolfia vomitoria (apocynaceae) on the fetal heart.

    PubMed

    Eluwa, Mokutima A; Udoaffah, Matilda T; Vulley, Moses B G; Ekanem, Theresa B; Akpantah, Amabe O; Asuquo, Olaitan A; Ekong, Moses B

    2010-12-01

    Rauwolfia vomitoria, a tropical shrub, is a medicinal plant used in the treatment of a variety of ailments. It is popular to the locals because of its anti-hypertensive and sedative properties. This is to find the probable teratogenic effects of ethanolic leaf and root bark extracts of Rauwolfia vomitoria on the morphological and histological features of the fetal heart. Twenty five female rats weighing between 170-200g were used for this study. The rats were divided into five groups labeled A, B, C, D and E, with each group consisting of five rats. Pregnancy was induced by caging the female rats with sexually matured males. The presence of vaginal plug and tail structures in the vaginal smear the following morning confirmed coition, and it was regarded as day 0 of pregnancy. Group A was given sham treatment of distilled water. Group B and C received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic leaf extract of Rauwolfia vomitoria, and those in groups D and E received respectively 150mg/kg and 250mg/kg body weight doses of ethanolic root bark extract of Rauwolfia vomitoria. These treatments were on days 7-11 of gestation (5 days) with the aid of an orogastric tube. On the day 20 of gestation, the rats were sacrificed and the fetuses examined for gross anomalies, preserved and latter process for histological studies. There were no mortality in this study, and no obvious gross malformations in the fetuses. Histological observations of the fetal heart showed marked distortion of the cardiac muscle nuclei and myocardial fibers in the treated groups particularly those whose mothers received 250mg/kg of the extracts. These effects were more pronounced in the groups whose mothers received the root extract when compared with the control and the groups whose mothers received the leaf extract. This result suggests that high doses of ethanolic leaf and root extracts of Rauwolfia vomitoria may be cardiotoxic to the developing rat's heart.

  13. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  14. Drought induced changes of leaf-to-root relationships in two tomato genotypes.

    PubMed

    Moles, Tommaso Michele; Mariotti, Lorenzo; De Pedro, Leandro Federico; Guglielminetti, Lorenzo; Picciarelli, Piero; Scartazza, Andrea

    2018-07-01

    Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H 2 O 2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Comparison of cadmium absorption, translocation, subcellular distribution and chemical forms between two radish cultivars (Raphanus sativus L.).

    PubMed

    Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao

    2017-11-01

    Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Data Mining Feature Subset Weighting and Selection Using Genetic Algorithms

    DTIC Science & Technology

    2002-03-01

    seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf- spot, diaporthe-pod-&-stem-blight, cyst - nematode , 2-4-d-injury...seed-discolor: absent,present,?. 33. seed-size: norm,lt-norm,?. 34. shriveling: absent,present,?. 35. roots: norm,rotted,galls- cysts

  17. Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

    PubMed

    Stutz, Samantha S; Anderson, Jeremiah; Zulick, Rachael; Hanson, David T

    2017-05-17

    High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. [Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis].

    PubMed

    Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Wang, Peng; Wang, Shi-Dan; Mu, Shi-Nan; Liang, Ming; Sun, Guang-Yu

    2012-07-01

    A field investigation was conducted to study the effects of intercropping Morus aIba and Setaria italica on their dry matter production, land use efficiency, and diurnal variation of leaf photosynthesis. Under intercropping, the plant height, basal diameter, root length, and branch number of M. alba increased by 6.0%, 13.7%, 6.8%, and 14.8%, respectively, and the leaf yield of M. alba was increased by 31.3%, as compared with monoculture M. alba. In contrast, the plant height and root length of intercropped S. italica had no significant difference with those of monoculture S. italica. Intercropping enhanced the equivalent ratio and use efficiency of arable land. For both M. alba and S. italica in monoculture or intercropping, their leaf photosynthetic depression all occurred at midday (12 :00), but the leaf photosynthetic depression of monoculture M. alba was heavier than that of intercropped M. alba. Intercropping promoted the leaf stomatal conductance (g(s)) and water use efficiency (WUE) of M. alba at midday, increased the photosynthetic carbon assimilation of M. alba, and inhibited the decline of M. alba leaf actual photochemical efficiency of PS II (phi(PS II)), photosynthetic electron transport rate (ETR), and the maximal photochemical of PS II (F(v)/F(m)) , which might contribute to alleviate the leaf photosynthetic depression of M. alba at midday. It was concluded that M. alba and S. italica intercropping could obviously improve the leaf photosynthetic capacity of M. alba.

  19. Resistance mechanisms and their difference between the root and leaf of Microsorum pteropus - A novel potential aquatic cadmium hyperaccumulator.

    PubMed

    Lan, Xin-Yu; Yang, Bin; Yan, Yun-Yun; Li, Xin-Yuan; Xu, Fu-Liu

    2018-03-01

    Microsorum pteropus (M. pteropus), an aquatic Polypodiaceae fern, was identified as a novel potential cadmium (Cd) hyperaccumulator in our previous study. This study reveals the Cd-resistance mechanisms and their difference between the root and leaf of M. pteropus based on analyses of photosynthesis, antioxidant systems and gene expression. A high level of Cd at 500μM was used to treat the samples to test the effects of this compound. Superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA) and flavonoids were used as indicators for antioxidant system changes. Five chlorophyll fluorescent parameters including the maximal photochemical efficiency of photosystem II (F v /F m ), effective quantum yield of photosystem II (Y(II)), photochemical quenching (qP), nonphotochemical quenching (qN) and electron transport rate (ETR) were measured to determine the photosynthetic changes. RNA-sequencing analysis was used to study the changes in gene expression. The results showed that after exposure to high levels of Cd, the concentrations of enzymatic oxidants (SOD and POD) were significantly increased, while the MDA levels were significantly decreased. There were no significant changes for the chlorophyll fluorescent parameters during Cd stress, which indicates that M. pteropus is highly effective at protecting itself. Certain functional genes, including photosystem genes and secondary metabolites, had significantly altered levels of expression. Different Cd-resistance mechanisms were found between the root and leaf tissues of M. pteropus. The root tissues of M. pteropus resist Cd damage using antioxidants, while its leaf tissues mainly protect themselves using photosystem self-protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Carrot yellow leaf virus Is Associated with Carrot Internal Necrosis

    PubMed Central

    Adams, Ian P.; Skelton, Anna; Macarthur, Roy; Hodges, Tobias; Hinds, Howard; Flint, Laura; Nath, Palash Deb; Boonham, Neil; Fox, Adrian

    2014-01-01

    Internal necrosis of carrot has been observed in UK carrots for at least 10 years, and has been anecdotally linked to virus infection. In the 2009 growing season some growers had up to 10% of yield with these symptoms. Traditional diagnostic methods are targeted towards specific pathogens. By using a metagenomic approach with high throughput sequencing technology, other, as yet unidentified causes of root necrosis were investigated. Additionally a statistical analysis has shown which viruses are most closely associated with disease symptoms. Carrot samples were collected from a crop exhibiting root necrosis (102 Affected: 99 Unaffected) and tested for the presence of the established carrot viruses: Carrot red leaf virus (CtRLV), Carrot mottle virus (CMoV), Carrot red leaf associated viral RNA (CtRLVaRNA) and Parsnip yellow fleck virus (PYFV). The presence of these viruses was not associated with symptomatic carrot roots either as single viruses or in combinations. A sub-sample of carrots of mixed symptom status was subjected to MiSeq sequencing. The results from these tests suggested Carrot yellow leaf virus (CYLV) was associated with symptomatic roots. Additionally a novel Torradovirus, a novel Closterovirus and two novel Betaflexiviradae related plant viruses were detected. A specific diagnostic test was designed for CYLV. Of the 102 affected carrots, 98% were positive for CYLV compared to 22% of the unaffected carrots. From these data we conclude that although we have yet to practically demonstrate a causal link, CYLV appears to be strongly associated with the presence of necrosis of carrots. PMID:25365290

  1. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress.

    PubMed

    Alarcón, Alejandro; Davies, Frederick T; Egilla, Johnatan N; Fox, Theodore C; Estrada-Luna, Arturo A; Ferrera-Cerrato, Ronald

    2002-01-01

    Arbuscular mycorrhizal fungi (AMF) are able to increase root enzymatic activity of acid and alkaline phosphatases. However, the role of AMF on phosphatase activity has not been reported in papaya (Carica papaya L.), which is frequently established at places with soil phosphorus (P) deficiencies. The goals of this research were to determine the effect of Glomus claroideum (Gc), and plant growth promoting rhizobacterium Azospirillum brasilense strain VS7 [Ab]) on root phosphatase activity and seedling growth of Carica papaya L. cv. Red Maradol under low P conditions. There were four treatments-colonization with: 1) Gc, 2) Ab, 3) Gc+Ab, and 4) non-inoculated seedlings. Plants were established in a coarse sand:sandy loam substrate under P-limitation (11 microg P ml(-1)), supplied with a modified Long Ashton Nutrient Solution. Seedling growth was severely reduced by low P. Gc+Ab inoculated plants had greater total dry matter and leaf area than non-colonized plants. Gc-inoculated plants had greater leaf area than non-colonized plants. Treatments did not differ in leaf area ratio, specific leaf area and, total chlorophyll content. There was a non-significant effect on stem relative growth rate with Gc and Gc+Ab plants. Mycorrhizal colonization enhanced the bacterial population 3.4-fold in the Gc+Ab treatment compared with the population quantified in Ab treatment. Soluble and extractable root acid phosphatase activity (RAPA) was higher in Gc inoculated plants. We discussed on the possible relation among both inoculated microorganisms and also with the P-limitation which plants were established.

  3. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  4. Effects of temperature and photoperiod on postponing bermudagrass (Cynodon dactylon [L.] Pers.) turf dormancy.

    PubMed

    Esmaili, Somayeh; Salehi, Hassan

    2012-06-15

    Growth chamber and field experiments were carried out to determine the effects of extended photoperiod under low and freezing temperatures on bermudagrass turf dormancy at Bajgah, in the southern part of Iran. The experiment in the growth chamber was conducted with four temperature regimes (15, 7.5, 0 and -7.5°C) and three light durations (8, 12 and 16h) in a completely randomized design with four replications. The field study was conducted in two consecutive years (2008-2009) with three light durations (8, 12 and 16h) in months with natural short day length and arranged in a randomized complete blocks design with three replications. Results in both experiments showed that decreasing temperature and photoperiod decreased verdure fresh and dry weight, shoot height, tiller density, leaf area and chlorophyll and relative water contents (RWC). However, rooting depth and fresh weight of roots increased in the growth chamber. Decreasing the temperature and light duration increased electrolyte leakage and proline content. Reducing sugars increased with decreasing temperature and declined with lowering light duration in both shoots and roots. Starch content of both shoots and roots showed an adverse trend compared to reducing sugars; starch content increased in both shoots and roots in all treatments by shortening the photoperiod. Practically, the problem of bermudagrass turf's dormancy could be solved via increasing the photoperiod in months with short day lengths. This treatment would be efficient and useful for turfgrass managers to apply in landscapes and stadiums. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  6. De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens

    PubMed Central

    Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang

    2015-01-01

    Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235

  7. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    PubMed

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  8. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  9. Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea.

    PubMed

    Cruchaga, Saioa; Artola, Ekhiñe; Lasa, Berta; Ariz, Idoia; Irigoyen, Ignacio; Moran, Jose Fernando; Aparicio-Tejo, Pedro M

    2011-03-01

    The application of urease inhibitors in conjunction with urea fertilizers as a means of reducing N loss due to ammonia volatilization requires an in-depth study of the physiological effects of these inhibitors on plants. The aim of this study was to determine how the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) affects N metabolism in pea and spinach. Plants were cultivated in pure hydroponic culture with urea as the sole N source. After 2 weeks of growth for pea, and 3 weeks for spinach, half of the plants received NBPT in their nutrient solution. Urease activity, urea and ammonium content, free amino acid composition and soluble protein were determined in leaves and roots at days 0, 1, 2, 4, 7 and 9, and the NBPT content in these tissues was determined 48h after inhibitor application. The results suggest that the effects of NBPT on spinach and pea urease activity differ, with pea being most affected by this treatment, and that the NBPT absorbed by the plant caused a clear inhibition of the urease activity in pea leaf and roots. The high urea concentration observed in leaves was associated with the development of necrotic leaf margins, and was further evidence of NBPT inhibition in these plants. A decrease in the ammonium content in roots, where N assimilation mainly takes place, was also observed. Consequently, total amino acid contents were drastically reduced upon NBPT treatment, indicating a strong alteration of the N metabolism. Furthermore, the amino acid profile showed that amidic amino acids were major components of the reduced pool of amino acids. In contrast, NBPT was absorbed to a much lesser degree by spinach plants than pea plants (35% less) and did not produce a clear inhibition of urease activity in this species. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Plant traits and decomposition: are the relationships for roots comparable to those for leaves?

    PubMed Central

    Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine

    2012-01-01

    Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881

  11. Physiological and Comparative Proteomic Analysis Reveals Different Drought Responses in Roots and Leaves of Drought-Tolerant Wild Wheat (Triticum boeoticum)

    PubMed Central

    Liu, Hui; Sultan, Muhammad Abdul Rab Faisal; Liu, Xiang li; Zhang, Jin; Yu, Fei; Zhao, Hui xian

    2015-01-01

    To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum), physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control), 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA) level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs) (corresponding to 87 and 80 unique proteins, respectively) in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism was down-regulated in the roots, but enhanced in the leaves. These results will contribute to the existing knowledge on the complexity of root and leaf protein changes that occur in response to drought, and also provide a framework for further functional studies on the identified proteins. PMID:25859656

  12. Rrhizogenesis in vitro is a convenient model for studying the root graviperceptive apparatus formation in microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Sarnatska, Veresa; Ovcharenko, Yulia

    A root graviperceptive apparatus is known to form in microgravity but does not function in the absence of a gravitational vector, that has been shown in many spaceflight experiments with seedlings of different plant species. In statocytes, which are differentiated in microgravity, a nucleus is localized in the proximal part of a cell as at 1 g. Unlike control, amyloplastsstatoliths do not sedimented in the distal part of a cell in microgravity, they group in the cell center more often, sometimes they localized in the different part of a cell. In all these experiments, the objects of investigations were embryonal roots formed in seeds at 1 g. There is only single report that columella cells in roots, which developed de novo from callus in space flight, did not differentiate in statocytes. Therefore, we call to attention to rhizogenesis in vitro as a convenient model for studying the influence of microgravity on differentiation of a root graviperceptive apparatus. Two methods for obtaining of Arabidopsis thaliana roots in vitro are proposed: the first-from the primary callus of leaf origin and the second - from leaf fragments. Callus initiation and growth are successful on MS medium supplemented with vitamin B5, glycine, inositol, 2,4-D, kinetin, glucose and agar. For induction of rhizogenesis calli were transferred to medium without hormones or medium which contained one to ten of MS mineral salts and microelements, without vitamins and hormones. Rhyzogenesis was obtained without added growth substances, but considerably higher number of calli with roots and number of roots per callus are on MS medium diluted tenfold. Rhizogenesis in A. thaliana leaf segments should present no problem, but the most intensive root formation is obtained when culturing them for three day on diluted MS medium supplemented with salycilic acid and then on diluted MS medium only. The low temperature treatment for three days increases the number of roots formed. A role of both plasticity and positional keys in vivo and in vitro root development at 1 g and under clinorotation is discussed.

  13. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    PubMed Central

    Li, Hailiang; C. Crabbe, M. James; Wang, Weiling; Ma, Lihui; Niu, Ruilong; Gao, Xing; Li, Xingxing; Zhang, Pei; Ma, Xin; Chen, Haikui

    2017-01-01

    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. We used long-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L. principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type and sampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P and N:P throughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:N and C:P but lower N and N:P, and the roots had greater P and C:N but lower N, C:P and N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes a valuable contribution to the global data pool on leaf nutrition and stoichiometry. PMID:28938020

  14. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    PubMed

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  15. The impact of application of biocar on peanuts growing

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Liu, Xiaohua; Li, Na; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2017-12-01

    The object of this study was to investigate the impact of application biocar on peanuts growing. It was based on a long-term fertilization experiment which researched the effect of applying different amounts of biochar and BBF when continuously cropping peanuts for 5 years. There were five treatments: no fertilizer, low level of biochar (C15), high level of biochar (C50), chemical nitrogen-phosphorus-potassium (NPK) fertilizer and biochar-based fertilization (BBF).We determined peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll at every growth stages in 2016. The results showed that all fertilization can increase these indexes and in application of NPK improve them the most which close to BBF. The peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll was higher than the same level carbon treatment (C15) 62.85%, 6.67%, 18.73% and 25.58%, respectively. Expect stem and leaf weight, plant height, root weight and chlorophyll were higher when high level biochar (C50) applied than the low one (C15).

  16. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.

    PubMed

    Yu, Shunhui; Sheng, Li; Zhang, Chunyan; Deng, Hongping

    2018-06-05

    The present paper deals with the physiological response of the changes in chemical contents of the root, stem and leaf of Arundo donax seedlings stressed by excess cadmium using Fourier transform infrared spectroscopy technique, cadmium accumulation in plant by atomic absorption spectroscopy were tested after different concentrations cadmium stress. The results showed that low cadmium concentrations (<1.0mg/L) the root tissue of Arundo donax uses osmosis of organic substances (e.g. carbohydrates and amino acids) to improve cadmium tolerance. Organic substances (e.g. carbohydrates) that contain a lot of OH in leaf were transported to the root firstly and then could chelate cadmium, but no obvious changes in stems were noted. The cadmium in the shoots (stem and leaf) usually increased with increasing cadmium concentration. These studies demonstrate the potential of Fourier transform infrared spectroscopy technique for the non-invasive and rapid monitoring of the plants stressed with heavy metals, Arundo donax is suitable for phytoremediation of cadmium -contaminated wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Ozone Sensitivity in Sweet Corn (Zea mays L.) Plants: A Possible Relationship to Water Balance

    PubMed Central

    Harris, Michael J.; Heath, Robert L.

    1981-01-01

    Stomatal characteristics affecting gas exchange were compared in two sweet corn hybrids (var. Bonanza and Monarch Advance) which differ in foliar ozone sensitivity. No significant differences were observed in stomatal frequencies, guard cell lengths, or conductances to water vapor diffusion. When plant water status was compared, leaf-water potentials for the ozone-resistant cultivar, Bonanza, were lower. A comparison of the relationship between soil- and leaf-water potential indicated that the leaf-water potential of Bonanza was more sensitive to declines in soil-water potential. Additionally, a comparison of stomatal conductance to water vapor diffusion as soil moisture declined and following root detachment indicated that stomata of Bonanza were, likewise, more sensitive to increasing water stress. Data suggest that these differences are attributable to a greater shoot-to-root fresh weight ratio and higher resistance to water movement in the water-conducting tissues for Bonanza. Our observations suggest that root and water delivery system characteristics play a major contributory role in the determination of foliar ozone sensitivity in this species. PMID:16662019

  18. The effect of EDTA in attachment gain and root coverage.

    PubMed

    Kassab, Moawia M; Cohen, Robert E; Andreana, Sebastiano; Dentino, Andrew R

    2006-06-01

    Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P<.01).

  19. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops.

    PubMed

    Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K

    2018-02-07

    Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root crops exhibited differential accumulation patterns in leaf and storage root tissues. Our results suggest that the PTB1/6-like orthologues and their putative targets, BEL5- and POTH1-like mRNAs, from storage root crops could interact physically, similar to that in potato, and potentially, could function as key molecular signals controlling storage organ development in root crops.

  20. Possible Roles of Strigolactones during Leaf Senescence

    PubMed Central

    Yamada, Yusuke; Umehara, Mikihisa

    2015-01-01

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence. PMID:27135345

  1. Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna.

    PubMed

    Holdo, Ricardo M; Nippert, Jesse B; Mack, Michelle C

    2018-01-01

    A significant fraction of the terrestrial biosphere comprises biomes containing tree-grass mixtures. Forecasting vegetation dynamics in these environments requires a thorough understanding of how trees and grasses use and compete for key belowground resources. There is disagreement about the extent to which tree-grass vertical root separation occurs in these ecosystems, how this overlap varies across large-scale environmental gradients, and what these rooting differences imply for water resource availability and tree-grass competition and coexistence. To assess the extent of tree-grass rooting overlap and how tree and grass rooting patterns vary across resource gradients, we examined landscape-level patterns of tree and grass functional rooting depth along a mean annual precipitation (MAP) gradient extending from ~ 450 to ~ 750 mm year -1 in Kruger National Park, South Africa. We used stable isotopes from soil and stem water to make inferences about relative differences in rooting depth between these two functional groups. We found clear differences in rooting depth between grasses and trees across the MAP gradient, with grasses generally exhibiting shallower rooting profiles than trees. We also found that trees tended to become more shallow-rooted as a function of MAP, to the point that trees and grasses largely overlapped in terms of rooting depth at the wettest sites. Our results reconcile previously conflicting evidence for rooting overlap in this system, and have important implications for understanding tree-grass dynamics under altered precipitation scenarios.

  2. [Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change].

    PubMed

    Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu

    2011-11-01

    This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.

  3. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    PubMed

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Vinod, K K; Kalpana, Krishnan; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal resistant and high yielding varieties of finger millet.

  4. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses

    PubMed Central

    Ramakrishnan, M.; Antony Ceasar, S.; Duraipandiyan, V.; Vinod, K. K.; Kalpana, Krishnan; Al-Dhabi, N. A.; Ignacimuthu, S.

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal resistant and high yielding varieties of finger millet. PMID:27415007

  5. Accumulation and Transfer of Cadmium, by Indica Rice Cultivars Fujian Province of China

    NASA Astrophysics Data System (ADS)

    James, B.; Wang, G.

    2016-12-01

    This study was designed to evaluate the accumulating ability of cadmium (Cd) by different Indica rice varieties and to understand the differences in transfer factor in the soil-to-rice grain. A total of 189 crop samples and 189 corresponding soil samples were collected for treatment and chemical analysis. Sixteen (16) Indica rice varieties were selected for this study. Our preliminary results showed that there exist significant differences (p<0.05) in the grain Cd concentrations of the variety studied. A regression method was adopted to calculate the representative soil-to-grain (TF0.1) of each cultivar. The accumulating ability of cadmium of the 16 cultivars varied greatly.Yi-xiang 2292 had the highest TFsoil-grain (2.91), which was 22 times higher than the lowest cultivar Pei- za-tai- fen (0.13). However, no significant difference in TFsoil-grain was observed between conventional and hybrid cultivars. A further study was carried out to understand the transfer characteristics and accumulating ability of cadmium using four (4) selected cultivars (both of hybrid and conventional indica rice cultivars).The TFstem-grain among the variety revealed that significant differences (p<0.05) exist in the stem of the selected variety in the translocation of Cd among indica rice variety and cadmium decreases in the pattern: root>stem>leaf>grain in the four cultivars except Te -you 009 that showed similar cadmium content in root and stem. Among the hybrid cultivars Yi -you 673 accumulated the most Cadmium in root, stem, leaf and grain, while Te- you 009 accumulated the least Cadmium in root, whereas the conventional cultivar Jia-fu-zhan accumulated the lowest Cadmium in leaf and grain. Our findings also revealed that the Cadmium concentrations in rice grains were more significantly correlated with the Cadmium in stem, followed by leaf, which reveals that the transfer from stem and leaf to grain may be the determinant steps for Cadmium accumulation in the grains.

  6. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers leads to overall improvements in CLM4.5's global carbon cycling predictions.

  7. Depth of the biologically active zone in upland habitats at the Hanford Site, Washington: Implications for remediation and ecological risk management.

    PubMed

    Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H

    2015-01-01

    Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically active soil zone in the Hanford Central Plateau does not exceed 300 cm (9.8 ft), the maximum rooting depth for the deepest rooting plant. The maximum depth at which most other plant and animal species occur is substantially shallower. Spatial distribution and density of burrows and roots over depths were also evaluated. Although maximum excavation by harvester ants is 270 cm (8.9 ft), trivial volume of soil is excavated below 150 cm (∼5 ft). Maximum rooting depths for all grasses, forbs, and the most abundant and deepest rooting shrubs are 300 cm (9.8 ft) or less. Most root biomass (>50-80%) is concentrated in the top 100 cm (3.3 ft), whereas at the maximum depth (9.8 ft), only trace root biomass is present. Available data suggest a limited likelihood for significant transport of contaminants to the surface by plants at or below 244 cm (8 ft), and suggest that virtually all plants or animal species occurring on the Central Plateau have a negligible likelihood for transporting soil contaminants to the surface from depths at or below 305 cm (10 ft). © 2014 SETAC.

  8. The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play?

    PubMed Central

    McElrone, A. J.

    2012-01-01

    Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp r), % aquaporin contribution to Lp r, scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp r and % aquaporin contribution to Lp r determined under both osmotic (Lp r Osm) and hydrostatic (Lp r Hyd) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp r Osm and Lp r Hyd even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp r. These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp r and increased root surface area. PMID:23136166

  9. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  10. [Effects of root-knot nematodes on cucumber leaf N and P contents, soil pH, and soil enzyme activities].

    PubMed

    Xu, Hua; Ruan, Wei-Bin; Gao, Yu-Bao; Song, Xiao-Yan; Wei, Yu-Kun

    2010-08-01

    A pot experiment was conducted to study the effects of inoculation with root-knot nematodes on the cucumber leaf N and P contents, and the rhizospheric and non-rhizospheric soil pH and enzyme activities. The rhizospheric soil pH didn't have a significant decrease until the inoculation rate reached 6000 eggs per plant. With the increase of inoculation rate, the leaf N and P contents, rhizospheric soil peroxidase activity, and rhizospheric and non-rhizospheric soil polyphenol oxidase activity all decreased gradually, rhizospheric soil catalase activity was in adverse, non-rhizospheric soil pH decreased after an initial increase, and non-rhizospheric soil catalase activity had no regular change. After inoculation, rhizospheric soil urease activity decreased significantly, but rhizospheric and non-rhizospheric soil phosphatase activity and non-rhizospheric soil peroxidase activity only had a significant decrease under high inoculation rate. In most cases, there existed significant correlations between rhizospheric soil pH, enzyme activities, and leaf N and P contents; and in some cases, there existed significant correlations between non-rhizospheric soil pH, enzyme activities, and leaf N and P contents.

  11. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4

    PubMed Central

    Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph

    2017-01-01

    Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507

  12. Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat.

    PubMed

    Reid, Rob; Fitzpatrick, Kate

    2009-09-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small.

  13. Influence of Leaf Tolerance Mechanisms and Rain on Boron Toxicity in Barley and Wheat1[C

    PubMed Central

    Reid, Rob; Fitzpatrick, Kate

    2009-01-01

    Boron (B) toxicity is common in many areas of the world. Plant tolerance to high B varies widely and has previously been attributed to reduced uptake of B, most commonly as a result of B efflux from roots. In this study, it is shown that the expression of genes encoding B efflux transporters in leaves of wheat (Triticum aestivum) and barley (Hordeum vulgare) is associated with an ability of leaf tissues to withstand higher concentrations of B. In tolerant cultivars, necrosis in leaves occurred at B concentrations more than 2-fold higher than in sensitive cultivars. It is hypothesized that this leaf tolerance is achieved via redistribution of B by efflux transporters from sensitive symplastic compartments into the leaf apoplast. Measurements of B concentrations in leaf protoplasts, and of B released following infiltration of leaves, support this hypothesis. It was also shown that under B-toxic conditions, leaching of B from leaves by rain had a strong positive effect on growth of both roots and shoots. Measurements of rates of guttation and the concentration of B in guttation droplets indicated that the impact of guttation on the alleviation of B toxicity would be small. PMID:19625636

  14. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].

    PubMed

    Han, Zhiping; Hu, Xiaobin; Hu, Zhenghai

    2005-05-01

    With a pot culture of simulated mercury (Hg) and cadmium (Cd)-polluted wetland, this paper studied the capability of Arundo donax in accumulating these heavy metals, and their distribution in the plant. The results showed that after grown in a 101 mg.kg(-1) Hg-polluted wetland for 8 months, the Hg-concentrating capability of Arundo donax was in order of root > stem > leaf, and the Hg concentration in its aboveground parts was 200 +/- 20 mg.kg(-1) (DW); while in the case of 115 mg.kg(-1) Cd-pollution, the Cd-concentrating capability was in order of leaf > root > stem, and the Cd concentration in leaf was 160 +/- 26 mg.kg(-1) (DW). The heavy metals concentration in Arundo donax organs increased with its growth time, being 30%-50% higher for 8 months than for 4 months. The BCF (Bio-concentration factor) decreased with increasing heavy metals concentration. In polluted wetland, the BCFs of Hg by the leaf and stem were 1.9 and 2.1, and those of Cd were 1.5 and 0.3, respectively; while in unpolluted wetland, the concentration of Hg and Cd was 6.8 and 8.5 mg.kg(-1), the BCFs of Hg by the leaf and stem were 6.8 and 12.2, and those of Cd were 7.0 and 2.7, respectively. It was indicated that Arundo donax not only had the characters of large biomass, exuberant root, and good adaptability, but also exhibited high tolerance and concentrating capability to Cd and Hg.

  15. Water and Salt Stresses, Kinetin and Protein Synthesis in Tobacco Leaves 1

    PubMed Central

    Ben-Zioni, Aliza; Itai, C.; Vaadia, Y.

    1967-01-01

    The capacity of tobacco (Nicotiana rustica) leaf discs to incorporate l-leucine 14C into proteins was measured. Leaf discs were obtained from plants which experienced soil water depletion, or which were exposed to a saline or osmotic stress in the root medium. The stresses were brief of relatively short duration and water potential did not decrease below 4 bars in the root media. Leaf discs were sampled 2 hours after stress removal, achieved by reirrigation, or replacement of saline and osmotic solutions with normal nutrient solution. Plants were always turgid when leaves were sampled. All stressed tissues showed reduced capacity to incorporate l-leucine 14C into protein. The reduction was about 50% and could not be attributed either to reduced uptake into the discs, or to possible isotopic dilution. Incorporation decreased progressively with leaf age in control discs as well as in stressed leaf discs. At all ages tested, incorporation in stressed discs was lower than that of the control. Full recovery of incorporation capacity in stressed discs was obtained when discs were sampled 72 hours after stress removal but not earlier. Kinetin pretreatment prior to incubation with labelled leucine partially restored incorporation in stressed discs. The differences in response to kinetin of stressed and control discs suggest a lower endogenous level of cytokinins in the stressed discs. The results were qualitatively similar regardless of the kind of stress given to the plants during pretreatment. This supports the hypothesis that the normal supply of root cytokinins is important in shoot metabolism. PMID:16656515

  16. Surviving floods: leaf gas films improve O₂ and CO₂ exchange, root aeration, and growth of completely submerged rice.

    PubMed

    Pedersen, Ole; Rich, Sarah Meghan; Colmer, Timothy David

    2009-04-01

    When completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.e. plastrons) enlarge the gas-water interface to promote O₂ uptake when under water; however, the function of leaf gas films has rarely been considered. The present study demonstrates that gas films on leaves of completely submerged rice facilitate entry of O₂ from floodwaters when in darkness and CO₂ entry when in light. O₂ microprofiles showed that the improved gas exchange was not caused by differences in diffusive boundary layers adjacent to submerged leaves with or without gas films; instead, reduced resistance to gas exchange was probably due to the enlarged water-gas interface (cf. aquatic insects). When gas films were removed artificially, underwater net photosynthesis declined to only 20% of the rate with gas films present, such that, after 7 days of complete submergence, tissue sugar levels declined, and both shoot and root growth were reduced. Internal aeration of roots in anoxic medium, when shoots were in aerobic floodwater in darkness or when in light, was improved considerably when leaf gas films were present. Thus, leaf gas films contribute to the submergence tolerance of rice, in addition to those traits already recognized, such as the shoot-elongation response, aerenchyma and metabolic adjustments to O₂ deficiency and oxidative stress. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  17. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations.

    PubMed

    Bazihizina, Nadia; Colmer, Timothy D; Barrett-Lennard, Edward G

    2009-09-01

    Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na(+) and Cl(-) concentrations were 1.9- to 2.3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K(+) concentrations were 1.2- to 2.0-fold higher in the non-uniform treatment. Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments.

  18. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  19. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate

    PubMed Central

    Wang, Xing; Pearse, Stuart J.; Lambers, Hans

    2013-01-01

    Background and Aims Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Methods Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg−1 dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Key Results Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg−1 sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Conclusions Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration. PMID:24061491

  20. Cluster-root formation and carboxylate release in three Lupinus species as dependent on phosphorus supply, internal phosphorus concentration and relative growth rate.

    PubMed

    Wang, Xing; Pearse, Stuart J; Lambers, Hans

    2013-11-01

    Some Lupinus species produce cluster roots in response to low plant phosphorus (P) status. The cause of variation in cluster-root formation among cluster-root-forming Lupinus species is unknown. The aim of this study was to investigate if cluster-root formation is, in part, dependent on different relative growth rates (RGRs) among Lupinus species when they show similar shoot P status. Three cluster-root-forming Lupinus species, L. albus, L. pilosus and L. atlanticus, were grown in washed river sand at 0, 7·5, 15 or 40 mg P kg(-1) dry sand. Plants were harvested at 34, 42 or 62 d after sowing, and fresh and dry weight of leaves, stems, cluster roots and non-cluster roots of different ages were measured. The percentage of cluster roots, tissue P concentrations, root exudates and plant RGR were determined. Phosphorus treatments had major effects on cluster-root allocation, with a significant but incomplete suppression in L. albus and L. pilosus when P supply exceeded 15 mg P kg(-1) sand. Complete suppression was found in L. atlanticus at the highest P supply; this species never invested more than 20 % of its root weight in cluster roots. For L. pilosus and L. atlanticus, cluster-root formation was decreased at high internal P concentration, irrespective of RGR. For L. albus, there was a trend in the same direction, but this was not significant. Cluster-root formation in all three Lupinus species was suppressed at high leaf P concentration, irrespective of RGR. Variation in cluster-root formation among the three species cannot be explained by species-specific variation in RGR or leaf P concentration.

  1. Responses of seminal wheat seedling roots to soil water deficits.

    PubMed

    Trejo, Carlos; Else, Mark A; Atkinson, Christopher J

    2018-04-01

    The aims of this paper are to develop our understanding of the ways by which soil water deficits influence early wheat root growth responses, particularly how seminal roots respond to soil drying and the extent to which information on differences in soil water content are conveyed to the shoot and their impact on shoot behaviour. To achieve this, wheat seedlings have been grown, individually for around 25 days after germination in segmented soil columns within vertical plastic compartments. Roots were exposed to different soil volumetric moisture contents (SVMC) within the two compartments. Experiments where the soil in the lower compartment was allowed to dry to different extents, while the upper was maintained close to field capacity, showed that wheat seedlings allocated proportionally more root dry matter to the lower drier soil compartment. The total production of root, irrespective of the upper or lower SVMC, was similar and there were no detected effects on leaf growth rate or gas exchange. The response of seminal roots to proportionally increase their allocation of dry matter, to the drier soil was unexpected with such plasticity of roots system development traditionally linked to heterogeneous nutrient distribution than accessing soil water. In experiments where the upper soil compartment was allowed to dry, root growth slowed and leaf growth and gas exchange declined. Subsequent experiments used root growth rates to determine when seminal root tips first came into contact with drying soil, with the intentions of determining how the observed root growth rates were maintained as an explanation for the observed changes in root allocation. Measurements of seminal root ABA and ethylene from roots within the drying soil are interpreted with respect to what is known about the physiological control of root growth in drying soil. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Beta vulgaris crop types: Genomic signatures of selection (GSS) using next generation sequencing of pooled samples

    USDA-ARS?s Scientific Manuscript database

    Beta vulgaris crop types represent highly diverged populations with distinct phenotypes resulting from long-term selection. Differential end use in the crop types includes: leaf quality (chard/leaf beet), root enlargement and biomass, (table beet, fodder beet, sugar beet), and secondary metabolite a...

  3. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  4. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China.

    PubMed

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.

  5. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China

    PubMed Central

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N2, respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem. PMID:29599794

  6. Soil, Leaf and Root Ecological Stoichiometry of Caragana korshinskii on the Loess Plateau of China in Relation to Plantation Age

    PubMed Central

    Zeng, Quanchao; Lal, Rattan; Chen, Yanan; An, Shaoshan

    2017-01-01

    Caragana korshinskii, a leguminous shrub, a common specie, is widely planted to prevent soil erosion on the Loess Plateau. The objective of this study was to determine how the plantation ages affected soil, leaf and root nutrients and ecological stoichiometry. The chronosequence ages of C. korshinskii plantations selected for this study were 10, 20 and 30 years. Soil organic carbon (SOC) and soil total nitrogen (STN) of C. korshinskii plantations significantly increased with increase in the chronosequence age. However, soil total phosphorous (STP) was not affected by the chronosequence age. The soil C: N ratio decreased and the soil C: P and N: P ratios increased with increasing plantation age. The leaf and root concentrations of C, N, and P increased and the ratios C: N, C: P, and N: P decreased with age increase. Leaf N: P ratios were >20, indicating that P was the main factor limiting the growth of C. korshinskii. This study also demonstrated that the regeneration of natural grassland (NG) effectively preserved and enhanced soil nutrient contents. Compared with NG, shrub lands (C. korshinskii) had much lower soil nutrient concentrations, especially for long (>20 years) chronosequence age. Thus, the regeneration of natural grassland is an ecologically beneficial practice for the recovery of degraded soils in this area. PMID:28076357

  7. Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation

    PubMed Central

    Zou, Ying-Ning; Wu, Qiang-Sheng; Huang, Yong-Ming; Ni, Qiu-Dan; He, Xin-Hua

    2013-01-01

    Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation. PMID:24260421

  8. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.

  9. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    PubMed

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.

    PubMed

    Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu

    2015-08-31

    Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.

  11. Maximum rooting depth of vegetation types at the global scale.

    PubMed

    Canadell, J; Jackson, R B; Ehleringer, J B; Mooney, H A; Sala, O E; Schulze, E-D

    1996-12-01

    The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.

  12. In Vitro Antiproliferative Activity of Extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka

    PubMed Central

    Strzemski, Maciej; Wojnicki, Kamil; Sowa, Ireneusz; Wojas-Krawczyk, Kamila; Krawczyk, Paweł; Kocjan, Ryszard; Such, Justyna; Latalski, Michał; Wnorowski, Artur; Wójciak-Kosior, Magdalena

    2017-01-01

    Various species of the Carlina genus have been used in traditional medicine in many countries to treat numerous skin disorders, including cancer. The objective of this work was to assess the anticancer properties of root and leaf extracts from Carlina acaulis subsp. caulescens and C. acanthifolia subsp. utzka. Anti-tumor properties of the extracts were explored using a tetrazolium-based cell viability assay and flow cytometric apoptosis analysis, followed by immunodetection of phosphoactive ERK1/2 in UACC-903, C32, and UACC-647 human melanoma cell lines. Normal human fibroblasts were used as a control. Leaf extracts inhibited the viability of all tested melanoma cell lines in a dose-dependent fashion while the fibroblasts were less sensitive to such extract. The root extracts inhibited the proliferation of UACC-903 and UACC-647 cells only at the highest doses (300 μg/mL). However, the C32 and fibroblast cells exhibited an increase in the cellular proliferation rate and no caspase activity was observed in response to the root extracts (100 μg/mL). An increase in caspase activity was observed in melanoma cells treated with the leaf extracts of both Carlina species. Leaf extracts from C. acaulis subsp. caulescens (100 μg/mL) inhibited proliferatory ERK1/2 in UACC-903 and C32 cells, as demonstrated by the decrease in ERK1/2 phosphorylation. No reduction in phospho-ERK1/2 was observed in the tested cell lines treated with the root extracts, apart from UACC-647 after incubation with the C. acanthifolia subsp. utzka root extract (100 μg/mL). There was no change in ERK1/2 phosphorylation in the fibroblasts. The extracts from the leaves and roots were analyzed by HPLC and the analysis showed the presence of triterpenes and phenolic acids as the main extract components. The research demonstrated that the extracts from the leaves of the plants were cytotoxic against the human melanoma line and induced apoptosis of the cells. The triterpene fraction present in the tested extracts may be responsible for this activity. PMID:28659804

  13. Stable annual pattern of water use by Acacia tortilis in Sahelian Africa.

    PubMed

    Do, Frederic C; Rocheteau, Alain; Diagne, Amadou L; Goudiaby, Venceslas; Granier, André; Lhomme, Jean-Paul

    2008-01-01

    Water use by mature trees of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan var. raddiana growing in the northern Sahel was continuously recorded over 4 years. Water use was estimated from xylem sap flow measured by transient heat dissipation. Concurrently, cambial growth, canopy phenology, leaf water potential, climatic conditions and soil water availability (SWA) were monitored. In addition to the variation attributable to interannual variation in rainfall, SWA was increased by irrigation during one wet season. The wet season lasted from July to September, and annual rainfall ranged between 146 and 367 mm. The annual amount and pattern of tree water use were stable from year-to-year despite interannual and seasonal variations in SWA in the upper soil layers. Acacia tortilis transpired readily throughout the year, except for one month during the dry season when defoliation was at a maximum. Maximum water use of about 23 l (dm sapwood area)(-2) day(-1) was recorded at the end of the wet season. While trees retained foliage in the dry season, the decline in water use was modest at around 30%. Variation in predawn leaf water potential indicated that the trees were subject to soil water constraint. The rapid depletion of water in the uppermost soil layers after the wet season implies that there was extensive use of water from deep soil layers. The deep soil profile revealed (1) the existence of living roots at 25 m and (2) that the availability of soil water was low (-1.6 MPa) down to the water table at a depth of 31 m. However, transpiration was recorded at a predawn leaf water potential of -2.0 MPa, indicating that the trees used water from both intermediary soil layers and the water table. During the full canopy stage, mean values of whole-tree hydraulic conductance were similar in the wet and dry seasons. We propose that the stability of water use at the seasonal and annual scales resulted from a combination of features, including an extensive rooting habit related to deep water availability and an effective regulation of canopy conductance. Despite a limited effect on tree water use, irrigation during the wet season sharply increased predawn leaf water potential and cambial growth of trunks and branches.

  14. Development of dynamic wheat crop model in ISAM and estimation of impacts of environmental factors on wheat production in India

    NASA Astrophysics Data System (ADS)

    Gahlot, S.; Lin, T. S.; Jain, A. K.; Baidya Roy, S.; Sehgal, V. K.; Dhakar, R.

    2017-12-01

    With changing environmental conditions, such as climate and elevated atmospheric CO2 concentrations, questions about food security can be answered by modeling crops based on our understanding of the dynamic crop growth processes and interactions between the crops and their environment in the form of carbon, water and energy fluxes. These interactions and their effect on cropland ecosystems are non-linear because of the feedback mechanisms. Hence, process-based modelling approach can be used to conduct numerical experiments to derive insights into these processes and interactive feedbacks. In this study we have implemented dynamic crop growth processes for wheat into a data-modeling framework, Integrated Science Assessment Model (ISAM), to estimate the impacts of different factors like CO2 fertilization, irrigation, nitrogen limitation and climate change on wheat in India. In specific, we have implemented wheat-specific phenology, C3 photosynthesis mechanism and phenology-specific carbon allocation schemes for assimilated carbon to leaf, stem, root and grain pools. Crop growth limiting stress factors like nutrients, temperature and light have been included. The impact of high temperatures on leaf senescence, anthesis and grain filling has been modeled and found to be causing significant reduction in yield in the recent years. Field data from an experimental wheat site located at the Indian Agricultural Research Institute (IARI), New Delhi, India has been collected for aboveground biomass and leaf area index (LAI) for two growing seasons 2014-15 and 2015-16. This data has been used to study the phenology, growing season length, thermal requirements and growth stages of wheat. Using the field data, the dynamic model for wheat has been evaluated for the site level seasonal variability in leaf area index (LAI) and aboveground biomass. The variations in carbon, water and energy fluxes, plant height and rooting depth have been analyzed on the site level. Model experiments have been performed to calculate the yield for wheat for India for the historical years. In order to identify wheat production regions in India that are prone to one or multiple stresses in years to come, model experiments have been performed based on future climate scenarios RCP 4.5 and 8.5.

  15. Distribution of withaferin A, an anticancer potential agent, in different parts of two varieties of Withania somnifera (L.) Dunal. grown in Sri Lanka.

    PubMed

    Siriwardane, A S; Dharmadasa, R M; Samarasinghe, Kosala

    2013-02-01

    Withania somnifera (L.) Dunal. (Family: Solanaceae) is a therapeutically important medicinal plant in traditional and Ayurveda systems of medicine in Sri Lanka. Witheferin A, is a potential anticancer compound found in W. somnifera. In the present study, attempts have been made to compare witheferin A content, in different parts of (root, stem, bark, leaf) two varieties of (LC1 and FR1) W. somnifera grown in same soil and climatic conditions. Ground sample (1g) of leaves, bark, stem and roots of two W. somnifera varieties were extracted with CHCl3 three times. Thin Layer Chromatographic analysis (TLC) of withaferin A in both plant extracts were performed on pre-coated Silica gel 60 GF254 plates in hexane: ethyl acetate: methanol (2: 14: 1) mobile phase. Densitometer scanning was performed at lambda(max) = 215 nm. HPLC of W. somnifera extracts was performed using Kromasil C18 reverse phase column. Both varieties of W. somnifera differed in withaferin A. After visualizing TLC plates with vanillin-sulphuric acid leaf and bark extracts of both varieties showed high intensity purple colour spots (R(f) 0.14) than in stem and roots. The highest amount of withaferin A (3812 ppm) was observed in leaves of variety LC1 while the lowest amount was observed in roots of variety FR1 (5 ppm). According to the results it could be concluded that content of Witheferin A was vary leaf > bark > stem > roots in both varieties. Therefore, there is a high potential of incorporation of leaves and bark of W. somnifera for the preparation of Ayurveda drug leading to anticancer activity instead of roots.

  16. Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of Zostera marina L.

    PubMed

    Rubio, L; Linares-Rueda, A; García-Sánchez, M J; Fernández, J A

    2005-02-01

    Zostera marina L. is an angiosperm that grows in a medium in which inorganic phosphate (P(i)) and nitrate (NO(3)(-)) are present in micromolar concentrations and must be absorbed against a steep electrochemical potential gradient. The operation of a Na(+)-dependent NO(3)(-) transport was previously demonstrated in leaf cells of this plant, suggesting that other Na(+)-coupled systems could mediate the uptake of anions. To address this question, P(i) transport was studied in leaves and roots of Z. marina, as well as NO(3)(-) uptake in roots. Electrophysiological studies demonstrated that micromolar concentrations of P(i) induced depolarizations of the plasma membrane of root cells. However, this effect was not observed in leaf cells. P(i)-induced depolarizations showed Michaelis-Menten kinetics (K(m)=1.5+/-0.6 microM P(i); D(max)=7.8+/-0.8 mV), and were not observed in the absence of Na(+). However, depolarizations were restored when Na(+) was resupplied. NO(3)(-) additions also evoked depolarizations of the plasma membrane of root cells only in the presence of Na(+). Both NO(3)(-)- and P(i)-induced depolarizations were accompanied by an increase in cytoplasmic Na(+) activity, detected by Na(+)-sensitive microelectrodes. P(i) net uptake (measured in depletion experiments) was stimulated by Na(+). These results strongly suggest that P(i) uptake in roots of Z. marina is mediated by a high-affinity Na(+)-dependent transport system. Both NO(3)(-) and P(i) transport systems exploit the steep inwardly directed electrochemical potential gradient for Na(+), considering the low cytoplasmic Na(+) activity (10.7+/-3.3 mM Na(+)) and the high external Na(+) concentration (500 mM Na(+)).

  17. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    NASA Astrophysics Data System (ADS)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  18. Nontargeted metabolomic analysis and "commercial-homophyletic" comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng.

    PubMed

    Qiu, Shi; Yang, Wen-Zhi; Yao, Chang-Liang; Qiu, Zhi-Dong; Shi, Xiao-Jian; Zhang, Jing-Xian; Hou, Jin-Jun; Wang, Qiu-Rong; Wu, Wan-Ying; Guo, De-An

    2016-07-01

    A key segment in authentication of herbal medicines is the establishment of robust biomarkers that embody the intrinsic metabolites difference independent of the growing environment or processing technics. We present a strategy by nontargeted metabolomics and "Commercial-homophyletic" comparison-induced biomarkers verification with new bioinformatic vehicles, to improve the efficiency and reliability in authentication of herbal medicines. The chemical differentiation of five different parts (root, leaf, flower bud, berry, and seed) of Panax ginseng was illustrated as a case study. First, an optimized ultra-performance liquid chromatography/quadrupole time-of-flight-MS(E) (UPLC/QTOF-MS(E)) approach was established for global metabolites profiling. Second, UNIFI™ combined with search of an in-house library was employed to automatically characterize the metabolites. Third, pattern recognition multivariate statistical analysis of the MS(E) data of different parts of commercial and homophyletic samples were separately performed to explore potential biomarkers. Fourth, potential biomarkers deduced from commercial and homophyletic root and leaf samples were cross-compared to infer robust biomarkers. Fifth, discriminating models by artificial neutral network (ANN) were established to identify different parts of P. ginseng. Consequently, 164 compounds were characterized, and 11 robust biomarkers enabling the differentiation among root, leaf, flower bud, and berry, were discovered by removing those structurally unstable and possibly processing-related ones. The ANN models using the robust biomarkers managed to exactly discriminate four different parts and root adulterant with leaf as well. Conclusively, biomarkers verification using homophyletic samples conduces to the discovery of robust biomarkers. The integrated strategy facilitates authentication of herbal medicines in a more efficient and more intelligent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Determination of myclobutanil 25% WG degradation dynamics in ginseng root, stem, leaf and soil by HPLC-MS/MS].

    PubMed

    Wang, Yan; Wang, Chun-Wei; Gao, Jie; Cui, Li-Li; Xu, Yun-Cheng

    2014-07-01

    A high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed for determining degradation dynamics and final residues of myclobutanil 25% WG in ginseng root, stem, leaf and soil. The samples were extracted with acetonitrile, cleaned-up with primary secondary amine (PSA) solid phase extraction cartridge, separated by Kromasil Eternity-5-C18 (2.1 mm x 150 mm, 5 microm) column with a gradient of acetonitrile and 0.1% formate in water as mobile phases, and analyzed with the multiple reaction monitoring (MRM) in positive ion mode by employing the external standard method. The average recoveries and the relative standard derivations (RSDs) of myclobutanil at the spiked level of 0.01-0.20 mg x kg(-1) were 80.9%-90.7% and 5.54%-9.29%, respectively, and the limit of quantification (LOQ) was 0.005 mg x kg(-1). The method with good reproducible, high precision and low detection limit could meet the requirements of residual analysis on ginseng production. The half-lives of myclobutanil were from 6.25 days to 9.94 days in ginseng root, stem, leaf and soil at spraying dosage of 1 152 g x hm(-2) The final residues were below 0.060 1 mg x kg(-1) in root, below 0.081 7 mg x kg(-1) in stem, 0.006 0-0.102 2 mg x kg(-1) in leaf and below 0.037 6 mg x kg(-1) in soil at spraying dosage range from 576 to 1 152 g x hm(-2). It is recommended that the MRLs of myclobutanil in dried ginseng may be suggested to be 0.10 mg x kg(-1) temporarily, and the preharvest interval was set at 35 days.

  20. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    PubMed

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  1. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock.

    PubMed

    Mesquita, Geisa L; Zambrosi, Fernando C B; Tanaka, Francisco A O; Boaretto, Rodrigo M; Quaggio, José A; Ribeiro, Rafael V; Mattos, Dirceu

    2016-01-01

    In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

  2. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    PubMed

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  3. Leaf δ15N as an indicator of arbuscular mycorrhizal nitrogen uptake in a coastal-plain forest (restinga forest) at Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Mardegan, S. F.; Valadares, R.; Martinelli, L.

    2013-12-01

    Restinga diversity contrasts with a series of adverse environmental conditions that constrain their development, including nutrient limitation. In this sense, the mutualistic symbiosis between plants and arbuscular mycorrhizal fungi (AMF) may contribute in nutrient acquisition, including nitrogen. However, this association deeply affects plant nitrogen isotopic composition (δ15N), since assimilation processes and biochemical reactions within the fungi may reflect in a delivered product with an isotopic composition about 8 to 10 ‰ lower than that observed at the fungal symbiont per se. Here we assessed if the association with AMF affects δ15N values of plant species from a coastal-plain forest (restinga forest) at Southeastern Brazil. Accordingly, we analyzed the nutritional and isotopic compositions from ecosystem key-compartments (soil, litter and leaves), relating plant δ15N with the colonization rates. The study was carried out in a permanent plot (1 ha) at a coastal-plain forest (restinga forest) at the Serra do Mar State Park, SP, Brazil. Sampled vegetation is characterized by the lack of a well-defined stratification and a rather open canopy. It also comprises trees ranging from 10 to 15-m high. Soils are deep and sandy, being characterized by high acidity, nutrient deficiency and a dense litter cover. We randomly collected five samples (250 mg) from topsoil (0-10 cm) and five to ten leaves from individuals belonging to 16 plant species of high relevance within the site (IVI index). We also collected superficial (0-10 cm depth) fine roots (5 g) and 13 samples (100 g) of fine litter next to the individuals sampled. Soil samples were air-dried, sieved, homogenized and used in the physical-chemical characterization. The remainder was ground to a fine powder to determine nitrogen concentrations and δ15N values. Leaves were dried at 50 °C, finely milled and used for the determination of nitrogen concentrations, C/N ratios and δ15N values. Root samples were cleared and stained according to Phillips and Hayman (1970), being scored for mycorrhizal colonization using the grid-line intersection method. We used analysis of variance (ANOVA) followed by a post hoc Tukey HSD test to determine differences amongst compartments. Spearman correlation coefficient was calculated to quantify the relationship between leaf δ15N and root colonization rates. Vegetation nitrogen concentration was around 22.5 g kg-1, being higher than those from litter and soil. Vegetation δ15N mean values were around -0.2 ‰, ranging from -1.6 to 2.0 ‰, being lower than those from the soils where they grow (mean values close to 3.0 ‰). Roots from all species were colonized, with the presence of typical AMF structures (hyphae, vesicles and arbuscules within root cortex). Root colonization rates ranged from less than 1 to about 55 %. In most cases, species with δ15N values had colonization rates exceeding 20 %. We observed an inverse relationship between the rate of root colonization and leaf δ15N of the species analyzed. These results suggest the importance of AMF symbiosis for nitrogen supply at such nutrient-limited coastal environments.

  4. Morphogenetic effects of 2,4-dichlorophenoxyacetic acid on pinto bean (Phaseolus vulgaris L.) leaf explants in vitro.

    PubMed

    Saunders, J W; Hosfield, G L; Levi, A

    1987-02-01

    Roots, callus and/or globular structures were produced on primary leaf and distal cotyledon explants of pinto bean (Phaseolus vulgaris L. cv. UI 114) cultured on semisolid MS medium with a wide range of 2,4-D concentrations (0.01 to 80 mg/L) with either 0 or 1.0 mg/L kinetin. Explants rooted at lower 2,4-D concentrations than at those favoring globule formation on callus, although roots, callus and globules often developed from the same explant. Isolated opaque green globular structures developed when callus initiated on media with 3 or more mg/L 2,4-D was subcultured in liquid MS + 30 mg/L 2,4-D. These structures multiplied with a fresh weight doubling time of 8-9 days in MS + 30 mg/L 2,4-D. Although this multiplicative behavior and opaque color were reminiscent of embryoids reported for other species, no cotyledons or roots were seen.

  5. Maize and soybean root front velocity and maximum depth in the Iowa, USA

    USDA-ARS?s Scientific Manuscript database

    Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...

  6. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).

    PubMed

    Siritunga, Dimuth; Sayre, Richard

    2004-11-01

    Cassava is the major root crop for a quarter billion subsistence farmers in sub-Saharan Africa. It is valued for its ability to grow in adverse environments and the food security it provides. Cassava contains potentially toxic levels of cyanogenic glycosides (linamarin) which protect the plant from herbivory and theft. The cyanogens, including linamarin and its deglycosylated product, acetone cyanohydrin, can be efficiently removed from the root by various processing procedures. Short-cuts in processing, which may occur during famines, can result in only partial removal of cyanogens. Residual cyanogens in cassava foods may cause neurological disorders or paralysis, particularly in nutritionally compromised individuals. To address this problem and to further understand the function of cyanogenic glycosides in cassava, we have generated transgenic cassava in which cyanogenic glycoside synthesis has been selectively inhibited in leaves and roots by antisense expression of CYP79D1/D2 gene fragments. The CYP79D1/D2 genes encode two highly similar cytochrome P450s that catalyze the first-dedicated step in cyanogenic glycoside synthesis. Transgenic plants in which the expression of these genes was selectively inhibited in leaves had substantially reduced (60- 94% reduction) linamarin leaf levels. Surprisingly, these plants also had a greater than a 99% reduction in root linamarin content. In contrast, transgenic plants in which the CYP79D1/D2 transcripts were reduced to non-detectable levels in roots had normal root linamarin levels. These results demonstrate that linamarin synthesized in leaves is transported to the roots and accounts for nearly all of the root linamarin content. Importantly, transgenic plants having reduced leaf and root linamarin content were unable to grow in the absence of reduced nitrogen (NH3) . Cassava roots have previously been demonstrated to have an active cyanide assimilation pathway leading to the synthesis of amino acids. We propose that cyanide derived from linamarin is a major source of reduced nitrogen for cassava root protein synthesis. Disruption of linamarin transport from leaves in CYP79D1/D2 anti-sense plants prevents the growth of cassava roots in the absence of an alternate source of reduced nitrogen. An alternative strategy for reducing cyanogen toxicity in cassava foods is to accelerate cyanogenesis and cyanide volatilization during food processing. To achieve this objective, we have expressed the leaf-specific enzyme hydroxynitrile lyase (HNL) in roots. HNL catalyzes the breakdown of acetone cyanohydrin to cyanide. Expression of HNL in roots accelerated cyanogenesis by more than three-fold substantially reducing the accumulation of acetone cyanohydrin during processing relative to wild-type roots.

  7. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    PubMed

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  8. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy for overstory species especially when drought progresses in the presence of competing understory species.

  9. [Dynamic study on two lignans contents in different parts of Sinopodophyllum hexandrum].

    PubMed

    Li, Yan-ling; Ning, Yi; Xu, Wen-hua; Zhou, Guo-ying

    2015-05-01

    The contents of two lignans, namely 4'-demethylpodophyllotoxin and podophyllotoxin in cultivated and wild Sinopodophyllum hexandrum plants were extracted by ultrasonicaction and determined by HPLC. According to the result showed, the order of parts of cultivated plants containing 4'-demethylpodophyllotoxin from high to low is as follows: stem > root, no 4'-demethypodophyllotoxin was detected in leaves of cultivated plants; The order of parts of wild plants 4'-demethylpodophyllotoxin from high to low is as follows: lateral root > petiole > rhizome > leaf, no 4'-demethypodophyllotoxin was detected in fruit. The order of parts of cultivated and wild S. hexandrum containing podophyllotoxin from high to low is as follows: root > petiole > leaf ( > fruit). Both of the lignan contents in different parts of cultivated plant varied in a " W" curve with the changes in seasons, with the highest content in July.

  10. 7 CFR 201.56-5 - Grass family, Poaceae (Gramineae).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transfer them to the growing seedling. (iii) Shoot system: The shoot consists of the coleoptile, leaves.... Splitting of the coleoptile occurs naturally as a result of growth and emergence of the leaves. (iv) Root... seedling description. (i) Shoot: (A) Missing. (B) No leaf. (C) Leaf extending less than halfway up into the...

  11. 7 CFR 201.56-5 - Grass family, Poaceae (Gramineae).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... transfer them to the growing seedling. (iii) Shoot system: The shoot consists of the coleoptile, leaves.... Splitting of the coleoptile occurs naturally as a result of growth and emergence of the leaves. (iv) Root... seedling description. (i) Shoot: (A) Missing. (B) No leaf. (C) Leaf extending less than halfway up into the...

  12. 7 CFR 201.56-5 - Grass family, Poaceae (Gramineae).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... transfer them to the growing seedling. (iii) Shoot system: The shoot consists of the coleoptile, leaves.... Splitting of the coleoptile occurs naturally as a result of growth and emergence of the leaves. (iv) Root... seedling description. (i) Shoot: (A) Missing. (B) No leaf. (C) Leaf extending less than halfway up into the...

  13. [Progress in researches on pathogens, epidemiology and integrated control of diseases on Salvia miltiorrhiza in China].

    PubMed

    Wang, Tie-Lin; Guan, Wei; Sun, Kai; Wang, Sheng; Chi, Xiu-Lian; Guo, Lan-Ping

    2018-06-01

    Danshen (Salvia miltiorrhiza) is a perennial herbal plant as a bulk commodity of traditional Chinese medicinal material. With the growing market demand, the planting scale of Danshen has been fast enlarged. The occurance of diseases on Danshen has become as a major threaten of its production. Root diseases are most devastated on Danshen. Rootrot is the most important disease, and Fusarium wilt comes second. Leaf spot occurs most on aerial part of Danshen. In the Danshen industry, the chemical control is most commonly used, with biological agents as supplements. This review summarized the symptom, pathogen, epidemiology, and control method of 7 diseases on Danshen (rootrot, Fusarium wilt, southern blight, root knot nematode, leaf spot, leaf red and virus diseases), providing guidelines for disease diagnostics, pathogen isolation and identification, proper pesticide application and integrated control. Copyright© by the Chinese Pharmaceutical Association.

  14. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  15. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.

    PubMed

    An, Feifei; Chen, Ting; Stéphanie, Djabou Mouafi Astride; Li, Kaimian; Li, Qing X; Carvalho, Luiz J C B; Tomlins, Keith; Li, Jun; Gu, Bi; Chen, Songbi

    2016-01-01

    Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena.

  16. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration.

    PubMed

    Piñero, María Carmen; Houdusse, Fabrice; Garcia-Mina, Jose M; Garnica, María; Del Amor, Francisco M

    2014-08-01

    This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels. © 2013 Scandinavian Plant Physiology Society.

  17. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  18. Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines

    PubMed Central

    Rogiers, Suzy Y.; Clarke, Simon J.

    2013-01-01

    Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018

  19. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.

    PubMed

    Rogiers, Suzy Y; Clarke, Simon J

    2013-03-01

    Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.

  20. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    NASA Astrophysics Data System (ADS)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  1. Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium.

    PubMed

    Nagel, Jennifer M; Wang, Xianzhong; Lewis, James D; Fung, Howard A; Tissue, David T; Griffin, Kevin L

    2005-05-01

    Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].

  2. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  3. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.

    PubMed

    Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  4. Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods

    PubMed Central

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping. PMID:25401150

  5. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Response of Korean pine’s functional traits to geography and climate

    PubMed Central

    Dong, Yichen

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°–48°N) and the linear relationships among Korean pine functional traits, to explore this species’ adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors—latitude, longitude, and altitude; temperature factors—mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors—annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation. PMID:28886053

  7. [Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines].

    PubMed

    Du, Yuan-peng; Jin, Xue-juan; Guo, Shu-hua; Fu, Qing-qing; Zhai, Heng

    2015-06-01

    The potted Red globe/Beta grapevines were selected to irrigated with NaCl, Na2SO4, NaHCO3, NH4Cl, (NH4)2SO4. Hence, the ions which induced leaf etiolation were screened and the impacts of different salt and alkali on ion distribution in different organs of grapevines were investigated. It was found that NaHCO3 exerted the greatest effects on grapevines, leaf etiolation at 14 days after treatment. By contrast, NaCl and NH4Cl treatments induced leaf etiolation at 28 days after treatment. The Na+ content in all the detected organs were significantly increased under NaHCO3 and NaCl treatment, and Na+ content in root under NaHCO3 treatment was 6.4 times as that in control root. NaHCO3 and NaCl treatments significantly decreased K+ content in the organs with the exception of leaf. NaHCO3 treatment significantly decreased K/Na in different organs, which declined to 0.1 in root. By contrast, NaCl treatment significantly decreased K/Na in the detected organs with exception of stem. Besides, the transport of Ca2+, Mg2+, Fe2+ to aboveground organs was significantly decreased by NaHCO3 and NaCl treatments. K/Na ratio in the detected organs were decreased under NH4Cl, (NH4) 2SO4 and Na2SO4 treatments, especially under NH4 Cl treatment. Taken together, NaHCO3 was the primary factor resulting in leaf etiolation, followed by NaCl and NH4Cl, while (NH4) 2SO4 and Na2SO4 produced impacts.

  8. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging

    PubMed Central

    Tanoi, Keitaro

    2013-01-01

    Participation of the intervascular transport system within the rice stem during cadmium (Cd) partitioning was investigated by characterizing 109Cd behaviour in the shoot. In addition, 45Ca, 32P, and 35S partitioning patterns were analysed for comparison with that of 109Cd. Each tracer was applied to the seedling roots for 15min, and the shoots were harvested either at 15min (i.e. immediately after tracer application) or at 48h. Distribution patterns of each element at 15min were studied to identify the primary transport pathway before remobilization was initiated. 32P was preferentially transported to completely expanded leaf blades having the highest transpiration rate. The newest leaf received minimal amounts of 32P. In contrast, the amount of 35S transported to the newest leaf was similar to that transported to the other mature leaf blades. Preferential movement towards the newest leaf was evident for 109Cd and 45Ca. These results directly indicate that elemental transport is differentially regulated in the vegetative stem as early as 15min before the elements are transported to leaves. Cd behaviour in the stem was investigated in detail by obtaining serial section images from the bottom part of shoots after 109Cd was applied to a single crown root. At 30min, the maximum amount of 109Cd was distributed in the peripheral cylinder of the longitudinal vascular bundles (PV) and, interestingly, some amount of 109Cd was transported downwards along the PV. This transport manner of 109Cd provides evidence that Cd can be loaded on the phloem at the stem immediately after Cd is transported from the root. PMID:23202130

  9. Response of Korean pine's functional traits to geography and climate.

    PubMed

    Dong, Yichen; Liu, Yanhong

    2017-01-01

    This study analyzed the characteristics of Korean pine (Pinus koraiensis) functional trait responses to geographic and climatic factors in the eastern region of Northeast China (41°-48°N) and the linear relationships among Korean pine functional traits, to explore this species' adaptability and ecological regulation strategies under different environmental conditions. Korean pine samples were collected from eight sites located at different latitudes, and the following factors were determined for each site: geographic factors-latitude, longitude, and altitude; temperature factors-mean annual temperature (MAT), growth season mean temperature (GST), and mean temperature of the coldest month (MTCM); and moisture factors-annual precipitation (AP), growth season precipitation (GSP), and potential evapotranspiration (PET). The Korean pine functional traits examined were specific leaf area (SLA), leaf thickness (LT), leaf dry matter content (LDMC), specific root length (SRL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), root nitrogen content (RNC), and root phosphorus content (RPC). The results showed that Korean pine functional traits were significantly correlated to latitude, altitude, GST, MTCM, AP, GSP, and PET. Among the Korean pine functional traits, SLA showed significant linear relationships with LT, LDMC, LNC, LPC, and RPC, and LT showed significant linear relationships with LDMC, SRL, LNC, LPC, RNC, and RPC; the linear relationships between LNC, LPC, RNC, and RPC were also significant. In conclusion, Korean pine functional trait responses to latitude resulted in its adaptation to geographic and climatic factors. The main limiting factors were precipitation and evapotranspiration, followed by altitude, latitude, GST, and MTCM. The impacts of longitude and MAT were not obvious. Changes in precipitation and temperature were most responsible for the close correlation among Korean pine functional traits, reflecting its adaption to habitat variation.

  10. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    PubMed

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  11. Temporal impact of the vascular wilt pathogen Verticillium dahliae on tomato root proteome.

    PubMed

    Witzel, Katja; Buhtz, Anja; Grosch, Rita

    2017-10-03

    The soil-borne fungus Verticillium dahliae is the causal agent of wilting disease and affects a wide range of plant species worldwide. Here, we report on the time-resolved analysis of the tomato root proteome in response to fungal colonization. Tomato (Solanum lycopersicum cv. Hildares) was inoculated with V. dahliae at the two-leaf stage and roots were harvested at 7, 14 and 21 days post inoculation (dpi). In order to identify proteins related to the fungal spread at the different time points, a subsequent proteome analysis by two-dimensional differential gel electrophoresis (2D-DIGE) was conducted on samples from three independent experiments. Hierarchical clustering and k-means clustering of identified proteins distinguished early and late responses to fungal colonization. The results underline that plant defense and adaptation responses are timely coordinated. Proteins involved in oxidative stress were down-regulated at 7 dpi but induced 21 dpi indicating versatile reactive oxygen species signaling interacting with salicylic acid defence signaling at that stage of infection. Drought-stress proteins were induced at 21 dpi, reflecting the beginning of wilting symptoms. Notably, two proteins involved in energy-generating pathways were induced throughout all sampling dates and may reflect the increase in metabolic activity to maintain root growth and, concurrently, activate defense responses. Mounting of defense responses requires a substantial flux of carbon and nitrogen from primary to secondary metabolites. In-depth understanding of these key metabolic pathways required for growth and defense responses, especially at proteome level, will allow the development of breeding strategies for crops where Verticillium tolerance is absent. Our data show early and late responses of tomato root proteins towards pathogen infection and identify primary metabolism enzymes affected by V. dahliae. Those proteins represent candidates for plant improvement. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A comparison among root soil-conservation effects for nine herbs at the cold region highway in north-eastern China

    NASA Astrophysics Data System (ADS)

    Xu, W.; Wang, X.; Zhang, Y.; Liu, Y.

    2014-12-01

    High soil-conservation herbs are very important for slope vegetation restoration of a highway in serious sandstorm regions. In this study, nine common herbs in northeast China were selected and compared to study soil-conservation effects by using an undisturbed-soil trough scouring method for soil anti-scourability enhancement and hydrostatic collapse method for soil anti-erodibility. Further, principal components analysis was used to identify significant root features that affected soil erosion resistance. Results indicated that different herbs had distinct enhancement effects on soil erosion resistance. Soil anti-scourability enhancement index decreased with increases of soil depth, slope gradient and rainfall amount. Relationship between soil anti-erodibility enhancement index ( S) and immersion time ( t) is a cubic spline in each different herb type ( R 2 ≥ 0.88). Herb root features such as micro-aggregates, organic matter, net leaf weight, thick root length, fine root length and biomass contributed a leading role in soil erosion resistance enhancement effect, and all their common factor variances were more than 0.81. Descending order of soil erosion resistance enhancement effect in soil anti-scourability for nine herbs is Poa pratensis, Medicago sativa, Viola philippica, Rudbeckia hirta, Clematis heracleifolia, Kalimeris indica, Cosmos bipinnata, Hemerocallis fulva and Sedum elatinoides, while the sequence of soil anti-erodibility is M. sativa, S. elatinoides, P. pratensis, R. hirta, H. fulva, V. philippica, C. heracleifolia, C. bipinnata and K. indica. Therefore, we concluded that P. pratensis and M. sativa were the most suitable herbs for resisting soil erosion and recommended to be widely planted for road vegetation recovery in this region.

  13. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).

    PubMed

    Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J

    2015-03-01

    Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  15. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets

    PubMed Central

    2011-01-01

    Background Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. Results A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. Conclusions The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods. PMID:21592389

  16. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus

    PubMed Central

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H2O2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis. In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO2 assimilation. PMID:28270819

  17. Effects of Low pH on Photosynthesis, Related Physiological Parameters, and Nutrient Profiles of Citrus.

    PubMed

    Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song

    2017-01-01

    Seedlings of "Xuegan" ( Citrus sinensis ) and "Sour pummelo" ( Citrus grandis ) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H 2 O 2 production and electrolyte leakage in roots and leaves. This was done ( a ) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and ( b ) to understand the mechanisms by which low pH may cause a decrease in leaf CO 2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H + -toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H + -toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO 2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO 2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO 2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H 2 O 2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis . In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO 2 assimilation.

  18. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    PubMed Central

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  19. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity

    PubMed Central

    de Vos, Arjen C.; Broekman, Rob; Groot, Maartje P.; Rozema, Jelte

    2010-01-01

    Background and Aims There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses. Methods In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured. Key Results Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth. Conclusions Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mm NaCl. PMID:20354071

  20. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones

    PubMed Central

    Isaac, Marney E; Anglaaere, Luke C N

    2013-01-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  1. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  2. Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Chaowen; Chen, Feifan; Zhao, Ziyao; Hu, Liangliang; Liu, Hanqiang; Cheng, Zhihui; Weng, Yiqun; Chen, Peng; Li, Yuhong

    2018-06-01

    Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.

  3. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations

    PubMed Central

    Laclau, Jean-Paul; da Silva, Eder A.; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L.; Bouillet, Jean-Pierre; Gonçalves, José L. de Moraes; Jourdan, Christophe; Nouvellon, Yann

    2013-01-01

    Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1–3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5–3.0 m deep. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses. PMID:23847645

  4. Use of Stored Carbon Reserves in Growth of Temperate Tree Roots and Leaf Buds: Analyses Using Radiocarbon Measurements and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.

    2009-01-01

    Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored Cmore » used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.« less

  5. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    NASA Astrophysics Data System (ADS)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    The Western Ghats of Kerala, India is prone to shallow landslides and consequent debris flows. An earlier study (Kuriakose et al., DOI:10.1002/esp.1794) with limited data had already demonstrated the possible effects of vegetation on slope hydrology and stability. Spatially distributed root cohesion is one of the most important data necessary to assess the effects of anthropogenic disturbances on the probability of shallow landslide initiation, results of which are reported in sessions GM6.1 and HS13.13/NH3.16. Thus it is necessary to the know the upper limits of reinforcement that the roots are able to provide and its spatial and vertical distribution in such an anthropogenically intervened terrain. Root tensile strength and root pull out tests were conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) Gambooge (Garcinia gummi-gutta), 8) Coffee (Coffea Arabica) and 9) Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested had a length of 15 cm. Root pull out tests were conducted in the field. Root tensile strength vs root diameter, root pull out strength vs diameter, root diameter vs root depth and root count vs root depth relationships were derived. Root cohesion was computed for nine most dominant plants in the region using the perpendicular root model of Wu et al. (1979) modified by Schimidt et al. (2001). A soil depth map was derived using regression kriging as suggested by Kuriakose et al., (doi:10.1016/j.catena.2009.05.005) and used along with the land use map of 2008 to distribute the computed root tensile strength both vertically and spatially. Root cohesion varies significantly with the type of land use and the depth of soil. The computation showed that a maximum root reinforcement of 40 kPa was available in the first 30 cm of soil while exponentially decreased with depth to just about 3 kPa at 3 m depth. Mixed crops land use unit had the maximum root cohesion while fallow land, degraded forest and young rubber plantation had the lowest root reinforcement. These are the upper limits of root reinforcement that the vegetation can provide. When the soil is saturated, the bond between soil and roots reduces and thus the applicable root reinforcement is limited by the root pullout strength. Root reinforcement estimated from pullout strength vs diameter relationships was significantly lower than those estimated from tensile strength vs diameter relationships.

  6. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Treesearch

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  7. Green leaf lettuce breeding lines with resistance to corky root, 06-831 and 06-833.

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service, United States Department of Agriculture (USDA) announces the release of two breeding lines of green leaf lettuce (Lactuca sativa L.). The lines 06-831 and 06-833 look similar to ‘Waldmann’s Green’ and related cultivars. The lines may be suitable for commercial pro...

  8. Antibacterial and antifungal activities of Dracontomelon dao.

    PubMed

    Khan, M R; Omoloso, A D

    2002-07-01

    The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.

  9. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings

    Treesearch

    D.F. Karnosky; Z.E. Gagnon; R.E. Dickson; M.D. Coleman; E.H. Lee; J.G. Isebrands

    1996-01-01

    The effects of single-season tropospheric ozone (03) exposures on growth, leaf abscission, and biomass of trembling aspen (Populus tremuloides Michx.) rooted cuttings and seedlings were studied. Plants were grown in the Upper Peninsula of Michigan in open-top chambers with 03 exposures that ranged from...

  10. NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in Arabidopsis[W

    PubMed Central

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-01-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729

  11. Chronic nitrogen deposition influences the chemical dynamics ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the

  12. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis.

    PubMed

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-04-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation.

  13. Inhibition of Ageratina adenophora on spore germination and gametophyte development of Macrothelypteris torresiana.

    PubMed

    Zhang, Kai-Mei; Shi, Lei; Jiang, Chuang-Dao; Li, Zhen-Yu

    2008-05-01

    Allelopathy of Ageratina adenophora plays an important role in its invasion. However, we have little knowledge of its allelpathic effects on ferns. In Petri dish bioassays, the inhibitory potential of aqueous leachates from roots, stems and leaves of A. adenophora was studied on the spore germination and gametophyte development of Macrothelypteris torresiana. All leachates inhibited the spore germination and growth of the first rhizoid of M. torresiana and inhibitory effects increased with increasing leachate concentrations. Root leachates proved most inhibitory. Gametophyte rhizoids of M. torresiana treated with stem and leaf leachates of A. adenophora were erect, which was similar to those of the control. However, gametophyte rhizoids of M. torresiana treated with root leachates of A. adenophora were erect, but also curving or swollen. Moreover, curving and swollen rhizoids increased with increasing concentrations. As time went by, rhizoids treated with root leachates were not so curved and the swelling almost disappeared. Possible causes are discussed in the present study. The increasing concentrations of leaf leachates also delayed the stages of gametophyte development. With the treatment of root leachates, the delay was more obvious. Thus A. adenophora inhibited the spore germination and gametophyte development of M. torresiana and the root leachates were most inhibitory.

  14. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    PubMed Central

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  15. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  16. Micropropagation of Ajuga bracteosa, a medicinal herb.

    PubMed

    Kaul, Shivanee; Das, Sandip; Srivastava, P S

    2013-04-01

    For conservation and genetic transformation, a successful in vitro micropropagation protocol for Ajuga bracteosa, a medicinal herb has been established for the first time. MS medium supplemented with IAA (2 mg/L) and BA (5 mg/L) induced 100 % shoot regeneration with an average of 41.4 shoots of 8.4 cm per culture. Excised in vitro shoots when transferred to MS + IBA (0.5 mg/L) produced 20 roots/shoot of 20.2 cm average length in 100 % cultures. Of the three explants, leaf, petiole and root, leaf displayed quickest response followed by petiole while root was the slowest. Hardening of plantlets was achieved with 82 % survival. The hardened plants were maintained in pots with garden soil under controlled (Temp. 25 ± 2 °C) conditions. RAPD exhibited genetic fidelity with 100 % monomorphism in regenerants.

  17. Effects of light and growth regulators on adventitious bud formation in horseradish (Armoracia rusticana).

    PubMed

    Kamada, H; Tachikawa, Y; Saitou, T; Harada, H

    1995-07-01

    To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1(-1). These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.

  18. Phenotyping for the dynamics of field wheat root system architecture

    NASA Astrophysics Data System (ADS)

    Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian

    2017-01-01

    We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0-70d period, which increased rapidly afterwards (70-112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time.

  19. Phenotyping for the dynamics of field wheat root system architecture

    PubMed Central

    Chen, Xinxin; Ding, Qishuo; Błaszkiewicz, Zbigniew; Sun, Jiuai; Sun, Qian; He, Ruiyin; Li, Yinian

    2017-01-01

    We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0–70d period, which increased rapidly afterwards (70–112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time. PMID:28079107

  20. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor.

    PubMed

    Kalčíková, Gabriela; Žgajnar Gotvajn, Andreja; Kladnik, Aleš; Jemec, Anita

    2017-11-01

    Microplastics (MP), small plastic particles below 5 mm, have become one of the central concerns of environmental risk assessment. Microplastics are continuously being released into the aquatic environment either directly through consumer products or indirectly through fragmentation of larger plastic materials. The aim of our study was to investigate the effect of polyethylene microbeads from cosmetic products on duckweed (Lemna minor), a freshwater floating plant. The effects of microbeads from two exfoliating products on the specific leaf growth rate, the chlorophyll a and b content in the leaves, root number, root length and root cell viability were assessed. At the same time, water leachates from microbeads were also prepared to exclude the contribution of cosmetic ingredients on the measured impacts. Specific leaf growth rate and content of photosynthetic pigments in duckweed leaves were not affected by polyethylene microbeads, but these microbeads significantly affected the root growth by mechanical blocking. Sharp particles also reduced the viability of root cells, while the impact of microbeads with a smooth surface was neglected. It was concluded that microbeads from cosmetic products can also have negative impacts on floating plants in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems

    PubMed Central

    Li, Yuejiao; Sun, Didi; Li, Dandan; Xu, Zhenfeng; Zhao, Chunzhang; Lin, Honghui; Liu, Qing

    2015-01-01

    Ectomycorrhiza (ECM) plays an important role in plant nitrogen (N) nutrition and regulates plant responded to climate warming. We conducted a field experiment in a natural forest and a plantation in the eastern Tibetan Plateau to estimate the warming effects of open-top chambers (OTC) on ECM and N nutrition of Picea asperata seedlings. Four-year warming significantly decreased ECM colonization, ECM fungal biomass, fine root vigor, and the N concentration of leaf, stem and coarse root, but significantly increased fine root N concentration and N content of leaf, stem, fine root and whole plant in natural forest. Contrarily, warming induced no obvious change in most of these parameters in plantation. Moreover, warming decreased rhizospheric soil inorganic N content in both forests. Our results showed that four-year warming was not beneficial for ECM colonization of P. asperata seedlings in the two forests, and the seedlings in natural forest were more sensitive and flexible to experimental warming than in plantation. The changes of ECM colonization and fine root biomass for effective N uptake would be good for plant growth and remit N leaching under future warming in natural forest. PMID:26655633

  2. The effect of glyphosate on import into a sink leaf of sugar beet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Wenjang; Geiger, D.R.

    1990-05-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying {sup 14}CO{sub 2} to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying {sup 14}Cmore » were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves.« less

  3. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].

    PubMed

    Xie, Yin-feng; Cai, Xian-lei; Liu, Wei-long; Deng, Wei

    2009-08-15

    Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive physiological indexes to reflect the effects of perchlorate stress. The results suggest that perchlorate treatment can damage the photosynthetic system and leaf, decrease photochemical efficiency, and inhibit growth of Alternanthera philoxeroides. Leaf and root show a higher sensitivity to perchlorate,while stem with a lower sensitivity.

  4. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris

    PubMed Central

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-01-01

    Background and Aims For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Methods Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Key Results Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. Conclusions R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation. PMID:21896573

  5. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.

    PubMed

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-11-01

    For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.

  6. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations

    PubMed Central

    Bazihizina, Nadia; Colmer, Timothy D.; Barrett-Lennard, Edward G.

    2009-01-01

    Background and Aims Soil salinity is often heterogeneous, yet the physiology of halophytes has typically been studied with uniform salinity treatments. An evaluation was made of the growth, net photosynthesis, water use, water relations and tissue ions in the halophytic shrub Atriplex nummularia in response to non-uniform NaCl concentrations in a split-root system. Methods Atriplex nummularia was grown in a split-root system for 21 d, with either the same or two different NaCl concentrations (ranging from 10 to 670 mm), in aerated nutrient solution bathing each root half. Key Results Non-uniform salinity, with high NaCl in one root half (up to 670 mm) and 10 mm in the other half, had no effect on shoot ethanol-insoluble dry mass, net photosynthesis or shoot pre-dawn water potential. In contrast, a modest effect occurred for leaf osmotic potential (up to 30 % more solutes compared with uniform 10 mm NaCl treatment). With non-uniform NaCl concentrations (10/670 mm), 90 % of water was absorbed from the low salinity side, and the reduction in water use from the high salinity side caused whole-plant water use to decrease by about 30 %; there was no compensatory water uptake from the low salinity side. Leaf Na+ and Cl− concentrations were 1·9- to 2·3-fold higher in the uniform 670 mm treatment than in the 10/670 mm treatment, whereas leaf K+ concentrations were 1·2- to 2·0-fold higher in the non-uniform treatment. Conclusions Atriplex nummularia with one root half in 10 mm NaCl maintained net photosynthesis, shoot growth and shoot water potential even when the other root half was exposed to 670 mm NaCl, a concentration that inhibits growth by 65 % when uniform in the root zone. Given the likelihood of non-uniform salinity in many field situations, this situation would presumably benefit halophyte growth and physiology in saline environments. PMID:19556265

  7. The use of stored carbon reserves in growth of temperate tree roots and leaf buds: Analyses using radiocarbon measurements and modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudinski, J.B.; Torn, M.S.; Riley, W.J.

    2009-02-01

    Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissuemore » is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).« less

  8. Short-term complete submergence of rice at the tillering stage increases yield.

    PubMed

    Zhang, Yajie; Wang, Zhensheng; Li, Lei; Zhou, Qun; Xiao, Yao; Wei, Xing; Zhou, Mingyao

    2015-01-01

    Flooding is a major threat to agricultural production. Most studies have focused on the lower water storage limit in rice fields, whereas few studies have examined the upper water storage limit. This study aimed to explore the effect of waterlogging at the rice tillering stage on rice growth and yield. The early-ripening late japonica variety Yangjing 4227 was selected for this study. The treatments included different submergence depths (submergence depth/plant height: 1/2 (waist submergence), 2/3 (neck submergence), and 1/1 (complete submergence)) and durations (1, 3, and 5 d). The control group was treated with the conventional alternation of drying and wetting. The effects of waterlogging at the tillering stage on root characteristics, dry matter production, nitrogen and phosphorus accumulation, yield, yield components, and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene expression were explored. Compared with the control group, the 1/1 group showed significant increases in yield, seed-setting rate, photosynthetically efficient leaf area, and OS-ACS3 gene expression after 1 d of submergence. The grain number per panicle, dry weight of the aboveground and belowground parts, and number of adventitious roots also increased. Correlation analysis revealed a significant positive correlation between the panicle number and nitrogen content; however, no significant correlation was found for phosphorus content. If a decrease in rice yield of less than 10% is acceptable, half, 2/3, and complete submergence of the plants can be performed at the tillering stage for 1-3 d; this treatment will increase the space available for rice field water management/control and will improve rainfall resource utilization.

  9. Effects of Pratylenchus penetrans on the Infection of Strawberry Roots by Gnomonia comari

    PubMed Central

    Kurppa, S.; Vrain, T. C.

    1989-01-01

    The fungus Gnomonia comari, causal agent of strawberry leaf blotch, was inoculated at the crown of young axenized strawberry plants growing in sterilized sand. Only the roots were colonized, and the infection was symptomless. When the fungus colonized the roots in the presence of the root lesion nematode Pratylenchus penetrans, the plants were extremely stunted and their root system was necrotic. Fungal conidiospores were found attached to the cuticle of nematodes extracted from soil inoculated with the two pathogens. These findings indicate that P. penetrans could transport conidiospores through soil. PMID:19287646

  10. Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt-stressed canola.

    PubMed

    Liu, J; Gao, H; Wang, X; Zheng, Q; Wang, C; Wang, X; Wang, Q

    2014-03-01

    This study evaluated effects of foliar spraying 24-epibrassinoide (24-EBL) on the growth of salt-stressed canola. Seedlings at the four-leaf stage were treated with 150 mM NaCl and different concentrations of 24-EBL (10(-6), 10(-8), 10(-10), 10(-12) M) for 15 days. A concentration of 10(-10) M 24-EBL was chosen as optimal and used in a subsequent experiment on plant biomass and leaf water potential parameters. The results showed that 24-EBL mainly promoted shoot growth of salt-stressed plants and also ameliorated leaf water status. Foliar spraying of salt-stressed canola with 24-EBL increased osmotic adjustment ability in all organs, especially in younger leaves and roots. This was mainly due to an increase of free amino acid content in upper leaves, soluble sugars in middle leaves, organic acids and proline in lower leaves, all of these compounds in roots, as well as essential inorganic ions. Na(+) and Cl(-) sharply increased in different organs under salt stress, and 24-EBL reduced their accumulation. 24-EBL improved the uptake of K(+), Ca(2+), Mg(2+) and NO3(-) in roots, which were mainly transported to upper leaves, while NO3(-) was mainly transported to middle leaves. Thus, 24-EBL improvements in ion homeostasis of K(+)/Na(+), Ca(2+)/Na(+), Mg(2+)/Na(+) and NO3(-)/Cl(-), especially in younger leaves and roots, could be explained. As most important parts, younger leaves and roots were the main organs protected by 24-EBL via improvement in osmotic adjustment ability and ion homeostasis. Further, physiological status of growth of salt-stressed canola was ameliorated after 24-EBL treatment. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress.

    PubMed

    Jiménez, Sergio; Dridi, Jihène; Gutiérrez, Diego; Moret, David; Irigoyen, Juan J; Moreno, María A; Gogorcena, Yolanda

    2013-10-01

    An understanding of the mechanisms that determine plant response to reduced water availability is essential to improve water-use efficiency (WUE) of stone fruit crops. The physiological, biochemical and molecular drought responses of four Prunus rootstocks (GF 677, Cadaman, ROOTPAC 20 and ROOTPAC(®) R) budded with 'Catherina' peach cultivar were studied. Trees were grown in 15-l containers and subjected to a progressive water stress for 26 days, monitoring soil moisture content by time domain reflectometry. Photosynthetic and gas exchange parameters were determined. Root and leaf soluble sugars and proline content were also measured. At the end of the experiment, stressed plants showed lower net photosynthesis rate, stomatal conductance and transpiration rate, and higher intrinsic leaf WUE (AN/gs). Soluble sugars and proline concentration changes were observed, in both root and leaf tissues, especially in an advanced state of stress. The accumulation of proline in roots and leaves with drought stress was related to the decrease in osmotic potential and increase in WUE, whereas the accumulation of sorbitol in leaves, raffinose in roots and proline in both tissues was related only to the increase in the WUE. Owing to the putative role of raffinose and proline as antioxidants and their low concentration, they could be ameliorating deleterious effects of drought-induced oxidative stress by protecting membranes and enzymes rather than acting as active osmolytes. Higher expression of P5SC gene in roots was also consistent with proline accumulation in the tolerant genotype GF 677. These results indicate that accumulation of sorbitol, raffinose and proline in different tissues and/or the increase in P5SC expression could be used as markers of drought tolerance in peach cultivars grafted on Prunus rootstocks.

  12. Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives

    PubMed Central

    An, Feifei; Chen, Ting; Stéphanie, Djabou Mouafi Astride; Li, Kaimian; Li, Qing X.; Carvalho, Luiz J. C. B.; Tomlins, Keith; Li, Jun; Gu, Bi; Chen, Songbi

    2016-01-01

    Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena. PMID:27023871

  13. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity.

    PubMed

    Souza, Vânia L; de Almeida, Alex-Alan F; Souza, Jadiel de S; Mangabeira, Pedro A O; de Jesus, Raildo M; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C; Loguercio, Leandro L

    2014-01-01

    Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.

  14. Carboxylate metabolism in sugar beet plants grown with excess Zn.

    PubMed

    Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F

    2011-05-01

    The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  16. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti1

    PubMed Central

    Nobel, Park S.

    1976-01-01

    The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year. PMID:16659721

  17. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  18. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE PAGES

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    2016-08-15

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  19. Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research

    NASA Astrophysics Data System (ADS)

    Kelleway, Jeffrey J.; Mazumder, Debashish; Baldock, Jeffrey A.; Saintilan, Neil

    2018-05-01

    The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants. We found a significant site effect (F3, 36 = 15.78; P < 0.001) with mean leaf δ13C values 2.0‰ more depleted at the lowest salinity site compared to the other locations. There was a larger within-plant fractionation effect, however, with leaf samples (mean ± SE = -29.1 ± 0.2) more depleted in 13C than stem samples (-27.1 ± 0.1), while cable root (-25. 8 ± 0.1), pneumatophores (-25.7 ± 0.1) and fine roots (-26.0 ± 0.2) were more enriched in 13C relative to both aboveground tissue types (F4, 36 = 223.45; P < 0.001). The within-plant δ13C fractionation we report for A. marina is greater than that reported in most other ecosystems. This has implications for studies of estuarine carbon cycling. The consistent and large size of the fractionation from leaf to woody stem (∼2.0‰) and mostly consistent fractionation from leaf to root tissues (>3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.

  20. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    NASA Astrophysics Data System (ADS)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and needle samples released a much higher amount of tannins than fresh root samples. At later litter decomposition stages the influence of tannins decreased and lignin derived phenols dominated the extracts. With ongoing litter degradation the degree of oxidation for the litter material increased, which was also reflected by the water extracted molecules.

  1. Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses

    PubMed Central

    Zhou, Yonggang; Chen, Huan; Dong, Yuanyuan; Wang, Nan; Li, Xiaowei; Jameel, Aysha; Yang, He; Zhang, Min; Chen, Kai; Wang, Fawei; Li, Haiyan

    2016-01-01

    Plant microRNAs are small non-coding, endogenic RNA molecule (containing 20–24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels. Normalizing the data using reference genes is essential for the analysis of reliable RT-qPCR data. In this study, two groups of candidate reference mRNAs and miRNAs in soybean leaves and roots treated with various abiotic stresses (PEG-simulated drought, salinity, alkalinity, salinity+alkalinity, and abscisic acid) were analyzed by RT-qPCR. We analyzed the most appropriate reference mRNA/miRNAs using the geNorm, NormFinder, and BestKeeper algorithms. According to the results, Act and EF1b were the most suitable reference mRNAs in leaf and root samples, for mRNA and miRNA precursor data normalization. The most suitable reference miRNAs found in leaf and root samples were 166a and 167a for mature miRNA data normalization. Hence the best combinations of reference mRNAs for mRNA and miRNA precursor data normalization were EF1a + Act or EF1b + Act in leaf samples, and EF1a + EF1b or 60s + EF1b in root samples. For mature miRNA data normalization, the most suitable combinations of reference miRNAs were 166a + 167d in leaf samples, and 171a + 156a or 167a + 171a in root samples. We identified potential reference mRNA/miRNAs for accurate RT-qPCR data normalization for mature miRNA, miRNA precursors, and their targeted mRNAs. Our results promote miRNA-based studies on soybean plants exposed to abiotic stress conditions. PMID:27176476

  2. Influence of soil texture, moisture, and surface cracks on the performance of a root-feeding flea beetle, Longitarsus bethae (Coleoptera: Chrysomelidae), a biological control agent for Lantana camara (Verbenaceae).

    PubMed

    Simelane, David O

    2007-06-01

    Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.

  3. Transplant shock of northern red oak seedlings following simulated drought as influenced by root morphology

    Treesearch

    Douglass F. Jacobs; Francis Salifu; Anthony Davis

    2005-01-01

    Transplant shock, implicated by depressed seedling physiological response associated with moisture or nutrient stress immediately following planting, limits early plantation establishment. We investigated the impacts of simulated drought and transplant root volume on predawn leaf xylem water potential, photosynthetic assimilation rates, stomatal conductance, and growth...

  4. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation

    USDA-ARS?s Scientific Manuscript database

    Background: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. The lack of informative and saturated linkage maps associated with well characterized populations s...

  5. Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series.

    PubMed

    Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod

    2011-03-22

    Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva Granada and Mesoamerica subgroup 1 (black beans) both with regards to gene expression and as sources of markers. However, we found few differences between SSR type and frequency between the G19833 leaf and DOR364 root tissue-derived ESTs. Overall, our work adds to the analysis of microsatellite frequency evaluation for common bean and provides a new set of 120 BMc markers which combined with the 248 previously developed BMc markers brings the total in this series to 368 markers. Once we include BMd markers, which are derived from GenBank sequences, the current total of gene-based markers from our laboratory surpasses 500 markers. These markers are basic for studies of the transcriptome of common bean and can form anchor points for genetic mapping studies in the future.

  6. Clone lineages of grape phylloxera differ in their performance on Vitis vinifera.

    PubMed

    Herbert, K S; Umina, P A; Mitrovski, P J; Powell, K S; Viduka, K; Hoffmann, A A

    2010-12-01

    Grape phylloxera, Daktulosphaira vitifoliae Fitch, is an important pest of grapevines (Vitis vinifera L.) (Vitaceae). The distribution and frequency of phylloxera clone lineages vary within infested regions of Australia, suggesting the introduction of separate lineages of D. vitifoliae with host associations. Virulence levels of particular phylloxera clones may vary on V. vinifera, but much of this evidence is indirect. In this study, we directly tested the performance of phylloxera clones on V. vinifera using an established excised root assay and a new glasshouse vine assessment. In the root assay, grape phylloxera clones differed in egg production and egg to adult survivorship. In the vine assay, clones differed in the number of immature and adult life stages on roots. In addition vine characteristics, including mean stem weight, root weight, leaf chlorophyll and leaf area, were affected by different phylloxera clones. The two most widespread clones displayed high levels of virulence. These results point to only some phylloxera clones being highly virulent on V. vinifera, helping to explain patterns of field damage, phylloxera distributions and continued survival and production of V. vinifera vines in some infested areas.

  7. [Allelopathic effects of Artemisia frigida on three Poaceae plants seed germination and seedling growth].

    PubMed

    Li, Xue-feng; Wang, Jian; Xu, Wen-bo; Wang, Kun

    2010-07-01

    Aqueous extracts of Artemisia frigida leaf and stem and soils beneath A. frigida were used to test their allelopathic effects on the seed germination and seedling growth of three Poaceae plants (Leymus chinensis, Stipa krylovii, and Cleistogenes squarrosa) on Leymus chinensis grassland. The aqueous extracts of A. frigida leaf and stem decreased the seed germination index of test plants and prolonged their seed germination time, and inhibited the shoot growth of the three plants and the root growth of S. krylovii. The aqueous extracts at concentration > or = 0.075 g x ml(-1) presented a strong inhibition on the root growth of L. chinensis, while those at concentration < or = 0.05 g x ml(-1) had less effects. For the root growth of C. squarrosa, the aqueous extracts showed a "low-promotion and high-inhibition effect". Under the effects of A. frigida soil, the seedling growth of test plants was inhibited. The sensitivity of test plants to the allelopathic effects of A. frigida was in the order of S. krylovii > L. chinense > C. squarrosa, with a higher sensitivity of root growth than shoot growth.

  8. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  9. Influence of Cadmium on Water Relations, Stomatal Resistance, and Abscisic Acid Content in Expanding Bean Leaves 1

    PubMed Central

    Poschenrieder, Charlotte; Gunsé, Benet; Barceló, Juan

    1989-01-01

    Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed. PMID:16666937

  10. [Effects of hyposalinity in Thalassia testudinum (Hydrocharitaceae) from Parque Nacional Morrocoy, Venezuela].

    PubMed

    Pérez, D; Galindo, L

    2000-12-01

    The year 1996 had a high pluviosity in Morrocoy National Park (western coastal zone, Venezuela) and low salinity in December 1996 affected the seagrass beds, dominated by Thalassia testudinum. Patches without T. testudinum were observed in localities of the park that used to have very dense populations of this plant. Sampling was done at Las Luisas to determine leaf productivity, turnover rate, short shoot density and relative biomass of plant sections, in order to compare with data obtained in September 1996, previous to the event. Green leaves, roots and rhizomes were the most affected parts. Mean green leaf biomass decreased in January and February 1997 to 5% of the plant's total biomass; mean root biomass decreased in March to 40% and mean rhi zome biomass decreased in February to 30%. The density of the active short shoots decreased to a minimum in February, but in April it reached a value similar to that of September 1996. The density of the inactive short shoots decreased to a minimum in March, and they dissappeared in April, matching the increasing density of the active short shoots between these two months. In February 1997, 56% of the inactive short shoots showed evidence of leaf initiation. In January 1997 the leaf productivity and turnover rate values (2.72 +/- 0.35 g/m2/d and 2.15% leaf DW/d) were similar to the annual mean previously determined from Las Luisas (2.35 +/- 0.72 g/m2/d and 1.96% leaf DW/d). Nevertheless, the values of productivity and turnover rate detected at Las Luisas in April 1997 (4.88 +/- 2.14 g/m2/d and 4.66% leaf DW/d) were higher than those values previously reported for this location. In response to the mortality episode, the leaf productivity and turnover rate of T. testudinum increased and the leaf initiation was activated in the inactive short shoots.

  11. Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas.

    PubMed

    Holdo, Ricardo M

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.

  12. Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas

    PubMed Central

    Holdo, Ricardo M.

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID:23950900

  13. The effect of partially exposed connective tissue graft on root-coverage outcomes: a systematic review and meta-analysis.

    PubMed

    Dodge, Austin; Garcia, Jeffrey; Luepke, Paul; Lai, Yu-Lin; Kassab, Moawia; Lin, Guo-Hao

    2018-04-01

    The aim of this systematic review was to compare the root-coverage outcomes of using a partially exposed connective tissue graft (CTG) technique with a fully covered CTG technique for root coverage. An electronic search up to February 28 th , 2017, was performed to identify human clinical studies with data comparing outcomes of root coverage using CTG, with and without a partially exposed graft. Five clinical studies were selected for inclusion in this review. For each study, the gain of keratinized gingiva, reduction of recession depth, number of surgical sites achieving complete root coverage, percentage of root coverage, gain of tissue thickness, and changes of probing depth and clinical attachment level were recorded. Meta-analysis for the comparison of complete root coverage between the two techniques presented no statistically significant differences. A statistically significant gain of keratinized tissue in favor of the sites with an exposed CTG and a tendency of greater reduction in recession depth were seen at the sites with a fully covered CTG. Based on the results, the use of a partially exposed CTG in root-coverage procedures could achieve greater gain in keratinized gingiva, while a fully covered CTG might be indicated for procedures aiming to reduce recession depth. © 2018 Eur J Oral Sci.

  14. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    PubMed

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    PubMed

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera

    PubMed Central

    Gupta, Parul; Goel, Ridhi; Agarwal, Aditya Vikram; Asif, Mehar Hasan; Sangwan, Neelam Singh; Sangwan, Rajender Singh; Trivedi, Prabodh Kumar

    2015-01-01

    Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania. PMID:26688389

  17. Regulation of water balance in mangroves

    PubMed Central

    Reef, Ruth; Lovelock, Catherine E.

    2015-01-01

    Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. PMID:25157072

  18. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  19. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    PubMed Central

    Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119

  20. Indirect quantification of fine root production in a near tropical wet mountainous region

    NASA Astrophysics Data System (ADS)

    Lu, X.; Zhang, J.; Huang, C.

    2016-12-01

    The main functions of fine root (defined as diameter <= 2 mm) are water and nutrient transports. Besides being a carbon (C) storage pool, it also provides a C flux pathway through soil and plant. Fine root takes up a small portion, normally 5%, of biomass in forest ecosystems, but 30% to 70% of total net primary production. Therefore, quantifying fine root productivity is important to study the forest C budget. Presumably, belowground growth can be indirectly estimated by the more accessible aboveground vegetation structure dynamics. To verify the relationship with fine root productivity, we take internal (floristic) and external (environmental) factors into account, including litter production, canopy density (leaf area index), leaf nutrients (N, K, Ca, Mg, P), weather and/or soil physical conditions (air temperature, humidity, precipitation, solar radiation and soil moisture). The study was conducted in near tropical broadleaf (700 m asl) and conifer (1700 m asl) forests in northeastern Taiwan, generally receiving more than 4000 mm of precipitation per year. For each site, 16 50-cm long minirhizotron tubes were installed. Fine root images were acquired every three weeks. Growth and decline, newly presence and absence of fine roots were delineated by image processing algorithms to derive fine-root productivity through time. Aforementioned internal and external attributes were simultaneously collected as well. Some of these variables were highly correlated and were detrended using principal component analysis. We found that these transformed variables (mainly associated with litter production, precipitation and solar radiation) can delineate the spatiotemporal dynamics of root production well (r2 = 0.87, p = 0.443). In conclusion, this study demonstrated the feasibility of utilized aboveground variables to indirectly assess fine root growth, which could be further developed for the regional scale mapping with aid of remote sensing.

  1. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.).

    PubMed

    Riaz, M; Farooq, J; Sakhawat, G; Mahmood, A; Sadiq, M A; Yaseen, M

    2013-02-27

    Research pertaining to genetic variability parameters, heritability, and genotypic, phenotypic, simple, and environmental correlations for various seedling traits in five elite advanced cotton (Gossypium hirsutum L.) lines (FH-113, FH-114, FH-941, FH-942, and FH-2015) and one check (CIM-496) was carried out during October and November 2010 under greenhouse conditions at the Cotton Research Institute (Faisalabad, Pakistan). Material was raised in plastic tubes with a randomized complete block design replicated three times. Three drought shocks were applied by withholding water from the tube-sown plants for 8-, 10-, and 12-day intervals. After 60 days of sowing, data on root/shoot traits like root length (cm), shoot length (cm), root weight (g), shoot fresh weight (g), lateral root number, root dry weight (g) shoot dry weight (g), and total plant weight (g) were recorded. Considerable genotypic variations existed between genotypes for all seedling characters. Higher broad-sense heritability estimates were found for all traits studied. Maximum broad-sense heritability coupled with high genetic advance in root length (0.99, 17.34), lateral root number (0.91, 2.89), and shoot length (0.90, 4.35) suggested a potential for genetic improvement through breeding and selection. The correlation coefficients among root length, shoot length, root dry weight, fresh shoot weight, and total plant weight were positively and significantly correlated; thus, they can be selected simultaneously as drought tolerance selection indexes owing to the absence of undesired relationships. Genotypes FH-942 and FH-113 had the lowest excised leaf water loss during the first 4 h and also for the next 4 h. Therefore, these two advanced lines (FH-942 and FH-113) with high initial water content and lower excised leaf water loss had better adaptation to water stress.

  2. Drought resistance of Ailanthus altissima: root hydraulics and water relations.

    PubMed

    Trifilò, P; Raimondo, F; Nardini, A; Lo Gullo, M A; Salleo, S

    2004-01-01

    Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.

  3. Effect of different management systems on soil CO2 emission and plant growth in a maize field

    NASA Astrophysics Data System (ADS)

    Dencso, Marton; Gelybó, Györgyi; Kása, Ilona; Pokovai, Klára; Potyó, Imre; Horel, Ágota; Birkás, Márta; Takács, Tünde; Tóth, Eszter

    2017-04-01

    In this study soil CO2 emission was examined in a long-term tillage experiment along with observations of plant morphological parameters, arbuscular mycorrhizal fungal (AMF) root colonization, soil properties and soil hydrothermal regime on loamy clay soil (Józsefmajor, Hungary) sown with maize. The tillage experiment was set up in 2002 and we focused on measurements performed in 2016. Based on soil disturbance depths, we selected three different tillage types such as ploughing (26-32 cm), shallow cultivation (12-16 cm), and no tillage (0 cm) for the present study. We examined CO2 emissions in rows compared to between rows within the same treatment in order to estimate the CO2 emission pattern in case of the different treatments. The measurements were carried out using the static chamber method in seven spatial replicates per treatment. For investigating plant morphological parameters of the maize we measured height of plants, leaf number and area, girth area of stem...etc. The CO2 data showed that the difference between ploughing and no tillage treatments was higher in the vegetation period of 2016 than during the dormant season. There were higher CO2 emissions in case of chambers inserted in rows than between rows on average, moreover there were significant differences between certain chambers installed in rows and between rows according to statistical data. This phenomenom can be explained by the enhanced root repiration in the rows. Based on plant morphology measurements we observed that plant developement was slower in no tillage treatment than in ploughing. Depending on sampling date, height of plants data showed 1.1 to 1.5 higher values, while leaf area data showed 1.2 to 2.5 times higher areas in case of ploughing compared to no tillage treatment. This can be due to the different soil conditions and textures of the treatments. The AMF root colonization data showed minor differences between ploughing and no tillage treatments, the highest colonization rates were found in case of shallow cultivation.

  4. Confronting a Process-based Model of Temperate Tree Transpiration with Data from Forests in Central Panama Exposed to Drought

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Bretfeld, M.; Millar, D.; Hall, J. S.; Beverly, D.; Hall, J. S.; Ogden, F. L.; Mackay, D. S.

    2016-12-01

    Process-based models of tree impacts on the hydrologic cycle must include not only plant hydraulic limitations but also photosynthetic controls because plants lose water to gain carbon. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is one such model. TREES includes a Bayesian model-data fusion approach that provides rigorous tests of patterns in tree transpiration data against biophysical processes in the model. TREES has been extensively tested against many temperate tree data sets including those experiencing severe and lethal drought. We test TREES against data from sap flow-scaled transpiration in 76 tropical trees (representing 42 different species) in secondary forests of three different ages (8, 25, and 80+ years) located in the Panama Canal Watershed. These data were collected during the third driest El Niño-Southern Oscillation (ENSO) event on record in Panama during 2015/2016. Tree transpiration response to vapor pressure deficit and solar radiation was the same in the two older forests, but showed an additional response to limited soil moisture in the youngest forest. Volumetric water content at 30 and 50 cm depths was 8% lower in the 8 year old forest than in the 80+ year old forest. TREES could not simulate this difference in soil moisture without increasing simulated root area. TREES simulations were improved by including light response curves of leaf photosynthesis, root vulnerability to cavitation and canopy position impacts on light. TREES was able to simulate the anisohydric (loose stomatal regulation of leaf water potential) and isohydric (tight stomatal regulation) of the 73 trees species a priori indicating that species level information is not required. Analyses of posterior probability distributions indicates TREES model predictions of individual tree transpiration would likely be improved with more detailed root and soil moisture in all forest ages data with the most improvement likely in the 8 year old forest. Our results suggest that a biophysical tree transpiration model developed in temperate forests can be applied to the tropics and could be used to improve predictions of evapotranspiration from changing land cover in tropical hydrology models.

  5. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    PubMed

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  6. Increased growth of young citrus trees under reduced radiation load in a semi-arid climate.

    PubMed

    Raveh, E; Cohen, S; Raz, T; Yakir, D; Grava, A; Goldschmidt, E E

    2003-01-01

    This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 degrees C. Two-year-old de-fruited Murcott tangor (Citrus reticulata BlancoxCitrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (delta(13)C) of exposed leaves that developed under shading was significantly reduced by 1.9 per thousand in the 60% Tunnel, indicating that shading increased CO(2) concentrations at the chloroplasts (C(c)), as would be expected from increased conductance. Substomatal CO(2) concentrations, C(i), computed from leaf net CO(2) assimilation rate and conductance values, also indicate that shading increases internal CO(2) concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.

  7. Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia.

    PubMed

    Deng, Shixin; West, Brett J; Palu, 'Afa K; Jensen, C Jarakae

    2011-01-01

    Noni is a medicinal plant with a long history of use as a folk remedy in many tropical areas, and is attracting more attention worldwide. A comprehensive study on the major phytochemicals in different plant parts (fruit, leaf, seed, root and flower) and sources is of great value for fully understanding their diverse medicinal benefits. To quantitatively determine the major iridoid components in different parts of noni plants, and compare iridoids in noni fruits collected from different tropical areas worldwide. The optimal chromatographic conditions were achieved on a C(18) column with gradient elution using 0.1% formic acid aqueous formic acid and acetonitrile at 235  nm. The selective HPLC method was validated for precision, linearity, limit of detection, limit of quantitation and accuracy. Deacetylasperulosidic acid (DAA) was found to be the major iridoid in noni fruit. In order of predominance, DAA concentrations in different parts of the noni plant were dried noni fruit > fruit juice > seed > flower > leaf > root. The order of predominance for asperulosidic acid (AA) concentration was dried noni fruit > leaf > flower > root > fruit juice > seed. DAA and AA contents of methanolic extracts of noni fruits collected from different tropical regions were 13.8-42.9 and 0.7-8.9  mg/g, respectively, with French Polynesia containing the highest total iridoids and the Dominican Republic containing the lowest. Iridoids DAA and AA are found to be present in leaf, root, seed and flower of noni plants, and were identified as the major components in noni fruit. Given the great variation of iridoid contents in noni fruit grown in different tropical areas worldwide, geographical factors appear to have significant effects on fruit composition. The iridoids in noni fruit were stable at the temperatures used during pasteurisation and, therefore, may be useful marker compounds for identity and quality testing of commercial noni products. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Evaluation of constitutive iron reductase (AtFRO2) expression on mineral accumulation and distribution in soybean (Glycine max. L)

    PubMed Central

    Vasconcelos, Marta W.; Clemente, Thomas E.; Grusak, Michael A.

    2014-01-01

    Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and distribution. PMID:24765096

  9. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).

    PubMed

    Rana, Vivek; Maiti, Subodh Kumar

    2018-04-01

    Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TF leaf , TF stem bark and TF stem wood ) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TF leaf , TF stem bark and TF stem wood  > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TF leaf , TF stem bark and TF stem wood  < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.

  10. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization.

    PubMed

    Estrada-Luna, Andrés A; Davies, Fred T

    2003-09-01

    Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization. Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (gs) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation--thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer)--and a higher A and gs as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45% of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry biomass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.

  11. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis.

    PubMed

    Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T

    2018-05-08

    Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.

  12. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

    Treesearch

    J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure

    2009-01-01

    The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...

  13. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism

    PubMed Central

    Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na+ from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na+ unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley. PMID:29515598

  14. Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism.

    PubMed

    Hazzouri, Khaled M; Khraiwesh, Basel; Amiri, Khaled M A; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K; Nelson, David; Mansour, Alain L; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled

    2018-01-01

    Sodium (Na + ) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5 -like gene was a major gene in the QTL for salt tolerance, named Nax2 . In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley ( Hordeum vulgare ). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na + ) and potassium (K + ) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na + and K + were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na + from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na + unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley.

  15. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  16. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. [Effects of Cuscuta australis parasitism on the growth, reproduction and defense of Solidago canadensis].

    PubMed

    Yang, Bei-fen; Du, Le-shan; Li, Jun-min

    2015-11-01

    In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.

  18. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  19. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes.

    PubMed

    Avelino, Jacques; Romero-Gurdián, Alí; Cruz-Cuellar, Héctor F; Declerck, Fabrice A J

    2012-03-01

    Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.

  20. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes.

    PubMed

    Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco

    2011-11-01

    The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.

  1. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity.

    PubMed

    Shahabivand, Saleh; Parvaneh, Azar; Aliloo, Ali Asghar

    2017-11-01

    Cadmium (Cd) pollution in the soil threatens the quality of environmental health, and deleteriously affects physiological activities of crops. Symbiosis of endophytic fungi with various plants is a promising manner to improving numerous plant characteristics and remediating heavy metal-polluted soils. In this pot experiment, the influence of root endophyte fungus Piriformospora indica on growth, physiological parameters and organs Cd accumulation in sunflower cv. Zaria plants under the toxic levels of Cd (0, 40, 80 and 120mg/kg soil) were studied. Increasing Cd concentration in the soil reduced growth parameters, chlorophyll (Chl) a and Chl b contents, and Fv/Fm and ETR (electron transport rate) values, but increased root, stem and leaf Cd accumulation, and proline content. The presence of P. indica significantly enhanced growth, Chl a, Chl b and proline contents, and Fv/Fm and ETR values. Compared to non-inoculated ones, P. indica-inoculated plants had higher Cd accumulation in root, whereas lower Cd accumulation in stem and leaf. The present study strongly supports the established ability of P. indica to alleviate Cd toxicity by improving the physiological status in sunflower. Furthermore, this endophyte fungus can be useful for Cd phyto-stabilization in sunflower roots in contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-22

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  3. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.

    PubMed

    Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2015-08-01

    Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. © 2015 John Wiley & Sons Ltd.

  4. Adaptive Adjustment in Taraxacum Officinale Wigg. in the Conditions of Overburden Dump

    NASA Astrophysics Data System (ADS)

    Legoshchina, Olga; Egorova, Irina; Neverova, Olga

    2017-11-01

    Morphological and anatomical features of the leaves and roots of Taraxacum officinale Wigg., growing under the conditions of the rocky dump of the Kedrovsky coal mine of the Kemerovo region, were studied. It was revealed that the specific environmental conditions of the dump cause morphological and anatomical changes in the leaves and roots of the dandelion. At the level of morphology, a decrease in the average leaf area, a thickening of leaf blades, a tendency to decrease the number of leaves in the rosette, a significant decrease in the mass and length of the roots. At the level of the anatomical structure of the leaves, there is a significant increase in the thickness of the mesophyll, a tendency to decrease the thickness of the tissues of the upper and lower epidermis, a decrease in the number of cells in 1 mm2 and an increase in the size of stomata in the tissues of the lower and upper epidermis, a decrease in the number of stomata by 1 mm2 and a stomatal index on the upper epidermis. At the level of the anatomical structure of the roots, the radius of the root decreases, the radius of the cortex and phloem, the diameter of the xylem.

  5. Allelopathic effects of water extracts ofArtemisia princeps var.orientalis on selected plant species.

    PubMed

    Kil, B S; Yun, K W

    1992-01-01

    The allelopathic effects of wormwood plants (Artemisia princeps var.orientalis) and their possible phytotoxicity on receptor species were investigated. The aqueous extracts of mature leaf, stem, and root of wormwood plants caused significant inhibition in germination and decreased seedling elongation of receptor plants, whereas germination of some species was not inhibited by extracts of stems and roots. Dry weight growth was slightly increased at lower concentrations of the extract, whereas it was proportionally inhibited at higher concentrations. The calorie value of the organic matter in receptor plants measured by bomb calorimeter was reduced proportionally to the extract concentration. However, results with extracts of juvenile leaf did not correlate with inhibition or promotion of elongation and dry weight.

  6. Early to mid Cretaceous vegetation of northern Gondwana - the onset of angiosperm radiation and climatic implications

    NASA Astrophysics Data System (ADS)

    Coiffard, Clément; Mohr, Barbara

    2014-05-01

    Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some mechanisms to withstand drought, which in turn let us assume that the climate was characterized by dry and wet seasons.

  7. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less

  8. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    DOE PAGES

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; ...

    2016-05-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis ratesmore » are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO 2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.« less

  9. A novel root-to-shoot stomatal response to very high CO2 levels in the soil: electrical, hydraulic and biochemical signalling.

    PubMed

    Lake, Janice A; Walker, Heather J; Cameron, Duncan D; Lomax, Barry H

    2017-04-01

    Investigations were undertaken in the context of the potential environmental impact of carbon capture and storage (CCS) transportation in the form of a hypothetical leak of extreme levels of CO 2 into the soil environment and subsequent effects on plant physiology. Laboratory studies using purpose built soil chambers, separating and isolating the soil and aerial environments, were used to introduce high levels of CO 2 gas exclusively into the rhizosphere. CO 2 concentrations greater than 32% in the isolated soil environment revealed a previously unknown whole plant stomatal response. Time course measurements of stomatal conductance (g s ), leaf temperature and leaf abscisic acid (ABA) show strong coupling between all three variables over a specific period (3 h following CO 2 gassing) occurring as a result of CO 2 -specific detection by roots. The coupling of g s and ABA subsequently breaks down resulting in a rapid and complete loss of turgor in the shoot. Root access to water is severely restricted as evidenced by the inability to counter turgor loss, however, the plant regains some turgor over time. Recovery of full turgor is not achieved over the longer term. Results suggest an immediate perception and whole plant response as changes in measured parameters (leaf temperature, g s and ABA) occur in the shoot, but the response is solely due to detection of very high CO 2 concentration at the root/soil interface which results in loss of stomatal regulation and disruption to control over water uptake. © 2016 Scandinavian Plant Physiology Society.

  10. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    NASA Astrophysics Data System (ADS)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  11. Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration.

    PubMed

    Marian, Franca; Sandmann, Dorothee; Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan

    2017-08-01

    We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site-specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers.

  12. [Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A case study for potato and oil sunflower.

    PubMed

    Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu

    2016-11-18

    The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal conductance models for oil sunflower are to be improved in further research.

  13. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.

    PubMed

    Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F

    2007-08-01

    Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.

  14. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    PubMed

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  15. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  17. Prosopis pubescens (Screw bean mesquite) seedlings are hyper accumulators of copper

    PubMed Central

    Zappala, Marian N.; Ellzey, Joanne T.; Bader, Julia; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge

    2013-01-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma spectroscopy (ICP-OES). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was utilized to localize copper within leaves. A 600 ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. In order for a plant to be considered a hyper accumulator, the plant must accumulate a leaf: root ratio of <1. Screw bean mesquite exposed to copper had a leaf: root ratios of 0.355 when cotyledons were included. We showed that Prosopis pubescens grown in soil is a hyper accumulator of copper. We recommend that this plant should be field tested. PMID:23612918

  18. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  19. Nitrogen uptake in a Tibetan grasland and implications for a vulnerable ecosystem

    NASA Astrophysics Data System (ADS)

    Schleuß, Per; Heitkamp, Felix; Sun, Yue; Kuzyakov, Yakov

    2016-04-01

    Grasslands are very important regionally and globally because they store large amounts of carbon (C) and nitrogen (N) and provide food for grazing animals. Intensive degradation of alpine grasslands in recent decades has mainly impacted the upper root-mat/soil horizon, with severe consequences for nutrient uptake in these nutrient-limited ecosystems. We used 15N labelling to identify the role of individual soil layers for N-uptake by Kobresia pygmaea. We hypothesized a very efficient N-uptake corresponding mainly to the vertical distribution of living root biomass (topsoil > subsoil). We assume that K. pygmaea develops a very dense root mat, which has to be maintained by small aboveground biomass, to enable this efficient N-uptake. Consequently, we expect a higher N-investment into roots compared to shoots. The 15N recovery in the whole plants (~70%) indicated very efficient N-uptake from the upper injection depths. The highest 15N amounts were recovered in root biomass, whereby values strongly decreased with depth. In contrast, 15N recovery in shoots was generally low (~18%) and independent of the 15N injection depth. This clearly shows that the low N demand of Kobresia shoots can be easily covered by N-uptake from any depth. Less living root biomass in lower versus upper soil was compensated by a higher specific root activity for N-uptake. The 15N allocation into roots was on average 1.7 times higher than that into shoots, which agreed well with the very high R/S ratio. Increasing root biomass is an efficient strategy of K. pygmaea to compete for belowground resources at depths and periods when resources are available. This implies high C costs to maintain root biomass (~6.0 kg DM m-2), which must be covered by a very low amount of photosynthetically active shoots (0.3 kg DM m-2). It also suggests that Kobresia grasslands react extremely sensitively towards changes in climate and management that disrupt this above-/belowground trade-off mechanism.

  20. Influence of Environmental Factors on the Germination of Urena lobata L. and Its Response to Herbicides

    PubMed Central

    Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.

    2014-01-01

    Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143

Top