Pérez-Pérez, J. G.; Dodd, I. C.
2015-01-01
Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. PMID:25740924
Pérez-Pérez, J G; Dodd, I C
2015-04-01
Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro
2016-01-01
The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.
Growth and proteomic analysis of tomato fruit under partial root-zone drying.
Marjanović, Milena; Stikić, Radmila; Vucelić-Radović, Biljana; Savić, Sladjana; Jovanović, Zorica; Bertin, Nadia; Faurobert, Mireille
2012-06-01
The effects of partial root-zone drying (PRD) on tomato fruit growth and proteome in the pericarp of cultivar Ailsa Craig were investigated. The PRD treatment was 70% of water applied to fully irrigated (FI) plants. PRD reduced the fruit number and slightly increased the fruit diameter, whereas the total fruit fresh weight (FW) and dry weight (DW) per plant did not change. Although the growth rate was higher in FI than in PRD fruits, the longer period of cell expansion resulted in bigger PRD fruits. Proteins were extracted from pericarp tissue at two fruit growth stages (15 and 30 days post-anthesis [dpa]), and submitted to proteomic analysis including two-dimensional gel electrophoresis and mass spectrometry for identification. Proteins related to carbon and amino acid metabolism indicated that slower metabolic flux in PRD fruits may be the cause of a slower growth rate compared to FI fruits. The increase in expression of the proteins related to cell wall, energy, and stress defense could allow PRD fruits to increase the duration of fruit growth compared to FI fruits. Upregulation of some of the antioxidative enzymes during the cell expansion phase of PRD fruits appears to be related to their role in protecting fruits against the mild stress induced by PRD.
Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro
2016-01-01
The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea ‘var. Chetoui’) in a Tunisian grove were exposed to four treatments from May to October for three-years: ‘control’ plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; ‘PRD100’ were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; ‘PRD50’ were given 50% of ETc to half of the root-system, and; ‘rain-fed’ plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during ‘off-years’ may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of ‘hydro-passive’ stomatal behaviour indicate that the ‘Chetoui’ variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for ‘Chetoui’ olive production. PMID:27315081
NASA Astrophysics Data System (ADS)
Pérez-Pastor, Alejandro; Domingo, Rafael; De la Rosa, Jose M.°; Rosario Conesa Saura, M.°
2016-04-01
To compare the effects of partial root-zone drying and conventional deficit irrigation applied during post-veraison and the whole berry growth on water relations, yield and berry quality, one experiment was conducted in a commercial vineyard of 'Crimson Seedless' table grapes. Five irrigation treatments were imposed: (i) Control (CTL) irrigated to 110% of crop evapotranspiration (ETc), (ii) regulated deficit irrigation (RDI) irrigated at 50% of CTL during the non- critical period of post-verasion, (iii) continuous deficit irrigation (DIc), irrigated at 50% of CTL throughout the whole berry growing season, (iv) partial root-zone drying (PRD), irrigated similar to RDI, but alternating the irrigation applied in the dry side every 10-14 days; and (v) continuous partial root-zone drying (PRDc), irrigated as DIc but alternating the irrigation in the dry side every 10-14 days. RDI and PRD received 24% and 28% less water than CTL, respectively. These reductions were higher in DIc and PRDc (65% and 53%, respectively). Total yield was not affected by any DI strategy. Only significantly lower values were observed in the weight and height's berries in respect to CTL. However, the colour parameters evaluated increased in all DI treatments, being slightly higher in DIc and PRDc compared with RDI and PRD. In addition, total soluble solids (TSS) were significantly higher in DIc, compared to other irrigated counterparts. Our findings showed that the application of water deficit during the whole berry growth through the use of DIc and PRDc, can be considered for irrigation scheduling in 'Crimson Seedless' table grapes. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).
USDA-ARS?s Scientific Manuscript database
Papaya (Carica papaya, L.) is an important economic crop in tropical and subtropical countries in addition to its human health benefits. Papaya is a giant herbaceous species and maintaining adequate tissue turgidity and water availability is necessary to maintain the rigidity of the stem as well as...
Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M
2014-10-01
To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dodd, Ian C; Egea, Gregorio; Davies, William J
2008-01-01
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.
Bindon, Keren A; Dry, Peter R; Loveys, Brian R
2007-05-30
The influence of irrigation strategy on grape berry carotenoids and C13-norisoprenoid precursors was investigated for Vitis vinifera L. cv. Cabernet Sauvignon. Two irrigation treatments were compared, one in which vines received reduced irrigation applied alternately to either side of the vine (partial rootzone drying, PRD) and a second control treatment in which water was applied to both sides of the vine. Over the two years of the experiments, PRD vines received on average 66% of the water applied to the controls. Initially, the PRD treatment did not alter midday leaf (psiL) and stem (psiS) water potential relative to the control, but decreased stomatal conductance (gs). Continued exposure to the PRD treatment resulted in treated grapevines experiencing hydraulic water deficit relative to the control treatment and induced lowered midday psiL and psiS, which was also reflected in decreased berry weight at harvest. In both irrigation treatments, the most abundant grape berry carotenoids, beta-carotene and lutein, followed the developmental pattern typical of other grape varieties, decreasing post-veraison. At certain points in time, as the fruit approached maturity, the concentration of these carotenoids was increased in fruit of PRD-treated vines relative to the controls. This effect was greater for lutein than for beta-carotene. PRD consistently caused increases in the concentration of hydrolytically released C13-norisoprenoids beta-damascenone, beta-ionone, and 1,1,6-trimethyl-1,2-dihydronaphthalene in fruit at harvest (24 degrees Brix) over two seasons. The effect of the PRD treatment on the concentration of hydrolytically released C13-norisoprenoids was greater in the second of the two seasons of the experiment and was also reflected in an increase in total C13-norisoprenoid content per berry. This suggests that the increases in the concentration of the C13-norisoprenoids in response to PRD were independent of water deficit induced changes in berry size and were not the result of an altered berry surface area to volume ratio.
Grilo, Filipa S; Di Stefano, Vita; Lo Bianco, Riccardo
2017-04-01
Effects of continuous deficit irrigation (DI) and partial rootzone drying (PRD) treatments (50% ETc) in comparison with full irrigation (CI, 100% ETc) were investigated during 'Valencia' orange fruit maturation. Ultra-high-performance liquid chromatography/high-resolution mass spectrometry was used to quantify hesperidin, narirutin, tangeritin, nobiletin, didymin and neoeriocitrin in the fruit juice and peel. No significant effect of irrigation was found on yield, juice soluble solids or acidity. Juice color was not influenced by irrigation or harvest date, whereas peel color increased during maturation and was more pronounced in CI and PRD fruits. Juice acidity reached a peak in May, while soluble solids increased linearly throughout maturation. Hesperidin was the major flavanone detected during maturation, with concentrations 200-fold higher in the fruit peel than in the juice. In the peel, narirutin, didymin and neoeriocitrin decreased while hesperidin, nobiletin and tangeritin increased with maturation. Narirutin synthesis in the orange fruit was insensitive to irrigation strategy. In fruit peels, PRD and DI induced the decline of hesperidin, nobiletin and tangeritin only in June, whereas in the juice, deficit irrigation treatments induced an increase in hesperidin and didymin. These results suggest that deficit irrigation, in particular the conditions imposed with PRD, may cause a significant accumulation shift of total flavonoids from the fruit peel into the juice, with a positive impact on juice quality and nutritional value. Fruit compositional changes during maturation also suggest that late harvest can improve fruit palatability and nutritional quality under the cultural and environmental conditions of this study. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai
2014-09-01
The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.
2018-01-01
Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.
Demir, Azize Dogan; Sahin, Ustun
2017-11-01
Wastewater use in agricultural irrigation is becoming a common practice in order to meet the rising water demands in arid and semi-arid regions. The study was conducted to determine the effects of the full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation practices using treated municipal wastewater (TWW) and freshwater (FW) on tomato yield, water use, fruit quality, and soil and fruit heavy metal concentrations. The TWW significantly increased marketable yield compared to the FW, as well as decreased water consumption. Therefore, water use efficiency (WUE) in the TWW was significantly higher than in the FW. Although the DI and the PRD practices caused less yields, these practices significantly increased WUE values due to less irrigation water applied. The water-yield linear relationships were statistically significant. TWW significantly increased titratable acidity and vitamin C contents. Reduced irrigation provided significantly lower titratable acidity, vitamin C, and lycopene contents. TWW increased the surface soil and fruit mineral contents in response to FW. Greater increases were observed under FI, and mineral contents declined with reduction in irrigation water. Heavy metal accumulation in soils was within safe limits. However, Cd and Pb contents in fruits exceeded standard limits given by FAO/WHO. Higher metal pollution index values determined for fruits also indicated that TWW application, especially under FI, might cause health risks in long term.
Romero, Pascual; Dodd, Ian C.; Martinez-Cutillas, Adrian
2012-01-01
Different spatial distributions of soil moisture were imposed on field-grown grapevines by applying the same irrigation volumes to the entire (DI; deficit irrigation) or part of the (PRD; partial root zone drying) root zone. Five treatments were applied: controls irrigated at 60% ETc (crop evapotranspiration) for the whole season (308 mm year−1); DI-1 and PRD-1 that received the same irrigation as controls before fruit set, 30% ETc from fruit set to harvest and 45% ETc post-harvest (192 mm year−1); and DI-2 and PRD-2 that were the same, except that 15% ETc was applied from fruit set to harvest (142 mm year−1). Compared with DI-1, PRD-1 maintained higher leaf area post-veraison and increased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, but decreased intrinsic gas exchange efficiency without causing differences in leaf xylem abscisic acid (ABA) concentration. Compared with DI-2, PRD-2 increased leaf xylem ABA concentration and decreased root water uptake, whole-plant hydraulic conductance, leaf transpiration, stomatal conductance, and photosynthesis, mainly at the beginning of PRD cycles. Distinctive PRD effects (e.g. greater stomatal closure) depended on the volumetric soil water content of the wet root zone, as predicted from a model of root-to-shoot ABA signalling. PMID:22451721
NASA Astrophysics Data System (ADS)
Wang, Feng; Chen, Jiazhou; Lin, Lirong
2018-01-01
Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA 0.25, 0-30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity ( I) and degree ( D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA 0.25, 15-30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes greatly deteriorated the root-zone regime during the dry period mainly due to significant increasing soil water loss but little improving the raining stage of soil water storage. Straw mulching had greater effects than other practices in alleviating rainfall-induced erosion and intermittent drought, and could be a better strategy applied for this region.
Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Wang, X.; Fan, Q.
2015-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
Attribution of nitrogen deposition driven by urbanization over Pearl River Delta region China
NASA Astrophysics Data System (ADS)
Wang, X.; Wu, Z.
2016-12-01
The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3-N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e.,Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.
NASA Technical Reports Server (NTRS)
Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)
1984-01-01
The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.
Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.
2015-01-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916
Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C
2015-04-01
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Technical Reports Server (NTRS)
Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)
1990-01-01
Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4 or NH4Cl at root-zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4+ source or root-zone pH. Plants supplied with NH4Cl accumulated up to 1.2 mM Cl g DW-1, but accumulated 37% less inorganic H2PO4- and 47% less SO4(2-) than plants supplied with (NH4)2SO4. The large Cl- accumulation resulted in NH4Cl- supplied plants having a 31% higher inorganic anion (NO3-, H2, PO4-, SO4(2-), and Cl-) charge. This higher inorganic anion charge in the NH4Cl-supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl- in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than -% DW). Despite the high Cl- concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl- toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl- concentration in tissue and NH4+ nutrition. The increase in root-zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.
Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources
NASA Technical Reports Server (NTRS)
Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1990-01-01
Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.
Nocturnal and daytime stomatal conductance respond to root-zone temperature in ‘Shiraz’ grapevines
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Background and Aims Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Methods Here nocturnal and daytime leaf gas exchange was quantified in ‘Shiraz’ grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Key Results Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO2 response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. Conclusions In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable. PMID:23293018
Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
Rogiers, Suzy Y; Clarke, Simon J
2013-03-01
Daytime root-zone temperature may be a significant factor regulating water flux through plants. Water flux can also occur during the night but nocturnal stomatal response to environmental drivers such as root-zone temperature remains largely unknown. Here nocturnal and daytime leaf gas exchange was quantified in 'Shiraz' grapevines (Vitis vinifera) exposed to three root-zone temperatures from budburst to fruit-set, for a total of 8 weeks in spring. Despite lower stomatal density, night-time stomatal conductance and transpiration rates were greater for plants grown in warm root-zones. Elevated root-zone temperature resulted in higher daytime stomatal conductance, transpiration and net assimilation rates across a range of leaf-to-air vapour pressure deficits, air temperatures and light levels. Intrinsic water-use efficiency was, however, lowest in those plants with warm root-zones. CO(2) response curves of foliar gas exchange indicated that the maximum rate of electron transport and the maximum rate of Rubisco activity did not differ between the root-zone treatments, and therefore it was likely that the lower photosynthesis in cool root-zones was predominantly the result of a stomatal limitation. One week after discontinuation of the temperature treatments, gas exchange was similar between the plants, indicating a reversible physiological response to soil temperature. In this anisohydric grapevine variety both night-time and daytime stomatal conductance were responsive to root-zone temperature. Because nocturnal transpiration has implications for overall plant water status, predictive climate change models using stomatal conductance will need to factor in this root-zone variable.
Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N
2006-01-01
We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.
Huang, Yeqi; Deng, Tao; Li, Zhenning; Wang, Nan; Yin, Chanqin; Wang, Shiqiang; Fan, Shaojia
2018-09-01
This article uses the WRF-CMAQ model to systematically study the source apportionment of PM 2.5 under typical meteorological conditions in the dry season (November 2010) in the Pearl River Delta (PRD). According to the geographical location and the relative magnitude of pollutant emission, Guangdong Province is divided into eight subdomains for source apportionment study. The Brute-Force Method (BFM) method was implemented to simulate the contribution from different regions to the PM 2.5 pollution in the PRD. Results show that the industrial sources accounted for the largest proportion. For emission species, the total amount of NO x and VOC in Guangdong Province, and NH 3 and VOC in Hunan Province are relatively larger. In Guangdong Province, the emission of SO 2 , NO x and VOC in the PRD are relatively larger, and the NH 3 emissions are higher outside the PRD. In northerly-controlled episodes, model simulations demonstrate that local emissions are important for PM 2.5 pollution in Guangzhou and Foshan. Meanwhile, emissions from Dongguan and Huizhou (DH), and out of Guangdong Province (SW) are important contributors for PM 2.5 pollution in Guangzhou. For PM 2.5 pollution in Foshan, emissions in Guangzhou and DH are the major contributors. In addition, high contribution ratio from DH only occurs in severe pollution periods. In southerly-controlled episode, contribution from the southern PRD increases. Local emissions and emissions from Shenzhen, DH, Zhuhai-Jiangmen-Zhongshan (ZJZ) are the major contributors. Regional contribution to the chemical compositions of PM 2.5 indicates that the sources of chemical components are similar to those of PM 2.5 . In particular, SO 4 2- is mainly sourced from emissions out of Guangdong Province, while the NO 3- and NH 4+ are more linked to agricultural emissions. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhong, Zhuangmin; Sha, Qing'e; Zheng, Junyu; Yuan, Zibing; Gao, Zongjiang; Ou, Jiamin; Zheng, Zhuoyun; Li, Cheng; Huang, Zhijiong
2017-04-01
Accurate depiction of VOCs emission characteristics is essential for the formulation of VOCs control strategies. As one of the continuous efforts in improving VOCs emission characterization in the Pearl River Delta (PRD) region, this study targeted on surface coating industry, the most important VOCs emission sources in the PRD. Sectors in analysis included shipbuilding coating, wood furniture coating, metal surface coating, plastic surface coating, automobile coating and fabric surface coating. Sector-based field measurement was conducted to characterize VOCs emission factors and source profiles in the PRD. It was found that the raw material-based VOCs emission factors for these six sectors ranged from 0.34 to 0.58kg VOCs per kg of raw materials (kg·kg -1 ) while the emission factors based on the production yield varied from 0.59kg to 13.72t VOCs for each production manufactured. VOCs emission factors of surface coating industry were therefore preferably calculated based on raw materials with low uncertainties. Source profiles differed greatly among different sectors. Aromatic was the largest group for shipbuilding coating, wood furniture coating, metal surface coating and automobile coating while the oxygenated VOCs (OVOCs) were the most abundant in the plastic and fabric surface coating sectors. The major species of aromatic VOCs in each of these six sectors were similar, mainly toluene and m/p-xylene, while the OVOCs varied among the different sectors. VOCs profiles in the three processes of auto industry, i.e., auto coating, auto drying and auto repairing, also showed large variations. The major species in these sectors in the PRD were similar with other places but the proportions of individual compounds were different. Some special components were also detected in the PRD region. This study highlighted the importance of updating local source profiles in a comprehensive and timely manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer
Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.
1999-01-01
Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.
Hong, Huachang; Qiu, Jianwen; Liang, Yan
2010-01-01
The Pearl River Delta (PRD) is one of the most developed and densely populated regions in China. Quantifying the amount of pathogens in the source of drinking water is important for improving water quality. We collected water samples from six major water storage reservoirs in the PRD region in both wet and dry seasons in 2006. Results showed that external environmental factors, such as precipitation, location, as well as the internal environmental factors, i.e., physicochemical properties of the water, were closely related with the distribution of coliforms. Seasonally, the coliform bacterial concentrations in wet season were one to two orders of magnitude greater than those in dry season. Spatially, coliform bacterial levels in reservoirs near urban and industrial areas were significantly higher (p < 0.05) than those in remote areas. Correlation analyses showed that the levels of coliforms had close relationships with pH, temperature, suspended solid, organic and inorganic nutrients in water. Principal components analysis further demonstrated that total coliforms in the reservoirs were closely related with water physicochemical properties, while fecal coliforms were more associated with external input brought in by seasonal runoff.
NASA Astrophysics Data System (ADS)
Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2016-12-01
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to deforestation. Although the overall performance of the modified model did not considerably change, in 51 % of all the evaluated hydrological signatures, considering all three catchments, improvements were observed when adding a time-variant representation of the root-zone storage to the model.In summary, it is shown that root-zone moisture storage capacities can be highly affected by deforestation and climatic influences and that a simple method exclusively based on climate data can not only provide robust, catchment-scale estimates of this critical parameter, but also reflect its time-dynamic behaviour after deforestation.
Ota, Leo; Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro
2014-01-01
Walking is generated by the interaction between neural rhythmic and physical activities. In fact, Parkinson's disease (PD), which is an example of disease, causes not only neural rhythm generation disorders but also physical disabilities. However, the relationship between neural rhythm generation disorders and physical disabilities has not been determined. The aim of this study was to identify the mechanism of gait rhythm generation. In former research, neural rhythm generation disorders in PD patients' walking were characterized by stride intervals, which are more variable and fluctuate randomly. The variability and fluctuation property were quantified using the coefficient of variation (CV) and scaling exponent α. Conversely, because walking is a dynamic process, postural reflex disorder (PRD) is considered the best way to estimate physical disabilities in walking. Therefore, we classified the severity of PRD using CV and α. Specifically, PD patients and healthy elderly were classified into three groups: no-PRD, mild-PRD, and obvious-PRD. We compared the contributions of CV and α to the accuracy of this classification. In this study, 45 PD patients and 17 healthy elderly people walked 200 m. The severity of PRD was determined using the modified Hoehn-Yahr scale (mH-Y). People with mH-Y scores of 2.5 and 3 had mild-PRD and obvious-PRD, respectively. As a result, CV differentiated no-PRD from PRD, indicating the correlation between CV and PRD. Considering that PRD is independent of neural rhythm generation, this result suggests the existence of feedback process from physical activities to neural rhythmic activities. Moreover, α differentiated obvious-PRD from mild-PRD. Considering α reflects the intensity of interaction between factors, this result suggests the change of the interaction. Therefore, the interaction between neural rhythmic and physical activities is thought to plays an important role for gait rhythm generation. These characteristics have potential to evaluate the symptoms of PD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucash, M.S.; Farnsworth, B.; Winner, W.E.
This study tests the potential for interactions between root-zone temperature and CO{sub 2} for plants which co-occur in a habitat where root-zone temperature fluctuate throughout the day. Controlled environment studies were conducted to expose desert plants to combinations of low or high root zone temperatures and low or high CO{sub 2}. Artemisia tridentata, Sitanion hystrix, and Stipa thurberiana were chosen for study to represent eastern Oregon plants that differ in their life history strategies. Seeds were planted in pots containing native soils and were grown in environmentally controlled growth chambers for three months. Growth treatments were either ambient (380 ppm)more » or high (580 ppm) CO{sub 2} concentration and high (18{degrees}C) or low (13{degrees} C) root-zone temperature. A. tridentata (a perennial shrub) was relatively unresponsive to treatments. Growth of S. hystrix and S. thurberiana (both C{sub 3} grasses) was stimulated by root-zone warming at both ambient and elevated CO{sub 2} levels. CO{sub 2} stimulated growth occurred for both grass species at low root-zone temperatures but only for S. thurberiana at high root-zone temperatures. Biomass increases from elevated CO{sub 2} were enhanced by root-zone warming indicating treatment interactions. Leaf-level photosynthesis measurements were consistent across species, but could not explain growth responses to treatments. These studies indicate that grasses may be more responsive to environmental change than co-occurring shrubs.« less
SMERGE: A multi-decadal root-zone soil moisture product for CONUS
NASA Astrophysics Data System (ADS)
Crow, W. T.; Dong, J.; Tobin, K. J.; Torres, R.
2017-12-01
Multi-decadal root-zone soil moisture products are of value for a range of water resource and climate applications. The NASA-funded root-zone soil moisture merging project (SMERGE) seeks to develop such products through the optimal merging of land surface model predictions with surface soil moisture retrievals acquired from multi-sensor remote sensing products. This presentation will describe the creation and validation of a daily, multi-decadal (1979-2015), vertically-integrated (both surface to 40 cm and surface to 100 cm), 0.125-degree root-zone product over the contiguous United States (CONUS). The modeling backbone of the system is based on hourly root-zone soil moisture simulations generated by the Noah model (v3.2) operating within the North American Land Data Assimilation System (NLDAS-2). Remotely-sensed surface soil moisture retrievals are taken from the multi-sensor European Space Agency Climate Change Initiative soil moisture data set (ESA CCI SM). In particular, the talk will detail: 1) the exponential smoothing approach used to convert surface ESA CCI SM retrievals into root-zone soil moisture estimates, 2) the averaging technique applied to merge (temporally-sporadic) remotely-sensed with (continuous) NLDAS-2 land surface model estimates of root-zone soil moisture into the unified SMERGE product, and 3) the validation of the SMERGE product using long-term, ground-based soil moisture datasets available within CONUS.
Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-12-01
This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.
An ozone episode over the Pearl River Delta in October 2008
NASA Astrophysics Data System (ADS)
Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei
2015-12-01
The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.
Perceived Discrimination among Black Youth: An 18-Year Longitudinal Study
Gibbons, Frederick X.; Simons, Ronald L.
2018-01-01
Background: Recent research has suggested vulnerability to perceived racial discrimination (PRD) as a mechanism behind high levels of depression seen in high socioeconomic status (SES) Black males. To better understand the effects of gender and SES on shaping experiences of PRD among Black youth in the United States, we used data from the Family and Community Health Study (FACHS) to explore the trajectory of PRD in Black youth by gender, SES, and place. Methods: Data came from FACHS, 1997–2017, which followed 889 children aged 10–12 years old at Wave 1 (n = 478; 53.8% females and n = 411; 46.2% males) for up to 18 years. Data were collected in seven waves. The main predictors of interest were gender, SES (parent education and annual family income), age, and place of residence. Main outcomes of interest were baseline and slope of PRD. Latent growth curve modeling (LGCM) was used for data analysis. Results: Gender, SES, place, and age were correlated with baseline and change in PRD over time. Male, high family income, and younger Black youth reported lower PRD at baseline but a larger increase in PRD over time. Youth who lived in Iowa (in a predominantly White area) reported higher PRD at baseline and also an increase in PRD over time. High parental education was not associated with baseline or change in PRD. Conclusion: In the United States, Black youth who are male, high income, and live in predominantly White areas experience an increase in PRD over time. Future research is needed on the interactions between gender, SES, and place on exposure and vulnerability of Black youth to PRD. Such research may explain the increased risk of depression in high SES Black males. PMID:29702587
Quantifying black carbon light absorption enhancement with a novel statistical approach
NASA Astrophysics Data System (ADS)
Wu, Cheng; Wu, Dui; Zhen Yu, Jian
2018-01-01
Black carbon (BC) particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE) in the Pearl River Delta region (PRD). A new approach for calculating primary MAE (MAEp), the key for Eabs estimation, is demonstrated using the minimum R squared (MRS) method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC) and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD) in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core-shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE) constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.
Adam, Emma K.; Heissel, Jennifer A.; Zeiders, Katharine H.; Richeson, Jennifer A.; Ross, Emily C.; Ehrlich, Katherine B.; Levy, Dorainne J.; Kemeny, Margaret; Brodish, Amanda B.; Malanchuk, Oksana; Peck, Stephen C.; Fuller-Rowell, Thomas E.; Eccles, Jacquelynne S.
2015-01-01
Perceived racial discrimination (PRD) has been associated with altered diurnal cortisol rhythms in past cross-sectional research. We investigate whether developmental histories of PRD, assessed prospectively, are associated with adult diurnal cortisol profiles. One-hundred and twelve (N = 50 Black, N = 62 White) adults from the Maryland Adolescent Development in Context Study provided saliva samples in adulthood (at approximately age 32 years) at waking, 30 min after waking, and at bedtime for 7 days. Diurnal cortisol measures were calculated, including waking cortisol levels, diurnal cortisol slopes, the cortisol awakening response (CAR), and average daily cortisol (AUC). These cortisol outcomes were predicted from measures of PRD obtained over a 20-year period beginning when individuals were in 7th grade (approximately age 12). Greater average PRD measured across the 20-year period predicted flatter adult diurnal cortisol slopes for both Black and White adults, and a lower CAR. Greater average PRD also predicted lower waking cortisol for Black, but not White adults. PRD experiences in adolescence accounted for many of these effects. When adolescent and young adult PRD are entered together predicting cortisol outcomes, PRD experiences in adolescence (but not young adulthood) significantly predicted flatter diurnal cortisol slopes for both Black and White adults. Adolescent, but not young adult PRD, also significantly predicted lower waking and lower average cortisol for Black adults. Young adult PRD was, however, a stronger predictor of the CAR, predicting a marginally lower CAR for Whites, and a significantly larger CAR for Blacks. Effects were robust to controlling for covariates including health behaviors, depression, income and parent education levels. PRD experiences interacted with parent education and income to predict aspects of the diurnal cortisol rhythm. Although these results suggest PRD influences on cortisol for both Blacks and Whites, the key findings suggest that the effects are more pervasive for Blacks, affecting multiple aspects of the cortisol diurnal rhythm. In addition, adolescence is a more sensitive developmental period than adulthood for the impacts of PRD on adult stress biology. PMID:26352481
Glyphosate in Runoff Waters and in the Root-Zone: A Review
Saunders, Lyndsay E.; Pezeshki, Reza
2015-01-01
Glyphosate is the most commonly-used herbicide in the world. The present review summarizes the discovery, prevalence, chemical and physical properties, mode of action and effects in plants, glyphosate resistance and the environmental fate of glyphosate. Numerous studies are reviewed that demonstrate that glyphosate may run off of fields where it is applied, while other studies provide evidence that plant roots can take up glyphosate. Non-target vegetation may be exposed to glyphosate in the root-zone, where it has the potential to remove aqueous glyphosate from the system. Further study on the effects of root-zone glyphosate on non-target vegetation is required to develop best management practices for land managers seeking to ameliorate the effects of root-zone glyphosate exposure. PMID:29051473
Pieper, A.P.; Ryan, J.N.; Harvey, R.W.; Amy, G.L.; Illangasekare, T.H.; Metge, D.W.
1997-01-01
To test the effects of sewage-derived organic matter on virus attachment, 32P-labeled bacteriophage PRD1, linear alkylbenzene sulfonates (LAS), and tracers were injected into sewage-contaminated (suboxic, elevated organic matter) and uncontaminated (oxic, low organic matter) zones of an iron oxide-coated quartz sand and gravel aquifer on Cape Cod, MA. In the uncontaminated zone, 83% of the PRD1 were attenuated over the first meter of transport by attachment to aquifer grains. In the contaminated zone, 42% of the PRD1 were attenuated over the first meter of transport. Sewage-derived organic matter contributed to the difference in PRD1 attenuation by blocking attachment sites in the contaminated zone. At greater distances down gradient (to a total transport distance of 3.6 m), a near-constant amount of PRD1 continued to break through, suggesting that aquifer grain heterogeneities allowed a small amount of reversible attachment. Injection of an LAS mixture (25 mg L-1), a common sewage constituent, remobilized 87% of the attached PRD1 in the contaminated zone, but only 2.2% in the uncontaminated zone. LAS adsorption promoted virus recovery in the contaminated zone by altering the PRD1-surface interactions; however, the amount of LAS adsorbed was not sufficient to promote release of the attached PRD1 in the uncontaminated zone.
Bumgarner, Natalie R; Scheerens, Joseph C; Mullen, Robert W; Bennett, Mark A; Ling, Peter P; Kleinhenz, Matthew D
2012-01-15
Understanding the effects of temperature and nitrogen levels on key variables, particularly under field conditions during cool seasons of temperate climates, is important. Here, we document the impact of root-zone heating and nitrogen (N) fertility on the accumulation and composition of fall- and spring-grown lettuce biomass. A novel, scalable field system was employed. Direct-seeded plots containing a uniform, semi-solid, and nearly stable rooting medium were established outdoors in 2009 and 2010; each contained one of eight combinations of root-zone heating (-/+) and N fertility (0, 72, 144, and 576 mg day(-1)). Root-zone heating increased but withholding N decreased biomass accumulation in both years. Low N supplies were also associated with greater anthocyanin and total antioxidant power but lower N and phosphorus levels. Tissue chlorophyll a and vitamin C levels tracked root-zone temperature and N fertility more closely in 2009 and 2010, respectively. Experimentally imposed root-zone temperature and N levels influenced the amount and properties of fall- and spring-grown lettuce tissue. Ambient conditions, however, dictated which of these factors exerted the greatest effect on the variables measured. Collectively, the results point to the potential for gains in system sustainability and productivity, including with respect to supplying human nutritional units. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Fan, Q.; Liu, Y.; Hong, Y.; Wang, X.; Chan, P.; Chen, X.; Lai, A.; Wang, M.; Chen, X.
2017-12-01
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM2.5 and its precursors was applied to identify the source-receptor relationships for PM2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM2.5 concentration. PM2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution.
Egan, Kathryn; Kusao, Ian; Troelstrup, David; Agsalda, Melissa; Shiramizu, Bruce
2010-01-01
This feasibility study was designed to assess the ability to measure mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) cells that contributed to minimal disease/persistent or residual disease (MD/PRD) from children with acute lymphoblastic leukemia (ALL). Increase in mtDNA copies in cancer cells has been suggested to play a role in MD/PRD. CSF as well as blood specimens from 6 children were assayed for MD/PRD and mtDNA copy numbers by quantitative real-time polymerase chain reaction. Of 7 MD/PRD-positive specimens, 6 had increased mtDNA copy numbers; while 11 MD/PRD-negative specimens had no increase in mtDNA copy numbers, p < 0.003. This is the first proof-of-concept study to measure mtDNA copy numbers in MD/PRD-positive CSF specimens from children with ALL. Increase of mtDNA copy numbers in MD/PRD childhood ALL cells and its significance as a mechanism for recurrence requires further investigation. Keywords Minimal residual disease; Acute lymphoblastic leukemia; Central nervous system; Cerebrospinal fluid; Mitochondria PMID:21331151
Vainshtein, Jeffrey M; Samuels, Stuart; Tao, Yebin; Lyden, Teresa; Haxer, Marc; Spector, Matthew; Schipper, Matthew; Eisbruch, Avraham
2016-04-01
The purpose of this study was to assess how xerostomia affects dysphagia. Prospective longitudinal studies of 93 patients with oropharyngeal cancer treated with definitive chemotherapy-intensity-modulated radiotherapy (IMRT). Observer-rated dysphagia (ORD), patient-reported dysphagia (PRD), and patient-reported xerostomia (PRX) assessment of the swallowing mechanics by videofluoroscopy (videofluoroscopy score), and salivary flow rates, were prospectively assessed from pretherapy through 2 years. ORD grades ≥2 were rare and therefore not modeled. Of patients with no/mild videofluoroscopy abnormalities, a substantial proportion had PRD that peaked 3 months posttherapy and subsequently improved. Through 2 years, highly significant correlations were observed between PRX and PRD scores for all patients, including those with no/mild videofluoroscopy abnormalities. Both PRX and videofluoroscopy scores were highly significantly associated with PRD. On multivariate analysis, PRX score was a stronger predictor of PRD than the videofluoroscopy score. Xerostomia contributes significantly to PRD. Efforts to further decrease xerostomia, in addition to sparing parotid glands, may translate into improvements in PRD. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1605-E1612, 2016. © 2015 Wiley Periodicals, Inc.
Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1989-01-01
Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.
Corynebacterium godavarianum sp. nov., isolated from the Godavari river, India.
Jani, Kunal; Khare, Kaustubh; Senik, Svetlana; Karodi, Prachi; Vemuluri, Venkata Ramana; Bandal, Jayashree; Shouche, Yogesh; Rale, Vinay; Sharma, Avinash
2018-01-01
A Gram-stain-positive, rod-shaped, non-motile bacterium, strain PRD07 T , was isolated from Godavari river, India during the world's largest spiritual and religious mass bathing event 'Kumbh Mela'. Molecular analysis using 16S rRNA gene sequencing and phylogenetic analysis reveals the distinct phylogenetic positioning of strain PRD07 T within the genus Corynebacterium. The strain demonstrated highest sequence similarity to Corynebacterium imitans DSM 44264 T (97.9 %), Corynebacterium appendicis DSM 44531 T (97.1 %) and <96.7 % with all other members of the genus Corynebacterium. The G+C content of PRD07 T was 68.5 mol% (Tm) and the DNA-DNA hybridization depicts 61.09 % genomic relatedness with C. imitans DSM 44264 T . Chemotaxonomic assessment of strain PRD07 T suggested presence of C16 : 0 (31.6 %), C18 : 0 (3.5 %) and C18 : 1ω9c (58.6 %) as the major cellular fatty acids. The major polar lipids of strain PRD07 T were phosphatidylglycerol, diphosphatidylglycerol and glycophospholipid. Differentiating molecular, phylogenetic and chemotaxonomic characteristics of strain PRD07 T with its closest relatives necessitated the description of strain PRD07 T as a novel species of genus Corynebacterium for which the name Corynebacteriumgodavarianum sp. nov., has been proposed. The type strain is PRD07 T (=MCC 3388 T =KCTC 39803 T =LMG 29598 T ).
Liu, Yiming; Hong, Yingying; Fan, Qi; Wang, Xuemei; Chan, Pakwai; Chen, Xiaoyang; Lai, Anqi; Wang, Mingjie; Chen, Xunlai
2017-10-15
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM 2.5 and its precursors was applied to identify the source-receptor relationships for PM 2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM 2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM 2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM 2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM 2.5 concentration. PM 2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM 2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM 2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution. Copyright © 2017 Elsevier B.V. All rights reserved.
Briken, Peer; Habermann, Niels; Kafka, Martin P; Berner, Wolfgang; Hill, Andreas
2006-05-01
Paraphilic disorders (PAs) and sexual preoccupation are known risk factors for recidivism in sexual offenders. Nonparaphilic sexual excessive behaviors-so-called paraphilia-related disorders (PRDs), like paraphilias, are also characterized by sexual preoccupation and volitional impairment and can be diagnosed in paraphilic men. The prevalence and clinical significance of PRDs in sexual homicide perpetrators, however, is unknown. We investigated the relationship between PAs and PRDs retrospectively in a sample of 161 sexual murderers. Four groups were compared: men without a PA or a PRD diagnosis, men with at least one PRD but no PA, men with at least one PA but no PRD, and finally, those with a combination of both (PA+PRD). The PA+PRD group had the most lifetime cumulative sexual impulsivity disorders, more developmental problems, the highest persistent frequency of sexual activity, the highest number of previous sexual offences, more sexual sadism, and compulsive masturbation. Men of the PRD subsample had suffered more from childhood sexual abuse, showed more promiscuity, psychopathy, and alcohol problems. The use of the PRD concept in this special offender group should be further investigated with prospectively designed studies.
Controlled environment crop production - Hydroponic vs. lunar regolith
NASA Technical Reports Server (NTRS)
Bugbee, Bruce G.; Salisbury, Frank B.
1989-01-01
The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; ...
2015-12-08
Mutants in the period-1 ( prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prd-1smutantssiois an ATP-dependent RNA helicase, membermore » of a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Furthermore PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
NASA Technical Reports Server (NTRS)
Wooley, J. H.
1974-01-01
Fairing panels were fabricated to evaluate the fabrication characteristics and flight service performance of PRD-49 (Kevlar-49) a composite reinforcing material and to compare it with the fiberglass which is currently in use. Panel configurations were selected to evaluate the PRD-49 with two resin matrix materials in sandwich and solid laminate construction. Left and right hand versions of these configurations were installed on L-1011's which will accumulate approximately 3000 flight hours per year per aircraft. The direct substitution of PRD-49 for fiberglass produced a twenty-six percent weight reduction on the panel configurations. Examination of these panels revealed that there was no visible difference between the PRD-49 and adjacent fiberglass panels.
Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model
NASA Astrophysics Data System (ADS)
Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.
2011-06-01
The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.
Gonzalez-Ramella, O; Ortiz-Lazareno, P C; Jiménez-López, X; Gallegos-Castorena, S; Hernández-Flores, G; Medina-Barajas, F; Meza-Arroyo, J; Jave-Suárez, L F; Lerma-Díaz, J M; Sánchez-Zubieta, F; Bravo-Cuellar, A
2016-04-01
Pentoxifylline (PTX) has been shown to increase chemotherapy-induced apoptosis. A clinical trial was developed to evaluate the effect of the addition of PTX to the induction steroid window phase in children with acute lymphoblastic leukemia (ALL). Thirty-two children were enrolled on this study. Children with a new diagnosis of ALL were randomly assigned to receive prednisone (PRD) 40 mg/m(2)/day only during the 7-day treatment pre-phase (PRD group, 11 patients) or to receive PRD with PTX (10 mg/kg/day) (PTX group, 11 patients); the control group included children with normal bone marrow (10 patients). Bone marrow aspiration (BMA) was performed at diagnosis (day -7) in all groups, and at day 0 (end of PRD window) for patients with ALL (PRD and PTX groups). Apoptosis was evaluated by flow cytometry (FC) using Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) stains. Statistical analysis was performed using the Mann-Whitney U test. Apoptotic index at day -7 was similar in all groups. However, at day 0 post-treatment, apoptosis was significantly higher in the PTX group than in the PRD group (p < 0.001). There were no serious adverse effects associated with PTX. PTX potentiates blast apoptosis induced by PRD in children with ALL during steroid window phase.
Ding, Xiaotao; Jiang, Yuping; He, Lizhong; Zhou, Qiang; Yu, Jizhu; Hui, Dafeng; Huang, Danfeng
2016-01-01
To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation. PMID:27752105
Enhancement in secondary particulate matter production due to mountain trapping
NASA Astrophysics Data System (ADS)
Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.
2014-10-01
As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be originated from the PRD and transported back resulting in significant increase of secondary PM concentration, and provides new insight into PM production and transport mechanism in the PRD.
Monitoring and Analyzing the Geospatial Patterns of the Pearl River Delta (prd) from 1960 TO 2012
NASA Astrophysics Data System (ADS)
Wang, J.; Wu, Z.; Li, S.; Cao, Z.
2018-04-01
The Geospatial Patterns Pearl River Delta (PRD), one of the most economically-important and fastest-growing regions in China, have changed remarkably and continuously during the past decades. In this research, the change of landuse, coastline during 1960-2012 were closely investigated to provide better description and explanation of the geospatial pattern. And the relationships between them were explored. Finally, the impact that urban expansion brought to the coastal environment was quantitatively analyzed. The main remarks of this research are summarized into the following points: (1) In PRD, construction land expanded 33 times. In the meantime, the area of forest and farmland decreased 47.53 % and 56.70 %, respectively. (2) The land demand for agricultural development was the key factor that changed coastline in PRD before 2000. Since 2000, land demand for urban construction has been the key factor that changed coastline in PRD. (3) During 1960 to 2012, the length of coastline in PRD increased from 1134.95 km to 1508.02 km with an increasing speed of 7.17 km per year. Relatively, the coastline changed more obvious in three periods (2004 to 2006, 2006 to 2008 and 2008 to 2010). (4) The type of coastline changed remarkably from 1960 to 2012. 82.94 % of the natural coastline in PRD disappeared until 2012. Known from this research, the geospatial patterns of the PRD changed remarkably during 1960 to 2012, mainly driven by human activities. The coastal environment is facing serious risks and challenges under the rapid process of urbanization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.
Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.
2015-12-08
Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 and DDX17 in humans and Dbp2p in yeast, are implicated in various processes including transcriptional regulation, elongation, and termination, 23 ribosome biogenesis, and RNA decay. Although prdi-1smutantssiois an ATP-dependent RNA helicase, member ofmore » a sub-family display a long period (~25 hrs) circadian developmental cycle, they interestingly display a wild type period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator runs with a long period under glucose-sufficient conditions. Thus PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose PRD-1 is in the nucleus until glucose runs out which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as clock mutant with defective nutritional compensation of circadian period length.« less
Developing chemical signatures of particulate air pollution in the Pearl River Delta region, China.
Zheng, Mei; Cheng, Yuan; Zeng, Limin; Zhang, Yuanhang
2011-01-01
PM2.5 samples were collected in a regional sampling network with three sites in Hong Kong and four sites in the adjacent inland Pearl River Delta (PRD) or Guangdong Province during four months/seasons from 2002-2003. Trans-boundary transport between Hong Kong and the inland PRD is inevitable under the influence of Asian monsoon. In summer, Hong Kong serves as the upwind site of the inland PRD while during other seasons it is under the influence of continental emissions. Previous studies have recognized the importance of using chemical signatures to differentiate local vs. regional contributions to air pollutants in Hong Kong such as the CO/NOx ratio, ratios of different VOC species. In this study, detailed chemical speciation by gas chromatography-mass spectrometry was performed with PM2.5 samples to identify new chemical signatures to distinguish aerosols in Hong Kong from those from the inland PRD. Since Hong Kong is not influenced by the continental emissions from the inland PRD during summer, comparison focused on chemical data obtained from this season for chemical signatures. The new ratios developed from the current study include LCPI/HCPI ratio of alkanes (0.39 +/- 0.02 in Hong Kong vs. 0.78 +/- 0.08 in the inland PRD), pyrene to benzo[ghi]perylene ratio (0.97 +/- 0.21 in Hong Kong compared to 0.20 +/- 0.06 in the inland PRD), and the ratio of 1,2-benzenedioic acid to 1,4-benzenedioic acid (1.8 +/- 0.1 in Hong Kong vs. 0.6 +/- 0.05 in the inland PRD). Results from this study also revealed that Hong Kong was impacted by ship emissions as reflected by substantially high V/Ni ratio (9 +/- 2) while this ratio was about 1-2 at all sites in the inland PRD, which is very close to typical ratios from residual oil combustion.
Selection of root-zone media for higher plant cultivation in space.
Guo, Shuang-sheng; Ai, Wei-dang; Zhao, Cheng-jian; Han, Li-jun; Wang, Jian-xiao
2004-04-01
To investigate the cultivating effects of several mineral matters used as root-zone media for higher plant growth in space. Four kinds of artificial and natural mineral matters were used as plant root-zone media based on lots of investigation and analysis. Nutrient liquid was delivered into the media by a long capillary material, and roots of plants obtained nutrition and water from the media. The related parameters such as plant height and photosynthetic efficiency were measured and analyzed. The growing effect in a mixture of coarse and fine ceramic particles with equal quantity proportion was the best, that in fine ceramic particles was the second best, that in clinoptilolite particles was the third and that in diorite particles was the last. The mixture of coarse and fine ceramic particles with equal quantity possesses not only fine capillary action, but also good aerating ability, and therefore is capable of being utilized as an effective root-zone media for higher plants intended to be grown in space.
NASA Astrophysics Data System (ADS)
Foppen, J. W. A.; Okletey, S.; Schijven, J. F.
2006-05-01
The transport of bacteriophage PRD1, a model virus, was studied in columns containing sediment mixtures of quartz sand with goethite-coated sand and using various solutions consisting of monovalent and divalent salts and humic acid (HA). Without HA and in the absence of sand, the inactivation rate of PRD1 was found to be as low as 0.014 day - 1 (at 5 ± 3 °C), but in the presence of HA it was much lower (0.0009 day - 1 ), indicating that HA helps PRD1 to survive. When the fraction of goethite in the sediment was increased, the removal of PRD1 also increased. However, in the presence of HA, C/ C0 values of PRD1 increased by as much as 5 log units, thereby almost completely eliminating the effect of addition of goethite. The sticking efficiency was not linearly dependent on the amount of goethite added to the quartz sand; this is apparently due to surface charge heterogeneity of PRD1. Our results imply that, in the presence of dissolved organic matter (DOM), viruses can be transported for long distances thanks to two effects: attachment is poor because DOM has occupied favourable sites for attachment and inactivation of virus may have decreased. This conclusion justifies making conservative assumptions about the attachment of viruses when calculating protection zones for groundwater wells.
A field study of virus removal in septic tank drainfields.
Nicosia, L A; Rose, J B; Stark, L; Stewart, M T
2001-01-01
Two field studies were conducted at a research station in Tampa, Florida to assess the removal of bacteriophage PRD1 from wastewater in septic tank drainfields. Infiltration cells were seeded with PRD1 and bromide and the effects of effluent hydraulic loading rate and rainfall on virus removal were monitored. Septic tank effluent samples were collected after passage through 0.6 m of unsaturated fine sand and PRD1 was detected over an average of 67 d. Bacteriophage PRD1 breakthrough was detected at approximately the same time as bromide in all three cells except for the low-load cell (Study 1), where bromide was never detected. Log10 removals of PRD1 were 1.43 and 1.91 for the high-load cells (hydraulic loading rate = 0.063 m/d) and 2.21 for the low-load cell (hydraulic loading rate = 0.032 m/d). Virus attenuation is attributed to dispersion, dilution, and inactivation. Significant increases in PRD1 elution with rainfall were observed in the first 10 d of the study. Approximately 125 mm of rainfall caused a 1.2 log10 increase of PRD1 detected at the 0.6-m depth. Current Florida onsite wastewater disposal standards, which specify a 0.6-m distance from the drainfield to the water table, may not provide sufficient removal of viruses, particularly during the wet season.
Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum
Desai, Ruchir P.; Papoutsakis, Eleftherios T.
1999-01-01
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by ∼100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes. PMID:10049845
Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum.
Desai, R P; Papoutsakis, E T
1999-03-01
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.
Merckel, Michael C; Huiskonen, Juha T; Bamford, Dennis H; Goldman, Adrian; Tuma, Roman
2005-04-15
Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.
Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices
USDA-ARS?s Scientific Manuscript database
The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...
On the extraordinary strength of Prince Rupert's drops
NASA Astrophysics Data System (ADS)
Aben, H.; Anton, J.; Öis, M.; Viswanathan, K.; Chandrasekar, S.; Chaudhri, M. M.
2016-12-01
Prince Rupert's drops (PRDs), also known as Batavian tears, have been in existence since the early 17th century. They are made of a silicate glass of a high thermal expansion coefficient and have the shape of a tadpole. Typically, the diameter of the head of a PRD is in the range of 5-15 mm and that of the tail is 0.5 to 3.0 mm. PRDs have exceptional strength properties: the head of a PRD can withstand impact with a small hammer, or compression between tungsten carbide platens to high loads of ˜15 000 N, but the tail can be broken with just finger pressure leading to catastrophic disintegration of the PRD. We show here that the high strength of a PRD comes from large surface compressive stresses in the range of 400-700 MPa, determined using techniques of integrated photoelasticity. The surface compressive stresses can suppress Hertzian cone cracking during impact with a small hammer or compression between platens. Finally, it is argued that when the compressive force on a PRD is very high, plasticity in the PRD occurs, which leads to its eventual destruction with increasing load.
Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu
2016-12-15
Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO 2 , NO X , CO, PM 10 , PM 2.5 , and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xiaohui; Yin, Pinghe; Zhao, Ling
2016-10-01
The Pearl River Estuary (PRE) is vulnerable due to the increasingly serious environmental pollution, such as phthalate esters (PAEs) contaminants, from the Pearl River Delta (PRD). The concentrations of six US Environmental Protection Agency (USEPA) priority PAEs in water and surface sediments collected from the PRD's six main estuaries in spring, summer, and winter 2013 were measured by GC-MS. Total PAEs (∑6PAEs) concentrations were from 0.5 to 28.1 μg/L and from 0.88 to 13.6 μg/g (dry weight (DW)) in water and surface sediments, respectively. The highest concentration was detected in summer. Higher concentrations of PAEs were found in Yamen (YM) and Humen (HM) areas than the other areas. Bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) were the dominant PAEs in the investigated areas, contributing between 61 and 95 % of the PAEs in water and from 85 to 98 % in surface sediments. Based on risk quotients (RQs), DEHP posed greater ecological risks to the studied aquatic environments than other measured compounds. Little human health risk from the target PAEs was identified.
Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS
USDA-ARS?s Scientific Manuscript database
his study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA’s long lasting AMSR-E mission. Additionally three other products we...
Persistence and memory timescales in root-zone soil moisture dynamics
Khaled Ghannam; Taro Nakai; Athanasios Paschalis; Andrew C. Oishi; Ayumi Kotani; Yasunori Igarashi; Tomo' omi Kumagai; Gabriel G. Katul
2016-01-01
The memory timescale that characterizes root-zone soil moisture remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g., evapotranspiration) from the soil column and is often interpreted as persistence in soil moisture states. Persistence, however,...
NASA Astrophysics Data System (ADS)
Clothier, B. E.; van der Velde, M.; Green, S. R.; Gee, G. W.; Manu, V.; Menoniti, V.; Vanclooster, M.
2005-05-01
Intensification of agriculture on the raised coral atolls of the Tongan archipelago, notably through squash-pumpkin production, has lead to increased use of agrichemicals. Agrichemicals, both fertilisers and pesticides, pose a risk to these fragile environments. Sustainable land-management practices are needed for small-island developing states. On Tongatapu, solutes leaving the rootzone of the squash can rapidly find their way to the underlying freshwater lenses. These lenses are hydraulically linked to the internal lagoon, and the fringing reefs. We have used buried, non-suction fluxmeters to monitor both the quantity and quality of drainage leaving the rootzone of squash. Fertiliser is traditionally applied at planting. During establishment of the squash in 2003, some 350 mm of rain fell, with 70 % of this leaving the rootzone of this permeable soil as drainage. The concentration of nitrate-N in the drainage water was measured at around 50 mg-N/L. All of the initial fertiliser dressing had been lost, along with N mineralised from the plowed-in grass. Pesticides are needed in humid tropical environments to control weeds, pests and diseases. These chemicals can leach though the rootzone to contaminate receiving waters. We modeled the transport and fate of the presticides used in squash production, and we developed a Decision Support Tool (DST). Our DST can be used to select the best pesticides for local conditions, to tailor practices for minimising leaching losses below the rootzone, and to avoid the build-up of residues in the soil. This project, funded by the European Union and NZAID, took a multi-disciplinary approach through measurement and modeling protocols. Our DST enabled us to engage the wider community and stakeholders. There has been increased awareness of the impacts and risks associated with productive land management in the fragile hydrological environments of this small-island developing state.
Callan, Mitchell J.; Kim, Hyunji; Matthews, William J.
2015-01-01
Lower subjective socioeconomic status (SSS) and higher personal relative deprivation (PRD) relate to poorer health. Both constructs concern people's perceived relative social position, but they differ in their emphasis on the reference groups people use to determine their comparative disadvantage (national population vs. similar others) and the importance of resentment that may arise from such adverse comparisons. We investigated the relative utility of SSS and PRD as predictors of self-rated physical and mental health (e.g., self-rated health, stress, health complaints). Across six studies, self-rated physical and mental health were on the whole better predicted by measures of PRD than by SSS while controlling for objective socioeconomic status (SES), with SSS rarely contributing unique variance over and above PRD and SES. Studies 4–6 discount the possibility that the superiority of PRD over SSS in predicting health is due to psychometric differences (e.g., reliability) or response biases between the measures. PMID:26441786
Social comparison, personal relative deprivation, and materialism.
Kim, Hyunji; Callan, Mitchell J; Gheorghiu, Ana I; Matthews, William J
2017-06-01
Across five studies, we found consistent evidence for the idea that personal relative deprivation (PRD), which refers to resentment stemming from the belief that one is deprived of deserved outcomes compared to others, uniquely contributes to materialism. In Study 1, self-reports of PRD positively predicted materialistic values over and above socioeconomic status, personal power, self-esteem, and emotional uncertainty. The experience of PRD starts with social comparison, and Studies 2 and 3 found that PRD mediated the positive relation between a tendency to make social comparisons of abilities and materialism. In Study 4, participants who learned that they had less (vs. similar) discretionary income than people like them reported a stronger desire for more money relative to donating more to charity. In Study 5, during a windfall-spending task, participants higher in PRD spent more on things they wanted relative to other spending categories (e.g., paying off debts). © 2016 The Authors. British Journal of Social Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Llurba, Elisa; Turan, Ozhan; Kasdaglis, Tania; Harman, Chris R; Baschat, Ahmet A
2013-06-01
To test if emergence of third-trimester (T3) placental dysfunction is related to the impedance change in uterine artery blood flow resistance between the first trimester (T1) and T3. Mean T1 and T3 uterine artery (mUtA) pulsatility index (PI) was measured in 1098 singletons. Each patient's individual mUtA-PI change was calculated ([(T3 PI - T1 PI/interval in days)] × 100; ΔmUtA-PI). This parameter and T1 and T3 mUtA-PI z-scores were related to placenta-related disease (PRD) and to constitutionally small neonates (CS). Forty-seven (5%) women had PRD and 83 (8.7%) delivered a CS neonate. T1 and T3 mUtA-PI z-scores were higher with PRD (0.418 versus -0.097 and 1.06 versus -0.13, p < 0.001 for all). Change in mUtA-PI (ΔmUtA PI) was similar for patients with PRD. However, the prevalence of PRD doubled with rising ΔmUtA-PI (11.1% versus 5.2%, p = 0.041). T3 uterine artery Doppler performs significantly better in detecting patients at risk for late-onset PRD than T1 or the gestational age change in uterine artery Doppler resistance This suggests that a proportion of late emerging PRD is not amenable to early screening by uterine artery Doppler. Further research is essential to identify the optimal screening strategy for late-onset placental dysfunction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (with...
Root-zone temperature and water availability affect early root growth of planted longleaf pine
M.A. Sword
1995-01-01
Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...
NASA Astrophysics Data System (ADS)
Mai, Boru; Deng, Xuejiao; Li, Zhanqing; Liu, Jianjun; Xia, Xiang'ao; Che, Huizheng; Liu, Xia; Li, Fei; Zou, Yu; Cribb, Maureen
2018-02-01
Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu—the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Ångström exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (˜ 0.10 μm3μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere ( F ATM), and at the top of the atmosphere, was -33.4±7.0, 26.1±5.6 and -7.3±2.7Wm-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ± 7.8, 47.3 ± 8.3 and -12.8 ± 3.1 W m-2, respectively. Moreover, during the study period, F ATM showed a significant decreasing trend ( p < 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.
Geophysical imaging of root-zone, trunk, and moisture heterogeneity.
Attia Al Hagrey, Said
2007-01-01
The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839
Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring
NASA Astrophysics Data System (ADS)
Crow, W. T.; Bolten, J. D.
2014-12-01
Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.
Influence of water chemistry and travel distance on bacteriophage PRD-1 transport in a sandy aquifer
Blanford, W.J.; Brusseau, M.L.; Jim Yeh, T.-C.; Gerba, C.P.; Harvey, R.
2005-01-01
Experiments were conducted to evaluate the impact of groundwater chemistry and travel distance on the transport and fate behavior of PRD-1, a bacteriophage employed as a surrogate tracer for pathogenic enteric viruses. The experiments were conducted in the unconfined aquifer at the United States Geological Survey Cape Cod Toxic-Substances Hydrology Research Site in Falmouth, Massachusetts. The transport behavior of bromide (Br-) and PRD-1 were evaluated in a sewage-effluent contaminated zone and a shallower uncontaminated zone at this site. Several multilevel sampling devices located along a 13-m transect were used to collect vertically discrete samples to examine longitudinal and vertical variability of PRD-1 retardation and attenuation. The concentration of viable bacteriophage in the aqueous phase decreased greatly during the first few meters of transport. This decrease is attributed to a combination of colloid filtration (attachment) and inactivation. The removal was greater (10 -12 relative recovery) and occurred within the first meter for the uncontaminated zone, whereas it was lesser (10-9 relative recovery) and occurred over 4 m in the contaminated zone. The lesser removal observed for the contaminated zone is attributed to the influence of sorbed and dissolved organic matter, phosphate, and other anions, which are present in higher concentrations in the contaminated zone, on PRD-1 attachment. After the initial decrease, the aqueous PRD-1 concentrations remained essentially constant in both zones for the remainder of the tests (total travel distances of 13 m), irrespective of variations in geochemical properties within and between the two zones. The viable, mobile PRD-1 particles traveled at nearly the rate of bromide, which was used as a non-reactive tracer. The results of this study indicate that a small fraction of viable virus particles may persist in the aqueous phase and travel significant distances in the subsurface environment. ?? 2005 Elsevier Ltd. All rights reserved.
Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies
Harvey, Ronald W.; Ryan, Joseph N.
2004-01-01
PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests.
Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza
2003-07-01
The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.
Lombardi, Laura; Schneider, Kevin; Tsukamoto, Michelle; Brody, Stuart
2007-01-01
In Neurospora, the circadian rhythm is expressed as rhythmic conidiation driven by a feedback loop involving the protein products of frq (frequency), wc-1 (white collar-1), and wc-2, known as the frq/wc (FWC) oscillator. Although strains carrying null mutations such as frq10 or wc-2Δ lack a functional FWC oscillator and do not show a rhythm under most conditions, a rhythm can be observed in them by the addition of geraniol or farnesol to the media. Employing this altered media as an assay, the effect of other clock mutations in a frq10- or wc-2Δ-null background can be measured. It was found that the existing clock mutations fall into three classes: (1) those, such as prd-3 or prd-4 or frq1, that showed no effect in a clock null background; (2) those, such as prd-1 or prd-2 or prd-6, that did have a measurable effect in the frq10 background; and (3) those, such as the new mutation ult, that suppressed the frq10 or wc-2Δ effect, i.e., geraniol/farnesol was not required for a visible rhythm. This classification suggests that some of the known clock mutations are part of a broader multioscillator system. PMID:17237512
Inter-Annual Variability of Soil Moisture Stress Function in the Wheat Field
NASA Astrophysics Data System (ADS)
Akuraju, V. R.; Ryu, D.; George, B.; Ryu, Y.; Dassanayake, K. B.
2014-12-01
Root-zone soil moisture content is a key variable that controls the exchange of water and energy fluxes between land and atmosphere. In the soil-vegetation-atmosphere transfer (SVAT) schemes, the influence of root-zone soil moisture on evapotranspiration (ET) is parameterized by the soil moisture stress function (SSF). Dependence of actual ET: potential ET (fPET) or evaporative fraction to the root-zone soil moisture via SSF can also be used inversely to estimate root-zone soil moisture when fPET is estimated by remotely sensed land surface states. In this work we present fPET versus available soil water (ASW) in the root zone observed in the experimental farm sites in Victoria, Australia in 2012-2013. In the wheat field site, fPET vs ASW exhibited distinct features for different soil depth, net radiation, and crop growth stages. Interestingly, SSF in the wheat field presented contrasting shapes for two cropping years of 2012 and 2013. We argue that different temporal patterns of rainfall (and resulting soil moisture) during the growing seasons in 2012 and 2013 are responsible for the distinctive SSFs. SSF of the wheat field was simulated by the Agricultural Production Systems sIMulator (APSIM). The APSIM was able to reproduce the observed fPET vs. ASW. We discuss implications of our findings for existing modeling and (inverse) remote sensing approaches relying on SSF and alternative growth-stage-dependent SSFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, Robert M.; Post, Matthew B.; Buttner, William J.
Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particularmore » interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.« less
PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallu-Labruyere, A.; Micou, C.; Schulcz, F.
PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, havemore » emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)« less
The possible protective effects of dipyridamole on ischemic reperfusion injury of priapism
Karaguzel, Ersagun; Bayraktar, Cemil; Kutlu, Omer; Yulug, Esin; Mentese, Ahmet; Okatan, Ali Ertan; Colak, Fatih; Ozer, Serap; O.Kazaz, Ilke
2016-01-01
ABSTRACT Purpose To investigate the protective effects against ischemia reperfusion injury of dipyridamole in a model of induced priapism in rats. Materials and Methods Twenty-four male Sprague-Dawley rats were divided into four groups, control, P/R, P/R+DMSO and P/R+D. 3ml blood specimens were collected from vena cava inferior in order to determine serum MDA, IMA, TAS, TOS and OSI values, and penile tissue was taken for histopathological examination in control group. Priapism was induced in P/R group. After 1h, priapism was concluded and 30 min reperfusion was performed. In P/R+DMSO group 1ml/kg DMSO was administered intraperitoneally 30 min before reperfusion, while in P/R+D group 10mg/kg dipyridamole was administered intraperitoneally 30 min before reperfusion. Blood and penis specimens were collected after the end of 30 min reperfusion period. Sinusoidal area (µm2), tears in tunica albuginea and injury parameters in sinusoidal endothelium of penis were investigated. Results Histopathological examination revealed no significant changes in term of sinusoidal area. A decrease in tears was observed in P/R+D group compared to P/R group (p<0.05). Endothelial injury decreased in P/R+D group compared to P/R group (p>0.05). There were no significant differences in MDA and IMA values between groups. A significant increase in TOS and OSI values was observed in P/R+D group compared to P/R group. A significant decrease in TAS levels was observed in P/R+D group compared to the P/R group. Conclusions The administration of dipyridamole before reperfusion in ischemic priapism model has a potential protective effect against histopathological injury of the penis. PMID:27136481
Evaluating and Reporting Dysphagia in Trials of Chemoirradiation for Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluck, Iris; Feng, Felix Y.; Lyden, Teresa
2010-07-01
Purpose: Reporting long-term toxicities in trials of chemoirradiation (CRT) of head-and-neck cancer (HNC) has mostly been limited to observer-rated maximal Grades {>=}3. We evaluated this reporting approach for dysphagia by assessing patient-reported dysphagia (PRD) and objective swallowing dysfunction through videofluoroscopy (VF) in patients with various grades of maximal observer-reported dysphagia (ORD). Methods and Materials: A total of 62 HNC patients completed quality-of-life questionnaires periodically through 12 months post-CRT. Five PRD items were selected: three dysphagia-specific questions, an Eating-Domain, and 'Overall Bother.' They underwent VF at 3 and 12 months, and ORD (Common Terminology Criteria for Adverse Events) scoring every 2more » months. We classified patients into four groups (0-3) according to maximal ORD scores documented 3-12 months post-CRT, and assessed PRD and VF summary scores in each group. Results: Differences in ORD scores among the groups were considerable throughout the observation period. In contrast, PRD scores were similar between Groups 2 and 3, and variable in Group 1. VF scores were worse in Group 3 compared with 2 at 3 months but similar at 12 months. In Group 1, PRD and VF scores from 3 through 12 months were close to Groups 2 and 3 if ORD score 1 persisted, but were similar to Group 0 in patients whose ORD scores improved by 12 months. Conclusions: Patients with lower maximal ORD grades, especially if persistent, had similar rates of PRD and objective dysphagia as patients with highest grades. Lower ORD grades should therefore be reported. These findings may have implications for reporting additional toxicities besides dysphagia.« less
Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies
Harvey, R.W.; Ryan, J.N.
2004-01-01
PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests. ?? 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.
Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment.
Abbaszadegan, Morteza; Monteiro, Patricia; Nwachuku, Nena; Alum, Absar; Ryu, Hodon
2008-02-01
This study was conducted to evaluate the removal of adenovirus, feline calicivirus (FCV), and bacteriophages MS-2, fr, PRD-1, and Phi X-174 during conventional drinking water treatment using ferric chloride as a coagulant. Adenovirus and FCV were removed to a greater extent than PRD-1 and Phi X-174, indicating that these bacteriophages may be appropriate surrogates for both adenovirus and FCV. Of the four bacteriophages studied in the pilot plant, MS-2 was removed to the greatest extent (5.1 log), followed by fr (4.9 log), PRD-1 (3.5 log), and Phi X-174 (1.3 log). The virus removal trend in the pilot-scale testing was similar to the bench-scale testing; however, the bench-scale testing seemed to provide a conservative estimate of the pilot plant performance. In the pilot-scale testing, MS-2 and fr were removed with the greatest efficiency during filtration, whereas PRD-1 and Phi X-174 showed the greatest removal during sedimentation.
[Anthropogenic ammonia emission inventory and characteristics in the Pearl River Delta Region].
Yin, Sha-sha; Zheng, Jun-yu; Zhang, Li-jun; Zhong, Liu-ju
2010-05-01
Based on the collected activity data and emission factors of anthropogenic ammonia sources, a 2006-based anthropogenic ammonia emission inventory was developed for the Pearl River Delta (PRD) region by source categories and cities with the use of appropriate estimation methods. The results show: (1) the total NH3 emission from anthropogenic sources in the PRD region was 194. 8 kt; (2) the agriculture sources were major contributors of anthropogenic ammonia sources, in which livestock sources shared 62.1% of total NH3 emission and the contribution of application of nitrogen fertilizers was 21.7%; (3) the broiler was the largest contributor among the livestock sources, accounting for 43.4% of the livestock emissions, followed by the hog with a contribution of 32.1%; (4) Guangzhou was the largest ammonia emission city in the PRD region, and then Jiangmen, accounting for 23.4% and 19.1% of total NH3 emission in the PRD region respectively, with major sources as livestock sources and application of nitrogen fertilizers.
Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.
Rodrigues, Richard R; Pineda, Rosana P; Barney, Jacob N; Nilsen, Erik T; Barrett, John E; Williams, Mark A
2015-01-01
The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.
Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity
Rodrigues, Richard R.; Pineda, Rosana P.; Barney, Jacob N.; Nilsen, Erik T.; Barrett, John E.; Williams, Mark A.
2015-01-01
The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined. PMID:26505627
Liu, Jian; Wu, Dui; Fan, Shao-jia
2015-11-01
Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.
An, Taicheng; Qiao, Meng; Li, Guiying; Sun, Hongwei; Zeng, Xiangying; Fu, Jiamo
2011-05-01
The Pearl River Delta (PRD) region is one of the most population-dense areas in China. The safety of its drinking source water is essential to human health. Polycyclic aromatic hydrocarbons (PAHs) have attracted attention from the scientific community and the general public due to their toxicity and wide distribution in the global environment. In this work, PAHs pollution levels from the drinking source water in nine main cities within the PRD were investigated. ∑15 PAHs concentrations during the wet season varied from 32.0 to 754.8 ng L(-1) in the dissolved phase, and from 13.4 to 3017.8 ng L(-1) in the particulate phase. During the dry season, dissolved PAHs ranged from 48.1 to 113.6 ng L(-1), and particulate PAHs from 8.6 to 69.6 ng L(-1). Overall, ∑15 PAHs concentrations were extremely high in the XC and ZHQ stations during the wet season in 2008 and 2009. In most sites, PAHs originated from mixed sources. Hazard ratios based on non-cancerous and cancerous risks were extremely higher in XC compared with the others during the wet season, though they were much less than 1. Nevertheless, risks caused by the combined toxicity of ∑15 PAHs and other organics should be seriously considered. PAHs toxic equivalent quantities ranged from 0.508 to 177.077 ng L(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karttunen, Jenni; Mäntynen, Sari; Ihalainen, Teemu O.
2015-08-15
Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of themore » P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.« less
Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.
2002-01-01
Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch
Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we presentmore » a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.« less
NASA Astrophysics Data System (ADS)
Chen, Y. D.; Chen, X. H.
2003-04-01
The West River, the North River and the East River, collectively called the Pearl River, have a total drainage area of 453,690 km2 in southern and southwestern China and flow into the South China Sea. The three rivers join together and form the Pearl River Delta (PRD) with an area of 26,820 km2. The crisscross river network (density: 0.68-1.07 km/km2) in the PRD is one of the most complicated deltaic drainage systems in the world. As the region experiencing the most rapid economic growth in China over the past two decades, the PRD has witnessed massive changes in both the social and the natural environment, leading to an urgent need of studying regional environmental changes caused by intensive human activities. This paper aims to summarize and illustrate a variety of human-induced hydrologic and geomorphic changes in the PRD river network and to present an analysis of the causes and effects of these changes. Findings of this study will help decision-makers to formulate river management and mitigation strategies and policies in the region. The hydrologic characteristics of the PRD river network have been altered to varying degrees in the following three main aspects. First and most importantly, stage has become higher or lower over the past several decades in an uneven manner in different parts of the delta. From the early 1950s to the 1980s, scattered and small embankments were enlarged and combined to expand land mass and reduce flood hazards in the PRD. However, reduction of water surface area and concentration of flow into major channels generally caused stage to go up slightly. Since the early 1990s, stage in the upper part of the PRD has significantly dropped down while the opposite situation has become more and more common in the central PRD where enormous flood damages have occurred. Secondly, corresponding to the stage changes, the stage-discharge relationship has been substantially modified, as evidenced by over 2 m drop of stage for the same amount of discharge. Thirdly, the ratio of flow partition into two channels at several river bifurcation points has continuously changed over the past decade. This is an excellent indication of an increasingly larger portion of river flow discharging from the West River channels into the North River delta, which was found to be a major reason making the middle part of the PRD more and more vulnerable to flooding in recent years. Closely associated with the hydrologic changes are alterations of river channel and estuarine morphologies. Such geomorphic changes primarily include noticeable or even alarmingly severe modification of river channel bed, extension of river mouth and contraction of estuary in the study region. It was found that the hydrologic and geomorphic changes that have occurred within a relatively short period of time are mainly consequences of a wide variety of human activities, coupled with influences of natural events, including (a) channel dredging of sand for construction usage, (b) combination of embankments and construction of dams, (c) channel constriction and reduction or complete loss of floodplain, (d) sea level rise, and (e) channel bed erosion by record floods. Finally, an analysis is presented to examine the effects of these changes on various issues such as flood prevention and control, river channel management and navigation, low-flow regimes and water supply, water quality and aquatic ecosystem protection in the PRD region.
Simulating sunflower canopy temperatures to infer root-zone soil water potential
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Idso, S. B.
1983-01-01
A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.
NASA Astrophysics Data System (ADS)
Kurtzman, D.; Kanner, B.; Levy, Y.; Shapira, R. H.; Bar-Tal, A.
2017-12-01
Closed-root-zone experiments (e.g. pots, lyzimeters) reveal in many cases a mineral-nitrogen (N) concentration from which the root-N-uptake efficiency reduces significantly and nitrate leaching below the root-zone increases dramatically. A les-direct way to reveal this threshold concentration in agricultural fields is to calibrate N-transport models of the unsaturated zone to nitrate data of the deep samples (under the root-zone) by fitting the threshold concentration of the nitrate-uptake function. Independent research efforts of these two types in light soils where nitrate problems in underlying aquifers are common reviled: 1) that the threshold exists for most crops (filed, vegetables and orchards); 2) nice agreement on the threshold value between the two very different research methodologies; and 3) the threshold lies within 20-50 mg-N/L. Focusing on being below the threshold is a relatively simple aim in the way to maintain intensive agriculture with limited effects on the nitrate concentration in the underlying water resource. Our experience show that in some crops this threshold coincides with the end-of-rise of the N-yield curve (e.g. corn); in this case, it is relatively easy to convince farmers to fertilize below threshold. In other crops, although significant N is lost to leaching the crop can still use higher N concentration to increase yield (e.g. potato).
Coping with Racism: What Works and Doesn't Work for Black Women?
ERIC Educational Resources Information Center
West, Lindsey M.; Donovan, Roxanne A.; Roemer, Lizabeth
2010-01-01
Perceived racial discrimination (PRD) has deleterious effects on Black Americans. However, there is minimal empirical research on the influence of gender and coping on the relationship between PRD and mental health. This study posited that coping style (i.e., problem-focused coping and avoidant coping) would moderate the relationship between PRD…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, E. Alsina; Bueno, J. Trujillo; Belluzzi, L., E-mail: ealsina@iac.es
2017-02-10
The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTEmore » radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.« less
Abudalo, R.A.; Bogatsu, Y.G.; Ryan, J.N.; Harvey, R.W.; Metge, D.W.; Elimelech, M.
2005-01-01
To test the effect of geochemical heterogeneity on microorganism transport in saturated porous media, we measured the removal of two microorganisms, the bacteriophage PRD1 and oocysts of the protozoan parasite Cryptosporidium parvum, in flow-through columns of quartz sand coated by different amounts of a ferric oxyhydroxide. The experiments were conducted over ranges of ferric oxyhydroxide coating fraction of ?? = 0-0.12 for PRD1 and from ?? = 0-0.32 for the oocysts at pH 5.6-5.8 and 10-4 M ionic strength. To determine the effect of pH on the transport of the oocysts, experiments were also conducted over a pH range of 5.7-10.0 at a coating fraction of ?? = 0.04. Collision (attachment) efficiencies increased as the fraction of ferric oxyhydroxide coated quartz sand increased, from ?? = 0.0071 to 0.13 over ?? = 0-0.12 for PRD1 and from ?? = 0.059 to 0.75 over ?? = 0-0.32 for the oocysts. Increasing the pH from 5.7 to 10.0 resulted in a decrease in the oocyst collision efficiency as the pH exceeded the expected point of zero charge of the ferric oxyhydroxide coatings. The collision efficiencies correlated very well with the fraction of quartz sand coated by the ferric oxyhydroxide for PRD1 but not as well for the oocysts. ?? 2005 American Chemical Society.
Dika, Christelle; Duval, Jérôme F L; Francius, Gregory; Perrin, Aline; Gantzer, Christophe
2015-05-15
MS2, Phi X 174 and PRD1 bacteriophages are commonly used as surrogates to evaluate pathogenic virus behavior in natural aquatic media. The interfacial properties of these model soft bioparticles are herein discussed in connection with their propensities to adhere onto abiotic surfaces that differ in terms of surface charges and hydrophobicities. The phages considered in this work exhibit distinct multilayered surface structures and their electrostatic charges are evaluated from the dependence of their electrophoretic mobilities on electrolyte concentration at neutral pH on the basis of electrokinetic theory for soft (bio)particles. The charges of the viruses probed by electrokinetics vary according to the sequence Phi X 174⩽PRD1≪MS2, where '<' stands for 'less charged than'. The hydrophobic/hydrophilic balances of the phages are further derived from their adhesions onto model hydrophobic and hydrophilic self-assembled mono-layers. The corresponding results lead to the following hydrophobicity sequence Phi X 174≪MS2
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.
2015-01-01
Summary The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His → Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. PMID:25402841
Hammerstrom, Troy G; Horton, Lori B; Swick, Michelle C; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M
2015-02-01
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism. © 2014 John Wiley & Sons Ltd.
Computational analysis of aircraft pressure relief doors
NASA Astrophysics Data System (ADS)
Schott, Tyler
Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft manufacturers with valuable insight into the impact that operating conditions and geometric configurations have on PRD performance and how the information can be used to assist future research and development of PRD design.
Tomato responses to ammonium and nitrate nutrition under controlled root-zone pH
NASA Technical Reports Server (NTRS)
Peet, M. M.; Raper, C. D. Jr; Tolley, L. C.; Robarge, W. P.; Raper CD, J. r. (Principal Investigator)
1985-01-01
Tomato (Lycopersicon esculentum L. Mill. 'Vendor') plants were grown for 21 days in flowing solution culture with N supplied as either 1.0 mM NO3- or 1.0 mM NH4+. Acidity in the solutions was automatically maintained at pH 6.0. Accumulation and distribution of dry matter and total N and net photosynthetic rate were not affected by source of N. Thus, when rhizosphere acidity was controlled at pH 6.0 during uptake, either NO3- or NH4+ can be used efficiently by tomato. Uptake of K+ and Ca2+ were not altered by N source, but uptake of Mg2+ was reduced in NH4(+)-fed plants. This indicates that uptake of Mg2+ was regulated at least partially by ionic balance within the plant.
Bacteriophage PRD1 and silica colloids were co-injected into
sewage-contaminated and uncontaminated zones of an iron oxide-coated sand
aquifer on Cape Cod, MA, and their transport was monitored over distances up to
6 m in three arrays. After deposition, the attache...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... information may be accessed at http://www.fpir.noaa.gov/PRD/prd_false_killer_whale.html . Authority: 16 U.S.C... False Killer Whale Distinct Population Segment AGENCY: National Marine Fisheries Service (NMFS... recovery plan; request for information. SUMMARY: The National Marine Fisheries Service (NMFS) is announcing...
Lessons from Preventing Reading Difficulties in Young Children for Adult Learning and Literacy
ERIC Educational Resources Information Center
Snow, Catherine E.; Strucker, John
1999-01-01
In the spring of 1998 the National Research Council released a report, Preventing Reading Difficulties in Young Children for Adult Learning and Literacy (PRD). PRD was written with the goal of contributing to the prevention of reading difficulties by documenting the contributions of research to an understanding of reading development and the…
Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity
NASA Astrophysics Data System (ADS)
Spanò, Carmelina; Bottega, Stefania
2016-02-01
Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; ...
2014-12-30
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO 2/bicarbonate, and there is a positive correlation between the CO 2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His → Asp) and phosphoablative (His →more » Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (1) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (2) phosphorylation of H379 in PRD2 disrupts dimer formation. In conclusion, the AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
Effect of pH on bacteriophage transport through sandy soils
Kinoshita, Takashi; Bales, Roger C.; Maguire, Kimberley M.; Gerba, Charles P.
1993-01-01
Effects of pH and hydrophobicity on attachment and detachment of PRD-1 and MS-2 in three different sandy soils were investigated in a series of laboratory-column experiments. Concentrations of the lipid-containing phage PRD-1 decreased 3–4 orders of magnitude during passage through the 10–15-cm-long columns. Attachment of the lipid-containing phage PRD-1 was insensitive to pH and was apparently controlled by hydrophobic interactions in soil media. The less-hydrophobic phage MS-2 acted conservatively; it was not removed in the columns at pH's 5.7–8.0. The sticking efficiency (α) in a colloid-filtration model was between 0.1 and 1 for PRD-1, indicating a relatively high removal efficiency. Phage attachment was reversible, but detachment under steady-state conditions was slow. An increase in pH had a moderate effect on enhancing detachment. Still, these soils should continue to release phage to virus-free water for days to weeks following exposure to virus-containing water. In sandy soils with a mass-fraction organic carbon as low as a few hundredths of a percent, pH changes in the range 5.7–8.0 should have little effect on retention of more-hydrophobic virus (e.g., PRD-1), in that retardation will be dominated by hydrophobic effects. Sharp increases in pH should enhance detachment and transport of virus previously deposited on soil grains. A more hydrophilic virus (e.g., MS-2) will transport as a conservative tracer in low-carbon sandy soil.
Structure of the Intermediate Filament-Binding Region of Desmoplakin
Kang, Hyunook; Weiss, Thomas M.; Bang, Injin; ...
2016-01-25
Here, desmoplakin (DP) is a cytoskeletal linker protein that connects the desmosomal cadherin/plakoglobin/plakophilin complex to intermediate filaments (IFs). The C-terminal region of DP (DPCT) mediates IF binding, and contains three plakin repeat domains (PRDs), termed PRD-A, PRD-B and PRD-C. Previous crystal structures of PRDs B and C revealed that each is formed by 4.5 copies of a plakin repeat (PR) and has a conserved positively charged groove on its surface. Although PRDs A and B are linked by just four amino acids, B and C are separated by a 154 residue flexible linker, which has hindered crystallographic analysis of themore » full DPCT. Here we present the crystal structure of a DPCT fragment spanning PRDs A and B, and elucidate the overall architecture of DPCT by small angle X-ray scattering (SAXS) analysis. The structure of PRD-A is similar to that of PRD-B, and the two domains are arranged in a quasi-linear arrangement, and separated by a 4 amino acid linker. Analysis of the B-C linker region using secondary structure prediction and the crystal structure of a homologous linker from the cytolinker periplakin suggests that the N-terminal ~100 amino acids of the linker form two PR-like motifs. SAXS analysis of DPCT indicates an elongated but non-linear shape with R g = 51.5 Å and D max = 178 Å. These data provide the first structural insights into an IF binding protein containing multiple PRDs and provide a foundation for studying the molecular basis of DP-IF interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.
2014-12-30
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activitymore » in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.« less
Aging results for PRD 49 III/epoxy and Kevlar 49/epoxy composite pressure vessels
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1983-01-01
Kevlar 49/epoxy composite is growing in use as a structural material because of its high strength-to-weight ratio. Currently, it is used for the Trident rocket motor case and for various pressure vessels on the Space Shuttle. In 1979, the initial results for aging of filament-wound cylindrical pressure vessels which were manufactured with preproduction Kevlar 49 (Hamstad, 1979) were published. This preproduction fiber was called PRD 49 III. This report updates the continuing study to 10-year data and also presents 7.5-year data for spherical pressure vessels wound with production Kevlar 49. For completeness, this report will again describe the specimens of the original study with PRD 49 as well as specimens for the new study with Kevlar 49.
An Overview of the 3C-STAR project
NASA Astrophysics Data System (ADS)
Zhang, Y.
2009-04-01
Over the past three decades, city clusters have played a leading role in the economic growth of China, owing to their collective economic capacity and interdependency. However, pollution prevention lags behind the economic boom, led to a general decline in air quality in city clusters. As a result, industrial emissions and traffic exhausts together contribute to high levels of ozone (O3) and fine particulate matter (PM2.5) pollution problems ranging from urban to regional scale. Such high levels of both primary and secondary airborne pollutants lead to the development of a (perhaps typically Chinese) "air pollution complex" concept. Air pollution complex is particularly true and significant in Beijing-Tianjin area, Pearl River Delta (PRD) and Yangtze River Delta. The concurrent high concentrations of O3 and PM2.5 in PRD as well as in other China city clusters have led to rather unique pollution characteristics due to interactions between primary emissions and photochemical processes, between gaseous compounds and aerosol phase species, and between local and regional scale processes. The knowledge and experience needed to find solutions to the unique pollution complex in China are still lacking. Starting from 2007, we launch a major project "Synthesized Prevention Techniques for Air Pollution Complex and Integrated Demonstration in Key City-Cluster Region" (3C-STAR) to address those problems scientifically and technically. The purpose of the project is to build up the capacity of regional air pollution control and to establish regional coordination mechanism for joint implementation of pollution control. The project includes a number of key components technically: regional air quality monitoring network and super-sites, regional dynamic emission inventory of multi-pollutants, regional ensemble air quality forecasting model system, and regional management system supported by decision making platform. The 3C-STAR project selected PRD as a core area to have technical demonstration, and thus provide opportunities as well as challenges for PRD to improve its regional air quality. An integrated field measurement campaign 3C-STAR2008 was organized during October 15-November 19, 2008, including 3-D regional air quality monitoring network, two super-sites, and in-site meteorological and air quality forecasting. With the efforts of more than 100 scientists and students from 12 research institutes, the 3C-STAR2008 was conducted with great success. A great amount of data with rigorous QA/QC procedures has been obtained and data analysis is underway. In this talk, an overview of the 3C-STAR project will be presented, together with major findings from previous PRD campaigns (PRD2004 and PRD2006).
Lindner, Cordula; Hecker, Michael; Le Coq, Dominique; Deutscher, Josef
2002-09-01
The Bacillus subtilis antiterminator LicT regulates the expression of bglPH and bglS, which encode the enzymes for the metabolism of aryl-beta-glucosides and the beta-glucanase BglS. The N-terminal domain of LicT (first 55 amino acids) prevents the formation of rho-independent terminators on the respective transcripts by binding to target sites overlapping these terminators. Proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulate the antitermination activity of LicT by phosphorylating histidines in its two PTS regulation domains (PRDs). Phosphorylation at His-100 in PRD-1 requires the PTS proteins enzyme I and HPr and the phosphorylated permease BglP and inactivates LicT. During transport and phosphorylation of aryl-beta-glucosides, BglP is dephosphorylated, which renders LicT active and thus leads to bglPH and bglS induction. In contrast, phosphorylation at His-207 and/or His-269 in PRD-2, which requires only enzyme I and HPr, is absolutely necessary for LicT activity and bglPH and bglS expression. We isolated spontaneous licT mutants expressing bglPH even when enzyme I and HPr were absent (as indicated by the designation "Pia" [PTS-independent antitermination]). Introduced in a ptsHI(+) strain, two classes of licT(Pia) mutations could be distinguished. Mutants synthesizing LicT(Pia) antiterminators altered in PRD-2 still required induction by aryl-beta-glucosides, whereas mutations affecting PRD-1 caused constitutive bglPH expression. One of the two carbon catabolite repression (CCR) mechanisms operative for bglPH requires the rho-independent terminator and is probably prevented when LicT is activated by P approximately His-HPr-dependent phosphorylation in PRD-2 (where the prefix "P approximately " stands for "phospho"). During CCR, the small amount of P approximately His-HPr present in cells growing on repressing PTS sugars probably leads to insufficient phosphorylation at PRD-2 of LicT and therefore to reduced bglPH expression. In agreement with this concept, mutants synthesizing a P approximately His-HPr-independent LicT(Pia) had lost LicT-modulated CCR.
Lindner, Cordula; Hecker, Michael; Le Coq, Dominique; Deutscher, Josef
2002-01-01
The Bacillus subtilis antiterminator LicT regulates the expression of bglPH and bglS, which encode the enzymes for the metabolism of aryl-β-glucosides and the β-glucanase BglS. The N-terminal domain of LicT (first 55 amino acids) prevents the formation of ρ-independent terminators on the respective transcripts by binding to target sites overlapping these terminators. Proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulate the antitermination activity of LicT by phosphorylating histidines in its two PTS regulation domains (PRDs). Phosphorylation at His-100 in PRD-1 requires the PTS proteins enzyme I and HPr and the phosphorylated permease BglP and inactivates LicT. During transport and phosphorylation of aryl-β-glucosides, BglP is dephosphorylated, which renders LicT active and thus leads to bglPH and bglS induction. In contrast, phosphorylation at His-207 and/or His-269 in PRD-2, which requires only enzyme I and HPr, is absolutely necessary for LicT activity and bglPH and bglS expression. We isolated spontaneous licT mutants expressing bglPH even when enzyme I and HPr were absent (as indicated by the designation “Pia” [PTS-independent antitermination]). Introduced in a ptsHI+ strain, two classes of licT(Pia) mutations could be distinguished. Mutants synthesizing LicT(Pia) antiterminators altered in PRD-2 still required induction by aryl-β-glucosides, whereas mutations affecting PRD-1 caused constitutive bglPH expression. One of the two carbon catabolite repression (CCR) mechanisms operative for bglPH requires the ρ-independent terminator and is probably prevented when LicT is activated by P∼His-HPr-dependent phosphorylation in PRD-2 (where the prefix “P∼” stands for “phospho”). During CCR, the small amount of P∼His-HPr present in cells growing on repressing PTS sugars probably leads to insufficient phosphorylation at PRD-2 of LicT and therefore to reduced bglPH expression. In agreement with this concept, mutants synthesizing a P∼His-HPr-independent LicT(Pia) had lost LicT-modulated CCR. PMID:12169607
Zasada, Inga A.; Peetz, Amy; Wade, Nadine; Navarre, Roy A.; Ingham, Russ E.
2013-01-01
Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. ‘Russet Burbank,’ ‘Desiree,’ ‘Modac,’ ‘Norland,’ ‘Umatilla,’ and ‘Yukon Gold’ were good hosts (RF > 14) for G. ellingtonae. Potato varieties ‘Maris Piper,’ ‘Atlantic,’ and ‘Satina,’ all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD and reproduced on potato, the pathogenicity of this nematode on potato remains to be determined. PMID:24115784
Zasada, Inga A; Peetz, Amy; Wade, Nadine; Navarre, Roy A; Ingham, Russ E
2013-09-01
Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. 'Russet Burbank,' 'Desiree,' 'Modac,' 'Norland,' 'Umatilla,' and 'Yukon Gold' were good hosts (RF > 14) for G. ellingtonae. Potato varieties 'Maris Piper,' 'Atlantic,' and 'Satina,' all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD and reproduced on potato, the pathogenicity of this nematode on potato remains to be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
Dye to use with virus challenge for testing barrier materials.
Lytle, C D; Felten, R P; Truscott, W
1991-01-01
Can FD&C Blue no. 1 dye photoinactivate bacteriophages phi X174, T7, PRD1, and phi 6 under laboratory lighting conditions? At high levels of light, the dye (500 microM) photoinactivated only phi 6. Thus, this dye can be used at concentrations up to 500 microM with bacteriophages phi X174, T7, and PRD1 to test barrier material integrity. PMID:1872612
Bibliography of Soviet Laser Developments, Number 86, November - December 1986.
1987-12-01
Korenev , M.S. 0. Synthesis of the sensitive element for a fiberoptic level transducer based on irregular light guide structures. TsNIITEIpriboro...Deposit, no. 3412-prD86, 9 p. (PRSUB, no. 12, 1986, 43). 687. Korenev , M.S. (). Analysis of the characteristics of bispiral conical sensing elements...TsNIITEIpriboro. Deposit, no. 3414-prD86, 8 p. (PRSUB, no. 12, 1986, 43). 688. Korenev , M.S. (). Discrete extrapolation algorithm to process measuring
Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia
2009-08-01
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.
Modeling wet deposition of acid substances over the PRD region in China
NASA Astrophysics Data System (ADS)
Lu, Xingcheng; Fung, Jimmy Chi Hung; Wu, Dongwei
2015-12-01
The Pearl River Delta (PRD) region in southern China has suffered heavily from acid rain in the last 10 years due to the anthropogenic emission of sulfur dioxide and nitrogen dioxide. Several measurement-based studies about this issue have been conducted to analyze the chemical composition of precipitation in this area. However, no detailed, high resolution numerical simulation regarding this topic has ever been done in this region. In this study, the WRF-SMOKE-CMAQ system was applied to simulate the wet deposition of acid substances (SO42- and NO3-) in the PRD region from 2009 to 2011 with a resolution of 3 km. The simulation output agreed well with the observation data. Our results showed that Guangzhou was the city most affected by acid rain in this region. The ratio of non-sea-salt sulfate to nitrate indicated that the acid rain in this region belonged to the sulfate-nitrate mixed type. The source apportionment result suggests that point source and super regional source are the ones that contribute the pollutants most in the rain water over PRD Region. The sulfate and nitrate input to some reservoirs via wet deposition was also estimated based on the model simulation. Our results suggest that further cross-city cooperation and emission reduction are needed to further curb acid rain in this region.
Karczmarski, Leszek; Huang, Shiang-Lin; Chan, Stephen C Y
2017-02-23
Defining demographic and ecological threshold of population persistence can assist in informing conservation management. We undertook such analyses for the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Delta (PRD) region, southeast China. We use adult survival estimates for assessments of population status and annual rate of change. Our estimates indicate that, given a stationary population structure and minimal risk scenario, ~2000 individuals (minimum viable population in carrying capacity, MVP k ) can maintain the population persistence across 40 generations. However, under the current population trend (~2.5% decline/annum), the population is fast approaching its viability threshold and may soon face effects of demographic stochasticity. The population demographic trajectory and the minimum area of critical habitat (MACH) that could prevent stochastic extinction are both highly sensitive to fluctuations in adult survival. For a hypothetical stationary population, MACH should approximate 3000-km 2 . However, this estimate increases four-fold with a 5% increase of adult mortality and exceeds the size of PRD when calculated for the current population status. On the other hand, cumulatively all current MPAs within PRD fail to secure the minimum habitat requirement to accommodate sufficiently viable population size. Our findings indicate that the PRD population is deemed to become extinct unless effective conservation measures can rapidly reverse the current population trend.
Power-rate-distortion analysis for wireless video communication under energy constraint
NASA Astrophysics Data System (ADS)
He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq
2004-01-01
In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network.
Wu, Jing; Fang, Xuekun; Martin, Jonathan W; Zhai, Zihan; Su, Shenshen; Hu, Xia; Han, Jiarui; Lu, Sihua; Wang, Chen; Zhang, Jianbo; Hu, Jianxin
2014-02-01
Although many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, David C.; Smythe, W. Roy; Liao Zhongxing
Purpose: To determine the incidence of fatal pulmonary events after extrapleural pneumonectomy and hemithoracic intensity-modulated radiotherapy (IMRT) for malignant pleural mesothelioma. Methods and Materials: We retrospectively reviewed the records of 63 consecutive patients with malignant pleural mesothelioma who underwent extrapleural pneumonectomy and IMRT at University of Texas M. D. Anderson Cancer Center. The endpoints studied were pulmonary-related death (PRD) and non-cancer-related death within 6 months of IMRT. Results: Of the 63 patients, 23 (37%) had died within 6 months of IMRT (10 of recurrent cancer, 6 of pulmonary causes [pneumonia in 4 and pneumonitis in 2], and 7 of othermore » noncancer causes [pulmonary embolus in 2, sepsis after bronchopleural fistula in 1, and cause unknown but without pulmonary symptoms or recurrent disease in 4]). On univariate analysis, the factors that predicted for PRD were a lower preoperative ejection fraction (p = 0.021), absolute volume of lung spared at 10 Gy (p = 0.025), percentage of lung volume receiving {>=}20 Gy (V{sub 20}; p 0.002), and mean lung dose (p = 0.013). On multivariate analysis, only V{sub 20} was predictive of PRD (p = 0.017; odds ratio, 1.50; 95% confidence interval, 1.08-2.08) or non-cancer-related death (p = 0.033; odds ratio, 1.21; 95% confidence interval, 1.02-1.45). Conclusion: The results of our study have shown that fatal pulmonary toxicities were associated with radiation to the contralateral lung. V{sub 20} was the only independent determinant for risk of PRD or non-cancer-related death. The mean V{sub 20} of the non-PRD patients was considerably lower than that accepted during standard thoracic radiotherapy, implying that the V{sub 20} should be kept as low as possible after extrapleural pneumonectomy.« less
Huang, Guanxing; Liu, Chunyan; Sun, Jichao; Zhang, Ming; Jing, Jihong; Li, Liangping
2018-06-01
A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na + , Mg 2+ , K + , and Cl - , in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH 4 + , Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca 2+ and HCO 3 - in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO 3 and SO 4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the PRD. Copyright © 2017 Elsevier B.V. All rights reserved.
Landscape ecological security assessment based on projection pursuit in Pearl River Delta.
Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli
2012-04-01
Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced values in landscape ecological security, with the most decreased number 0.52 in Zhaoqing. Results of this study offer important information for regional eco-construction and natural resource exploitation.
Islam, Rafiqul; Kumar, Harendra; Singh, Gyanendra; Krishnan, Binsila B; Dey, Sahadeb
2017-09-01
The study was planned to see if there is any important and significant changes in the PMN function in cows suffering from postpartum reproductive diseases (PRD). Blood sampling was done from 41 pregnant cows on 15 days prepartum (-15d), calving day (0d), 15 days (15d) and 30 days (30d) postpartum and thorough gynaecological examination was performed on 0d, 15d, 30d and 45d for diagnosis of PRD like retained placenta (RP), clinical metritis (CM), clinical endometritis (CE) and delayed involution of uterus (DIU). The heparinised blood was used for isolation of PMN leukocytes for estimation of superoxide (SO), hydrogen peroxide (H 2 O 2 ) and enzyme myeloperoxidase (MPO) activity in each group of cows. The SO production (ΔOD) was greater for normal (0.19 ± 0.05) than cows suffering from RP (-0.12 ± 0.09), CM (-0.15 ± 0.13) and CE (-0.07 ± 0.05) at -15d. The mean value was greater for normal cows (0.12) than the cows with PRD (0.05 to 0.9) at 30d. The H 2 O 2 production was greater for normal than cows with PRD at all sampling days and significantly greater than cows with RP and CE at 15d (p < 0.01) and 30d (P < 0.05). The MPO activity (μmol/1 × 10 7 ) was greater for normal (18.77 ± 1.27) than for RP (12.52 ± 2.57) and CM (11.31 ± 3.30) cows on 0d. The depressed capability of the PMN from the cows with PRD to produce SO, H 2 O 2 and MPO during the periparturient period indicated their association with the development of RP, CM and CE.
NASA Astrophysics Data System (ADS)
Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis
2016-04-01
Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the drought years. Root-zone soil salinity was mapped in 1991 using geospatial apparent electrical conductivity measurements and extensive soil sampling and in 2013 using recent root-zone remote sensing salinity map for the WSJV (developed and published by the U.S. Salinity Laboratory, USDA-ARS), which was calibrated and (independently) validated, including fields from the BWD. Results reveal dramatic increases in soil salinity for all the fields that were originally non-saline and slightly-saline in 1991. Additionally, time-series analysis of very-high resolution ortho-imagery (from Google Earth and USGS) suggests that surface soil quality drastically decreased especially during the drought years. Our research shows how terminating irrigation in California's Central Valley can lead to substantial soil salinization in a very short time. Salinization in WSJV due to the termination of irrigation is a consequence of the complex multi-scale interaction of geomorphologic, topographic, and anthropogenic factors requiring yearly monitoring to adequately assess the impacts of drought for use in field- and basin-scale water management decisions. Among other concerns, increased salinity and sodicity affect vegetation growth and may lead to increased soil erosion and very-fine dust formation creating health and environmental hazards.
NASA Astrophysics Data System (ADS)
Fogl, Claudia; Mohammed, Fiyaz; Al-Jassar, Caezar; Jeeves, Mark; Knowles, Timothy J.; Rodriguez-Zamora, Penelope; White, Scott A.; Odintsova, Elena; Overduin, Michael; Chidgey, Martyn
2016-03-01
Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks.
Zhou, S. H.; Kramer, M. J.; Meng, F. Q.; ...
2015-11-14
Co 5Pr-D2 d is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single Co 5Pr-D2 d phase. The object of our study is to assess thermodynamic pathways for crystalline phases under far-from-equilibrium conditions by combining first-principles calculations and experimental measurements into a robust description of the thermodynamic behavior. The energetic calculations, temperature and time dependent phase selections are predicted under varying degrees of chemical partitioning. Our calculation to assess the chemical partitioning-temperatures indicates that the major magnetic compounds: Co 17Pr 2-α, Co 5Pr-D2 d, Co 19Pr 5-β, and Co 7Pr 2-χ formmore » from a congruent manner to eutectic reactions with decreasing cooling rate. The compositions of the compounds from these highly driven liquids can be far from equilibrium.« less
NASA Astrophysics Data System (ADS)
Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke
2018-03-01
Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.
Development and Testing of PRD-66 Hot Gas Filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, J.A.; Garnier, J.E.; McMahon, T. J.
1996-12-31
The overall objective of this program is to develop and commercialize PRD-66 hot gas filters for application in pressurized fluidized bed combustors (PFBC) and Integrated Gas Combined Cycle (IGCC) power generation systems. The work is being carried out in phases with the following specific objectives: 1. Demonstrate acceptable mechanical, chemical, and filtration properties in exposure tests. 2. Produce and qualify selected prototype design filter elements in high temperature high pressure (HTHP) simulated PFBC exposure tests. 3. (Option) Generate a manufacturing plan to support commercial scale-up. 4. (Option) Recommend process equipment upgrades and produce 50 candle filters. Since the beginning ofmore » this program, a parallel evaluation of DuPont Lanxide Composites Inc. (DLC) PRD-66 hot gas candle filters took place using AEP`s TIDD PFBC facility. Several PRD-66 filters experienced damage during the final testing phase at TIDD, after highly successful testing in earlier runs. During the past year, DLC has undertaken a study under this contract to understand the mechanism of damage sustained in TIDD Test Segment 5. DLC has formulated a hypothesis for the damage mechanism based on the available evidence, and verified that the damage mechanism is possible given the conditions known to exist in TIDD. Improvements to the filter design to eliminate the root cause of the failure have been undertaken. This report details DLC`s conclusions regarding the failure mechanism, the evidence supporting the conclusions, and steps being taken to eliminate the root cause.« less
A real-time ECG data compression and transmission algorithm for an e-health device.
Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho
2011-09-01
This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.
Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe
2018-01-01
The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.
Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics
NASA Technical Reports Server (NTRS)
Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe
2018-01-01
The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.
Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; Zeng, Eddy Y
2016-08-01
Anthropogenic impacts have continuously intensified in mega urban centers with increasing urbanization and growing population. The spatial distribution pattern of such impacts can be assessed with soil halogenated flame retardants (HFRs) as HFRs are mostly derived from the production and use of various consumer products. In the present study, soil samples were collected from the Pearl River Delta (PRD), a large urbanized region in southern China, and its surrounding areas and analyzed for a group of HFRs, i.e., polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane, bis(hexachlorocyclopentadieno)cyclooctane (DP) and hexabromobenzene. The sum concentrations of HFRs and PBDEs were in the ranges of 0.66-6500 and 0.37-5700 (mean: 290 and 250) ng g(-1) dry weight, respectively, around the middle level of the global range. BDE-209 was the predominant compound likely due to the huge amounts of usage and its persistence. The concentrations of HFRs were greater in the land-use types of residency, industry and landfill than in agriculture, forestry and drinking water source, and were also greater in the central PRD than in its surrounding areas. The concentrations of HFRs were moderately significantly (r(2) = 0.32-0.57; p < 0.05) correlated with urbanization levels, population densities and gross domestic productions in fifteen administrative districts. The spatial distribution of DP isomers appeared to be stereoselective as indicated by the similarity in the spatial patterns for the ratio of anti-DP versus the sum of DP isomers (fanti-DP) and DP concentrations. Finally, the concentrations of HFRs sharply decreased with increasing distance from an e-waste recycling site, indicating that e-waste derived HFRs largely remained in local soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climatology of cloud-base height from long-term radiosonde measurements in China
NASA Astrophysics Data System (ADS)
Zhang, Yong; Zhang, Lejian; Guo, Jianping; Feng, Jinming; Cao, Lijuan; Wang, Yang; Zhou, Qing; Li, Liangxu; Li, Bai; Xu, Hui; Liu, Lin; An, Ning; Liu, Huan
2018-02-01
Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (< 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (> 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.
Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung
2013-07-01
This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA.
Physiological Response of Plants Grown on Porous Ceramic Tubes
NASA Technical Reports Server (NTRS)
Tsao, David; Okos, Martin
1997-01-01
This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.
Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu
2018-09-01
Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for heavy metal(loid)s and organic contaminants in groundwater in the PRD. Copyright © 2018 Elsevier B.V. All rights reserved.
High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.
Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing
2012-11-01
A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.
Yu, Huan-Yun; Chang, Chunying; Li, Fangbai; Wang, Qi; Chen, Manjia; Zhang, Jie
2018-06-08
Thallium (Tl), a rare metal, is universally present in the environment with high toxicity and accumulation. Thallium's behavior and fate require further study, especially in the Pearl River Delta (PRD), where severe Tl pollution incidents have occurred. One hundred two pairs of soil and flowering cabbage samples and 91 pairs of soil and lettuce samples were collected from typical farmland protection areas and vegetable bases across the PRD, South China. The contamination levels and spatial distributions of soil and vegetable (flowering cabbages and lettuces) Tl across the PRD were investigated. The relative contributions of soil properties to the bioavailability of Tl in vegetables were evaluated using random forest. Random forest is an accurate learning algorithm and is superior to conventional and correlation-based regression analyses. In addition, the health risks posed by Tl exposure via vegetable intake for residents of the PRD were assessed. The results indicated that rapidly available potassium (K) and total K in soil were the most important factors affecting Tl bioavailability, and the competitive effect of rapidly available K on vegetable Tl uptake was confirmed in this field study. Soil weathering also contributed substantially to Tl accumulation in the vegetables. In contrast, organic matter might not be a major factor affecting the mobility of Tl in most of the lettuce soils. Fe and manganese (Mn) oxides also contributed little to the bioavailability of Tl. A risk assessment suggested that the health risks for Tl exposure through flowering cabbage or lettuce intake were minimal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Virus and bacteria transport in a sandy aquifer, Cape Cod, MA
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.; Harvey, Ronald W.
1995-01-01
Transport of the bacteriophage PRD-1, bacteria, and latex microspheres was studied in a sandy aquifer under natural-gradient conditions. The field injection was carried out at the U.S. Geological Survey's Toxic Substances Hydrology research site on Cape Cod. The three colloids and a salt tracer (Br−) moved along the same path. There was significant attenuation of the phage, with PRD-1 peak concentrations less than 0.001 percent of Br− peaks 6 m from the source; but the low detection limit (one per ml) enabled tracking movement of the PRD-1 plume for 12 m downgradient over the 25-day experiment. Attenuation of phage was apparently due to retention on soil particles (adsorption). Attenuation of bacteria and microspheres was less, with peak concentrations 6 m from the source on the order of 10 and 0.4 percent of Br−, respectively. Injection of a high-pH pulse of water 20 days into the experiment resulted in significant remobilization of retained phage, demonstrating that attached phage remained viable, and that PRD-1 attachment to and detachment from the sandy soil particles was highly pH dependent. Phage behavior in this experiment, i.e. attenuation at pH 5.7 and rapid resuspension at pH 6–8, was consistent with that observed previously in laboratory column studies. Results illustrate that biocolloids travel in a fairly narrow plume in sandy (relatively homogeneous) media, with virus concentrations dropping below detection limit several meters away from the source; bacteria concentrations above detection limits can persist over longer distances.
Davidovich, Esti; Davidovits, Miriam; Peretz, Benny; Shapira, Joseph; Aframian, Doron J
2009-08-01
Vascular calcifications have been documented in children with end-stage renal disease. However, only a few reports have described abundant dental calculus formation in children suffering from chronic kidney disease (CKD). Moreover, dental calculus scores (DCS) and their correlation with renal disease severity have not been studied. DCS in 74 young CKD patients were evaluated: 25 pre-dialytic (PrD), 18 on dialysis (D) and 31 with transplants (T) compared to 32 healthy participants (C). Saliva and serum analysis included creatinine (Cr), urea (U), calcium (Ca), phosphorous (P), magnesium (Mg) as well as intraoral pH levels. All patient groups presented high DCS. DCS and pH levels were higher in the D group with a positive correlation between pH and lower incisor DCS (r = 0.56, P = 0.017). The highest salivary Ca was found in the PrD group. Salivary P in the PrD group was found to be higher than in the T and C groups. The lowest salivary Mg was found in the D group while the highest salivary Ca x P product was found in the PrD group. In all patient groups, salivary U was higher than in the C group with a 2.5-fold increase in the D group. Salivary Cr resembled the U salivary concentrations. Alterations in salivary Ca, P, Mg, U, Cr and intraoral pH levels were observed in the patient groups. DCS correlated with renal disease severity and therefore may be a reflection of other tissue calcification pathologies found in these patients.
NASA Astrophysics Data System (ADS)
Chang, Chih-Chung; Lai, Cheng-Hsun; Wang, Chieh-Heng; Liu, Ying; Shao, Min; Zhang, Yuanhang; Wang, Jia-Lin
The continued production and consumption of five major chlorocarbons, i.e., CFC-11 (CCl 3F), CFC-12 (CCl 2F 2), CFC-113 (CCl 2FCClF 2), CH 3CCl 3, and CCl 4, as allowed by developing nations including China under the Montreal Protocol, were assessed by a method employing concentration variability. Measurements of the five ozone depleting substances (ODS) were measured in downtown Guangzhou and a rural site in the Pearl River Delta (PRD), China by both in situ and flask measurements. In order to post a contrast to PRD with a referencing environment of minimal emissions, in situ measurements were also conducted in Taipei, Taiwan, where a decade long phase-out of CFCs has been implemented. In general, the variability of chlorocarbons in the PRD sites was significantly greater than that of Taipei. While the abundance of the five ODSs in Taipei was relatively uniform with a relative standard deviation (RSD) varying between 3% and 16%, their variability in PRD with the exception of CFC-113 was significantly more pronounced, clearly indicating the significant usage of ODSs. The variability of CFC-113 in both cities, however, was nearly indiscernible from the instrumental precision, suggesting little usage of CFC-113 in China. Methyl chloroform in Guangzhou exhibited a strong link to solvent evaporation as it showed a tight correlation with ambient toluene. Alarmingly, CCl 4 was the most variable of the five major chlorocarbons in Guangzhou, which should arouse a serious concern for public health due to its carcinogenicity.
Karczmarski, Leszek; Huang, Shiang-Lin; Or, Carmen K M; Gui, Duan; Chan, Stephen C Y; Lin, Wenzhi; Porter, Lindsay; Wong, Wai-Ho; Zheng, Ruiqiang; Ho, Yuen-Wa; Chui, Scott Y S; Tiongson, Angelico Jose C; Mo, Yaqian; Chang, Wei-Lun; Kwok, John H W; Tang, Ricky W K; Lee, Andy T L; Yiu, Sze-Wing; Keith, Mark; Gailey, Glenn; Wu, Yuping
2016-01-01
In coastal waters of the Pearl River Delta (PRD) region, the Indo-Pacific humpback dolphin (Sousa chinensis) is thought to number approximately 2500 individuals. Given these figures, the putative PRD population may appear strong enough to resist demographic stochasticity and environmental pressures. However, living in close proximity to the world's busiest seaport/airport and several densely populated urban centres with major coastal infrastructural developments comes with challenges to the long-term survival of these animals. There are few other small cetacean populations that face the range and intensity of human-induced pressures as those present in the PRD and current protection measures are severely inadequate. Recent mark-recapture analyses of the animals in Hong Kong waters indicate that in the past two decades the population parameters have not been well understood, and spatial analyses show that only a very small proportion of the dolphins' key habitats are given any form of protection. All current marine protected areas within the PRD fail to meet a minimum habitat requirement that could facilitate the population's long-term persistence. Demographic models indicate a continuous decline of 2.5% per annum, a rate at which the population is likely to drop below the demographic threshold within two generations and lose 74% of the current numbers within the lifespan of three generations. In Hong Kong, the case of humpback dolphins represents a particularly explicit example of inadequate management where a complete revision of the fundamental approach to conservation management is urgently needed. © 2016 Elsevier Ltd All rights reserved.
Anders, R.; Chrysikopoulos, C.V.
2006-01-01
Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.
Improving single-molecule FRET measurements by confining molecules in nanopipettes
NASA Astrophysics Data System (ADS)
Vogelsang, J.; Doose, S.; Sauer, M.; Tinnefeld, P.
2007-07-01
In recent years Fluorescence Resonance Energy Transfer (FRET) has been widely used to determine distances, observe distance dynamics, and monitor molecular binding at the single-molecule level. A basic constraint of single-molecule FRET studies is the limited distance resolution owing to low photon statistics. We demonstrate that by confining molecules in nanopipettes (50-100 nm diameter) smFRET can be measured with improved photon statistics reducing the width of FRET proximity ratio distributions (PRD). This increase in distance resolution makes it possible to reveal subpopulations and dynamics in biomolecular complexes. Our data indicate that the width of PRD is not only determined by photon statistics (shot noise) and distance distributions between the chromophores but that photoinduced dark states of the acceptor also contribute to the PRD width. Furthermore, acceptor dark states such as triplet states influence the accuracy of determined mean FRET values. In this context, we present a strategy for the correction of the shift of the mean PR that is related to triplet induced blinking of the acceptor using reference FCS measurements.
Public health and medical care for the world's factory: China's Pearl River Delta Region.
Fabre, Guilhem; Rodwin, Victor G
2011-10-04
While the growth of urbanization, worldwide, has improved the lives of migrants from the hinterland, it also raises health risks related to population density, concentrated poverty and the transmission of infectious disease. Will megacity regions evolve into socially infected breeding grounds for the rapid transmission of disease, or can they become critical spatial entities for the protection and promotion of population health? We address this question for the Pearl River Delta Region (PRD) based on recent data from Chinese sources, and on the experience of how New York, Greater London, Tokyo and Paris have grappled with the challenges of protecting population health and providing their populations with access to health care services. In some respects, there are some important lessons from comparative experience for PRD, notably the importance of covering the entire population for health care services and targeting special programs for those at highest risk for disease. In other respects, PRD's growth rate and sheer scale make it a unique megacity region that already faces new challenges and will require new solutions.
NASA Astrophysics Data System (ADS)
Sampoorna, M.; Trujillo Bueno, J.
2010-04-01
The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.
The Small Viral Membrane-Associated Protein P32 Is Involved in Bacteriophage PRD1 DNA Entry
Grahn, A. Marika; Daugelavičius, Rimantas; Bamford, Dennis H.
2002-01-01
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32− particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior. PMID:11967303
Choong, Tsui-Wei; He, Jie; Lee, Sing K.; Dodd, Ian C.
2016-01-01
Temperate crops cannot grow well in the tropics without rootzone cooling. As cooling increased production costs, this experiment aimed to study the growth of various Lactuca genotypes and propose possible ways of reducing these costs, without compromising productivity. A recombinant inbred line (RIL) of lettuce and its parental lines (L. serriola and L. sativa “Salinas”) were grown aeroponically in a tropical greenhouse under 24°C cool (C) or warm fluctuating 30–36°C ambient (A) rootzone temperature (RZT). Their roots were misted with Netherlands standard nutrient solution for 1 min, at intervals of either 5 min (A5, C5) or 10 min (A10, C10) in attempting to reduce electricity consumption and production costs. Lower mortality and higher productivity were observed in all genotypes when grown in C-RZT. Higher shoot fresh weight was observed under C5 than C10, for the RIL and L. serriola. Since “Salinas” had similar shoot fresh weight at both C-RZ treatments, this may indicate it is more sensitive to RZT than water availability. Under A-RZ treatments, higher carotenoid content, with correspondingly higher nonphotochemical quenching, was observed in A10 for the RIL and “Salinas.” Further, total chlorophyll content was also highest at this RZ treatment for the RIL though photochemical quenching was contrastingly the lowest. Cumulatively, productivity was compromised at A10 as the RIL seemed to prioritize photoprotection over efficiency in photosynthesis, under conditions of higher RZT and lower water availability. Generally, higher RZ ethylene concentrations accumulated in A10 and C10 than A5 and C5, respectively—probably due to spray frequency exerting a greater effect on RZ ethylene accumulation than RZT. In the C5 RZ treatment, lowest RZ ethylene concentration corresponded with highest shoot fresh weight. As such, further research on ethylene (in)sensitivity and water use efficiency could be conducted to identify Lactuca cultivars that are better suited for growth in the tropics, so as to allay production costs with reduced cooling and spray intervals. PMID:27679582
Keller, Roberta L; Feng, Rui; DeMauro, Sara B; Ferkol, Thomas; Hardie, William; Rogers, Elizabeth E; Stevens, Timothy P; Voynow, Judith A; Bellamy, Scarlett L; Shaw, Pamela A; Moore, Paul E
2017-08-01
To assess the utility of clinical predictors of persistent respiratory morbidity in extremely low gestational age newborns (ELGANs). We enrolled ELGANs (<29 weeks' gestation) at ≤7 postnatal days and collected antenatal and neonatal clinical data through 36 weeks' postmenstrual age. We surveyed caregivers at 3, 6, 9, and 12 months' corrected age to identify postdischarge respiratory morbidity, defined as hospitalization, home support (oxygen, tracheostomy, ventilation), medications, or symptoms (cough/wheeze). Infants were classified as having postprematurity respiratory disease (PRD, the primary study outcome) if respiratory morbidity persisted over ≥2 questionnaires. Infants were classified with severe respiratory morbidity if there were multiple hospitalizations, exposure to systemic steroids or pulmonary vasodilators, home oxygen after 3 months or mechanical ventilation, or symptoms despite inhaled corticosteroids. Mixed-effects models generated with data available at 1 day (perinatal) and 36 weeks' postmenstrual age were assessed for predictive accuracy. Of 724 infants (918 ± 234 g, 26.7 ± 1.4 weeks' gestational age) classified for the primary outcome, 68.6% had PRD; 245 of 704 (34.8%) were classified as severe. Male sex, intrauterine growth restriction, maternal smoking, race/ethnicity, intubation at birth, and public insurance were retained in perinatal and 36-week models for both PRD and respiratory morbidity severity. The perinatal model accurately predicted PRD (c-statistic 0.858). Neither the 36-week model nor the addition of bronchopulmonary dysplasia to the perinatal model improved accuracy (0.856, 0.860); c-statistic for BPD alone was 0.907. Both bronchopulmonary dysplasia and perinatal clinical data accurately identify ELGANs at risk for persistent and severe respiratory morbidity at 1 year. ClinicalTrials.gov: NCT01435187. Copyright © 2017 Elsevier Inc. All rights reserved.
Sectorial Water Use Trends in the Urbanizing Pearl River Delta, China
Yao, Mingtian; Werners, Saskia E.; Hutjes, Ronald W. A.; Kabat, Pavel; Huang, Heqing
2015-01-01
Assessing and managing water use is crucial for supporting sustainable river basin management and regional development. The first consistent and comprehensive assessment of sectorial water use in the Pearl River Delta (PRD) is presented by analysing homogenized annual water use data from 2000 to 2010 in relation to socio economic statistics for the same period. An abstraction of water use, using the concept of water use intensity, and based on equations inspired by those used in global water resource models, is developed to explore the driving forces underlying water use changes in domestic, industrial and agricultural sectors. We do this at both the level of the region as a whole, as well as for the nine cities that constitute the PRD separately. We find that, despite strong population and economic growth, the PRD managed to stabilize its absolute water use by significant improvements in industrial water use intensities, and early stabilisation of domestic water use intensities. Results reveal large internal differentiation of sectorial water use among the cities in this region, with industrial water use intensity varying from -80 to +95% and domestic water use intensity by +/- 30% compared to the PRD average. In general, per capita water use is highest in the cities that industrialised first. Yet, all cities except Guangzhou are expected to approach a saturation value of per capita water use much below what is suggested in recent global studies. Therefore, existing global assessments probably have overestimated future domestic water use in developing countries. Although scarce and uncertain input data and model limitations lead to a high level of uncertainty, the presented conceptualization of water use is useful in exploring the underlying driving forces of water use trends. PMID:25714731
Rosario, Pedro W; Siman, Thássio Leonardo; Calsolari, Maria R
2015-05-01
We evaluated the negative predictive value (NPV) of thyroglobulin obtained 24 h after the second recombinant human TSH (rhTSH) ampoule (Tg-D3), before ablation with (131)I, for persistent/recurrent disease (PRD) in low/intermediate risk patients with papillary thyroid carcinoma. One hundred and one patients with Tg-D3 ≤ 1 ng/ml without anti-Tg antibodies (TgAb) were selected. Post-therapy whole-body scanning was negative for metastases in 98 (97 %) patients, and three patients showed discrete ectopic cervical uptake, but no corresponding disease was detected by neck ultrasound or computed tomography. One year after ablation, 98 (97 %) patients were free of the disease. Three patients had stimulated Tg >1 ng/ml, but no metastases were detected by the imaging methods. During follow-up (median 50 months), tumor recurrence was observed in only one patient. Thus, the NPV of Tg-D3 ≤ 1 ng/ml for PRD was 99 %. Among the 101 patients with Tg-D3 ≤ 1 ng/ml, Tg obtained 48 h after ablation (Tg-D5) continued to be ≤ 1 ng/ml in 56, and 45 had Tg-D5 >1 ng/ml. None of these 45 patients had PRD. In conclusion, Tg-D3 ≤ 1 ng/ml had a high NPV for PRD in patients without TgAb or known persistent disease and who are not at high risk. In these patients, Tg-D5 >1 ng/ml is more likely to reflect actinic damage to the remnant thyroid tissue rather than persistence of significant normal or tumor tissue.
Rothe, Fabian M.; Wrede, Christoph; Lehnik-Habrink, Martin; Görke, Boris
2013-01-01
Bacillus subtilis transports β-glucosides such as salicin by a dedicated phosphotransferase system (PTS). The expression of the β-glucoside permease BglP is induced in the presence of the substrate salicin, and this induction requires the binding of the antiterminator protein LicT to a specific RNA target in the 5′ region of the bglP mRNA to prevent the formation of a transcription terminator. LicT is composed of an N-terminal RNA-binding domain and two consecutive PTS regulation domains, PRD1 and PRD2. In the absence of salicin, LicT is phosphorylated on PRD1 by BglP and thereby inactivated. In the presence of the inducer, the phosphate group from PRD1 is transferred back to BglP and consequently to the incoming substrate, resulting in the activation of LicT. In this study, we have investigated the intracellular localization of LicT. While the protein was evenly distributed in the cell in the absence of the inducer, we observed a subpolar localization of LicT if salicin was present in the medium. Upon addition or removal of the inducer, LicT rapidly relocalized in the cells. This dynamic relocalization did not depend on the binding of LicT to its RNA target sites, since the localization pattern was not affected by deletion of all LicT binding sites. In contrast, experiments with mutants affected in the PTS components as well as mutations of the LicT phosphorylation sites revealed that phosphorylation of LicT by the PTS components plays a major role in the control of the subcellular localization of this RNA-binding transcription factor. PMID:23475962
Schulz, T; Flecken, M; Kapischke, M; Busing, M
2005-05-01
Since 1996, preoperative single-shot dose antithymocyte globuline (ATG) with prednisolone (PRD), mycophenolate mofetile (MMF), and tacrolimus (TAC) is the favorite induction therapy in our center. In a series of 25 first simultaneous pancreas and kidney transplant (SPK) recipients, 5 doses of daclizumab were administered in addition to standard induction. Here we present our 3-year experience. Immunosuppression was started prior to reperfusion consisting of daclizumab (1 mg/kg body weight [bw]), ATG (4-6 mg/kg bw) and 250 mg PRD. After surgery, PRD was reduced gradually, TAC trough levels were between 8-15 ng/mL, MMF was given twice daily (2-3 g/d) as well as 4 further doses dacilzumab every 14 days. After 3 years, patient, pancreas, and kidney graft survival rates are 100%, 84%, and 92%, respectively. Four pancreas grafts were lost (chronic allograft dysfunction, n = 2; recurrent abdominal infection, n = 1; acute rejection [AR] without treatment, n = 1). Both patients suffering from severe infection and untreated AR lost their kidney graft too. During the first 3 months after SPK, 3 AR episodes were observed in 2 patients (8%). After a 3-year period, 8 AR episodes occurred in 7 recipients (28%). AR was treated using PRD (n = 5) or ATG (n = 1). In 1 case, immunosuppression was switched from TAC to sirolimus successfully. Overall, 8 AR episodes occurred in 7 patients (28%) during the first 3 years after SPK. One severe infection led to graft lost 13 months after SPK. In this series, the combination of ATG and daclizumab prevented AR episodes, successfully providing considerable 3-year survival rates.
NASA Astrophysics Data System (ADS)
Yin, Shasha; Huang, Zhijiong; Zheng, Junyu; Huang, Xiaobo; Chen, Duohong; Tan, Haobo
2018-03-01
A well-evaluated Comprehensive Air quality Model with extensions (CAMx) was used to simulate concentrations of secondary inorganic aerosols in fine particulate matter (PM2.5) over Pearl River Delta (PRD) region during two separate months (April and October) in 2013. An indicator of adjusted gas ratio (AdjGR) was used to characterize PM chemistry under both NH3-poor (NP) and NH3-rich (NR) conditions as well as to identify their respective spatiotemporal patterns at different PM2.5 levels. The results were as follows: (1) Based on both observed molar ratio of [NH4+]/[SO42-] and modeled AdjGR, NR and NP conditions exhibited diurnal, daily, and seasonal variations. (2) A larger area in PRD had NP conditions over the two months when pollution was apparent; this NP region tended to occur downwind of PRD in October and the central region of PRD in April, with high PM2.5 concentrations in both. (3) This wider NP distribution could be related to higher nitrogen oxidation ratio (NOR), with more NOx converting to nitrate. Under conditions of higher pollution, there were relative lower degree of sulfate neutralization (DSN) and particle neutralization ratio (PNR). This supports the claim that NH3 may not be fully neutralized by SO42-. (4) Modeled AdjGR displayed clear hourly variations, with the lowest levels occurring in the afternoon. Reducing NH3 emission is not as efficient as NOx at increasing evening nitrate concentrations. (5) To mitigate PM2.5 pollution even further, a greater reduction of NH3 should be suggested in chemical regions transiting to NR condition when there are lower SO2 and NOx emissions.
Final Technical Report of the project "Controlling Quantum Information by Quantum Correlations"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girolami, Davide
The report describes hypotheses, aims, methods and results of the project 20170675PRD2, “Controlling Quantum Information by Quantum Correlations”, which has been run from July 31, 2017 to January 7, 2018. The technical work has been performed by Director’s Fellow Davide Girolami of the T-4 Division, Physics of Condensed Matter and Complex Systems, under the supervision of Wojciech Zurek (T-4), Lukasz Cincio (T-4), and Marcus Daniels (CCS-7). The project ended as Davide Girolami has been converted to J. R. Oppenheimer Fellow to work on the project 20180702PRD1, “Optimal Control of Quantum Machines”, started on January 8, 2018.
Chow, Fung-Sing; Jusko, William J.
2014-01-01
Summary The immunosuppressive interactions of calcium channel antagonists [diltiazem (Dil), verapamil (Ver) and nifedipine (Nif)], with corticosteroids [methylprednisolone (Mpl), prednisolone (Prd)], and macrolides [tacrolimus (Tac) and sirolnnus (Sir)] were examined in human whole blood lymphocyte cultures. Gender-related differences in responses in the interactions between these drug classes were studied using blood from 6 males and 6 females. The nature and intensity of interactions were determined using an extended Loewe additivity model. All immunosuppressants exhibited higher potency than the calcium channel antagonists with mean IC50 values of: Dil (mM)Ver (mM)Nif (mM)Mpl (nM)Prd (nM)Tac (nM)Sir (nM)Male13541.921312.118.6150327Female11431.847.44.68.8111106 Gender-related differences in responses to Mpl and Prd were observed while the others were not significant. Additive interactions were found among calcium channel antagonists and corticosteroids. Significant synergistic interactions were observed between calcium channel antagonists and tacrolimus and sirolimus, although these are unlikely to be of clinical importance. These studies demonstrate diverse drug interactions in the examination of an important array of immunosuppressant drug combinations. PMID:15681895
Overview on the Air Pollution Issues of the City Clusters in China and its Control Strategies
NASA Astrophysics Data System (ADS)
Tang, X.
2007-12-01
Mega-cities in China, such as Beijing, Guangzhou, Shenzhen, and Shanghai are located in three large city clusters, Bo-Hai Bay surrounding area, Pearl River Delta (PRD) and Yangtze River Delta. Like the rest of the coastal regions in China, these mega-cities have been experiencing fast economic developments and consequently serious environmental pollution. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants and secondary pollutants, which lead to the development of "air pollution complex" (perhaps typically Chinese) problem. Several campaigns of field experiments covering the regions such as PRD and Beijing City with surrounding areas have been conducted critically to understand the chemical and physical processes leading to the formation of regional scale air pollution since 2004. Some policy-relevant suggestions for air quality attainment have been made after these campaigns, specially the attainment of air quality during 2008 Beijing Olympic game, which has been attracted as an important concern worldwide. A scientific field campaign was conducted during August of 2007 for testing the control strategies suggested for air quality attainment in 2008-Olympic. An overview of the results of PRD and Beijing Campaigns will be presented.
NASA Astrophysics Data System (ADS)
Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Kroll, J. H.; Ng, N. L.; Zhang, Y.-H.; Lin, Y.; Xue, L.; Sun, T.-L.; Liu, X.-G.; Shao, M.; Jayne, J. T.; Worsnop, D. R.
2010-11-01
The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China, but it is also noted for its severe air pollution due to industrial/metropolitan emissions. In order to continuously improve the understanding and quantification of air pollution in this region, an intensive campaign was executed in PRD during October-November 2008. Here, we report and analyze Aerodyne High-Resolution Aerosol Mass Spectrometer measurements at Kaiping, a rural site downwind of the highly-polluted central PRD area, to characterize the general features of submicron particulate pollution in the regional air. The mean measured PM1 mass concentration was 33.1 ± 18.1 μg m-3 during the campaign and composed of organic matter (33.8%), sulfate (33.7%), ammonium (14.0%), nitrate (10.7%), black carbon (6.7%), and chloride (1.1%), which is characterized by high fractions of inorganic ions due to huge emissions of SO2 and NOx in PRD. The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at ~450 nm in vacuum aerodynamic diameter. Calculations based on high-resolution organic mass spectra indicate that C, H, O, and N on average contributed 56.6, 7.0, 35.1, and 1.3% to the total organic mass, respectively, corresponding to an organic matter mass to organic carbon mass ratio (OM/OC) of 1.77 ± 0.08. Based on the high-resolution organic mass spectral dataset observed, Positive Matrix Factorization (PMF) analysis differentiated the organic aerosol into three components, i.e., biomass burning (BBOA) and two oxygenated (LV-OOA and SV-OOA) organic aerosols, which on average accounted for 24.5, 39.6 and 35.8% of the total organic mass, respectively. The BBOA showed strong features of biomass burning emissions and has been mainly attributed to field rice straw burning after harvest. The LV-OOA and SV-OOA were found to correspond to more aged (and thus less-volatile) and fresher (and semi-volatile) secondary organic aerosol, respectively. Analysis of meteorological influence supported that regional transport from the central PRD area was the major origin of the PM1 components observed at the Kaiping site.
Preparation of Graphene Oxide and Its Mechanism in Promoting Tomato Roots Growth.
Jiao, Jingzhi; Cheng, Fan; Zhang, Xuekun; Xie, Lingli; Li, Zhiyang; Yuan, Chengfei; Xu, Benbo; Zhang, Liming
2016-04-01
Graphene oxide is a new kind of nanomaterial. The graphene oxide was prepared and its quality detected by atomic force microscopy (AFM) and transmission electron microscopy (TEM), for better understanding of effects of the nanomaterial on plants. Wild type. (WT) tomato (Solanum lycopersicum) germplasm 'New Yorker' and corresponding transgenic plants (Prd29A::LeNCED1) were treated with prepared graphene oxide. 9-cis-epoxycarotenoid dioxygenase (NCED) is a key gene for ABA biosynthesis and overexpression of the NCED resulted in ABA accumulation and higher drought tolerance. Seminal root length in the WT tomato was longer than that in the control samples when the seedlings were treated with 20 mg/L graphene oxide for 15 days. In contrast, the same treatment resulted in shorter seminal root length in the transgenic plants compared with control samples. The graphene oxide treatments led to lower Superoxide Dismutase (SOD), Peroxidase (POD), Catalase (CAT) activity and Malondialdehyde (MDA) content in the WT and transgenic plants. 20 mg/L graphene oxide treatment also affected the transcript levels of IAA7, IAA4 and IAA10 but the effect on the wild type and corresponding transgenic plants was different. IAA4 transcription level decreased both in the WT and Prd29A::LeNCED1 transgenic plants while the IAA7 transcription level decreased in the transgenic plants and increased in the WT tomato. The IAA10 transcription level decreased in the WT tomato and increased in the Prd29A::LeNCED1 transgenic plants. Graphene oxide treatments resulted in higher transcription level of ABCG25 and ABCG40 in the WT plants but had no significant effect on transgenic plants. The transcription level of NCED in the WT and Prd29A::LeNCED1 transgenic plants treated with graphene oxide increased significantly, however, it was higher in the transgenic plants than in the WT tomato after 15 d treatment, indicating that the graphene oxide activated the rd29A promoter as does drought and salt. The HD-ZIP transcription level only decreased significantly in the treated Prd29A::LeNCED1 transgenic plants. All these results suggested that there was a crosstalk between ABA and graphene oxide and the graphene oxide affected plant growth through the ABA and IAA pathway.
Smith, David W.; Moreo, Michael T.; Garcia, C. Amanda; Halford, Keith J.; Fenelon, Joseph M.
2017-08-29
This report documents a process used to estimate net infiltration from precipitation, evapotranspiration (ET), and soil data acquired at two sites on Rainier Mesa. Rainier Mesa is a groundwater recharge area within the Nevada National Security Site where recharged water flows through bedrock fractures to a deep (450 meters) water table. The U.S. Geological Survey operated two ET stations on Rainier Mesa from 2002 to 2005 at sites characterized by pinyon-juniper and scrub-brush vegetative cover. Precipitation and ET data were corrected to remove measurement biases and gap-filled to develop continuous datasets. Net infiltration (percolation below the root zone) and changes in root-zone water storage were estimated using a monthly water-balance model.Site-scale water-budget results indicate that the heavily-fractured welded-tuff bedrock underlying thin (<40 centimeters) topsoil is a critical water source for vegetation during dry periods. Annual precipitation during the study period ranged from fourth lowest (182 millimeters [mm]) to second highest (708 mm) on record (record = 55 years). Annual ET exceeded precipitation during dry years, indicating that the fractured-bedrock reservoir capacity is sufficient to meet atmospheric-evaporative demands and to sustain vegetation through extended dry periods. Net infiltration (82 mm) was simulated during the wet year after the reservoir was rapidly filled to capacity. These results support previous conclusions that preferential fracture flow was induced, resulting in an episodic recharge pulse that was detected in nearby monitoring wells. The occurrence of net infiltration only during the wet year is consistent with detections of water-level rises in nearby monitoring wells that occur only following wet years.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John
2012-01-01
The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].
NASA Technical Reports Server (NTRS)
Raper, C. D.; Tolley-Henry, L.
1989-01-01
An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.
Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation
Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; ...
2015-10-21
Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisturemore » content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.« less
NASA Technical Reports Server (NTRS)
Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt
2010-01-01
Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua
2011-01-01
Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627
NASA Astrophysics Data System (ADS)
Li, Lili; Liu, Yihong; Wang, Yunpeng
2017-07-01
Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.
NASA Technical Reports Server (NTRS)
Staffanson, F. L.
1981-01-01
The FORTRAN computer program RAWINPROC accepts output from NASA Wallops computer program METPASS1; and produces input for NASA computer program 3.0.0700 (ECC-PRD). The three parts together form a software system for the completely automatic reduction of standard RAWINSONDE sounding data. RAWINPROC pre-edits the 0.1-second data, including time-of-day, azimuth, elevation, and sonde-modulated tone frequency, condenses the data according to successive dwells of the tone frequency, decommutates the condensed data into the proper channels (temperature, relative humidity, high and low references), determines the running baroswitch contact number and computes the associated pressure altitudes, and interpolates the data appropriate for input to ACC-PRD.
NASA 2010 Pharmacology Evidence Review
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2011-01-01
In 2008, the Institute of Medicine reviewed NASA's Human Research Program Evidence in assessing the Pharmacology risk identified in NASA's Human Research Program Requirements Document (PRD). Since this review there was a major reorganization of the Pharmacology discipline within the HRP, as well as a re-evaluation of the Pharmacology evidence. This panel is being asked to review the latest version of the Pharmacology Evidence Report. Specifically, this panel will: (1) Appraise the descriptions of the human health-related risk in the HRP PRD. (2) Assess the relevance and comprehensiveness of the evidence in identifying potential threats to long-term space missions. (3) Assess the associated gaps in knowledge and identify additional areas for research as necessary.
Lin, Wenzhi; Karczmarski, Leszek; Xia, Jia; Zhang, Xiyang; Yu, Xinjian; Wu, Yuping
2016-10-19
Over the past few thousand years, human development and population expansion in southern China have led to local extirpation and population contraction of many terrestrial animals. At what extent this early human-induced environmental change has also affected coastal marine species remains poorly known. We investigated the demographic history of the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Delta (PRD); an obligatory inshore species known for its susceptibility to anthropogenic impacts in one of China's most developed coastal regions. Although the deltaic evolution of PRD has been influenced by climate since the Holocene, ~74% reduction of the dolphin's effective population size occurred within the last 2000 years, consistent with ~61% habitat contraction during this period. This considerable and recent population contraction may have been due to land use practices and deforestation in the upper/middle Pearl River region, all leading to increasing sedimentation rate in the estuarine area. As anthropogenic impacts within the drainage of Pearl River affected a vast area, coastal dolphins and large terrestrial mammals in southern China may share a similar demographic history, whilst the demographic and biogeographic history of the PRD humpback dolphins may be symptomatic of similar processes that this species may have undergone elsewhere in the region.
Rother, Dagmar; Friedrich, Cornelius G
2002-07-29
The heterodimeric c-type cytochrome complex SoxXA of Paracoccus pantotrophus was produced in Escherichia coli. The soxX and soxA genes, separated by two genes in the sox gene cluster of P. pantotrophus, were fused with ribosome binding sites optimal for E. coli and combined to give soxXA in pRD133.27. The cytochrome complex SoxXA was produced in E. coli M15 containing pRD133.27, pREP4 encoding the Lac repressor and plasmid pEC86, carrying essential cytochrome c maturation genes. SoxX and SoxA were formed in a ratio of about 2.5:1. SoxA appeared to be unstable when not complexed with SoxX. The cytochrome complex SoxXA, purified to homogeneity from periplasmic extracts of E. coli M15 (pRD133.27, pREP4, pEC86), exhibited identical biochemical and biophysical properties as compared to SoxXA of P. pantotrophus. Moreover, this cytochrome complex was shown to be equally catalytically active with respect to rates and reactivity with different sulfur substrates in the reconstituted sulfur-oxidizing enzyme system using homogeneous Sox-proteins of P. pantotrophus. Homogeneous SoxX was catalytically inactive.
Hoseini, Najmeh; Koceja, David M; Riley, Zachary A
2011-10-24
Spasticity in chronic hemiparetic stroke patients has primarily been treated pharmacologically. However, there is increasing evidence that physical rehabilitation can help manage hyper-excitability of reflexes (hyperreflexia), which is a primary contributor to spasticity. In the present study, one chronic hemiparetic stroke patient operantly conditioned the soleus H-reflex while training on a balance board for two weeks. The results showed a minimal decrease in the Hmax-Mmax ratio for both the affected and unaffected limb, indicating that the H-reflex was not significantly altered with training. Alternatively, paired-reflex depression (PRD), a measure of history-dependent changes in reflex excitability, could be conditioned. This was evident by the rightward shift and decreased slope of reflex excitability in the affected limb. The non-affected limb decreased as well, although the non-affected limb was very sensitive to PRD initially, whereas the affected limb was not. Based on these results, it was concluded that PRD is a better index of hyperreflexia, and this measurement could be more informative of synapse function than simple H-reflexes. This study presents a novel and non-pharmacological means of managing spasticity that warrants further investigation with the potential of being translated to the clinic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; He, Zai-Cheng; Zeng, Eddy Y
2015-05-01
To evaluate the impacts of anthropogenic events on the rapid urbanized environment, the levels of legacy organochlorine pesticides (OCPs) and current-use insecticides (CUPs), i.e., dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), pyrethroids and organophosphates in soil of the Pearl River Delta (PRD) and surrounding areas were examined. Spatial concentration distributions of legacy OCPs and CUPs shared similar patterns, with higher concentrations occurred in the central PRD with more urbanization level than that in the PRD's surrounding areas. Furthermore, relatively higher concentrations of OCPs and CUPs were found in the residency land than in other land-use types, which may be attributed to land-use change under rapid urbanization. Moderate correlations between gross domestic production or population density and insecticide levels in fifteen administrative districts indicated that insecticide spatial distributions may be driven by economic prosperity. The soil-air diffusive exchanges of DDTs and HCHs demonstrated that soil was a sink of atmospheric o,p'-DDE, o,p'-DDD, p,p'-DDD and o,p'-DDT, and was a secondary source of HCHs and p,p'-DDT to atmosphere. The soil inventories of DDTs and HCHs (100 ± 134 and 83 ± 70 tons) were expected to decrease to half of their current values after 18 and 13 years, respectively, whereas the amounts of pyrethroids and organophosphates (39 and 6.2 tons) in soil were estimated to decrease after 4 and 2 years and then increase to 87 and 1.0 tons after 100 years. In this scenario, local residents in the PRD and surrounding areas will expose to the high health risk for pyrethroids by 2109. Strict ban on the use of technical DDTs and HCHs and proper training of famers to use insecticides may be the most effective ways to alleviate the health effect of soil contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mladenova, I. E.; Crow, W. T.; Teng, W. L.; Doraiswamy, P.
2010-12-01
Crop yield in crop production models is simulated as a function of weather, ground conditions and management practices and it is driven by the amount of nutrients, heat and water availability in the root-zone. It has been demonstrated that assimilation of satellite-derived soil moisture data has the potential to improve the model root-zone soil water (RZSW) information. However, the satellite estimates represent the moisture conditions of the top 3 cm to 5 cm of the soil profile depending on system configuration and surface conditions (i.e. soil wetness, density of the canopy cover, etc). The propagation of this superficial information throughout the profile will depend on the model physics. In an Ensemble Kalman Filter (EnKF) data assimilation system, as the one examined here, the update of each soil layer is done through the Kalman Gain, K. K is a weighing factor that determines how much correction will be performed on the forecasts. Furthermore, K depends on the strength of the correlation between the surface and the root-zone soil moisture; the stronger this correlation is, the more observations will impact the analysis. This means that even if the satellite-derived product has higher sensitivity and accuracy as compared to the model estimates, the improvement of the RZSW will be negligible if the surface-root zone coupling is weak, where the later is determined by the model subsurface physics. This research examines: (1) the strength of the vertical coupling in the Environmental Policy Integrated Climate (EPIC) model over corn and soybeans covered fields in Iowa, US, (2) the potential to improve EPIC RZSW information through assimilation of satellite soil moisture data derived from the Advanced Microwave Scanning Radiometer (AMSR-E) and (3) the impact of the vertical coupling on the EnKF performance.
The partial root-zone saline irrigation system and antioxidant responses in tomato plants.
Alves, Rita de Cássia; de Medeiros, Ana Santana; Nicolau, Mayara Cristina Malvas; Neto, Antônio Pizolato; de Assis Oliveira, Francisco; Lima, Leonardo Warzea; Tezotto, Tiago; Gratão, Priscila Lupino
2018-06-01
Salinity is a limiting factor that can affect plant growth and cause significant losses in agricultural productivity. This study provides an insight about the viability of partial root-zone irrigation (PRI) system with saline water supported by a biochemical approach involving antioxidant responses. Six different irrigation methods using low and high salt concentrations (S1-0.5 and S2-5.0 dS m -1 ) were applied, with or without PRSI, so that one side of the root-zone was submitted to saline water while the other side was low salinity water irrigated. The results revealed different responses according to the treatments and the PRSI system applied. For the treatments T1, T2 and T3, the PRSI was not applied, while T4, T5 and T6 treatments were applied with PRSI system. Lipid peroxidation, proline content, and activities of SOD, CAT, APX, GR and GSH in tomato plants subjected to PRSI system were analyzed. Plant growth was not affected by the salt concentrations; however, plants submitted to high salt concentrations showed high MDA content and Na + accumulation when compared to the control plants. Plants submitted to treatments T4, T5 and T6 with PRSI system exhibited lower MDA compared to the control plants (T1). Proline content and activities of SOD, CAT, APX, GR and GSH content were maintained in all treatments and tissues analyzed, with only exception for APX in fruits and GSH content, in roots. The overall results showed that PRSI system could be an applicable technique for saline water supply on irrigation since plants did not show to be vulnerable to salt stress, supported by a biochemical approach involving antioxidant responses. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought.
Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter
2011-05-01
We determined the influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-10 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥5 °C from 1 January and 20 March, i.e., spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic sites, ranged from mid-April in 2007 to early May in 2008. Among most study years, statistically significant differences (P<0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric site and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed somewhat less variability during the 4-year study period, amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic sites, respectively. At both sites, xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites, indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to a dry inner Alpine climate, the results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings, we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. © The Author 2011. Published by Oxford University Press. All rights reserved.
Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought
Swidrak, Irene; Gruber, Andreas; Kofler, Werner; Oberhuber, Walter
2012-01-01
Summary We determined influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-2010 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥ 5 °C from 1 January and 20 March, i.e. spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic site, ranged from mid-April in 2007 to early May in 2008. Among most study years statistically significant differences (P < 0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed quite less variability during the four year study period amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic site, respectively. At both sites xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to dry inner Alpine climate, results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range of 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring. PMID:21593011
Note: A simple multi-channel optical system for modulation spectroscopies.
Solís-Macías, J; Sánchez-López, J D; Castro-García, R; Flores-Camacho, J M; Flores-Rangel, G; Ciou, Jian-Jhih; Chen, Kai-Wei; Chen, Chang-Hsiao; Lastras-Martínez, L F; Balderas-Navarro, R E
2017-12-01
Photoreflectance-difference (PR/PRD) and reflectance-difference (RD) spectroscopies employ synchronic detection usually with lock-in amplifiers operating at moderate (200-1000 Hz) and high (50-100 KHz) modulation frequencies, respectively. Here, we report a measurement system for these spectroscopies based on a multichannel CCD spectrometer without a lock-in amplifier. In the proposed scheme, a typical PRD or RD spectrum consists of numerical subtractions between a thousand CCD captures recorded, while a photoelastic modulator is either operating or inhibited. This is advantageous and fits the slow response of CCD detectors to high modulation frequencies. The resulting spectra are processed with Savitzky-Golay filtering and compared well with those measured with conventional scanning systems based on lock-in amplifiers.
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation describes a robust but relatively simple LS...
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature (LST) provides valuable information for quantifying rootzone water availability, evapotranspiration (ET) and crop condition. This paper describes the most recent modifications applied to the robust but relatively simple LST-based energy bal...
Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants
NASA Astrophysics Data System (ADS)
Ilieva, Iliana; Ivanova, Tania
2008-06-01
Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.
USDA-ARS?s Scientific Manuscript database
Thermal-infrared (TIR) remote sensing of land surface temperature (LST) provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition as well as providing useful information for constraining prognostic land surface models. This presentation d...
Moving forward on remote sensing of soil salinity at regional scale
USDA-ARS?s Scientific Manuscript database
Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...
Improving root-zone soil moisture estimations using dynamic root growth and crop phenology
USDA-ARS?s Scientific Manuscript database
Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observatio...
Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang
2016-11-01
Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Computational Tools to Assess Turbine Biological Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.
2014-07-24
Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, amore » suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less
Guo, Xiao-Shuang; Situ, Shu-Ping; Wang, Xue-Mei; Ding, Xiang; Wang, Xin-Ming; Yan, Cai-Qing; Li, Xiao-Ying; Zheng, Mei
2014-05-01
Two simulations were conducted with different secondary organic aerosol (SOA) methods-VBS (volatile basis set) approach and SORGAM (secondary organic aerosol model) , which have been coupled in the WRF/Chem (weather research and forecasting model with chemistry) model. Ground-based observation data from 18th to 25th November 2008 were used to examine the model performance of SOA in the Pearl River Delta(PRD)region. The results showed that VBS approach could better reproduce the temporal variation and magnitude of SOA compared with SORGAM, and the mean absolute deviation and correlation coefficient between the observed and the simulated data using VBS approach were -4.88 microg m-3 and 0.91, respectively, while they were -5.32 microg.m-3 and 0. 18 with SORGAM. This is mainly because the VBS approach considers SOA precursors with a wider volatility range and the process of chemical aging in SOA formation. Spatiotemporal distribution of SOA in the PRD from the VBS simulation was also analyzed. The results indicated that the SOA has a significant diurnal variation, and the maximal SOA concentration occurred at noon and in the early afternoon. Because of the transport and the considerable spatial distribution of O3 , the SOA concentrations were different in different PRD cities, and the highest concentration of SOA was observed in the downwind area, including Zhongshan, Zhuhai and Jiangmen.
The quantum interference effects in the SC II 4247 Å line of the second solar spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.
2014-10-10
The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, itmore » has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.« less
Zeng, Lixi; Lam, James C W; Horii, Yuichi; Li, Xiaolin; Chen, Weifang; Qiu, Jian-Wen; Leung, Kenneth M Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Lam, Paul K S
2017-05-01
To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r 2 = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Raper, C. David, Jr.
1994-01-01
The interdependence of root and shoot growth produces a functional equilibrium as described in quantitative terms by numerous authors. It was noted that bean seedlings grown in a constant environment tended to have a constant distribution pattern of dry matter between roots and leaves characteristic of the set of environmental conditions. Disturbing equilibrium resulted in a change in relative growth of roots and leaves until the original ratio was restored. To define a physiological basis for regulation of nitrogen uptake within the balance between root and shoot activities, the authors combined a partioning scheme and a utilization priority assumption in which: (1) all carbon enters the plant through photosynthesis in leaves and all nitrogen enters the plant through active uptake by roots, (2) nitrogen uptake by roots and secretion into the xylem for transport to the shoots are active processes, (3) availability of exogenous nitrogen determines concentration of soluble carbohydrates within the roots, (4) leaves are a source and a sink for carbohydrates, and (5) the requirement for nitrogen by leaf growth is proportionally greater during initiation and early expansion than during later expansion.
A novel ECG data compression method based on adaptive Fourier decomposition
NASA Astrophysics Data System (ADS)
Tan, Chunyu; Zhang, Liming
2017-12-01
This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.
Impact of irrigation, nitrogen fertilization, and spatial management on maize
USDA-ARS?s Scientific Manuscript database
The spatial management of irrigation water and N fertilization can be employed to reduce interactive effects, thus increasing water and N use efficiency and reducing pollution. Partial root-zone irrigation is a modified form of deficit irrigation which involves irrigating only one part of the root z...
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...
USDA-ARS?s Scientific Manuscript database
Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural, agricultural and industrial crops. The objectives of this research were to determine the chemical and physical properties of biosolids pyrolyzed at several different temperatures, a...
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1986-01-01
Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.
Zhao, Jinping; Peng, Ping'an; Song, Jianzhong; Ma, Shexia; Sheng, Guoying; Fu, Jiamo
2010-09-01
Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34-3.78 g/(m(2) month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SO(x) and NO(x), which confirmed serious air pollution due to SO(x) and NO(x) in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction.
USDA-ARS?s Scientific Manuscript database
Biosolids are several forms of treated sewage sludge that are intended for use as soil conditioners for horticultural and agricultural crops. In the U.S., biosolids may only refer to conditioned sludge that meets USEPA pollutant and pathogen requirements for land application and surface disposal. Th...
Efficacy of passive capillary samplers for estimating soil water drainage in the vadose zone
USDA-ARS?s Scientific Manuscript database
The efficacy and accuracy of PCAP samplers were evaluated for continuous estimating of soil water drainage and fluxes below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with outside sampling surface dimensions of 91 cm length x 31 cm wid...
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...
Contacts in the Office of Pesticide Programs, Pesticide Re-Evaluation Division
Contact the Pesticide Re-Evaluation Division (PRD) about registration review and reregistration follow up (including post-RED activities, product reregistration, and implementing certain tolerance reassessment decisions) for conventional pesticides.
NASA Technical Reports Server (NTRS)
Kurum, Mehmet; Deshpande, Manohar; Joseph, Alicia T.; O'Neill, Peggy E.; Lang, Roger H.; Eroglu, Orhan
2017-01-01
A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.
Ma, JiaLi; Zhang, TanTan; Dong, MingChui
2015-05-01
This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.
Azinas, S; Bano, F; Torca, I; Bamford, D H; Schwartz, G A; Esnaola, J; Oksanen, H M; Richter, R P; Abrescia, N G
2018-04-26
The protection of the viral genome during extracellular transport is an absolute requirement for virus survival and replication. In addition to the almost universal proteinaceous capsids, certain viruses add a membrane layer that encloses their double-stranded (ds) DNA genome within the protein shell. Using the membrane-containing enterobacterial virus PRD1 as a prototype, and a combination of nanoindentation assays by atomic force microscopy and finite element modelling, we show that PRD1 provides a greater stability against mechanical stress than that achieved by the majority of dsDNA icosahedral viruses that lack a membrane. We propose that the combination of a stiff and brittle proteinaceous shell coupled with a soft and compliant membrane vesicle yields a tough composite nanomaterial well-suited to protect the viral DNA during extracellular transport.
VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju
2013-09-01
Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, Simon, E-mail: simon.marsden@flinders.edu.au
2011-11-15
China's EIA Law does not require transboundary proposals to be assessed, despite recognition of this globally, for example in the Espoo Convention and Kiev Protocol, and in the European EIA and SEA Directives. In a transboundary context assessment within a state is unusual, as regulating these effects is primarily about the relationship between states. However where a state has more than one legal system such as in the Pearl River Delta (PRD) Region of southern China, transboundary effects should also be addressed. Yet despite the geographical connections between Guangdong Province in mainland China (where the EIA Law applies) and themore » Hong Kong and Macau Special Administrative Regions (which have their own provisions, neither of which requires transboundary assessments), EIA and SEA are carried out separately. Coordinated or joint approaches to transboundary assessment are generally absent, with the legal autonomy of Hong Kong and Macau a major constraint. As a result institutional responses at the policy level have developed. The article considers global experiences with regulating transboundary EIA and SEA, and analyses potential application to land use, transport and air and water planning in the PRD Region. If applied, benefits may include prevention or mitigation of cumulative effects, broader public participation, and improvements to environmental governance. The PRD Region experience may encourage China to conduct and coordinate EIA and SEA processes with neighbouring states, which has been non-existent or extremely limited to date.« less
Mostafa, Nadia M; Elsayed, Ghada M; Hassan, Nagiba Y; El Mously, Dina A
2017-11-01
Five simple, sensitive, and eco-friendly LC and UV spectrophotometric methods have been developed for the simultaneous determination of phenylephrine hydrochloride (PHE) and prednisolone acetate (PRD) in their combined dosage form. The first method was reversed-phase (RP) LC using methanol-water-heptane-1-sulfonic acid sodium salt (75 + 25 + 0.1, v/v/w) as a mobile phase. Separation was achieved using an XSelect HSS reversed-phase C18 analytical column (250 × 4.6 mm, 5µm). The flow rate was 1.0 mL/min and UV detection was done at 230 nm. Quantification was achieved over the concentration ranges of 5-50 µg/mL for PHE and 2-90 µg/mL for PRD. Four spectrophotometric methods were proposed, namely dual wavelength, first derivative of ratio spectra, ratio difference, and mean-centering of ratio spectra. Linearity was observed in the concentration ranges of 10-120 and 5-35 µg/mL for PHE and PRD, respectively, for the spectrophotometric methods. Green solvents were used in the proposed methods because they play a vital role in the analytical methods' influence on the environment. The suggested methods were validated regarding linearity, accuracy, and precision according to the International Conference on Harmonization guidelines, with satisfactory results. These methods could be used as harmless substitutes for routine analysis of the mentioned drugs, with no interference from excipients.
POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.
2016-09-10
In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarizedmore » line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.« less
Semantic modeling of plastic deformation of polycrystalline rock
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Davarpanah, Armita
2018-02-01
We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.
NASA Astrophysics Data System (ADS)
Sahaar, A. S.; Niemann, J. D.
2016-12-01
Accurate knowledge of root-zone soil moisture is critical for understanding the perpetuation of droughts and managing agricultural water systems. A remote-sensing method based on optical and thermal satellite imagery has been previously proposed to estimate fine-resolution (30 m) root-zone soil moisture over large regions. This method uses Landsat imagery to calculate all the components of the surface energy balance and then calculates the evaporative fraction (Λ) as the ratio of the latent heat flux to the sum of the sensible and latent heat fluxes. Root-zone soil moisture (θ) is then estimated from an empirical relationship with Λ. A similar approach has also been proposed to estimate the degree of saturation. Previous testing of this method for a semiarid region of southeastern Colorado has shown that a single relationship between θ and Λ does not apply universally. The primary objective of this study is to evaluate the impact of regional soil, vegetation, and climatic conditions on the form and strength of the Λ- θ relationship. To accomplish this goal, a global sensitivity analysis is performed using the Extended Fourier Amplitude Sensitivity Test (FAST) and a physically-based model (Hydrus-1D) that simulates both the land-surface energy balance and soil moisture dynamics. The modeling results show that, within a given climatic region, soil characteristics are very important in determining the shape of the Λ-θ relationship, while vegetation characteristics have the largest effect on the strength of the relationship. The modeling results also indicate that the annual average rainfall, which helps determine the climatic region, has a strong effect on both the form and strength of the relationship. From this analysis, the constants that define the Λ-θ relationships are estimated using regional characteristics. This approach allows the remote-sensing method to be adapted to local conditions and has the potential to greatly improve its performance.
GLEAM v3: satellite-based land evaporation and root-zone soil moisture
NASA Astrophysics Data System (ADS)
Martens, Brecht; Miralles, Diego G.; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard A. M.; Fernández-Prieto, Diego; Beck, Hylke E.; Dorigo, Wouter A.; Verhoest, Niko E. C.
2017-05-01
The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980-2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C- and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003-2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011-2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land-atmosphere feedbacks.
USDA-ARS?s Scientific Manuscript database
The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...
The psychological disengagement model among women in science, engineering, and technology.
Beaton, Ann M; Tougas, Francine; Rinfret, Natalie; Monger, Tanya
2015-09-01
Psychological responses to personal relative deprivation based on self/outgroup comparisons (named self/outgroup PRD) were explored among women in science, engineering, and technology according to the Psychological Disengagement Model. Three studies revealed that the experience of self/outgroup PRD increased women's likelihood of discounting the feedback they received at work. In turn, discounting led them to devalue their profession. Each study further documented the damaging effect of both psychological disengagement mechanisms. Study 1 (N = 93) revealed that discounting and devaluing were associated with decreased self-esteem. These results were replicated in Studies 2 and 3. Study 2 (N = 163) demonstrated that discounting and devaluing were also associated with reduced self-esteem stability. Study 3 (N = 187) further showed that psychological disengagement was also associated with women's occupational commitment. Theoretical and practical implications of these results are considered. © 2014 The British Psychological Society.
Compression of electromyographic signals using image compression techniques.
Costa, Marcus Vinícius Chaffim; Berger, Pedro de Azevedo; da Rocha, Adson Ferreira; de Carvalho, João Luiz Azevedo; Nascimento, Francisco Assis de Oliveira
2008-01-01
Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, few studies have addressed the compression of such signals. In this article we present an algorithm for compression of electromyographic signals based on the JPEG2000 coding system. Although the JPEG2000 codec was originally designed for compression of still images, we show that it can also be used to compress EMG signals for both isotonic and isometric contractions. For EMG signals acquired during isometric contractions, the proposed algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.75% to 13.7%. For isotonic EMG signals, the algorithm provided compression factors ranging from 75 to 90%, with an average PRD ranging from 3.4% to 7%. The compression results using the JPEG2000 algorithm were compared to those using other algorithms based on the wavelet transform.
Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism
Bouillaut, Laurent; Self, William T.
2013-01-01
Clostridium difficile, a proteolytic Gram-positive anaerobe, has emerged as a significant nosocomial pathogen. Stickland fermentation reactions are thought to be important for growth of C. difficile and appear to influence toxin production. In Stickland reactions, pairs of amino acids donate and accept electrons, generating ATP and reducing power in the process. Reduction of the electron acceptors proline and glycine requires the d-proline reductase (PR) and the glycine reductase (GR) enzyme complexes, respectively. Addition of proline in the medium increases the level of PR protein but decreases the level of GR. We report the identification of PrdR, a protein that activates transcription of the PR-encoding genes in the presence of proline and negatively regulates the GR-encoding genes. The results suggest that PrdR is a central metabolism regulator that controls preferential utilization of proline and glycine to produce energy via the Stickland reactions. PMID:23222730
Heavy metal pollution in surface soils of Pearl River Delta, China.
Jinmei, Bai; Xueping, Liu
2014-12-01
Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.
Song, Xiaofei; Tang, Shaoyu; Zhu, Haimin; Chen, Zhiyuan; Zang, Zhijun; Zhang, Yanan; Niu, Xiaojun; Wang, Xiaojun; Yin, Hua; Zeng, Feng; He, Chang
2018-04-01
Perfluoroalkyl acids (PFAAs) have been suspected to act as endocrine disruptors and adversely affect human reproductive health. We aimed to investigate the association between PFAAs in blood and semen, explore a potential link between PFAAs exposure and semen quality in the population of the Pearl River Delta (PRD) region in China, one of the "world factories". The monitoring results demonstrated that the population (103 male participants) from the PRD region in this study had higher PFAAs levels in blood and semen than some other areas in China. PFOS was found at the highest mean concentrations of 118.16 ng/mL in blood and 5.31 ng/mL in semen among the nine PFAAs. Significant associations were found between concentrations of several analytes in blood and semen, including Σ 9 PFAAs (r = 0.475, P < .01), PFOA (r = 0.215, P = .029), PFHS (r = 0.458, P < .01) and PFOS (r = 0.981, P < .01). BMI was the most important factor to PFAAs, but there was no significant difference in PFAAs concentrations in blood and semen collected from participants with different smoking and drinking habits, education background and occupations. Negative correlations were significantly observed between sperm motility and PFBA, PFPeA, PFHxA, PFBS, PFOA, PFHS, PFOS and Σ 9 PFAAs in semen. Therefore, exposure to PFAAs may result in a decline in semen mobility in participants from the PRD region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fu, Chuan-bo; Chen, You-long; Dan, Li; Tang, Jia-xiang
2015-01-01
The temporal-spatial characteristics of the tropospheric column NO2 (TroNO2) and total column NO2 (TotNO2) over Hainan Island are analyzed using remote sensing data derived from OMI sensor, and also combining surface wind, SO2, HYSPLIT model to research the source of atmospheric pollutants over Hainan Island. The results show that: The value of NO2 in northern area is higher than that in southern area, and the value of NO, in central mountainous area is lower than those other places. In addition, the seasonal variation of NO2 indicates that NO2 is higher in winter and lower in summer, which can be attributed to precipitation in summer and external transport of atmospheric pollutants in winter. Long-term changes of NO2 in Hainan Island appear opposite trends during winter and summer, which is declining in winter and has a weak increase in summer. The reasonable explanation is that local emissions of pollutants play an important role in summer, but external transport is the main resource of pollutants over Hainan Island. The TroNO2 in Haikou City has a good relationship with favorable delivered days in PRD, the correlation coefficient is 0.84 with 99% confidence level. Moreover, there are 3 transport paths in Dec. 2013 which can impact Haikou City from backward trajectory analysis, but all of them pass through the PRD, which can further prove that atmospheric pollutants of Hainan Island in winter are mainly delivery from PRD region.
Zhang, Lingyan; Guo, Shuhai; Wu, Bo
2015-01-01
The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As.
Zhang, Lingyan; Guo, Shuhai; Wu, Bo
2015-01-01
The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As. PMID:26230506
NASA Astrophysics Data System (ADS)
Baltybaev, Shauket
2010-05-01
The Ladoga region, situated in the south-eastern part of the Fennoscandian shield, is subdivided into the Archean (ARD) and the Proterozoic (PRD) domains. The boundary between them is a wide shear-zone. The ARD consists mostly of AR-PR middle-low temperature gneisses and the PRD consists of turbidites, pelites, volcanics metamorphosed under HT-conditions (granulite facies). Metamorphism within the PRD is culminated at T= 800-900C and P=5-6 kbar. The peak of metamorphism of granulite facies is dated at 1881 Ma by Pb-Pb stepwise leaching method of rock-forming minerals of the granulites. Pb-Pb results are within error limits coeval with the U-Pb ages of metamorphic monazites. The same (1881Ma) age has gabbro-enderbites. Next stage of metamorphism lasts from 1881 to 1860 Ma under conditions of amphibolite facies. It was restricted with U-Pb, Pb-Pb, Sm-Nd data based on the closure temperature of zircon, monazite, garnet, sillimanite from gneisses, leucosomes of migmatites and synmetamorphic diorites and tonalites. The lowermost point of the trend shows P-T: ~3-4 kbar, 600C. By the time 1860 Ma K-rich granites were emplaced and the uppermost limit for granulite metamorphism comes from the ages of the aplitic/pegmatitic veins (1860-1850 Ma), which cut the K-rich granites. Thermal and tectonic settings can be described based on spatial and temporal changes during magma emplacement. The granulites of the PRD were produced by the emplacement of the extensive basic intrusion (gabbro-enderbites) into the lower-middle crust. A prolonged thermal flux over all area was supported by new generated dioritic and tonalitic melts, which were intruded into the middle crust. The final stage of tectono-metamorphic evolution was marked by emplacement of the K-rich granites. Numerical simulation of the process of magma emplacement (sequences: gabbro-enderbites, diorites and tonalites) and related heat production shows good correlation between intrusive activity and metamorphism of the surrounding rocks. Baltybaev Sh. K., Levchenkov O. A., Levsky L. K., Eklund O., Kilpeläinen T. 2006. Two metamorphic stages in the Svecofennian Domain: evidence from the isotopic geochronological study of the Ladoga and Sulkava metamorphic complexes. Petrology, 14(3), 247-261.
2013-01-01
Background The biting edge of the primitive arthropod mandible consists of a biting incisor process and a crushing molar process. These structures are thought to be derived from a structure known as an endite but the precise details of this are not understood. Various hypotheses concerning the number of endites present in the arthropod mandible have been proposed. In the developing embryo, the mandible has an inner and outer lobe that are likely to develop into the incisor and molar processes of the larval mandible; these two lobes are commonly held to be derived from separate endites and to be serially homologous to the galea and lacinia endites of the maxillary appendage respectively (Machida). Results We undertook a study of the development of the embryonic mandible of the beetle Tribolium castaneum using the expression of developmental genes as markers of the developing endites in the mandible and maxilla. The Tribolium ortholog of paired (Tc-prd) has expression domains in the developing maxillary and labial endites as well as the inner and outer lobes of the mandible. Following the expression of Tc-prd in the developing mandible through to late stage embryos shows that the molar and incisor process develop from the inner and outer lobes respectively. In addition to Tc-prd, we compared the expression of genes in the endites of the maxilla to the mandible to draw conclusions about the number of endites in the mandible. Homologs of dachshund are typically expressed in the endites of mandibulate gnathal appendages. Comparison of the expression of Tc-prd, Tribolium dachshund (Tc-dac) and Tribolium wingless (Tc-wg) between the endites of the maxilla and the mandible suggest that, while there are two endites in the maxilla only a single endite is present in the mandible. Conclusions Comparative gene expression suggests that the Tribolium mandible has a single endite from which both mandible lobes are derived. Our results do not support Machida’s hypothesis homologising the incisor and molar processes of the mandible to the galea and lacinia endites of the maxilla. We propose, instead, that both incisor and molar processes are derived from a single endite serially homologous to the lacinia of the maxilla. PMID:23280103
Bacterial Investigation of Ammonium-rich Sediment in the Pearl River Delta, China
NASA Astrophysics Data System (ADS)
Liu, K.; Chunbo, H.; Jiao, J. J.; Jidong, G.
2011-12-01
High ammonium loading of groundwater is a major concern because of the potential toxicity to ecosystem and human health. As one of the most complex large-scale delta systems in China, Pearl River Delta (PRD) was reported to have the highest ammonium concentration for natural groundwater ever reported globally. In this research, borehole SD14 was drilled through the aquitard into the basal aquifer in the PRD. 16S rRNA gene library construction and Denaturing Gradient Gel Electrophoresis (DGGE) analysis were conducted to reveal bacterial community variation of different geology strata. A total of 161 clones from three 16S rRNA libraries were sequenced and clustered into 55 distinct operational taxonomic units (OTU) at 3% cutoff. The phylogenetic analysis indicated that the predominant bacterial phylum was Proteobacteria (50.9%), followed by Chloroflexi (16.8%), Acidobacteria (4.38%) and Firmicutes (3.73%). In the sediment samples from SD14 at the depths of 6.9m, 22.5m and 37.4m, Proteobacteria made up 60.3%, 42.0% and 35.3% of the communities respectively, showing a declining ratio with the depth. Most of the bacteria in all the samples were previously discovered in marine environments, indicating that SD14 used to be in a marine sedimentary environment. Bacteria associated with iron oxidation and nitrogen fixing were found in the sample at 6.9 m, while in the other two samples there existed bacteria which were associated with methane cycling, sulfate reducing and denitrifying. The DGGE results showed that microbial community structures varied significantly with the increase of depth, and that Delftia acidovorans, a species of Proteobacteria which was able to reduce nitrate to nitrite, was the predominant species in samples at 22.5 and 37.4 m, suggesting ammonium as a control factor shaping the bacterial community. The results of this research provided important information of the bacteria in the PRD sediments. High bacterial diversity was observed in samples, and similar bacteria presenting in comparable habits were found. Mutual effects between bacteria and environment widely exist through PRD aquifer-aquitard system, and abnormal high ammonium was probably released during organic nitrogen dissimilation coupled with sulfate reduction.
Chemical Parameters of SD14
Monneveux, Philippe; Ramírez, David A; Pino, María-Teresa
2013-05-01
Drought tolerance is a complex trait of increasing importance in potato. Our knowledge is summarized concerning drought tolerance and water use efficiency in this crop. We describe the effects of water restriction on physiological characteristics, examine the main traits involved, report the attempts to improve drought tolerance through in vitro screening and marker assisted selection, list the main genes involved and analyze the potential interest of native and wild potatoes to improve drought tolerance. Drought tolerance has received more attention in cereals than in potato. The review compares these crops for indirect selection methods available for assessment of drought tolerance related traits, use of genetic resources, progress in genomics, application of water saving techniques and availability of models to anticipate the effects of climate change on yield. It is concluded that drought tolerance improvement in potato could greatly benefit from the transfer of research achievements in cereals. Several promising research directions are presented, such as the use of fluorescence, reflectance, color and thermal imaging and stable isotope techniques to assess drought tolerance related traits, the application of the partial root-zone drying technique to improve efficiency of water supply and the exploitation of stressful memory to enhance hardiness. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Li, Hao; Ahammed, Golam J; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong
2016-01-01
Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential.
Materials investigation of thermal triggers used in pressure relief devices on transit buses.
DOT National Transportation Integrated Search
2003-07-01
This investigation pertains to the composition and general condition of the thermally activated trigger mechanism of Pressure Relief Devices [PRD's], safety devices used on compressed natural gas cylinders commonly used to store fuel on transit buses...
Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.
Sidek, Khairul Azami; Khalil, Ibrahim
2013-01-01
Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
Jahn, Heiko J; Schneider, Alexandra; Breitner, Susanne; Eissner, Romy; Wendisch, Manfred; Krämer, Alexander
2011-07-01
The exposure to ambient particulate matter (PM) pollution is a major threat to public health. Chinese megacities are coined by high levels of PM. Our aims were to examine the concentration levels of PM in megacities (Guangzhou, Hong Kong, and Shenzhen) of the Pearl River Delta (PRD), South China; to compare the results with international and national air quality guidelines; and to assess the health impact in terms of possible reductions in premature deaths due to PM reduction. The Medline(®) data base was used to identify published studies (systematic literature search). Based on our appraisal criteria 13 studies remained in the analysis. Additionally, publicly available data were extracted from data sources provided by municipal authorities of the cities under study. PM data reported in μg/m(3) were abstracted from single studies and municipal reports. If possible, the PM data were stratified for season of data collection (summer/winter half-year) and simple means were calculated for cities, seasons and months. Based on the abstracted data, a health impact assessment (HIA) was done in order to estimate potential preventable premature deaths due to PM pollution in the cities. Almost all PM data exceeded national and international air quality guidelines. Our HIA showed that in Guangzhou ten thousands of premature deaths could be prevented if the PM burden was reduced to these air quality limit values. We identified no suitable epidemiological study reporting PM according to our study protocol. Further epidemiological studies should be carried out to more precisely determine the spatial distribution of PM-related health risks in PRD. Environmental protection measures and public health interventions are required to reduce burden of PM-related diseases in PRD. Copyright © 2011 Elsevier GmbH. All rights reserved.
Holland, Peter W H
2013-01-01
Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S; Dave Dunn, D
The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation implemented in AVERT{reg_sign}. AVERT{reg_sign}, short for the Automated Vulnerability Evaluation for Risk of Terrorism, is personal computer based vulnerability assessment software developed by the ARES Corporation. The sensitivity of two specific types of radionuclide detectors for conducting an on-board search in the maritime environment was evaluated using Monte Carlo simulation. The detectors, a RadPack and also a Personal Radiation Detector (PRD), were chosen from the class of Human Portable Radiation Detection Systems (HPRDS). Human Portable Radiationmore » Detection Systems (HPRDS) serve multiple purposes. In the maritime environment, there is a need to detect, localize, characterize, and identify radiological/nuclear (RN) material or weapons. The RadPack is a commercially available broad-area search device used for gamma and also for neutron detection. The PRD is chiefly used as a personal radiation protection device. It is also used to detect contraband radionuclides and to localize radionuclide sources. Neither device has the capacity to characterize or identify radionuclides. The principal aim of this study was to investigate the sensitivity of both the RadPack and the PRD while being used under controlled conditions in a simulated maritime environment for detecting hidden RN contraband. The detection distance varies by the source strength and the shielding present. The characterization parameters of the source are not indicated in this report so the results summarized are relative. The Monte Carlo simulation results indicate the probability of detection of the RN source at certain distances from the detector which is a function of transverse speed and instrument sensitivity for the specified RN source.« less
Tao, Yebin; Zhong, Liuju; Lu, Shou-En; Li, Yi; Dai, Lingzhen; Zhang, Yuanhang; Zhu, Tong
2011-01-01
Background and objectives: Epidemiologic studies have attributed adverse health effects to air pollution; however, controversy remains regarding the relationship between ambient oxidants [ozone (O3) and nitrogen dioxide (NO2)] and mortality, especially in Asia. We conducted a four-city time-series study to investigate acute effects of O3 and NO2 in the Pearl River Delta (PRD) of southern China, using data from 2006 through 2008. Methods: We used generalized linear models with Poisson regression incorporating natural spline functions to analyze acute mortality in association with O3 and NO2, with PM10 (particulate matter ≤ 10 μm in diameter) included as a major confounder. Effect estimates were determined for individual cities and for the four cities as a whole. We stratified the analysis according to high- and low- exposure periods for O3. Results: We found consistent positive associations between ambient oxidants and daily mortality across the PRD cities. Overall, 10-μg/m3 increases in average O3 and NO2 concentrations over the previous 2 days were associated with 0.81% [95% confidence interval (CI): 0.63%, 1.00%] and 1.95% (95% CI: 1.62%, 2.29%) increases in total mortality, respectively, with stronger estimated effects for cardiovascular and respiratory mortality. After adjusting for PM10, estimated effects of O3 on total and cardiovascular mortality were stronger for exposure during high-exposure months (September through November), whereas respiratory mortality was associated with O3 exposure during nonpeak exposure months only. Conclusions: Our findings suggest significant acute mortality effects of O3 and NO2 in the PRD and strengthen the rationale for further limiting the ambient pollution levels in the area. PMID:22157208
Application of SAC88 to estimating hydrologic effects of fire on a watersheds
R. Larry Ferral
1989-01-01
SAC88 is a major revision of the Sacramento Model, which was developed in 1969 with minor revisions through 1973. Two of many 1988 changes make it possible to estimate hydrologic effects of a fire in a watershed where pre-fire parameters can be calibrated or estimated: (1) Evapotranspiration, treated as extracted from six root-zone layers under pre-fire conditions, may...
Expression of characteristics of ammonium nutrition as affected by pH of the root medium
NASA Technical Reports Server (NTRS)
Chaillou, S.; Vessey, J. K.; Morot-Gaudry, J. F.; Raper, C. D. Jr; Henry, L. T.; Boutin, J. P.
1991-01-01
To study the effect of root-zone pH on characteristic responses of NH4+ -fed plants, soybeans (Glycine max inverted question markL. inverted question mark Merr. cv. Ransom) were grown in flowing solution culture for 21 d on four sources of N (1.0 mol m-3 NO3-, 0.67 mol m-3 NO3- plus 0.33 mol m-3 NH4+, 0.33 mol m-3 NO3- plus 0.67 mol m-3 NH4+, and 1.0 mol m-3 NH4+) with nutrient solutions maintained at pH 6.0, 5.5, 5.0, and 4.5. Amino acid concentration increased in plants grown with NH4+ as the sole source of N at all pH levels. Total amino acid concentration in the roots of NH4+ -fed plants was 8 to 10 times higher than in NO3(-)-fed plants, with asparagine accounting for more than 70% of the total in the roots of these plants. The concentration of soluble carbohydrates in the leaves of NH4+ -fed plants was greater than that of NO3(-)-fed plants, but was lower in roots of NH4+ -fed plants, regardless of pH. Starch concentration was only slightly affected by N source or root-zone pH. At all levels of pH tested, organic acid concentration in leaves was much lower when NH4+ was the sole N source than when all or part of the N was supplied as NO3-. Plants grown with mixed NO3- plus NH4+ N sources were generally intermediate between NO3(-)- and NH4+ -fed plants. Thus, changes in tissue composition characteristic of NH4+ nutrition when root-zone pH was maintained at 4.5 and growth was reduced, still occurred when pH was maintained at 5.0 or above, where growth was not affected. The changes were slightly greater at pH 4.5 than at higher pH levels.
NASA Astrophysics Data System (ADS)
Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.
2017-12-01
While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with ground-truthing data, using mobile cosmic-ray neutron sensors, local soil samples, TDR, and buried wireless soil moisture monitoring networks. The work opens the path towards further systematic assessment of airborne neutron sensing, which could become a valuable addition - or even an alternative - to conventional remote-sensing methods.
Panama: Political and Economic Conditions and U.S. Relations
2007-09-04
Legislative Assembly elected Pedro Miguel Gonzalez of the ruling Democratic Revolutionary Party (PRD) as head of the legislature. The State...elections for candidate Carlos Duque , who the Noriega regime had tried to impose on the electorate through fraud.) Instead, Pérez Balladares focused
Virus fate and transport during artificial recharge with recycled water
Anders, Robert; Chrysikopoulos, C.V.
2005-01-01
A field‐scale experiment was conducted at a research site using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and tertiary‐treated municipal wastewater (recycled water) to investigate the fate and transport of viruses during artificial recharge. Observed virus concentrations were fitted using a mathematical model that simulates virus transport in one‐dimensional, homogeneous, water‐saturated porous media accounting for virus sorption (or filtration), virus inactivation, and time‐dependent source concentration. The fitted time‐dependent clogging rate constants were used to estimate the collision efficiencies for bacteriophage MS2 and PRD1 during vertical fully saturated flow. Furthermore, the corresponding time‐dependent collision efficiencies for both bacteriophage asymptotically reached similar values at the various sampling locations. These results can be used to develop an optimal management scenario to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal.
Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.
Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming
2014-07-01
China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun
2013-11-01
Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L(-1). The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.
2017-05-01
Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.
Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China.
Geng, Junjie; Wang, Yiping; Luo, Hanjin
2015-12-30
Riverine samples were collected at various locations in the Pearl River Delta (PRD) to determine the concentrations of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, and Pb) in time and space and to estimate the fluxes of heavy metals to the coastal waters off South China. Most of the elements exhibit clear temporal and spatial trends. Principal component analysis shows that surface erosion is the major factor affecting metal concentrations in particulates in the PRD. Natural geology is an important source of these heavy metals. The annual fluxes of Cr, Ni, Cu, Mn, Zn, Cd, and Pb in upstream and downstream were 445, 256, 241, 3293, 1279, 12, and 317 t/year and 1823, 1144, 1786, 15,634, 6183, 74, and 2017 t/year, respectively. A comparison indicated that the annual fluxes of Mn accounted for 1.3% of the global river fluxes, whereas other elements contribute <1%. Copyright © 2015 Elsevier Ltd. All rights reserved.
New primary renal diagnosis codes for the ERA-EDTA
Venkat-Raman, Gopalakrishnan; Tomson, Charles R.V.; Gao, Yongsheng; Cornet, Ronald; Stengel, Benedicte; Gronhagen-Riska, Carola; Reid, Chris; Jacquelinet, Christian; Schaeffner, Elke; Boeschoten, Els; Casino, Francesco; Collart, Frederic; De Meester, Johan; Zurriaga, Oscar; Kramar, Reinhard; Jager, Kitty J.; Simpson, Keith
2012-01-01
The European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry has produced a new set of primary renal diagnosis (PRD) codes that are intended for use by affiliated registries. It is designed specifically for use in renal centres and registries but is aligned with international coding standards supported by the WHO (International Classification of Diseases) and the International Health Terminology Standards Development Organization (SNOMED Clinical Terms). It is available as supplementary material to this paper and free on the internet for non-commercial, clinical, quality improvement and research use, and by agreement with the ERA-EDTA Registry for use by commercial organizations. Conversion between the old and the new PRD codes is possible. The new codes are very flexible and will be actively managed to keep them up-to-date and to ensure that renal medicine can remain at the forefront of the electronic revolution in medicine, epidemiology research and the use of decision support systems to improve the care of patients. PMID:23175621
1985-07-15
Lisbon TAL & QUAL in Portuguese 17 May 85 p 3 [Text] Manuel da Costa Bras, Lt Col in the reserves and High Commissioner against Corruption, is facing...people around Gen Eanes, starting with Lt Col Melo Antunes. The PRD itself has already announced many times that it would not oppose such an
Panama: Political and Economic Conditions and U.S. Relations
2009-03-26
On July 11, 2007, Panama’s unicameral legislature overwhelmingly approved...majority of seats in the unicameral National Assembly. Before the U.S...Although Moscoso took the presidency, the PRD-led New Nation coalition won a majority of 41 seats in the 71-member unicameral Legislative Assembly
NASA Astrophysics Data System (ADS)
Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Sheng, G.; Fu, J.
2014-11-01
Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~4.17 (Cl-) mg vehicle-1 km-1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was measured and it was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0-93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A snapshot of the 2013 characteristic emission of PM2.5 and its constituents from on-road vehicular fleet in the PRD region retrieved from our study was found to be useful for the assessment of past and future implementation of vehicle emission control policy.
NASA Astrophysics Data System (ADS)
Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Peng, P.; Sheng, G.; Fu, J.
2015-03-01
Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl-) mg vehicle-1 km-1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic emissions of PM2.5 and its constituents from the on-road vehicular fleet in the PRD region retrieved from our study would be helpful for the assessment of past and future implementations of vehicle emission control policy.
Federsel, Hans-Jürgen
2009-05-19
In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a reduction to under 10 years for the specific segment covering preclinical development through launch. This change puts enormous pressure on the entire organization, and the implication for PR&D is that the time allowed for conducting route design and scale-up has shrunk accordingly. Furthermore, molecular complexity has become extremely challenging in many instances, and demand steadily grows for process understanding and knowledge generation about low-level byproduct, which often must be controlled even at trace concentrations to meet regulatory specifications (especially in the case of potentially genotoxic impurities). In this Account, we paint a broad picture of the technical challenges the PR&D community is grappling with today, focusing on what measures have been taken over the years to create more efficiency and effectiveness.
Impact of emission control on regional air quality in the Pearl Delta River region, southern China
NASA Astrophysics Data System (ADS)
Wang, N.; Xuejiao, D.
2017-12-01
The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD where photochemical pollution usually occurred. Last but not least, the responses of O3 indicated that the PRD was generally VOC-sensitive, while the regime turned to NOx-sensitive in the afternoon, therefore controlling VOC emission could reduce the overall O3 and controlling NOx emission in the afternoon could reduce peak O3.
Mary Anne Sword Sayer; John C. Brissette; James P. Barnett
2005-01-01
Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and...
Influence of Procerum Root Disease on the Water Relations of Eastern White Pine (Pinus strobus L.)
J.R. Butnor; J.R. Seiler; J.A. Gray
2000-01-01
Procerum root disease (PRD) is caused by the deuteromycete fungus Leptogruphium procerum (Kendr.) Wingf, formerly Verticic ladiella procera (Kendr.) and is most commonly isolated from Pinus sp. L., though the fungus has been isolated from other conifer species including Fraser fir (Abies fraseri...
Toward the Prediction of Events in Teachers' Contract Negotiations.
ERIC Educational Resources Information Center
Fris, Joe
This study attempted to formulate a method of assessing teachers' affective states that can predict the course of teacher contract negotiations. Researchers attempted to analyze and quantify teachers' feelings of professional role deprivation (PRD) and attitudinal militancy and to assess the relationship between the two. Professional role…
SMOS brightness temperature assimilation into the Community Land Model
NASA Astrophysics Data System (ADS)
Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.
2017-11-01
SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.
Clusters of Defects in Semiconductors
1984-08-01
onecionbewen-te heica seces .-. o* Fe and.th deec prd *n th *Rlmnecne ae t..* E. STATISTICS The funds from this contract were used to support the research of...characterized at Hughes Research Laboratories. L x No Np N1 . Electron X-ray Sample (cm- 1) (cm- ) (cm-3 ) microprobe Density diffraction .. -. C077 3.6x 10
Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease
USDA-ARS?s Scientific Manuscript database
Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...
Development of cryogenic PRD-49-1 filament-wound tanks
NASA Technical Reports Server (NTRS)
Hoggatt, J. T.
1971-01-01
A high modulus polymeric fiber was evaluated as a reinforcement for filament wound pressure vessels. Winding parameters and design data were established for the fiber with two different epoxy resin systems. Comparison was made between the performance factors of the polymeric fiber and those of S-glass and high modulus graphite vessels.
An investigation of the compressive strength of PRD-49-3/Epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.
1973-01-01
The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... order below: ABN Advance Beneficiary Notice AIDS Acquired Immune Deficiency Syndrome ARD Assessment... Survey Certification and Reporting System PAC-PRD Post Acute Care Payment Reform Demonstration PECOS... which the hospital can use its beds to provide either acute or SNF care, as needed. For critical [[Page...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... improved personal radiation detectors (PRD), RIDs, and NII tools, such as high-energy container scanners... DEPARTMENT OF HOMELAND SECURITY U.S. Customs and Border Protection Notice of Availability of the... Border Activities AGENCY: U.S. Customs and Border, Protection, DHS. ACTION: Notice of availability...
Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China
Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...
ERIC Educational Resources Information Center
Ram-Tsur, Ronit; Faust, Miriam; Zivotofsky, Ari Z.
2008-01-01
The present study investigates the performance of persons with reading disabilities (PRD) on a variety of sequential visual-comparison tasks that have different working-memory requirements. In addition, mediating relationships between the sequential comparison process and attention and memory skills were looked for. Our findings suggest that PRD…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2015-10-10
The dynamical state of the solar and stellar atmospheres depends on the macroscopic velocity fields prevailing within them. The presence of such velocity fields in the line formation regions strongly affects the polarized radiation field emerging from these atmospheres. Thus it becomes necessary to solve the radiative transfer equation for polarized lines in moving atmospheres. Solutions based on the “observer’s frame method” are computationally expensive to obtain, especially when partial frequency redistribution (PRD) in line scattering and large-amplitude velocity fields are taken into account. In this paper we present an efficient alternative method of solution, namely, the comoving frame technique,more » to solve the polarized PRD line formation problems in the presence of velocity fields. We consider one-dimensional planar isothermal atmospheres with vertical velocity fields. We present a study of the effect of velocity fields on the emergent linear polarization profiles formed in optically thick moving atmospheres. We show that the comoving frame method is far superior when compared to the observer’s frame method in terms of the computational speed and memory requirements.« less
Regular consumption of fresh orange juice increases human skin carotenoid content.
Massenti, Roberto; Perrone, Anna; Livrea, Maria Antonietta; Lo Bianco, Riccardo
2015-01-01
Dermal carotenoids are a good indicator of antioxidant status in the body. This study aimed to determine whether regular consumption of orange juice could increase dermal carotenoids. Two types of orange juice, obtained from regularly (CI) and partially (PRD) irrigated trees, were tested to reveal any possible association between juice and dermal carotenoids. Soluble solids, titratable acidity, and total carotenoids were quantified in the juice; skin carotenoid score (SCS) was assessed by Raman spectroscopy. Carotenoid content was 7.3% higher in PRD than in CI juice, inducing no difference in SCS. In a first trial with daily juice intakes for 25 days, SCS increased linearly (10%) in the individual with higher initial SCS, and exponentially (15%) in the individual with lower initial SCS. In a second trial, SCS showed a 6.5% increase after 18 days of drinking juice every other day, but returned to initial values three days after last intake. Skin carotenoids can be increased by regular consumption of fresh orange juice, while their persistence may depend on the accumulation level, environmental conditions or living habits.
Viangteeravat, Teeradache; Nagisetty, Naga Satya V Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses.
Ling, Z H; Guo, H; Cheng, H R; Yu, Y F
2011-10-01
The Positive Matrix Factorization (PMF) receptor model and the Observation Based Model (OBM) were combined to analyze volatile organic compound (VOC) data collected at a suburban site (WQS) in the PRD region. The purposes are to estimate the VOC source apportionment and investigate the contributions of these sources and species of these sources to the O(3) formation in PRD. Ten VOC sources were identified. We further applied the PMF-extracted concentrations of these 10 sources into the OBM and found "solvent usage 1", "diesel vehicular emissions" and "biomass/biofuel burning" contributed most to the O(3) formation at WQS. Among these three sources, higher Relative Incremental Reactivity (RIR)-weighted values of ethene, toluene and m/p-xylene indicated that they were mainly responsible for local O(3) formation in the region. Sensitivity analysis revealed that the sources of "diesel vehicular emissions", "biomass/biofuel burning" and "solvent usage 1" had low uncertainties whereas "gasoline evaporation" showed the highest uncertainty. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sequential ASE extraction of alkylphenols from sediments: Occurrence and environmental implications.
Gong, Jian; Xu, Lei; Yang, Yu; Chen, Di-Yun; Ran, Yong
2011-08-30
The occurrence of alkylphenols (APs) including nonylphenol (NP) and octylphenol (OP) in the riverine sediments from the Pearl River Delta (PRD), South China was investigated and compared by Soxhlet extraction (S-APs) with dichloromethane and by sequential accelerated solvent extraction (ASE) (A-APs) with 1:6 toluene/methanol, respectively. Concentrations of OP and NP range from <1 to 463ng/g dw and 31-21,885ng/g dw, respectively, demonstrating that the contamination level of APs in the PRD is one of the highest in the world. Moreover, the A-APs contents are highly significantly related to and on average 1.5 times the S-APs contents. For sequential two ASE extractions, APs in the first extract accounts for 82.2-99.2% of their total contents in the sequential two extractions. The correlation analysis shows that S-APs and A-APs are both significantly associated with the contents of total organic carbon (TOC), suggesting that the variable extraction efficiency of these two methods is related to the presence of condensed organic matter in the sediments. Copyright © 2011 Elsevier B.V. All rights reserved.
Virucidal properties of metal oxide nanoparticles and their halogen adducts.
Häggström, Johanna; Balyozova, Denitza; Klabunde, Kenneth J; Marchin, George
2010-04-01
Selected metal oxide nanoparticles are capable of strongly adsorbing large amounts of halogens (Cl(2), Br, I(2)) and mixed halogens. These solid adducts are relatively stable thermally, and they can be stored for long periods. However, in the open environment, they are potent biocides. Herein are described studies with a number of bacteriophage MS2, phiX174, and PRD-1 (virus examples). PRD-1 is generally more resistant to chemical disinfection, but in this paper it is shown to be very susceptible to selected interhalogen and iodine adducts of CeO(2), Al(2)O(3), and TiO(2) nanoparticles. Overall, the halogen adducts of TiO(2) and Al(2)O(3) were most effective. The mechanism of disinfection by these nanoparticles is not completely clear, but could include abrasive properties, as well as oxidative powers. A hypothesis that nanoparticles damage virons or stick to them and prevent binding to the host cell is a consideration that needs to be explored. Herein are reported comparative biocidal activities of a series of adducts and electron microscope images of before and after treatment.
Sun, Runxia; Luo, Xiaojun; Tang, Bin; Li, Zongrui; Wang, Tao; Tao, Lin; Mai, Bixian
2016-04-01
Three fish species, mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), from rivers in the Pearl River Delta (PRD) were analyzed for dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and Dechlorane Plus (DP). The concentrations of DDTs, HCHs, PCBs, PBDEs, DBDPE, and DP ranged from 380-57,000, 5.5-100, 30-4200, 6.9-690, 0.29-460, and 0.09-20ng/g lipid weight, respectively. Congener profiles or chemical compositions of PBDEs, DPs, DDTs, and HCHs in plecostomus differed significantly from those in the other two fish species, which can be ascribed to species-specific metabolism. DDTs derived from historical residue and land erosion remained the predominant pollutants in the PRD, while industrial and urban activities resulted in elevated levels of PCBs and PBDEs in the metropolitan area. E-waste recycling activities have greatly impacted on the adjacent aquatic environment, and the potential point source for DBDPE was also revealed. Copyright © 2016 Elsevier Inc. All rights reserved.
Viangteeravat, Teeradache; Nagisetty, Naga Satya V. Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses. PMID:24808811
NASA Astrophysics Data System (ADS)
Lu, Yintao; Tang, Changyuan; Chen, Jianyao; Yao, Hong
2016-06-01
Anthropogenic activities in the Pearl River Delta (PRD) have caused a deterioration of groundwater quality over the past twenty years as a result of rapid urbanization and industrial development. In this study, the hydrochemical characteristics, quality, and sources of heavy metals in the groundwater of the PRD were investigated. Twenty-five groundwater samples were collected and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), δ18O, δ2H, major ions, and heavy metals. The groundwater was slightly acidic and presented TDS values that ranged from 35.5 to 8,779.3 mg·L-1. The concentrations of the major ions followed the order Cl->HCO 3 - >Na+>SO 4 2- >NO 3 - >NH 4 + >Ca2+>K+>Mg2+>Fe2+/3+>Al3+. Ca-Mg-HCO3 and Na-K-HCO3 were the predominant types of facies, and the chemical composition of the groundwater was primarily controlled by chemical weathering of the basement rocks, by mixing of freshwater and seawater and by anthropogenic activities. The heavy metal pollution index (HPI) indicated that 64% of the samples were in the low category, 16% were in the medium category and 20% were in the high category, providing further evidence that this groundwater is unsuitable for drinking. Lead, arsenic, and manganese were mainly sourced from landfill leachate; cadmium from landfill leachate and agricultural wastes; mercury from the discharge of leachate associated with mining activities and agricultural wastes; and chromium primarily from industrial wastes. According to the irrigation water quality indicators, the groundwater in the PRD can be used for irrigation in most farmland without strong negative impacts. However, approximately 9 million people in the Guangdong Province are at risk due to the consumption of untreated water. Therefore, we suggest that treating the groundwater to achieve safer levels is necessary.
NASA Astrophysics Data System (ADS)
Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke
2017-08-01
From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.
2013-06-25
Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbinemore » units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less
NASA Astrophysics Data System (ADS)
Jiang, Xujia; Hong, Chaopeng; Zheng, Yixuan; Zheng, Bo; Guan, Dabo; Gouldson, Andy; Zhang, Qiang; He, Kebin
2015-10-01
Following a series of extreme air pollution events, the Chinese government released the Air Pollution Prevention and Control Action Plan in 2013 (China’s State Council 2013). The Action Plan sets clear goals for key regions (i.e. cities above the prefecture level, Beijing-Tianjin-Hebei Province, the Yangtze River Delta and the Pearl River Delta) and establishes near-term control efforts for the next five years. However, the extent to which the Action Plan can direct local governments’ activities on air pollution control remains unknown. Here we seek to evaluate the air quality improvement and associated health benefits achievable under the Action Plan in the Pearl River Delta (PRD) area from 2012 to 2017. Measure-by-measure quantification results show that the Action Plan would promise effective emissions reductions of 34% of SO2, 28% of NOx, 26% of PM2.5 (particulate matter less than 2.5 μm in diameter), and 10% of VOCs (volatile organic compounds). These emissions abatements would lower the PM2.5 concentration by 17%, surpassing the 15% target established in the Action Plan, thereby avoiding more than 2900 deaths and 4300 hospital admissions annually. We expect the implementation of the Action Plan in the PRD would be productive; the anticipated impacts, however, fall short of the goal of protecting the health of local residents, as there are still more than 33 million people living in places where the annual mean ambient PM2.5 concentrations are greater than 35 μg m-3, the interim target-3 of the World Health Organization (WHO). We therefore propose the next steps for air pollution control that are important not only for the PRD but also for all other regions of China as they develop and implement effective air pollution control policies.
Deng, Yingbin; Fan, Fenglei; Chen, Renrong
2012-01-01
Impervious surface area (ISA) is considered as an indicator of environment change and is regarded as an important input parameter for hydrological cycle simulation, water management and area pollution assessment. The Pearl River Delta (PRD), the 3rd most important economic district of China, is chosen in this paper to extract the ISA information based on Landsat images of 1998, 2003 and 2008 by using a linear spectral un-mixing method and to monitor impervious surface change by analyzing the multi-temporal Landsat-derived fractional impervious surface. Results of this study were as follows: (1) the area of ISA in the PRD increased 79.09% from 1998 to 2003 and 26.88% from 2003 to 2008 separately; (2) the spatial distribution of ISA was described according to the 1998/2003 percentage respectively. Most of middle and high percentage ISA was located in northwestern and southeastern of the whole delta, and middle percentage ISA was mainly located in the city interior, high percentage ISA was mainly located in the suburban around the city accordingly; (3) the expanding direction and trend of high percentage ISA was discussed in order to understand the change of urban in this delta; High percentage ISA moved from inner city to edge of urban area during 1998–2003 and moved to the suburban area that far from the urban area mixed with jumpily and gradually during 2003–2008. According to the discussion of high percentage ISA spatial expanded direction, it could be found out that high percentage ISA moved outward from the centre line of Pearl River of the whole delta while a high ISA percentage in both shores of the Pearl River Estuary moved toward the Pearl River; (4) combining the change of ISA with social conditions, the driving relationship was analyzed in detail. It was evident that ISA percentage change had a deep relationship with the economic development of this region in the past ten years. Contemporaneous major sport events (16th Asia Games of Guangzhou, 26th Summer Universidad of Shenzhen) and the government policies also promoted the development of the ISA. Meanwhile, topographical features like the National Nature Reserve of China restricted and affected the expansion of the ISA. Above all, this paper attempted to extract ISA in a major region of the PRD; the temporal and spatial analyses to PRD ISA demonstrated the drastic changes in developed areas of China. These results were important and valuable for land use management, ecological protection and policy establishment. PMID:22438741
NASA Astrophysics Data System (ADS)
Zhu, Kuanguang; Xie, Min; Wang, Tijian; Cai, Junxiong; Li, Songbing; Feng, Wen
2017-03-01
The change of land-use from natural to artificial surface induced by urban expansion can deeply impact the city environment. In this paper, the model WRF/Chem is applied to explore the effect of this change on regional meteorology and air quality over South China, where people have witnessed a rapid rate of urbanization. Two sets of urban maps are adopted to stand for the pre-urbanization and the present urban land-use distributions. Month-long simulations are conducted for January and July, 2014. The results show that urban expansion can obviously change the weather conditions around the big cities of South China. Especially in the Pearl River Delta region (PRD), the urban land-use change can increase the sensible heat flux by 40 W/m2 in January and 80 W/m2 in July, while decrease the latent heat flux about -50 W/m2 in January and -120 W/m2 in July. In the consequent, 2-m air temperature (T2) increases as much as 1 °C and 2 °C (respective to January and July), planetary boundary layer height (PBLH) rises up by 100-150 m and 300 m, 10-m wind speed (WS10) decreases by -1.2 m/s and -0.3 m/s, and 2-m specific humidity is reduced by -0.8 g/kg and -1.5 g/kg. Also, the precipitation in July can be increased as much as 120 mm, with more heavy rains and rainstorms. These variations of meteorological factors can significantly impact the spatial and vertical distribution of air pollutants as well. In PRD, the enhanced updraft can reduce the surface concentrations of PM10 by -40 μg/m3 (30%) in January and -80 μg/m3 (50%) in July, but produce a correlating increase in the concentrations at higher atmospheric layers. However, according to the increase in T2 and the decrease in surface NO, the surface concentrations of O3 in PRD can increase by 2-6 ppb in January and 8-12 ppb in July. Meanwhile, there is a significant increase in the O3 concentrations at upper layers above PRD, which should be attributed to the increase in air temperature and the enhanced upward transport of O3 and its precursors. As for some relative small cities, such as Haikou, there is very little variation in surface PM10 and O3 in both months, implying less urbanization in these areas. Moreover, the depletion of O3 by NO may be the main cause of the reduction of O3 at upper layers in these small cities.
Deng, Yingbin; Fan, Fenglei; Chen, Renrong
2012-01-01
Impervious surface area (ISA) is considered as an indicator of environment change and is regarded as an important input parameter for hydrological cycle simulation, water management and area pollution assessment. The Pearl River Delta (PRD), the 3rd most important economic district of China, is chosen in this paper to extract the ISA information based on Landsat images of 1998, 2003 and 2008 by using a linear spectral un-mixing method and to monitor impervious surface change by analyzing the multi-temporal Landsat-derived fractional impervious surface. Results of this study were as follows: (1) the area of ISA in the PRD increased 79.09% from 1998 to 2003 and 26.88% from 2003 to 2008 separately; (2) the spatial distribution of ISA was described according to the 1998/2003 percentage respectively. Most of middle and high percentage ISA was located in northwestern and southeastern of the whole delta, and middle percentage ISA was mainly located in the city interior, high percentage ISA was mainly located in the suburban around the city accordingly; (3) the expanding direction and trend of high percentage ISA was discussed in order to understand the change of urban in this delta; High percentage ISA moved from inner city to edge of urban area during 1998-2003 and moved to the suburban area that far from the urban area mixed with jumpily and gradually during 2003-2008. According to the discussion of high percentage ISA spatial expanded direction, it could be found out that high percentage ISA moved outward from the centre line of Pearl River of the whole delta while a high ISA percentage in both shores of the Pearl River Estuary moved toward the Pearl River; (4) combining the change of ISA with social conditions, the driving relationship was analyzed in detail. It was evident that ISA percentage change had a deep relationship with the economic development of this region in the past ten years. Contemporaneous major sport events (16th Asia Games of Guangzhou, 26th Summer Universidad of Shenzhen) and the government policies also promoted the development of the ISA. Meanwhile, topographical features like the National Nature Reserve of China restricted and affected the expansion of the ISA. Above all, this paper attempted to extract ISA in a major region of the PRD; the temporal and spatial analyses to PRD ISA demonstrated the drastic changes in developed areas of China. These results were important and valuable for land use management, ecological protection and policy establishment.
Interacting vegetative and thermal contributions to water movement in desert soil
Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.
2011-01-01
Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.
Fard, Ehsan Mohseni; Bakhshi, Behnam; Farsi, Mohammad; Kakhki, Amin Mirshamsi; Nikpay, Nava; Ebrahimi, Mohammad Ali; Mardi, Mohsen; Salekdeh, Ghasem Hosseini
2017-10-24
MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.
Transport and fate of viruses in sediment and stormwater from a managed aquifer recharge site
USDA-ARS?s Scientific Manuscript database
Enteric viruses are one of the major concerns in water reclamation and reuse at managed aquifer recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and FX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column ex...
NASA Astrophysics Data System (ADS)
Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge
2016-04-01
Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9
Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi
2015-01-01
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675
Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi
2015-01-01
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.
1987-03-23
Eurico de Melo STATE AND INTERNAL ADMINISTRATION 82,90/0 ACTIONS 39 26 13 12 3 Leonardo Ribeiro de Almeida NATIONAL DEFENSE 7.4,4...reported at the time, Sottomayor Cardia and Manuel Alegre were the principal proponents of immediate collaboration with the PRD [Democratic Renewal...particular Manuel Vallespin and Prudencia Pedrosa, undertook measures designed to provide support for drug-addicted soldiers. Suicides which were never
Bales, R.C.; Hinkle, S.R.; Kroeger, T.W.; Stocking, K.; Gerba, C.P.
1991-01-01
In a series of seven column experiments, attachment of the bacteriophage PRD-1 and MS-2 to silica beads at pH's 5.0-5.5 was at least partially reversible; however, release of attached phage was slow and breakthrough curves exhibited significant tailing. Rate coefficients for attachment and detachment were on the order of 10-4 and 10-6-10-4 s-1, respectively. Corresponding time scales were hours for attachment and days for detachment. The sticking efficiency (??) for phage attachment was near 0.01. The rate of phage release was enhanced by raising pH and introducing surface-active chemical species, illustrating the importance of chemical perturbations in promoting biocolloid transport. In a series of batch experiments, MS-2 adsorbed strongly to a hydrophobic surface, octadecyltrichlorosilane-bonded silica, at both pH's 5 and 7. Adsorption to the unbonded silica at pH 5 was linear, but was 2.5 (with Ca2+) to 0.25% (without Ca2+) of that to the bonded surface. Neither MS-2 nor PRD-1 adsorbed to unbonded silica at pH 7. Hydrophobic effects appear to be important for adsorption of even relatively hydrophilic biocolloids. ?? 1991 American Chemical Society.
[Periodontal disease in pediatric rheumatic diseases].
Fabri, Gisele M C; Savioli, Cynthia; Siqueira, José T; Campos, Lucia M; Bonfá, Eloisa; Silva, Clovis A
2014-01-01
Gingivitis and periodontitis are immunoinflammatory periodontal diseases characterized by chronic localized infections usually associated with insidious inflammation This narrative review discusses periodontal diseases and mechanisms influencing the immune response and autoimmunity in pediatric rheumatic diseases (PRD), particularly juvenile idiopathic arthritis (JIA), childhood-onset systemic lupus erythematosus (C-SLE) and juvenile dermatomyositis (JDM). Gingivitis was more frequently observed in these diseases compared to health controls, whereas periodontitis was a rare finding. In JIA patients, gingivitis and periodontitis were related to mechanical factors, chronic arthritis with functional disability, dysregulation of the immunoinflammatory response, diet and drugs, mainly corticosteroids and cyclosporine. In C-SLE, gingivitis was associated with longer disease period, high doses of corticosteroids, B-cell hyperactivation and immunoglobulin G elevation. There are scarce data on periodontal diseases in JDM population, and a unique gingival pattern, characterized by gingival erythema, capillary dilation and bush-loop formation, was observed in active patients. In conclusion, gingivitis was the most common periodontal disease in PRD. The observed association with disease activity reinforces the need for future studies to determine if resolution of this complication will influence disease course or severity. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Wong, David W. C.; Choy, K. L.; Chow, Harry K. H.; Lin, Canhong
2014-06-01
For the most rapidly growing economic entity in the world, China, a new logistics operation called the indirect cross-border supply chain model has recently emerged. The primary idea of this model is to reduce logistics costs by storing goods at a bonded warehouse with low storage cost in certain Chinese regions, such as the Pearl River Delta (PRD). This research proposes a performance measurement system (PMS) framework to assess the direct and indirect cross-border supply chain models. The PMS covers four categories including cost, time, quality and flexibility in the assessment of the performance of direct and indirect models. Furthermore, a survey was conducted to investigate the logistics performance of third party logistics (3PLs) at the PRD regions, including Guangzhou, Shenzhen and Hong Kong. The significance of the proposed PMS framework allows 3PLs accurately pinpoint the weakness and strengths of it current operations policy at four major performance measurement categories. Hence, this helps 3PLs further enhance the competitiveness and operations efficiency through better resources allocation at the area of warehousing and transportation.
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands
NASA Astrophysics Data System (ADS)
Schijven, Jack F.; Hoogenboezem, Wim; Hassanizadeh, S. Majid; Peters, Jos H.
1999-04-01
Removal of model viruses by dune recharge was studied at a field site in the dune area of Castricum, Netherlands. Recharge water was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m compartment that was isolated in a recharge basin. Breakthrough was monitored for 120 days at six wells with their screens along a flow line. Concentrations of both phages were reduced about 3 log10 within the first 2.4 m and another 5 log10 in a linear fashion within the following 27 m. A model accounting for one-site kinetic attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves. The major removal process was found to be attachment of the bacteriophages. Detachment was very slow. After passage of the pulse of dosed bacteriophages, there was a long tail whose slope corresponds to the inactivation rate coefficient of 0.07-0.09 day-1 for attached bacteriophages. The end of the rising and the start of the declining limbs of the breakthrough curves could not be simulated completely, probably because of an as yet unknown process.
Abu-Ras, Wahiba; Suárez, Zulema E; Abu-Bader, Soleman
2018-04-09
This study examined the perceived impact of religious discrimination and Islamophobia on Muslim Americans' well-being during the 2016 United States presidential election campaign. Data were collected from a national sample of 1,130 Muslim Americans. Perceived religious discrimination (PRD) was measured using the Perceived Religious Discrimination Scale. Results of canonical correlation analysis showed that perceived Islamophobia was associated with safety (β = .45, p < .001), level of stress (β = -.25, p < .001), level of religiosity (β = -.11, p < .05), and employment (β = .11, p < .05). PRD was associated with preexposure to religious-based discrimination; β = -.12, p < .05), safety (.47, p < .001), level of stress (β = -.33, p < .001), religiosity (β = -.15, p < .010), and years in the United States (β = .16, p < .010). Results also suggest that some Muslim subgroups, such as women and older people, may face "double jeopardy" based on multiple stigmatized identities. When addressing mental health concerns in marginalized groups, it is necessary to link health with social justice and examine how social injustices may affect people's well-being. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Dou, Ming; Zuo, Qiting; Zhang, Jinping; Li, Congying; Li, Guiqiu
2013-09-01
With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).
Hess, Jelka A; Michels, Stephan; Becker, Matthias D
2017-11-20
Background The gold standard therapy for full-thickness macular holes (FTMH) is vitrectomy (PPV) with peeling of the internal limiting membrane (ILM), gas tamponade of the vitreous cavity and postoperative face-down positioning. Nevertheless, eyes with large macular holes (> 400 µm) and surgical failures remain difficult to manage. Recently, ILM transplantation (ILM-TX) techniques were developed with acceptable results, advocating different mechanisms of hole closure: in such a setting, the ILM could serve as a scaffold for neuronal tissue in the pedicle ILM flap technique or the ILM could induce a contraction of the FTMH rims through shrinking of a folded ILM plug. Patients/Material and Methods This retrospective study evaluates the functional and anatomic outcomes following ILM-TX for large FTMH and failed FMTH surgery. Large holes (group 1) were treated by the pedicle flap and the plug technique. Persistent holes following vitrectomy and ILM peeling (group 2) were treated with the plug technique. All ILM-TX were performed under perfluorocarbon liquid (PFCL) with a subsequent silicone oil tamponade. Results In group 1 (6 eyes), three eyes had a free ILM graft and three eyes underwent a pedunculated ILM-TX. The mean best corrected visual acuity (BCVA, LogMar) before primary ILM-TX was 1.18 ± 0.54 with a mean initial hole size of 681 ± 106 µm and a photoreceptor defect (PRD) of 1829 ± 474 µm. Five of six eyes showed a postoperative anatomical macular hole closure (83%). The mean BCVA after a mean follow-up of 9.3 ± 5.1 months was 0.83 ± 0.31 after a free ILM graft and 0.95 ± 0.79 after a pedunculated ILM flap. The PRD reduced to 1781 ± 713 µm after a free ILM graft and 1148 ± 378 µm after a pedunculated ILM flap. In group 2 (7 eyes), all patients had failed initial macular hole surgery closure. Prior to free ILM-TX BCVA was 1.05 ± 0.41, the hole size was 433 ± 183 µm and PRD was 2012 ± 718 µm. After a mean of 9.6 ± 4.1 months following ILM-TX, in six of seven eyes the FTMH hole was closed (86%), BCVA improved to 0.53 ± 0.34 and the PRD shortened to 843 ± 291 µm. Conclusion In most cases, with large FTMH or holes after failed vitrectomy plus ILM peeling, ILM-TX allows a hole closure. Functional outcomes show stabilization and sometimes even a slight improvement. Georg Thieme Verlag KG Stuttgart · New York.
Managing Southeastern US Forests for Increased Water Yield
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.
2017-12-01
Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.
Differential bacteriophage mortality on exposure to copper.
Li, Jinyu; Dennehy, John J
2011-10-01
Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.
Elution of viruses by ionic and nonionic surfactants.
Fujito, B T; Lytle, C D
1996-01-01
The ionic and nonionic surfactants sodium dodecyl sulfate and Triton X-100, respectively, eluted two viruses, phi X174 and PRD1, which were adsorbed to the ionic and nonionic binding membranes cationic polysulfone and nitrocellulose, respectively. Results indicated that complete elution was readily achieved only when combinations of surfactants and binding membranes were matched (i.e., ionic-ionic or nonionic-nonionic). PMID:8795240
1987-05-26
Assurance Displayed, by Antonio Pinto Leite 42 Victory Over PRD 43 Briefs Madeira-South Africa Cooperation in Health 45 TURKEY Prime Minister Ozal’s...Personalities, Activities, by Jean Qoaquen 82 Corbeville Central Laboratory 92 PORTUGAL Virgilio de Carvalho; DIARIO DE NOTICIAS, 14 Apr 87...Green Party), as well as a few notoriously critical party colleagues, among whom Wim Meijer, Jacques Wallage, Hedy d’Ancona and Hans Kombrink. It
Wang, N; Lyu, X P; Deng, X J; Guo, H; Deng, T; Li, Y; Yin, C Q; Li, F; Wang, S Q
2016-12-15
To evaluate the impact of emission control measures on the air quality in the Pearl River Delta (PRD) region of South China, statistic data including atmospheric observations, emissions and energy consumptions during 2006-2014 were analyzed, and a Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model was used for various scenario simulations. Although energy consumption doubled from 2004 to 2014 and vehicle number significantly increased from 2006 to 2014, ambient SO 2 , NO 2 and PM 10 were reduced by 66%, 20% and 24%, respectively, mainly due to emissions control efforts. In contrast, O 3 increased by 19%. Model simulations of three emission control scenarios, including a baseline (a case in 2010), a CAP (a case in 2020 assuming control strength followed past control tendency) and a REF (a case in 2020 referring to the strict control measures based on recent policy/plans) were conducted to investigate the variations of air pollutants to the changes in NO x , VOCs and NH 3 emissions. Although the area mean concentrations of NO x , nitrate and PM 2.5 decreased under both NO x CAP (reduced by 1.8%, 0.7% and 0.2%, respectively) and NO x REF (reduced by 7.2%, 1.8% and 0.3%, respectively), a rising of PM 2.5 was found in certain areas as reducing NO x emissions elevated the atmospheric oxidizability. Furthermore, scenarios with NH 3 emission reductions showed that nitrate was sensitive to NH 3 emissions, with decreasing percentages of 0-10.6% and 0-48% under CAP and REF, respectively. Controlling emissions of VOCs reduced PM 2.5 in the southwestern PRD where severe photochemical pollution frequently occurred. It was also found that O 3 formation in PRD was generally VOCs-limited while turned to be NO x -limited in the afternoon (13:00-17:00), suggesting that cutting VOCs emissions would reduce the overall O 3 concentrations while mitigating NO x emissions in the afternoon could reduce the peak O 3 levels. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, H.; Zhu, C.
2015-12-01
Atmospheric emissions of typical toxic heavy metals from anthropogenic sources have received worldwide concerns due to their adverse effects on human health and the ecosystem. An integrated inventory of anthropogenic emissions of twelve HMs (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) in the three biggest metropolitan areas, including Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region and Pearl River Delta (PRD) region, are developed for 1980-2012 by combining with detailed activity data and inter-annual dynamic emission factors which are determined by S-shaped curves on account of technology progress, economic development, and emission control. The results indicate total emissions of twelve HMs in the three metropolitan regions have increased from 5448.8 tons in 1980 to 19054.9 tons in 2012, with an annual average growth rate of about 4.0%. Due to significant difference in industrial structures and energy consumption compositions, remarkable distinctions can be observed with respect to source contributions of total HM emissions from above three metropolitan areas. Specifically, the ferrous metal smelting sector, coal combustion by industrial boilers and coal combustion by power plants are found to be the primary source of total HM emissions in the BTH region (about 34.2%), YRD region (about 28.2%) and PRD region (about 24.3%), respectively. Furthermore, we allocate the annual emissions of these heavy metals in 2012 at a high spatial resolution of 9 km × 9 km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). The peak of HM emissions are mainly distributed over the grid cells of Beijing, Tianjin, Tangshan, Shijiazhuang, Handan and Baoding in the BTH region; Shanghai, Suzhou, Wuxi, Nanjing, Hangzhou, Ningbo in the YRD region; Guangzhou, Shenzhen, Dongguan, Foshan in the PYD region, respectively. Additionally, monthly emission profiles are established in order to further identify the temporal emission characteristics of HMs. Key words: heavy metals (HMs), emission inventory, time-varying dynamic emission factor, temporal and spatial characteristics, Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region, Pearl River Delta (PRD) region, China
NASA Astrophysics Data System (ADS)
Chang, C.; Wang, J.; Liu, S.; Shao, M.; Zhang, Y.; Zhu, T.; Shiu, C.; Lai, C.
2010-12-01
Two on-site continuous measurements of ozone and its precursors in two megacities of China were carried out in an urban site of Beijing and a suburban site near Guangzhou in the Pearl River Delta (PRD) to estimate precursor consumption and to assess its relationship with oxidant (O3+NO2) formation level. An observation-based method (OBM) with the precursor consumption concept was adopted to assess the relationship between oxidant production and amounts of photochemically consumed non-methane hydrocarbons (NMHCs). In this approach, the ratio of ethylbenzene to m,p-xylenes was used to estimate the degree of photochemical processing, as well as the amounts of photochemically consumed NMHCs by reacting with OH. By trying to correlate the observed oxidant with the observed NMHC concentration, the two areas both revealed nearly no to low correlation between them. However, it existed fair to good correlations (R2=0.68 for Beijing, 0.53 for PRD) between the observed oxidant level and the degree of photochemical processing (ethylbenzene/m,p-xylenes). Furthermore, after taking the approach of consumption to estimate the consumed amounts of NMHCs, an interesting finding reveals that the definite correlation existed between the observed oxidant level and the total consumed NMHCs. The good correlations (R2=0.83 for Beijing, 0.81 for PRD) implies that the ambient oxidant level correlated to the amount of consumed NMHCs. The results of the two megacities in China by using the OBM with the precursor consumption concept can provide another pathway to explore the relationship between photochemically produced oxidant and consumed precursors, and will be helpful to validate model results and to reduce uncertainty of model predictions. However, the method has some room for uncertainty, as injection of fresh precursor emissions and additional boundary ozone involved, etc. could affect the estimation of consumed NMHCs and observed oxidant levels. Assistance of approaches in assessing the influence of the interfering factors would be helpful to acquire more reliable inferences of relationship between oxidant formation and precursor consumption.
Siregar, Adiatma Y M; Pitriyan, Pipit; Walters, Dylan
2018-01-01
In Indonesia, 96% of children (< 24mo) are breastfed. However, only 42% of children (< 6mo) are exclusively breastfed, as per World Health Organization recommendations. Breastfeeding provides protective benefits such as reducing the risk of morbidity and mortality associated with diarrhea and pneumonia/respiratory disease (PRD). This study estimates the potential economic impact of not breastfeeding according to recommendation in Indonesia based on infants suffering from attributable diarrhea and PRD. A cost analysis examined both the healthcare system costs and non-medical costs for children (< 24mo) with diarrhea and PRD. Data collection took place between 2015 and 2016 and healthcare expenditures were assessed in 13 facilities, in five sites including Bandung and Tomohon City. Costs from a provider perspective were estimated using healthcare records and 26 interviews with healthcare workers. A discount rate of 3% was used. A cross-sectional survey with caregiver-child pairs ( n = 615) collected data related to out of pocket costs such transportation and opportunity costs such as wage loss. These figures were combined with the national disease prevalence rates from Indonesia Demographic and Health Survey 2012, and the relative risk of disease of not breastfeeding according to recommendation from literatures to extrapolate the financial burden of treatment. The healthcare system cost due to not breastfeeding according to recommendation was estimated at US$118 million annually. The mean healthcare system cost and out of pocket costs was US$11.37 and US$3.85 respectively. This cost consists of US$88.64 million of provider costs and US$29.98 million of non-medical patient costs. The cost of not breastfeeding according to recommendation is potentially high, therefore the Indonesian government needs to invest in breastfeeding protection, promotion and support as the potential healthcare system cost savings are significant. As suggested by other studies, the long term cost due to cognitive losses of providing not breastfeeding according to recommendation should also be taken into account to provide a complete understanding of the economic impact of not breastfeeding according to recommendation.
NASA Astrophysics Data System (ADS)
Cope, K. R.; Bugbee, B.
2011-12-01
Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue light caused a decrease in specific leaf area (leaf area per unit leaf mass). As the relative amount of blue light increased, chlorophyll concentration per unit leaf area increased, but chlorophyll concentration per unit leaf mass remained constant. The relative amount of blue light increased total dry mass in some species while it remained constant in others. An increase in the fraction of green light increased dry mass in radish. Overall, white LEDs provided a more uniform spectral distribution, reduced stem elongation and leaf area, and maintained or increased dry mass as compared to RB and RGB LEDs. Cool white LEDs are more electrically efficient than the other two white LEDs and have sufficient blue light for normal plant growth and development at both high and low light intensities. Compared to sunlight, cool white LEDs are perhaps deficient in red light and may therefore benefit from supplementation with red LEDs. Future studies will be conducted to test this hypothesis. These results have significant implication for LADA growth chambers which are currently used for vegetable production on the International Space Station.
Tao, Jun; Zhang, Leiming; Zhang, Zhisheng; Huang, Ruijin; Wu, Yunfei; Zhang, Renjian; Cao, Junji; Zhang, Yuanhang
2015-03-01
To evaluate the effectiveness of the integrated control measures for reducing PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 μm) and hazy weather, day- and night-time PM2.5 samples were collected at an urban site in Guangzhou during the 16th Asian Games period in November 2010. PM2.5 samples were subject to chemical analysis for major water-soluble ions, organic carbon (OC), element carbon (EC), and biomass burning tracers-anhydrosugar levoglucosan (LG). In addition, aerosol scattering coefficient (bsp) at dry condition and aerosol absorption coefficient (bap) and visibility at ambient condition were measured. The seven major control measures were effective for reducing PM2.5 mass concentration and improving visibility during the Asian Games period. All monitored air pollutants except PM2.5 satisfied the National Ambient Air Quality Standards (NAAQS). However, daily PM2.5 concentrations still exceeded the NAAQS on 47% of the days and hazy weather also occurred on 80% of the days during this period. One factor causing the high frequency of hazy weather occurrence was the increased relative humidity during the Asian Games period. To avoid hazy weather occurrence, new PM2.5 standard was recommended based on visibility calculations using three available aerosol hygroscopic curves previously obtained for this city. The recommended PM2.5 standard was 63 μgm(-3) under dry condition and lower than 42 μg m(-3) under humid condition (RH ≥ 70%). These recommended value s were much stricter than the NAAQS value of 75 μg m(-3). To reach the new standard, more rigorous control measures for coal industries should be established in the Pearl River Delta (PRD) region. Copyright © 2014 Elsevier B.V. All rights reserved.
Reversible Inactivation and Desiccation Tolerance of Silicified Viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laidler, James J.; Shugart, Jessica A.; Cady, Sherry L.
2013-11-19
Long-distance host-independent virus dispersal is poorly understood, especially for viruses found in isolated ecosystems. To demonstrate a possible dispersal mechanism, we show that bacteriophage T4, archaeal virus SSV-K and Vaccinia are reversibly inactivated by mineralization in silica under conditions similar to volcanic hot springs. By contrast, bacteriophage PRD1 is not silicified. Moreover silicification provides viruses with remarkable desiccation resistance, which could allow extensive aerial dispersal.
Gibson, Kristen E; Schwab, Kellogg J
2011-01-01
Tangential-flow ultrafiltration was optimized for the recovery of Escherichia coli, Enterococcus faecalis, Clostridium perfringens spores, bacteriophages MS2 and PRD1, murine norovirus, and poliovirus seeded into 100-liter surface water (SW) and drinking water (DW) samples. SW and DW collected from two drinking water treatment plants were then evaluated for human enteric viruses.
Materials Research in Support of Superconducting Machinery - II
1974-10-01
iwiRnai«.|UiipWiw .mm i MARTIN MARIETTA AEROSPACE, DENVER DIVISION Study of Fracture Behavior of Metals for Superconducting Applications...into design use by compiling and publishing what literature data are available and assessing what properties need further study . The first year’s...non-metal base composites, including B-epoxy, C-epoxy and polyimide, PRD 49-epoxy, borsic-Al, Steel-Al. Screening study of composites for torque
Action of hydrogen peroxide on degradation of DNA after irradiation in Escherichia coli.
Keller, K M; Pollard, E C
1977-05-01
Hydrogen peroxide (H2O2), which produces breaks in cellular DNA, has not hitherto been shown to cause degradation of DNA. In this investigation it is shown that if transcription is blocked with rifampin, treatment with H2O2 causes degradation of DNA to nearly the same extent as does gamma-radiation. Further, if cells are given a treatment with H2O2 and incubated for 50 min, the amount of degradation in a second treatment is markedly less. This is attributed to the induction of the inhibitor of post-irradiation degradation of DNA (prd) by the first treatment. There is thus a double action of H2O2: first, to induce inhibition, and second, to cause degradation of DNA to begin in non-induced cells. The genetic dependence of induction by H2O2 mimics that of ionizing radiation. Accordingly, the induction process does not occur in recA- and lex- cells, because they are not inducible and is absent in recB- cells because they lack exonuclease V, the major component of prd. Potassium iodide (KI), an OH radical scavenger, negates the action of peroxide on DNA. The results obtained in this study suggest a possible theory for the evolution of radiation response systems
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II
NASA Astrophysics Data System (ADS)
Liu, Ying; Shao, Min; Lu, Sihua; Chang, Chih-Chung; Wang, Jia-Lin; Fu, Linlin
The chemical mass balance receptor model was applied to the source apportionment of 58 hydrocarbons measured at seven sites in a field campaign that examined regional air quality in the Pearl River Delta (PRD) region in the fall of 2004. A total of 12 volatile organic compound (VOC) emission sources were considered, including gasoline- and diesel-powered vehicle exhausts, headspace vapors of gasoline and diesel fuel, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, paint vapors, asphalt emissions from paved roads, biomass combustion, coal combustion, the chemical industry, and petroleum refineries. Vehicle exhaust was the largest source of VOCs, contributing to >50% of ambient VOCs at the three urban sites (Guangzhou, Foshan, and Zhongshan). LPG leakage played an important role, representing 8-16% of emissions at most sites in the PRD. Solvent usage was the biggest emitter of VOCs at Dongguan, an industrial site, contributing 33% of ambient VOCs. Similarly, at Xinken, a non-urban site, the evaporation of solvents and coatings was the largest emission source, accounting for 31% of emissions, probably because it was downwind of Dongguan. Local biomass combustion was a noticeable source of VOCs at Xinken; although its contribution was estimated at 14.3%, biomass combustion was the third largest VOC source at this site.
Plant-based plume-scale mapping of tritium contamination in desert soils
Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.
2005-01-01
Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.
NASA Astrophysics Data System (ADS)
Anusha, L. S.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Sampoorna, M.; Frisch, H.; Holzreuter, R.; Ramelli, R.
2010-08-01
To model the second solar spectrum (the linearly polarized spectrum of the Sun that is due to coherent scattering processes), one needs to solve the polarized radiative transfer (RT) equation. For strong resonance lines, partial frequency redistribution (PRD) effects must be accounted for, which make the problem computationally demanding. The "last scattering approximation" (LSA) is a concept that has been introduced to make this highly complex problem more tractable. An earlier application of a simple LSA version could successfully model the wings of the strong Ca I 4227 Å resonance line in Stokes Q/I (fractional linear polarization), but completely failed to reproduce the observed Q/I peak in the line core. Since the magnetic field signatures from the Hanle effect only occur in the line core, we need to generalize the existing LSA approach if it is to be useful for the diagnostics of chromospheric and turbulent magnetic fields. In this paper, we explore three different approximation levels for LSA and compare each of them with the benchmark represented by the solution of the full polarized RT, including PRD effects. The simplest approximation level is LSA-1, which uses the observed center-to-limb variation of the intensity profile to obtain the anisotropy of the radiation field at the surface, without solving any transfer equation. In contrast, the next two approximation levels use the solution of the unpolarized transfer equation to derive the anisotropy of the incident radiation field and use it as an input. In the case of LSA-2, the anisotropy at level τλ = μ, the atmospheric level from which an observed photon is most likely to originate, is used. LSA-3, on the other hand, makes use of the full depth dependence of the radiation anisotropy. The Q/I formula for LSA-3 is obtained by keeping the first term in a series expansion of the Q-source function in powers of the mean number of scattering events. Computationally, LSA-1 is 21 times faster than LSA-2, which is 5 times faster than the more general LSA-3, which itself is 8 times faster than the polarized RT approach. A comparison of the calculated Q/I spectra with the RT benchmark shows excellent agreement for LSA-3, including good modeling of the Q/I core region with its PRD effects. In contrast, both LSA-1 and LSA-2 fail to model the core region. The RT and LSA-3 approaches are then applied to model the recently observed Q/I profile of the Ca I 4227 Å line in quiet regions of the Sun. Apart from a global scale factor both give a very good fit to the Q/I spectra for all the wavelengths, including the core peak and blend line depolarizations. We conclude that LSA-3 is an excellent substitute for the full polarized RT and can be used to interpret the second solar spectrum, including the Hanle effect with PRD. It also allows the techniques developed for unpolarized three-dimensional RT to be applied to the modeling of the second solar spectrum.
1987-04-01
socialists, charm its deputies and reduce its unemployed electorate. In the next 3 months, it is only by relying on a motion of censure by the PRD...the Left, however, the phenomenon is even more complex. Or Cavaco Silva is not the classic leader of the haute bourgeoisie , residing in Cascäis or in...Austere, discreet in dress, with moderate habits, he does not reflect the good life of the exploiter. Simple and direct, he appeals to the
Secondary Education Credentials: A Military Enlistment Policy Dilemma
1983-11-01
fall 1980 data from the National Center for Education Statistics , showing the enrollment rankings for church related schools to be: (1) Catholic, (2...34Unclassified 8ECURITY CLASSI•ICATION OP THIS PA•OEMn Data SnI..ed) Final Report HumIRRO FR.PRD.3.-22 Secondary Education Credentials: A Military...Commission of the States National Home Study Council* 11 •National Center for Education Statistics National Institute of Education 3 National Association of
Technology Demonstration of the Zero Emissions Chromium Electroplating System
2008-02-01
Phase I trivalent chromium results ................................................................... 23 18 Phase II total chromium in PRD fluid results...0 xa B D F H J L Sam pies Figure 16. Phase II iron results. ERDC/CERL TR-05-35, Vol. 1 23 Trivalent Chromium Phase I Analysis for Phase I was...with the samples. Each sample was analyzed twice, and an average was computed. Figure 17 shows the results. ANAD has specified that Trivalent Chromium
NASA Astrophysics Data System (ADS)
Corona, Roberto; Curreli, Matteo; Montaldo, Nicola; Oren, Ram
2013-04-01
Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFT) competing for the water use. Mediterranean regions suffer water scarcity due to the dry climate conditions. In semi-arid regions evapotranspiration (ET) is the leading loss term of the root-zone water budget with a yearly magnitude that may be roughly equal to the precipitation. Despite the attention these ecosystems are receiving, a general lack of knowledge persists about the estimate of ET and the relationship between ET and the plant survival strategies for the different PFTs under water stress. During the dry summers these water-limited heterogeneous ecosystems are mainly characterized by a simple dual PFT-landscapes with strong-resistant woody vegetation and bare soil since grass died. In these conditions due to the low signal of the land surface fluxes captured by the sonic anemometer and gas analyzer the widely used eddy covariance may fail and its ET estimate is not robust enough. In these conditions the use of the sap flow technique may have a key role, because theoretically it provides a direct estimate of the woody vegetation transpiration. Through the coupled use of the sap flow sensor observations, a 2D foot print model of the eddy covariance tower and high resolution satellite images for the estimate of the foot print land cover map, the eddy covariance measurements can be correctly interpreted, and ET components (bare soil evaporation and woody vegetation transpiration) can be separated. The case study is at the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. An extensive field campaign started in 2004. Land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated. From 2012 sap flow sensors based on the thermal Dissipation Method are installed on numerous trees around the tower. Preliminary results show first the need of careful use sap flow sensors outputs which are affected by errors in the estimates of their main parameters, mainly allometric relationships between, for instance, sapwood area, diameter, canopy cover area, which affect the upscale of the local tree measurements to the site plot larger scale. Finally we demonstrate that the sap flow sensors are essential for the estimate of ET in such dry conditions, typical of Mediterranean ecosystems.
Remote sensing-based estimation of annual soil respiration at two contrasting forest sites
NASA Astrophysics Data System (ADS)
Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng
2015-11-01
Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.
Almeida, Giselle; Gibson, Kristen E
2016-09-01
In the retail food service industry, small countertop sinks, or dipper wells, are utilized to rinse and store serving utensils between uses. These dipper wells are designed to operate under a constant flow of water, which serves both to prevent the accumulation of microorganisms and to aid in the cleanliness of the dipper well itself. Here, a recirculating dipper well ozone sanitation system (DWOSS) was evaluated for the control and inactivation of Escherichia coli , Listeria innocua , PRD1 bacteriophage, and Staphylococcus aureus present on a stainless steel disher. In a low ozone (O 3 ) demand medium, the DWOSS achieved over a 5-log reduction for E. coli , L. innocua , and PRD1 at 30 s when exposed to 0.45 to 0.55 ppm of residual O 3 . A greater than 5-log total CFU reduction was achieved for S. aureus at a 600-s exposure time and 0.50 ppm of residual O 3 . When evaluated in the presence of high O 3 demand medium (10% skim milk), the DWOSS performed significantly better (P < 0.05) for all microbe-exposure time combinations compared with a conventional dipper well with respect to the reduction of microbes on the stainless steel disher. For example, at 30 s, the DWOSS achieved 4.37, 2.48, 1.38, and 1.31 greater log (CFU or PFU) reduction of E. coli , L. innocua , PRD1, and S. aureus , respectively, than a conventional dipper well. In addition, the DWOSS was evaluated under two neglect scenarios to determine its ability to control microbes in 10% skim milk medium on the stainless steel disher and within the dipper well basin itself over an extended period of use (2 h of use per day over 5 days). Considering the efficacy of the DWOSS unit against the microbes evaluated here, the integration of ozone into a dipper well could be a potential critical control point to reduce the incidence of microbial contamination during retail food service. To our knowledge, a dipper well with a cleaning-in-place sanitizing system is not currently available for use in the food service industry; and, thus, this is the first study to evaluate the efficacy of a cleaning-in-place dipper well.
NASA Astrophysics Data System (ADS)
Ginzburg, D.; Knafo, Y.; Manor, A.; Seif, R.; Ghelman, M.; Ellenbogen, M.; Pushkarsky, V.; Ifergan, Y.; Semyonov, N.; Wengrowicz, U.; Mazor, T.; Kadmon, Y.; Cohen, Y.; Osovizky, A.
2015-06-01
There is a need to develop new personal radiation detector (PRD) technologies that can be mass produced. On August 2013, DARPA released a request for information (RFI) seeking innovative radiation detection technologies. In addition, on December 2013, a Broad Agency Announcement (BAA) for the SIGMA program was released. The RFI requirements focused on a sensor that should possess three main properties: low cost, high compactness and radioisotope identification capabilities. The identification performances should facilitate the detection of a hidden threat, ranging from special nuclear materials (SNM) to commonly used radiological sources. Subsequently, the BAA presented the specific requirements at an instrument level and provided a comparison between the current market status (state-of-the-art) and the SIGMA program objectives. This work presents an optional alternative for both the detection technology (sensor with communication output and without user interface) for DARPA's initial RFI and for the PRD required by the SIGMA program. A broad discussion is dedicated to the method proposed to fulfill the program objectives and to the selected alternative that is based on the PDS-GO design and technology. The PDS-GO is the first commercially available PRD that is based on a scintillation crystal optically coupled with a silicon photomultiplier (SiPM), a solid-state light sensor. This work presents the current performance of the instrument and possible future upgrades based on recent technological improvements in the SiPM design. The approach of utilizing the SiPM with a commonly available CsI(Tl) crystal is the key for achieving the program objectives. This approach provides the appropriate performance, low cost, mass production and small dimensions; however, it requires a creative approach to overcome the obstacles of the solid-state detector dark current (noise) and gain stabilization over a wide temperature range. Based on the presented results, we presume that the proposed approach of SiPM, with pixel size of 35 μm, coupled to a scintillation material (for gamma and neutron detection) ensures the availability and low cost of the key components. Furthermore, automated manufacturing process enables mass production, thereby fulfilling the SIGMA program requirements, both as a sensor (assimilated with mobile device) and as a full detection device.
Removal of microorganisms by deep well injection
NASA Astrophysics Data System (ADS)
Schijven, Jack F.; Medema, Gertjan; Vogelaar, Ad J.; Hassanizadeh, S. Majid
2000-08-01
The removal of bacteriophages MS2 and PRD1, spores of Clostridium bifermentans (R5) and Escherichia coli (WR1) by deep well injection into a sandy aquifer, was studied at a pilot field site in the southeast of the Netherlands. Injection water was seeded with the microorganisms for 5 days. Breakthrough was monitored for 93 days at 4 monitoring wells with their screens at a depth of about 310 m below surface. Within the first 8 m of soil passage, concentrations of MS2 and PRD1 were reduced by 6 log 10, that of R5 spores by 5 log 10 and that of WR1 by 7.5 log 10. Breakthrough of MS2 and R5 could also be followed at greater distances from the injection well. Concentrations of MS2 were reduced only by about 2 log 10 in the following 30 m, and reduction of concentrations of R5 was negligible. Apparently, attachment was greater during the first 8 m of aquifer passage. At the point of injection, the inactivation rate coefficient of free MS2 was found to be 0.081 day -1, that of free PRD1 0.060 day -1, and that of E. coli strain WR1 0.063 day -1. In injection water that had passed 8 m of soil, inactivation of MS2 phages was found to be less than in water from the injection well: 0.039 day -1. Probably, the higher inactivation rate of MS2 in water from the injection well may be ascribed to the activity of aerobic bacteria. Inactivation of the R5 spores was not significant. From geochemical mass balances, it could be deduced that within the first 8 m distance from the injection well, ferric oxyhydroxides precipitated as a consequence of pyrite oxidation, but not at larger distances. Ferric oxyhydroxides provide positively charged patches onto which fast attachment of the negatively charged microorganisms may take place. The non-linear logarithmic reduction of concentrations with distance may therefore be ascribed to preferable attachment of microorganisms to patches of ferric oxyhydroxides that are present within 8 m distance from the injection point, but not thereafter. Declogging of the injection well introduced hydrodynamic shear that remobilized MS2, which was then transported farther downstream.
NASA Astrophysics Data System (ADS)
Lai, Chia-Lin; Lee, Jhih-Shian; Chen, Jyh-Cheng
2015-02-01
Energy-mapping, the conversion of linear attenuation coefficients (μ) calculated at the effective computed tomography (CT) energy to those corresponding to 511 keV, is an important step in CT-based attenuation correction (CTAC) for positron emission tomography (PET) quantification. The aim of this study was to implement energy-mapping step by using curve fitting ability of artificial neural network (ANN). Eleven digital phantoms simulated by Geant4 application for tomographic emission (GATE) and 12 physical phantoms composed of various volume concentrations of iodine contrast were used in this study to generate energy-mapping curves by acquiring average CT values and linear attenuation coefficients at 511 keV of these phantoms. The curves were built with ANN toolbox in MATLAB. To evaluate the effectiveness of the proposed method, another two digital phantoms (liver and spine-bone) and three physical phantoms (volume concentrations of 3%, 10% and 20%) were used to compare the energy-mapping curves built by ANN and bilinear transformation, and a semi-quantitative analysis was proceeded by injecting 0.5 mCi FDG into a SD rat for micro-PET scanning. The results showed that the percentage relative difference (PRD) values of digital liver and spine-bone phantom are 5.46% and 1.28% based on ANN, and 19.21% and 1.87% based on bilinear transformation. For 3%, 10% and 20% physical phantoms, the PRD values of ANN curve are 0.91%, 0.70% and 3.70%, and the PRD values of bilinear transformation are 3.80%, 1.44% and 4.30%, respectively. Both digital and physical phantoms indicated that the ANN curve can achieve better performance than bilinear transformation. The semi-quantitative analysis of rat PET images showed that the ANN curve can reduce the inaccuracy caused by attenuation effect from 13.75% to 4.43% in brain tissue, and 23.26% to 9.41% in heart tissue. On the other hand, the inaccuracy remained 6.47% and 11.51% in brain and heart tissue when the bilinear transformation was used. Overall, it can be concluded that the bilinear transformation method resulted in considerable bias and the newly proposed calibration curve built by ANN could achieve better results with acceptable accuracy.
REMORA: a pilot in the ocean of BioMoby web-services.
Carrere, Sébastien; Gouzy, Jérôme
2006-04-01
Emerging web-services technology allows interoperability between multiple distributed architectures. Here, we present REMORA, a web server implemented according to the BioMoby web-service specifications, providing life science researchers with an easy-to-use workflow generator and launcher, a repository of predefined workflows and a survey system. Jerome.Gouzy@toulouse.inra.fr The REMORA web server is freely available at http://bioinfo.genopole-toulouse.prd.fr/remora, sources are available upon request from the authors.
Yin, Shasha; Zheng, Junyu; Lu, Qing; Yuan, Zibing; Huang, Zhijiong; Zhong, Liuju; Lin, Hui
2015-05-01
Accurate and gridded VOC emission inventories are important for improving regional air quality model performance. In this study, a four-level VOC emission source categorization system was proposed. A 2010-based gridded Pearl River Delta (PRD) regional VOC emission inventory was developed with more comprehensive source coverage, latest emission factors, and updated activity data. The total anthropogenic VOC emission was estimated to be about 117.4 × 10(4)t, in which on-road mobile source shared the largest contribution, followed by industrial solvent use and industrial processes sources. Among the industrial solvent use source, furniture manufacturing and shoemaking were major VOC emission contributors. The spatial surrogates of VOC emission were updated for major VOC sources such as industrial sectors and gas stations. Subsector-based temporal characteristics were investigated and their temporal variations were characterized. The impacts of updated VOC emission estimates and spatial surrogates were evaluated by modeling O₃ concentration in the PRD region in the July and October of 2010, respectively. The results indicated that both updated emission estimates and spatial allocations can effectively reduce model bias on O₃ simulation. Further efforts should be made on the refinement of source classification, comprehensive collection of activity data, and spatial-temporal surrogates in order to reduce uncertainty in emission inventory and improve model performance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.
2003-06-01
Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.
NASA Astrophysics Data System (ADS)
Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian
2011-04-01
This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.
Pelvic radiation disease: Updates on treatment options
Frazzoni, Leonardo; La Marca, Marina; Guido, Alessandra; Morganti, Alessio Giuseppe; Bazzoli, Franco; Fuccio, Lorenzo
2015-01-01
Pelvic cancers are among the most frequently diagnosed neoplasms and radiotherapy represents one of the main treatment options. The irradiation field usually encompasses healthy intestinal tissue, especially of distal large bowel, thus inducing gastrointestinal (GI) radiation-induced toxicity. Indeed, up to half of radiation-treated patients say that their quality of life is affected by GI symptoms (e.g., rectal bleeding, diarrhoea). The constellation of GI symptoms - from transient to long-term, from mild to very severe - experienced by patients who underwent radiation treatment for a pelvic tumor have been comprised in the definition of pelvic radiation disease (PRD). A correct and evidence-based therapeutic approach of patients experiencing GI radiation-induced toxicity is mandatory. Therapeutic non-surgical strategies for PRD can be summarized in two broad categories, i.e., medical and endoscopic. Of note, most of the studies have investigated the management of radiation-induced rectal bleeding. Patients with clinically significant bleeding (i.e., causing chronic anemia) should firstly be considered for medical management (i.e., sucralfate enemas, metronidazole and hyperbaric oxygen); in case of failure, endoscopic treatment should be implemented. This latter should be considered the first choice in case of acute, transfusion requiring, bleeding. More well-performed, high quality studies should be performed, especially the role of medical treatments should be better investigated as well as the comparative studies between endoscopic and hyperbaric oxygen treatments. PMID:26677440
New Insights on the Nitrogen Footprint of a Coastal Megalopolis from Coral-Hosted Symbiodinium δ15N.
Wong, C W Martin; Duprey, Nicolas N; Baker, David M
2017-02-21
The development of megalopolises in coastal areas is often linked with severe eutrophication, requiring mitigation of anthropogenic dissolved inorganic nitrogen (DIN) pollution. Yet, identifying the DIN-sources responsible for eutrophication is challenging, hampering mitigation efforts. Here, we utilize the stable nitrogen isotope ratio of endosymbiotic dinoflagellate Symbiodinium spp. (δ 15 N sym ) associated with the hard coral Porites to trace DIN sources in one of the most urbanized areas of the planet: the Pearl River Delta (PRD). The mean δ 15 N sym value found in the coastal waters of Hong Kong (HK), located on the eastern edge of the PRD, (7.4‰ ± 1.2‰) was +2.7‰ higher than at Dongsha Atoll, a reference site unaffected by anthropogenic-DIN (4.7‰ ± 0.4‰). The isotopic enrichment suggested a consistent dominance of DIN deriving from local and regional sewage discharges on the eastern edge of HK. Furthermore, the strong depletion of the summer δ 15 N sym value (-1.6‰) observed in southern HK revealed that the Pearl River plume strongly modulates the coastal DIN pool. Our results revealed the value of benthic marine organisms' δ 15 N for deciphering the complex dynamics of coastal eutrophication and highlighted the pivotal role of transboundary coordination in DIN-pollution mitigation.
Viral transport in a sand and gravel aquifer under field pumping conditions.
Woessner, W W; Ball, P N; DeBorde, D C; Troy, T L
2001-01-01
Ground water supplies contaminated with microbes cause more than 50% of the water-borne disease outbreaks in the United States. Proposed regulations suggest natural disinfection as a possible mechanism to treat microbe-impacted ground water under favorable conditions. However, the usefulness of current models employed to predict viral transport and natural attenuation rates is limited by the absence of field scale calibration data. At a remote floodplain aquifer in western Montana, the bacteriophages MS2, phiX174, and PRD1; attenuated poliovirus type-1 (CHAT strain); and bromide were seeded as a slug 21.5 m from a well pumping at a steady rate of 408 L/min. Over the 47-hour duration of the test, resulting in the exchange of 12 to 13 pore volumes, 77% of the bromide, 55% of the PRD1, 17% of the MS2, 7% of the phiX174, and 0.12% of the poliovirus masses were recovered at the pumping well. Virus transport behavior was controlled by mechanical dispersion, preferential flow, time-dependent nonreversible and reversible attachment, and apparent mass transfer to immobile domains within the sand and gravel dominated aquifer. The percentage of virus recovery appears correlated with reported viral isoelectric point (pI) values. Successful modeling of viral transport in coarse-grained aquifers will require separation of viral specific properties from reported lumped viral-transport system parameters.
Frohnert, Anne; Kreißel, Katja; Lipp, Pia; Dizer, Halim; Hambsch, Beate; Szewzyk, Regine; Selinka, Hans-Christoph
2015-03-19
Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ΦX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ΦX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ΦX174 should be used as conservative viral indicators.
Monitoring Population Evolution in the Pearl River Delta from 2000 TO 2010
NASA Astrophysics Data System (ADS)
Yu, S.; Liu, F.; Zhang, Z.
2018-04-01
On behalf of more populous and developed regions in China, urban agglomerations have become important carries loading active economic activities and generous social benefits, and experienced sharper population increase, which results in great threat on local eco-environment construction. Therefore, exact and detailed population monitoring and analyzing, especially on the long sequence and multi frequency, is of great significance. The nighttime light time-series (NLT) products has been proven to be one of the most useful remotely sensed imagery to acquire persons at 1 km × 1 km scales. However, the existed problems, such as light saturation and blooming, greatly limit the accuracy of estimated results. Furthermore, it's difficult to spatialize population at km2 level due to the lack of basic data in non-census years. In order to solve all problems mentioned above, the populous Pearl River Delta was selected as the study area. A new residential extent extraction index (REEI) was proposed to solve light saturation and blooming problems. Population spatialization methods in census and non-census years were applied to acquire detailed population distribution from 2000 to 2010. Results showed the feasibility of the proposed methods in this work. During the decade, population was denser in the central PRD and sparser in the eastern, western and northern PRD. The speed of population increase was various in nine cities, but faster in 2000-2005 than 2005-2010.
Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua
2013-07-01
Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B
2016-09-01
United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Gong, Jinnan; Wang, Ben; Jia, Xin; Feng, Wei; Zha, Tianshan; Kellomäki, Seppo; Peltola, Heli
2018-01-01
We used process-based modelling to investigate the roles of carbon-flux (C-flux) components and plant-interspace heterogeneities in regulating soil CO2 exchanges (FS) in a dryland ecosystem with sparse vegetation. To simulate the diurnal and seasonal dynamics of FS, the modelling considered simultaneously the CO2 production, transport and surface exchanges (e.g. biocrust photosynthesis, respiration and photodegradation). The model was parameterized and validated with multivariate data measured during the years 2013-2014 in a semiarid shrubland ecosystem in Yanchi, northwestern China. The model simulation showed that soil rewetting could enhance CO2 dissolution and delay the emission of CO2 produced from rooting zone. In addition, an ineligible fraction of respired CO2 might be removed from soil volumes under respiration chambers by lateral water flows and root uptakes. During rewetting, the lichen-crusted soil could shift temporally from net CO2 source to sink due to the activated photosynthesis of biocrust but the restricted CO2 emissions from subsoil. The presence of plant cover could decrease the root-zone CO2 production and biocrust C sequestration but increase the temperature sensitivities of these fluxes. On the other hand, the sensitivities of root-zone emissions to water content were lower under canopy, which may be due to the advection of water flows from the interspace to canopy. To conclude, the complexity and plant-interspace heterogeneities of soil C processes should be carefully considered to extrapolate findings from chamber to ecosystem scales and to predict the ecosystem responses to climate change and extreme climatic events. Our model can serve as a useful tool to simulate the soil CO2 efflux dynamics in dryland ecosystems.
Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes
NASA Astrophysics Data System (ADS)
Wu, Laosheng; Yang, Ting; Šimůnek, Jirka
2017-04-01
Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.
Estimating evapotranspiration in natural and constructed wetlands
Lott, R. Brandon; Hunt, Randall J.
2001-01-01
Difficulties in accurately calculating evapotranspiration (ET) in wetlands can lead to inaccurate water balances—information important for many compensatory mitigation projects. Simple meteorological methods or off-site ET data often are used to estimate ET, but these approaches do not include potentially important site-specific factors such as plant community, root-zone water levels, and soil properties. The objective of this study was to compare a commonly used meterological estimate of potential evapotranspiration (PET) with direct measurements of ET (lysimeters and water-table fluctuations) and small-scale root-zone geochemistry in a natural and constructed wetland system. Unlike what has been commonly noted, the results of the study demonstrated that the commonly used Penman combination method of estimating PET underestimated the ET that was measured directly in the natural wetland over most of the growing season. This result is likely due to surface heterogeneity and related roughness efffects not included in the simple PET estimate. The meterological method more closely approximated season-long measured ET rates in the constructed wetland but may overestimate the ET rate late in the growing season. ET rates also were temporally variable in wetlands over a range of time scales because they can be influenced by the relation of the water table to the root zone and the timing of plant senescence. Small-scale geochemical sampling of the shallow root zone was able to provide an independent evaluation of ET rates, supporting the identification of higher ET rates in the natural wetlands and differences in temporal ET rates due to the timing of senescence. These discrepancies illustrate potential problems with extrapolating off-site estimates of ET or single measurements of ET from a site over space or time.
Root based responses account for Psidium guajava survival at high nickel concentration.
Bazihizina, Nadia; Redwan, Mirvat; Taiti, Cosimo; Giordano, Cristiana; Monetti, Emanuela; Masi, Elisa; Azzarello, Elisa; Mancuso, Stefano
2015-02-01
The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils. Copyright © 2014 Elsevier GmbH. All rights reserved.
Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
NASA Astrophysics Data System (ADS)
Lievens, H.; Reichle, R. H.; Liu, Q.; De Lannoy, G.; Dunbar, R. S.; Kim, S.; Das, N. N.; Cosh, M. H.; Walker, J. P.; Wagner, W.
2017-12-01
SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model (CLSM) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (6 day repeat cycle for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into CLSM, either separately from or simultaneously with SMAP radiometer observations. To facilitate the assimilation of the radar observations, CLSM is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The assimilation impact is assessed by comparing 3-hourly, 9 km surface and root-zone soil moisture simulations with in situ measurements from 9 km SMAP core validation sites and sparse networks, from May 2015 to 2017. The Sentinel-1 assimilation consistently improves surface soil moisture, whereas root-zone impacts are mostly neutral. Relatively larger improvements are obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performs best, demonstrating the complementary value of radar and radiometer observations.
Nitrous oxide fluxes from cultivated areas and rangeland: U.S. High Plains
Weeks, Edwin P.; McMahon, Peter B.
2007-01-01
Concentration profiles of N2O, a greenhouse gas, and the conservative trace gases SF6 and the chlorofluorocarbons CFC-11, CFC-12, CFC-113, and were measured periodically through thick vadose zones at nine sites in the U.S. High Plains. The CFC and SF6 measurements were used to calibrate a one-dimensional gas diffusion model, using the parameter identification program UCODE. The calibrated model was used with N2O measurements to estimate average annual N2O flux from both the root zone and the deep vadose zone to the atmosphere. Estimates of root-zone N 2O fluxes from three rangeland sites ranged from near 0 to about 0.2 kg N2O-N ha-1 yr-1, values near the low end of the ranges determined for native grass from other studies. Estimates of root-zone N2O fluxes from two fields planted to corn (Zea mays L.) of about 2 to 6 kg N2O-N ha-1 yr-1 are similar to those determined for corn in other studies. Estimates of N2O flux from Conservation Reserve grassland converted from irrigated corn indicate that production of N2O is substantially reduced following conversion from cropland. Small N2O fluxes from the water table or from deep in the vadose zone occurred at three sites, ranging from 0.004 to 0.02 kg N 2O-N ha-1 yr-1. Our estimates of N2O flux represent space- and time-averaged values that should be useful to more fully evaluate the significance of instantaneous point flux measurements. ?? Soil Science Society of America.
How do emission patterns in megacities affect regional air pollution?
NASA Astrophysics Data System (ADS)
Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.
2010-12-01
Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3) creation potential. Compared to the emissions used in the reference simulation, changing per capita urban emissions in BNL into those of IST or SAP will lead to reduction in total megacity emissions of CO and NOx by between 40 to 80% and of between 5 to 20% for NMVOC. When the per capita emissions for PRD are applied, only NOx decreases (by 50%) while CO and NMVOC increase by between 20 and 40%. Similar changes occur when the emissions are interchanged in the other three regions. Annual mean ambient O_3 concentrations in the entire BNL megacity domain are elevated by 3 to 8 ppb in all sensitivity runs and a significant effect is also found outside the main megacity area. In the IST and PRD megacity areas, O_3 levels increase or decrease by 1 to 5 ppb when the per capita emissions from the other regions are used. For the SAP megacity area, all scenarios lead to a reduction of annual mean O_3 levels by more than 4 ppb in the north-western section of the domain while increases up to 3 ppb are predicted for some southern regions. We will also present an analysis of changes in the photochemical regimes related to altered emission patterns. The study can contribute directly to the development of air pollution abatement strategies.
Evidence Report: Risk of Decompression Sickness (DCS)
NASA Technical Reports Server (NTRS)
Conkin, Johnny; Norcross, Jason R.; Wessel, James H. III; Abercromby, Andrew F. J.; Klein, Jill S.; Dervay, Joseph P.; Gernhardt, Michael L.
2013-01-01
The Risk of Decompression Sickness (DCS) is identified by the NASA Human Research Program (HRP) as a recognized risk to human health and performance in space, as defined in the HRP Program Requirements Document (PRD). This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that tissue inert gas partial pressure is often greater than ambient pressure during phases of a mission, primarily during extravehicular activity (EVA), there is a possibility that decompression sickness may occur.
Panama: Political and Economic Conditions and U.S. Relations
2008-07-31
but the September 1, 2007 election of Pedro Miguel González to head Panama’s legislature for one year delayed consideration. González is wanted in...term. Current Assembly president Pedro Miguel González, wanted in the United States for his alleged role in the murder of a U.S. serviceman in Panama in...Administration negotiated the Panama Canal Treaties. On September 1, 2007, Panama’s Legislative Assembly elected Pedro Miguel González of the ruling PRD
The U.S. Navy’s Consultant Development and Qualification Program: Origin and Issues.
1984-03-01
Areasoe Senior Master I Capability Intern Consultant Consultant Consultant I MARKETING Strategy 1--------------- 21 Ijplementation 1 --------- I...SENIOR MASTER INTERN CONSULTANT CONSULTANT CONSULTANT A. MARKETING A.1 Develop Marketing Strategy Program 1 11 A.2 Implement Marketing Program 1 1 1 2 A.3...Qualification Criteria for: Degree of PROFICIENCY LT 0. D. EFFORT SEP 1980 SEP 1983 Date Reported PRD 1 2 3 4 A. MARKETING A.1 Develop Marketing Strategy (1, 1
requirements: Post-script. The Objective of this report was to determine whether transferring pregnant women from ships costs the Navy more permanent...change of station (PCS) funds than transferring men and nonpregnant women information was extracted from the enlisted master record concerning gender...from gender-integrated afloat units. The direct costs of transfer prior to PRD was compared for men and women and an estimate of PCS costs, if the ships were not gender-integrated, was also calculated.
United States Army Unilateral and Coalition Operations in the 1965 Dominican Republic Intervention
1986-11-01
perceptions held by Latin American leaders. This study identifies several differe- es in perception within the western hemisphere regarding both the possibe...k:’. A- k ’- ’-P’ýJ A A -AA Juan Bosch and his newly formed Dominican Revolutionary Party ( Partido Revolucionario Dominicano), known as the PRD...Ie inon, wetnen, And teenagaer alikeO Meld iemmeiedlally i-41allei upcn his servi~c tchiofs to ,.,uLbia. their 1’nc~ es an#) crush fth rebellion. At
Manipulating soil microbial communities in extensive green roof substrates.
Molineux, Chloe J; Connop, Stuart P; Gange, Alan C
2014-09-15
There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.
Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS
NASA Astrophysics Data System (ADS)
Tobin, Kenneth J.; Torres, Roberto; Crow, Wade T.; Bennett, Marvin E.
2017-09-01
This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA's long-lasting AMSR-E mission. Additionally, three other products were obtained from the European Space Agency Climate Change Initiative (CCI). These datasets were blended based on all available satellite observations (CCI-active, CCI-passive, and CCI-combined). All of these products were 0.25° and taken daily. We applied the filter to produce a soil moisture index (SWI) that others have successfully used to estimate RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T). We examined five different eras (1997-2002; 2002-2005; 2005-2008; 2008-2011; 2011-2014) that represented periods with different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the US Department of Energy Atmospheric Radiation Measurement (ARM) program (25 cm), Soil Climate Analysis Network (SCAN; 20.32 cm), SNOwpack TELemetry (SNOTEL; 20.32 cm), and the US Climate Reference Network (USCRN; 20 cm). We selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model (PRISM). Additionally, we only examined sites where surface and root-zone soil moisture had a reasonably high lagged r value (r > 0. 5). The unknown T value was constrained based on two approaches: optimization of root mean square error (RMSE) and calculation based on the normalized difference vegetation index (NDVI) value. Both approaches yielded comparable results; although, as to be expected, the optimization approach generally outperformed NDVI-based estimates. The best results were noted at stations that had an absolute bias within 10 %. SWI estimates were more impacted by the in situ network than the surface satellite product used to drive the exponential filter. The average Nash-Sutcliffe coefficients (NSs) for ARM ranged from -0. 1 to 0.3 and were similar to the results obtained from the USCRN network (0.2-0.3). NS values from the SCAN and SNOTEL networks were slightly higher (0.1-0.5). These results indicated that this approach had some skill in providing an estimate of RZSM. In terms of RMSE (in volumetric soil moisture), ARM values actually outperformed those from other networks (0.02-0.04). SCAN and USCRN RMSE average values ranged from 0.04 to 0.06 and SNOTEL average RMSE values were higher (0.05-0.07). These values were close to 0.04, which is the baseline value for accuracy designated for many satellite soil moisture missions.
The purple cauliflower arises from activation of a MYB transcription factor.
Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L; Li, Li
2010-11-01
Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal.
The Purple Cauliflower Arises from Activation of a MYB Transcription Factor1[W][OA
Chiu, Li-Wei; Zhou, Xiangjun; Burke, Sarah; Wu, Xianli; Prior, Ronald L.; Li, Li
2010-01-01
Anthocyanins are responsible for the color of many flowers, fruits, and vegetables. An interesting and unique Purple (Pr) gene mutation in cauliflower (Brassica oleracea var botrytis) confers an abnormal pattern of anthocyanin accumulation, giving the striking mutant phenotype of intense purple color in curds and a few other tissues. To unravel the nature of the Pr mutation in cauliflower, we isolated the Pr gene via a combination of candidate gene analysis and fine mapping. Pr encoded a R2R3 MYB transcription factor that exhibited tissue-specific expression, consistent with an abnormal anthocyanin accumulation pattern in the mutant. Transgenic Arabidopsis (Arabidopsis thaliana) and cauliflower plants expressing the Pr-D allele recapitulated the mutant phenotype, confirming the isolation of the Pr gene. Up-regulation of Pr specifically activated a basic helix-loop-helix transcription factor and a subset of anthocyanin structural genes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase to confer ectopic accumulation of pigments in the purple cauliflower. Our results indicate that the genetic variation including a Harbinger DNA transposon insertion in the upstream regulatory region of the Pr-D allele is responsible for the up-regulation of the Pr gene in inducing phenotypic change in the plant. The successful isolation of Pr provides important information on the regulatory control of anthocyanin biosynthesis in Brassica vegetables, and offers a genetic resource for development of new varieties with enhanced health-promoting properties and visual appeal. PMID:20855520
NASA Technical Reports Server (NTRS)
Wright, C. C.; Baker, D. J.
1980-01-01
This report describes the third phase of work, the objective of which was to overcome the excessive brittleness of the previously developed UH-1 helicopter tail rotor drive shaft design which demonstrated a shaft train weight savings of 53.1% over the current 2024-T3 aluminum shaft train. A materials impact program demonstrated exceptionally noteworthy performance of two woven constructions containing E-glass and PRD 49-III (designation later changed to KEVLAR 49) fibers in an epoxy resin matrix. Thermoplastic matrices and PRD 49-III fiber provided impact resistance at low weight which was superior to composites having the same fiber in a thermoset resin matrix. A design, fabrication, and test program showed that shaft impact resistance could be improved over the previously developed graphite composite design at a cost in shaft train rate savings. The shaft train weight savings of the most impact tolerant construction was 4.0% over the current aluminum shaft train. Alternating plies of graphite and glass appear to provide substantially greater tube impact durability than that provided by hybridization of the two fibers into one tape wound to a ply design equivalent in strength and stiffness to that of the alternating ply design. Recommendations were made to continue research work to exploit the potential for more impact-durable structures through the use of KEVLAR 49 fiber, woven structures, thermoplastic matrices and THORNEL 50-S/KEVLAR 49 blends with thermoset matrices.
Jun, S; Wallen, R V; Goriely, A; Kalionis, B; Desplan, C
1998-11-10
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.
Jun, Susie; Wallen, Robert V.; Goriely, Anne; Kalionis, Bill; Desplan, Claude
1998-01-01
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix–turn–helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes. PMID:9811867
Spatial-temporal Change of Sanshui district's Dike-pond from 1979-2009
NASA Astrophysics Data System (ADS)
Liu, Jiaxing; Chen, Jianfei; Wang, Xiaoxuan
Dike-pond is a representative style of ecological agriculture in the PRD(Pearl River Delta). Since 1992, Guangdong quicken its pace of reform and opening-up to the outside world. A mass of factories had been built in the PRD. The dike-ponds have come across some influential changes in the recent 30 years. To detect and study on the changes of dike-ponds, the Remote Sensing and Geography Information System skill was applied in this paper. This article selected Sanshui district as an example and used Landsat TM 1979, 1990, 2000 and SPOT 2009 satellite image as the major data sources. With the help of ITTVIS company newly released software-ENVI EX, object-oriented approach has been used to extract the dike-pond land from each image. The result indicates that the area of dike-pond gained rapidly growth from 1979 to 2000, but decrease critically during 2000-2009. When using Change Detection Analysis to compute each period's change statistics, the result shown that the increased dike-pond area were mainly from vegetation covered land and other bare land. Then we found out that the mean centre of Sanshui district's dike-pond was moving from northwest to southeast during 1979-2009. Therefore, it comes to the conclusion that Sanshui district's dike-pond increased across the southeast of Sanshui district from 1979 to 2009. Last but not least, some suggestions have been put forward to keep the dike-pond land area from decreasing.
Ground-level ozone pollution and its health impacts in China
NASA Astrophysics Data System (ADS)
Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin
2018-01-01
In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.
Shan, Zhongguo; Zhu, Kexin; Peng, Hui; Chen, Bei; Liu, Jie; Chen, Fangyi; Ma, Xiaowan; Wang, Shuping; Qiao, Kun; Wang, Kejian
2016-01-01
SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain. PMID:27493644
NASA Astrophysics Data System (ADS)
Berryman, E.; Barnard, H. R.; Brooks, P. D.; Adams, H.; Burns, M. A.; Wilson, W.; Stielstra, C. M.
2013-12-01
A current ecohydrological challenge is quantifying the exact nature of carbon (C) and water couplings across landscapes. An emerging framework of understanding places plant physiological processes as a central control over soil respiration, the largest source of CO2 to the atmosphere. In dry montane forests, spatial and temporal variability in forest physiological processes are governed by hydrological patterns. Critical feedbacks involving respiration, moisture supply and tree physiology are poorly understood and must be quantified at the landscape level to better predict carbon cycle implications of regional drought under future climate change. We present data from an experiment designed to capture landscape variability in key coupled hydrological and C processes in forests of Colorado's Front Range. Sites encompass three catchments within the Boulder Creek watershed, range from 1480 m to 3021 m above sea level and are co-located with the DOE Niwot Ridge Ameriflux site and the Boulder Creek Critical Zone Observatory. Key hydrological measurements (soil moisture, transpiration) are coupled with soil respiration measurements within each catchment at different landscape positions. This three-dimensional study design also allows for the examination of the role of water subsidies from uplands to lowlands in controlling respiration. Initial findings from 2012 reveal a moisture threshold response of the sensitivity of soil respiration to temperature. This threshold may derive from tree physiological responses to variation in moisture availability, which in turn is controlled by the persistence of snowpack. Using data collected in 2013, first, we determine whether respiration moisture thresholds represent triggers for transpiration at the individual tree level. Next, using stable isotope ratios of soil respiration and xylem and soil water, we compare the depths of respiration to depths of water uptake to assign tree vs. understory sources of respiration. This will help determine whether tree root-zone respiration exhibits a similar moisture threshold. Lastly, we examine whether moisture thresholds to temperature sensitivity are consistent across a range of snowpack persistence. Findings are compared to data collected from sites in Arizona and New Mexico to better establish the role of winter precipitation in governing growing season respiration rates. The outcome of this study will contribute to a better understanding of linkages among water, tree physiology, and soil respiration with the ultimate goal of scaling plot-level respiration fluxes to entire catchments.
NASA Astrophysics Data System (ADS)
McMillan, Mica Franklin
Soil water repellency (SWR) negatively affects turfgrass growth and quality and impedes uniform distribution of water, particularly in sand-based rootzones. Surfactants and soil amendments such as calcined clay are two approaches to improving soil hydrological properties affected by SWR. However, studying SWR in the field is difficult due to the extreme spatial variability in the soil profile. An objective of this dissertation was to assess two methods to impart SWR on sand and examine SWR amelioration strategies using these procedures under a plant environment and deficit irrigation. To determine effectiveness of artificial hydrophobicity, two methods produced severely hydrophobic substrates: stearic acid sand (HSS) and sand:peat (90:10 sand:peat v/v)(HSP). Greenhouse studies compared the effects of substrates HSS, HSP, 100% sand (SAND), sand:peat (90:10 v/v) (SP), sand:calcined clay (90:10 v/v) (CC) and naturally water repellent sand (NWRS) on bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] establishment and growth. Results indicate that HSS and HSP were not toxic to turfgrass but initially, hindered bermudagrass growth. At trials end, SWR had declined in both soils. A second greenhouse study assessed surfactant chemistry on substrates. After three dry downs, surfactants generally improved turfgrass quality in SAND and CC but had no significant effect in HSP and SP. Water drop penetration tests deemed CC and SAND wettable and HSP and SP nonwettable. Contact angle analysis found CC and SAND to be subcritically water repellent while HSP and SP were water repellent. Both HSP and HSS could be used to evaluate the influence of SWR on plant growth. However, both methods have disadvantages. CC remained wettable after several dry downs. In another greenhouse study, perennial ryegrass (Lolium perenne) seeds coated with 10% w/w alkyl-terminated block copolymer surfactant seed coating (SC) were evaluated as an amelioration strategy. Seed treated with surfactant yielded similar or greater percent coverage, shoot growth, root weight and increased volumetric water in the majority of substrates when compared to substrates sown with untreated seed. Coating seeds with surfactant may be used as a method to improve seed germination, establishment and enhance soil moisture, particularly under deficit irrigation.
NASA Astrophysics Data System (ADS)
Weiss, J. V.; Megonigal, J. P.; Emerson, D.
2002-05-01
We have found that the Fe-oxide deposits (Fe-plaque) on wetland plant roots contain abundant microbes including Fe(II)-oxidizing bacteria (FeOB) (Appl. Environ. Microbiol. 1999, 65:2758-2761). In the current study, we investigated the potential for root Fe-plaque to serve as a substrate for Fe(III)-reducing bacteria (FeRB) and compared rates of Fe reduction between plaque and bulk soil. In a study at six wetland habitats located in the Mid-Atlantic region, abundances of FeRB in the rhizosphere of Typha spp. and the bulk soil were enumerated using the most probable number technique. In the rhizosphere, FeRB accounted for an average of 12% of the total cell number while in the soil they accounted for <1% of the total bacteria. We subsequently performed a sequential chemical extraction on both roots and soil to determine if FeRB abundances were driven by differences in the reducibility of Fe(III) in each environment. The roots contained a significantly higher percentage of amorphous Fe (77.4%; p<0.05 n=5 wetlands) than the bulk soil (33.8%); conversely, the soil also had significantly higher amounts of crystalline Fe (41.1%, p<0.05, n=5 wetlands) than the roots (8.1%). A significant correlation was observed between the percentage of amorphous Fe and the percentage of FeRB (r2=0.583; p<0.05). Since amorphous Fe is more readily reduced by microbes than crystalline Fe, these results suggested that the roots provide a good substrate for iron-reducing bacteria. To determine how differences in reducible Fe(III) might limit Fe reduction potential, we performed 12-day anaerobic incubations of roots and soil with Geobacter metallireducans, a common FeRB isolated from aquatic environments. Although Fe(III) reduction rates peaked at between 48 and 72 hours in both the roots and soils, the total amount of Fe(II) production in the root samples was significantly higher than that in the soil samples (350 μ moles g dry weight-1 vs. 153 μ moles g dry weight-1; p<0.05). All of these findings, including higher percentages of FeRB and amorphous Fe in the rhizosphere than in the bulk soil, support the hypothesis that the wetland plant rhizosphere is an active zone of Fe(III) reduction.
Hydraulics of sub-superficial flow constructed wetlands in semi arid climate conditions.
Ranieri, E
2003-01-01
This paper reports the evaluation of the hydraulics of two constructed wetland (cw(s)) plants located in Apulia (the South Eastern Italy region characterized by semi arid climate conditions). These fields were planted with Phragmites australis hydrophytes and are supplied with local secondary wastewater municipal treatment plant effluent. Each plant--Kickuth Root-Zone method based--covers an area of approx. 2,000 m2. The evapotranspiration phenomenon has been evaluated within perforated tubes fixed to the field bottom and very high values--up to 40 mm/d--were found. Hydraulic conductivity has been evaluated by in situ measurements at different field points. Hydraulic gradients and the piezometric curve within the field are also reported.
Internally mixed sea salt, soot, and sulfates at Macao, a coastal city in South China.
Li, Weijun; Shao, Longyi; Shen, Rongrong; Yang, Shusheng; Wang, Zhishi; Tang, Uwa
2011-11-01
Direct observation of the mixing state of aerosol particles in a coastal urban city is critical to understand atmospheric processing and hygroscopic growth in humid air. Morphology, composition, and mixing state of individual aerosol particles from Macao, located south of the Pearl River Delta (PRD) and 100 km west of Hong Kong, were investigated using scanning electron microscopy (SEM) and transmission electron microscopy coupled with energy-dispersive X-ray spectrometry (TEM/EDX). SEM images show that soot and roughly spherical particles are prevalent in the samples. Based on the compositions of individual aerosol particles, aerosol particles with roughly spherical shape are classified into coarse Na-rich and fine S-rich particles. TEM/EDX indicates that each Na-rich particle consists of a Na-S core and NaNO3 shell. Even in the absence of heavy pollution, the marine sea salt particles were completely depleted in chloride, and Na-related sulfates and nitrates were enriched in Macao air. The reason could be that SO2 from the polluted PRD and ships in the South China Sea and NO2 from vehicles in the city sped up the chlorine depletion in sea salt through heterogeneous reactions. Fresh soot particles from vehicular emissions mainly occur near curbside. However, there are many aged soot particles in the sampling site surrounded by main roads 200 to 400 m away, suggesting that the fresh soot likely underwent a quick aging. Overall, secondary nitrates and sulfates internally mixed with soot and sea salt particles can totally change their surface hygroscopicity in coastal cities.
NASA Astrophysics Data System (ADS)
Yin, Xiaohong; Huang, Zhijiong; Zheng, Junyu; Yuan, Zibing; Zhu, Wenbo; Huang, Xiaobo; Chen, Duohong
2017-04-01
As one of the most populous and developed provinces in China, Guangdong province (GD) has been experiencing regional haze problems. Identification of source contributions to ambient PM2.5 level is essential for developing effective control strategies. In this study, using the most up-to-date emission inventory and validated numerical model, source contributions to ambient PM2.5 from eight emission source sectors (agriculture, biogenic, dust, industry, power plant, residential, mobile and others) in GD in 2012 were quantified. Results showed that mobile sources are the dominant contributors to the ambient PM2.5 (24.0%) in the Pearl River Delta (PRD) region, the central and most developed area of GD, while industry sources are the major contributors (21.5% 23.6%) to those in the Northeastern GD (NE-GD) region and the Southwestern GD (SW-GD) region. Although many industries have been encouraged to move from the central GD to peripheral areas such as NE-GD and SW-GD, their emissions still have an important impact on the PM2.5 level in the PRD. In addition, agriculture sources are responsible for 17.5% to ambient PM2.5 in GD, indicating the importance of regulations on agricultural activities, which has been largely ignored in the current air quality management. Super-regional contributions were also quantified and their contributions to the ambient PM2.5 in GD are significant with notable seasonal differences. But they might be overestimated and further studies are needed to better quantify the transport impacts.
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, X.; Zhang, Y.
2014-12-01
There were two typhoon processes during Campaign PRIDE-PRD2006 in July 2006 and serious ozone pollution episodes occurred before the landing of the typhoons. Chemical transport model CMAQ was employed in this work to simulate the ozone pollution episode related by the typhoon KAEMI. According to the meteorological conditions, the pollution episode could be divided into three phases with the movement of the typhoon, which were (1) far away from the continent; (2) coming close to the continent; (3) before landing. Process analysis was applied to get the contributions of physical and chemical processes for the ozone. It revealed that transport process was dominant during this pollution episode, and the influence of chemical process increased in the second phase. Three typical regions, northern rural area, urban area and Hong Kong area, were selected to study the contribution of each chemical and physical process. In the first phase, the primary process in northern rural area and the urban area was vertical diffusion, accounting for 47% and 46% respectively. In the second phase, the primary process in northern rural area and the urban area was chemical process, accounting for 33% and 31% respectively. In the third phase, the region of high concentration ozone moved southward. For Hong Kong area, the western inflow was prominent as 40%. Sensitivity study showed that urban areas were VOCs-limited regime with decreased ozone concentration when reducing the emission of VOCs. On the contrary, the ozone concentration in downwind rural areas decreased with the reduction of NOx, and the reason may be the decrement of the accumulated precursors.
Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong
2015-12-01
A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.
NASA Astrophysics Data System (ADS)
Wollner, U.; Vanorio, T.; Kiss, A. M.
2017-12-01
Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.
Transfer rates of enteric microorganisms in recycled water during machine clothes washing.
O'Toole, Joanne; Sinclair, Martha; Leder, Karin
2009-03-01
Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.
Guidance: The practical management of the gastrointestinal symptoms of pelvic radiation disease
Andreyev, H Jervoise N; Muls, Ann C; Norton, Christine; Ralph, Charlotte; Watson, Lorraine; Shaw, Clare; Lindsay, James O
2015-01-01
Background A recent randomised trial suggested that an algorithmic approach to investigating and managing gastrointestinal symptoms of pelvic radiation disease (PRD) is beneficial and that specially trained nurses can manage patients as effectively as a gastroenterologist. Aims The aim of the development and peer review of the guide was to make the algorithm used in the trial accessible to all levels of clinician. Methods Experts who manage patients with PRD were asked to review the guide, rating each section for agreement with the recommended measures and suggesting amendments if necessary. Specific comments were discussed and incorporated as appropriate, and this process was repeated for a second round of review. Results 34 gastroenterologists, 10 nurses, 9 dietitians, 7 surgeons and 5 clinical oncologists participated in round one. Consensus (defined prospectively as 60% or more panellists selecting ‘strongly agree’ or ‘agree’) was reached for 27 of the original 28 sections in the guide, with a median of 75% of panellists agreeing with each section. 86% of panellists agreed that the guide was acceptable for publication or acceptable with minor revisions. 55 of the original 65 panellists participated in round two. 89% agreed it was acceptable for publication after the first revision. Further minor amendments were made in response to round two. Conclusions Development of the guide in response to feedback included ▸ improvement of occasional algorithmic steps ▸ a more user-friendly layout ▸ clearer timeframes for referral to other teams ▸ expansion of reference list ▸ addition of procedures to the appendix. PMID:25580207
Fitzgerald, Kerry D.; Semler, Bert L.
2013-01-01
Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. PMID:23830997
Min, Myo; Chua, Benjamin; Guttner, Yvonne; Abraham, Ned; Aherne, Noel J; Hoffmann, Matthew; McKay, Michael J; Shakespeare, Thomas P
2014-02-01
Pelvic radiation disease (PRD) also widely known as "radiation proctopathy" is a well recognised late side-effect following conventional prostate radiotherapy. However, endoscopic evaluation and/or specialist referral for new or persistent post-prostate radiotherapy bowel symptoms is not routine and serious diagnoses may potentially be missed. Here we report a policy of endoscopic evaluation of bowel symptoms persisting >90 days post radiotherapy for prostate cancer. A consecutive series of 102 patients who had radical prostate intensity-modulated radiotherapy (IMRT)/image-guided radiotherapy (IGRT) and who had new or ongoing bowel symptoms or positive faecal occult blood tests (FOBT) on follow up visits more than three months after treatment, were referred for endoscopic examination. All but one (99%) had full colonoscopic investigation. Endoscopic findings included gastric/colonic/rectal polyps (56%), diverticular disease (49%), haemorrhoids (38%), radiation proctopathy (29%), gastritis/oesophagitis (8%) and rarer diagnoses, including bowel cancer which was found in 3%. Only four patients (4%) had radiation proctopathy without associated pathology and 65 patients (63%) had more than one diagnosis. If flexible sigmoidoscopy alone were used, 36.6% of patients and 46.6% patients with polyp(s) would have had their diagnoses missed. Our study has shown that bowel symptoms following prostate IMRT/IGRT are due to numerous diagnoses other than PRD, including malignancy. Routine referral pathways should be developed for endoscopic evaluation/specialist review for patients with new or persistent bowel symptoms (or positive FOBT) following prostate radiotherapy. This recommendation should be considered for incorporation into national guidelines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J. M.; Reichle, Rolf H.
2016-01-01
Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.
Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank
2011-11-01
Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.
Evaluation of a Soil Moisture Data Assimilation System Over West Africa
NASA Astrophysics Data System (ADS)
Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.
2009-05-01
A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre
2018-01-01
The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.
Steady-state canopy gas exchange: system design and operation
NASA Technical Reports Server (NTRS)
Bugbee, B.
1992-01-01
This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.
The complexity and implications of yeast prion domains
2011-01-01
Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731
NASA Technical Reports Server (NTRS)
Hoggatt, J. T.
1974-01-01
Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.
NASA Astrophysics Data System (ADS)
Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian
2018-06-01
Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.
NASA Astrophysics Data System (ADS)
Mishra, V.; Cruise, J. F.; Mecikalski, J. R.
2015-12-01
Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.
González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.
2017-01-01
Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963
Emission factor of ammonia (NH3) from on-road vehicles in China: tunnel tests in urban Guangzhou
NASA Astrophysics Data System (ADS)
Liu, Tengyu; Wang, Xinming; Wang, Boguang; Ding, Xiang; Deng, Wei; Lü, Sujun; Zhang, Yanli
2014-05-01
Ammonia (NH3) is the primary alkaline gas in the atmosphere that contributes to formation of secondary particles. Emission of NH3 from vehicles, particularly gasoline powered light duty vehicles equipped with three-way catalysts, is regarded as an important source apart from emissions from animal wastes and soils, yet measured emission factors for motor vehicles are still not available in China, where traffic-related emission has become an increasingly important source of air pollutants in urban areas. Here we present our tunnel tests for NH3 from motor vehicles under ‘real world conditions’ in an urban roadway tunnel in Guangzhou, a central city in the Pearl River Delta (PRD) region in south China. By attributing all NH3 emissions in the tunnel to light-duty gasoline vehicles, we obtained a fuel-based emission rate of 2.92 ± 0.18 g L-1 and a mileage-based emission factor of 229.5 ± 14.1 mg km-1. These emission factors were much higher than those measured in the United States while measured NO x emission factors (7.17 ± 0.60 g L-1 or 0.56 ± 0.05 g km-1) were contrastingly near or lower than those previously estimated by MOBILE/PART5 or COPERT IV models. Based on the NH3 emission factors from this study, on-road vehicles accounted for 8.1% of NH3 emissions in the PRD region in 2006 instead of 2.5% as estimated in a previous study using emission factors taken from the Emission Inventory Improvement Program (EIIP) in the United States.
NASA Astrophysics Data System (ADS)
Yu, J.; Lau, A. K.; Wu, C.; Ng, W.; Yuan, Z.; Wu, D.
2009-12-01
The Pearl River Delta (PRD) is among the most economically fast-developing regions in China. The region has been experiencing increasing levels of particulate matter (PM) pollution. In an effort of establishing long-term trend in chemical characteristics of PM2.5 and understanding PM sources important at regional scale, filter-based samples have been collected at three sites in the PRD concurrently in one-in-six-day schedule since August 2007. We here report observation results of PM2.5 over one-year period (August 2007-June 2008). The three sites include an urban downtown location in Guangzhou, Nansha, a rural receptor site at the mouth of the Pearl River, and Tsuen Wan, an urban background site in Hong Kong. Guangzhou recorded the highest annual average PM2.5 concentration of 78.2 μgm-3, followed by Nansha (65.9 μgm-3) and Tsuen Wan (42.8 μgm-3). Organic matter (OM) and sulfate are the top two constituents, accounting for ~70% of PM2.5 mass. The annual average nitrate contributions were similar at GZ and NS (~13%), but lower at TW (~7%). Inter-site correlations of PM2.5 and major constituents indicate that GZ strongly influenced ambient PM2.5 levels at NS, but GZ’s influence on TW was much reduced. Sulfate, ammonium, and OM showed strong regional characteristics. To the contrary, EC at the three sites had no correlations, suggesting a dominating local origin. Examples of high PM2.5 episodes are also analyzed to identify the conditions conducive for high PM.
Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5).
Katayama, Syouichi; Sueyoshi, Noriyuki; Kameshita, Isamu
2015-05-19
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.
Fitzgerald, Kerry D; Semler, Bert L
2013-09-01
Different types of environmental stress cause mammalian cells to form cytoplasmic foci, termed stress granules, which contain mRNPs that are translationally silenced. These foci are transient and dynamic, and contain components of the cellular translation machinery as well as certain mRNAs and RNA binding proteins. Stress granules are known to be induced by conditions such as hypoxia, nutrient deprivation, and oxidative stress, and a number of cellular factors have been identified that are commonly associated with these foci. More recently it was discovered that poliovirus infection also induces the formation of stress granules, although these cytoplasmic foci appear to be somewhat compositionally unique. Work described here examined the punctate pattern of SRp20 (a host cell mRNA splicing protein) localization in the cytoplasm of poliovirus-infected cells, demonstrating the partial co-localization of SRp20 with the stress granule marker protein TIA-1. We determined that SRp20 does not co-localize with TIA-1, however, under conditions of oxidative stress, indicating that the close association of these two proteins during poliovirus infection is not representative of a general response to cellular stress. We confirmed that the expression of a dominant negative version of TIA-1 (TIA-1-PRD) results in the dissociation of stress granules. Finally, we demonstrated that expression of wild type TIA-1 or dominant negative TIA-1-PRD in cells during poliovirus infection does not dramatically affect viral translation. Taken together, these studies provide a new example of the unique cytoplasmic foci that form during poliovirus infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Estimation of health and economic costs of air pollution over the Pearl River Delta region in China.
Lu, Xingcheng; Yao, Teng; Fung, Jimmy C H; Lin, Changqing
2016-10-01
The Pearl River Delta region (PRD) is the economic growth engine of China and also one of the most urbanized regions in the world. As a two-sided sword, rapid economic development causes air pollution and poses adverse health effects to the citizens in this area. This work estimated the negative health effects in the PRD caused by the four major ambient pollutants (SO2, NO2, O3 and PM10) from 2010 to 2013 by using a log linear exposure-response function and the WRF-CMAQ modeling system. Economic loss due to mortality and morbidity was evaluated by the value of statistical life (VSL) and cost of illness (COI) methods. The results show that the overall possible short-term all-cause mortality due to NO2, O3 and PM10 reached the highest in 2013 with the values being 13,217-22,800. The highest total economic loss, which ranged from 14,768 to 25,305million USD, occurred in 2013 and was equivalent to 1.4%-2.3% of the local gross domestic product. The monthly profile of cases of negative health effects varied by city and the types of ambient pollutants. The ratio of mortality attributed to air pollutants to total population was higher in urban areas than in rural areas. People living in the countryside should consider the possible adverse health effects of urban areas before they plan a move to the city. The results show that the health burden caused by the ambient pollutants over this region is serious and suggest that tighter control policies should be implemented in the future to reduce the level of air pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, N; Guo, H; Jiang, F; Ling, Z H; Wang, T
2015-02-01
Field measurements were simultaneously conducted at a mountain (Mt.) site (Tai Mao Shan, TMS) and an urban site (Tsuen Wan, TW) at the foot of the Mt. TMS in Hong Kong. An interesting event with consecutive high-ozone (O₃) days from 08:00 on 28 Oct. to 23:00 on 03 Nov., 2010 was observed at Mt. TMS, while no such polluted event was found at the foot of the mountain. The Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models were used to understand this event. Model performance evaluation showed that the simulated meteorological parameters and air pollutants were well in agreement with the observations. The index of agreement (IOA) of temperature, relative humidity, wind direction and wind speed were 0.93, 0.83, 0.46 and 0.60, respectively. The multi-day high O₃ episode at Mt. TMS was also reasonably reproduced (IOA=0.68). Horizontally, the photochemical processes determined the O₃ levels in southwestern Pearl River Delta (PRD) and the Pearl River Estuary (PRE), while in eastern and northern PRD, the O₃ destruction was over the production during the event. Vertically, higher O₃ values at higher levels were found at both Mt. TMS and TW, indicating a vertical O₃ gradient over Hong Kong. With the aid of the process analysis module, we found positive contribution of vertical transport including advection and diffusion to O₃ mixing ratios at the two sites, suggesting that O₃ values at lower locations could be affected by O₃ at higher locations via vertical advection and diffusion over Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.
Wei, Yan; Qu, Mei-Hua; Wang, Xing-Sheng; Chen, Lan; Wang, Dong-Liang; Liu, Ying; Hua, Qian; He, Rong-Qiao
2008-07-02
Tau, an important microtubule associated protein, has been found to bind to DNA, and to be localized in the nuclei of both neurons and some non-neuronal cells. Here, using electrophoretic mobility shifting assay (EMSA) in the presence of DNA with different chain-lengths, we observed that tau protein favored binding to a 13 bp or a longer polynucleotide. The results from atomic force microscopy also showed that tau protein preferred a 13 bp polynucleotide to a 12 bp or shorter polynucleotide. In a competitive assay, a minor groove binder distamycin A was able to replace the bound tau from the DNA double helix, indicating that tau protein binds to the minor groove. Tau protein was able to protect the double-strand from digestion in the presence of DNase I that was bound to the minor groove. On the other hand, a major groove binder methyl green as a negative competitor exhibited little effect on the retardation of tau-DNA complex in EMSA. This further indicates the DNA minor groove as the binding site for tau protein. EMSA with truncated tau proteins showed that both the proline-rich domain (PRD) and the microtubule-binding domain (MTBD) contributed to the interaction with DNA; that is to say, both PRD and MTBD bound to the minor groove of DNA and bent the double-strand, as observed by electron microscopy. To investigate whether tau protein is able to prevent DNA from the impairment by hydroxyl free radical, the chemiluminescence emitted by the phen-Cu/H(2)O(2)/ascorbate was measured. The emission intensity of the luminescence was markedly decreased when tau protein was present, suggesting a significant protection of DNA from the damage in the presence of hydroxyl free radical.
NASA Astrophysics Data System (ADS)
Kwok, Roger Hiu Fung
Air pollution in Hong Kong (HK) causes problems in visibility and public health, which are worsening over past few years. Out of particulate matters (PM) inhalable into respiratory system, 30% is contributed by sulfate (SO4), 40% by organic carbon (OC), and 10% by elemental carbon (EC). A meso-scale numerical modeling system CMAQ is devised to simulate the air quality in January (winter), April (spring), July (summer) and October (autumn) 2004, driven by meteorology simulated by MM5 and emission sources in China including Hong Kong. Observational and measurement data from Hong Kong Environmental Protection Department Air Quality network are compared with the model results. With respect to pollutant concentration level, model-observation agreement is reasonably well, especially in PM species sulfate, organic carbon (OC) and elemental carbon (EC); and gaseous species SO2, NOx and ozone. In terms of PM composition, the model agrees with the measurement in fractions of sulfate, OC and EC. Higher PM level in autumn and winter is associated with northeasterly winds due to continental outflow. To further investigate emission sources contributing to HK, a source apportioning method called Tagged Species Source Apportionment (TSSA) algorithm is applied to study contributions to level of SO4, SO2 and EC in HK. It is found that while sources beyond PRD are observed in entire HK during January and October 2004, emitting sectors are different among western HK, downtown area, and the east countryside. Specifically, power plants and vehicles from HK and Shenzhen affect the western new towns, while power plants, vehicles and ships within HK determine the downtown pollutants' level. The countryside is mainly influenced by sources beyond PRD.
Hu, Yuanan; Cheng, Hefa
2016-07-01
Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hu, Junli; Wu, Fuyong; Wu, Shengchun; Sun, Xiaolin; Lin, Xiangui; Wong, Ming Hung
2013-05-01
Five random vegetable farms were selected to investigate the bioaccumulation risk of heavy metals (HMs) by different type of vegetables around the Pearl River Delta (PRD), China. The concentration order of four major HMs in the surface soil samples was Cd
Akt recruits Dab2 to albumin endocytosis in the proximal tubule.
Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif
2014-12-15
Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Lin, Hualiang; Ratnapradipa, Kendra; Wang, Xiaojie; Zhang, Yonghui; Xu, Yanjun; Yao, Zhenjiang; Dong, Guanghui; Liu, Tao; Clark, Jessica; Dick, Rebecca; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Qian, Zhengmin (Min); Ma, Wenjun
2017-07-01
Compared with daily mean concentration of air pollution, hourly peak concentration may be more directly relevant to the acute health effects due to the high concentration levels, however, few have analyzed the acute mortality effects of hourly peak levels of air pollution. We examined the associations of hourly peak concentration of fine particulate matter air pollution (PM2.5) with mortality in six cities in Pearl River Delta, China. We used generalized additive Poisson models to examine the associations with adjustment for potential confounders in each city. We further applied random-effects meta-analyses to estimate the regional overall effects. We further estimated the mortality burden attributable to hourly peak and daily mean PM2.5. We observed significant associations between hourly peak PM2.5 and mortality. Each 10 μg/m3 increase in 4-day averaged (lag03) hourly peak PM2.5 corresponded to a 0.9% [95% confidence interval (CI): 0.7%, 1.1%] increase in total mortality, 1.2% (95% CI: 1.0%, 1.5%) in cardiovascular mortality, and 0.7% (95% CI: 0.2%, 1.1%) in respiratory mortality. We observed a greater mortality burden using hourly peak PM2.5 than daily mean PM2.5, with an estimated 12915 (95% CI: 9922, 15949) premature deaths attributable to hourly peak PM2.5, and 7951 (95% CI: 5067, 10890) to daily mean PM2.5 in the Pearl River Delta (PRD) region during the study period. This study suggests that hourly peak PM2.5 might be one important risk factor of mortality in PRD region of China; the finding provides important information for future air pollution management and epidemiological studies.
Zhou, Jun; Wang, Chao
2017-01-01
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics. PMID:28783079
Zhou, Jun; Wang, Chao
2017-08-06
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics.
NASA Astrophysics Data System (ADS)
Wang, T.; Wang, W.; Yun, H.; Tham, Y. J.; Xia, M.; Yu, C.; Wang, Z.; Zhang, N.; Cui, L.; Poon, S.; Lee, S.; Ou, Y.; Yue, D.; Zhai, Y.
2017-12-01
In the past decade, heterogeneous uptake of dinitrogen pentoxide (N2O5) on aerosol and subsequent production of nitryl chloride (ClNO2) have been found to impact the oxidative capacity, NOx fate, and the formation of aerosol nitrate and photochemical ozone. However, the detailed processes and effects are not completely understand for diverse environments of the globe. Our previous measurements at a mountain top (957 m a.s.l) in Hong Kong in winter 2013 revealed elevated concentrations of N2O5 (up to 7.7 ppb) and ClNO2 (up to 4.7 ppb) and that the polluted air masses originated from inland urban areas of the Pearl River delta (PRD). To understand the detailed uptake processes, an intensive measurement campaign was conducted at the same site (Tai Mo Shan, TMS) during October-December 2016 and at a semi-rural site (Heshan) in the center of the PRD in January 2017. Key parameters related to N2O5 and ClNO2 processes, including aerosol ionic composition, aerosol number and size, volatile organic compounds as well as ozone, NOx and NOy, were measured during the two campaigns. Elevated (up to 3.4 ppb) ClNO2 concentrations were observed at the mountain site on many nights a few hours after sunset, and extremely high levels of ClNO2 (up to 8.3 ppb) were measured in the inland site during a heavy pollution event. The meteorological conditions and variations of ClNO2 will be examined with concurrently measured parameters to elucidate factors determining N2O5 uptake and ClNO2 production. The 2016 results at TMS will be compared with those from 2013.
NASA Astrophysics Data System (ADS)
Zhang, Yanli; Wang, Xinming; Blake, Donald R.; Li, Longfeng; Zhang, Zhou; Wang, Shaoyi; Guo, Hai; Lee, Frank S. C.; Gao, Bo; Chan, Loyin; Wu, Dui; Rowland, F. Sherwood
2012-08-01
In the second half of 2008 China's highly industrialized Pearl River Delta (PRD) region was hard-hit by the financial crisis (FC). This study reports volatile organic compounds measured in the PRD during November-December in both 2007 before the FC and 2008 after the FC. While total mixing ratios of non-methane hydrocarbons (NMHCs) on average were only about 7% lower from 40.2 ppbv in 2007 to 37.5 ppbv in 2008, their ozone formation potentials (OFPs) dropped about 30%, resulting from about 55% plummet of aromatic hydrocarbons (AHs) against a greater than 20% increase of total alkanes/alkenes. The elevated alkanes and alkenes in 2008 could be explained by greater emissions from vehicle exhausts and LPG combustion due to rapid increase of vehicle numbers and LPG consumption; the drop of AHs could be explained by reduced emissions from industries using AH-containing solvents due to the influence of the FC, as indicated by much lower ratios of toluene to benzene and of xylenes/trichloroethylene/tetrachloroethylene to carbon monoxide (CO) in 2008. Source apportionment by positive matrix factorization (PMF) also revealed much less contribution of industry solvents to total anthropogenic NMHCs and particularly to toluene and xylenes in 2008 than in 2007. Based on PMF reconstructed source contributions, calculated OFPs by industrial emissions were responsible for 40.8% in 2007 in contrast to 18.4% in 2008. Further investigation into local industry output statistics suggested that the plummet of AHs in 2008 should be attributed to small enterprises, which contributed largely to ambient AHs due to their huge numbers and non-existent emission treatment, but were much more influenced by the FC.
Zhang, Zhou; Wang, Xinming; Zhang, Yanli; Lü, Sujun; Huang, Zhonghui; Huang, Xinyu; Wang, Yuesi
2015-04-01
Benzene is a known human carcinogen causing leukemia, yet ambient air quality objectives for benzene are not available in China. The ambient benzene levels at four background sites in China's most developed coastal regions were measured from March 2012 to February 2013. The sites are: SYNECP, in the Northeast China Plain (NECP); YCNCP, in the North China Plain (NCP); THYRD, in the Yangtze River Delta (YRD) and DHPRD, in the Pearl River Delta (PRD). It was found that the mean annual benzene levels (578-1297 ppt) at the background sites were alarmingly higher, especially when compared to those of 60-480 pptv monitored in 28 cities in the United States. Wintertime benzene levels were significantly elevated at both sites (SYNECP and YCNCP) in northern China due to heating with coal/biofuels. Even at these background sites, the lifetime cancer risks of benzene (1.7-3.7E-05) all exceeded 1E-06 set by USEPA as acceptable for adults. At both sites in northern China, good correlations between benzene and CO or chloromethane, together with much lower toluene/benzene (T/B) ratios, suggested that benzene was largely related to coal combustion and biomass/biofuel burning. At the DHPRD site in the PRD, benzene revealed a highly significant correlation with methyl tert-butyl ether (MTBE), indicating that its source was predominantly from vehicle emissions. At the THYRD site in the YRD, higher T/B ratios and correlations between benzene and tetrachloroethylene, or MTBE, implied that benzene levels were probably affected by both traffic-related and industrial emissions. Copyright © 2015 Elsevier B.V. All rights reserved.
Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; Weir, B.S.
2015-01-01
DNA profiling of biological material from scenes of crimes is often complicated because the amount of DNA is limited and the quality of the DNA may be compromised. Furthermore, the sensitivity of STR typing kits has been continuously improved to detect low level DNA traces. This may lead to (1) partial DNA profiles and (2) detection of additional alleles. There are two key phenomena to consider: allelic or locus ‘drop-out’, i.e. ‘missing’ alleles at one or more genetic loci, while ‘drop-in’ may explain alleles in the DNA profile that are additional to the assumed main contributor(s). The drop-in phenomenon is restricted to 1 or 2 alleles per profile. If multiple alleles are observed at more than two loci then these are considered as alleles from an extra contributor and analysis can proceed as a mixture of two or more contributors. Here, we give recommendations on how to estimate probabilities considering drop-out, Pr(D), and drop-in, Pr(C). For reasons of clarity, we have deliberately restricted the current recommendations considering drop-out and/or drop-in at only one locus. Furthermore, we offer recommendations on how to use Pr(D) and Pr(C) with the likelihood ratio principles that are generally recommended by the International Society of Forensic Genetics (ISFG) as measure of the weight of the evidence in forensic genetics. Examples of calculations are included. An Excel spreadsheet is provided so that scientists and laboratories may explore the models and input their own data. PMID:22864188
Shen, Yonglin
2017-01-01
This paper adopts the PM2.5 concentration data obtained from 1497 station-based monitoring sites, population and gross domestic product (GDP) census data, revealing population exposure and economic effects of PM2.5 in four typical urban agglomerations of China, i.e., Beijing-Tianjin-Hebei (BTH), the Yangtze River delta (YRD), the Pearl River delta (PRD), and Chengdu-Chongqing (CC). The Cokriging interpolation method was used to estimate the PM2.5 concentration from station-level to grid-level. Next, an evaluation was conducted mainly at the grid-level with a cell size of 1 × 1 km, assisted by the urban agglomeration scale. Criteria including the population-weighted mean, the cumulative percent distribution and the correlation coefficient were applied in our evaluation. The results showed that the spatial pattern of population exposure in BTH was consistent with that of PM2.5 concentration, as well as changes in elevation. The topography was also an important factor in the accumulation of PM2.5 in CC. Moreover, the most polluted urban agglomeration based on the population-weighted mean was BTH, while the least was PRD. In terms of the cumulative percent distribution, only 0.51% of the population who lived in the four urban agglomerations, and 2.33% of the GDP that was produced in the four urban agglomerations, were associated with an annual PM2.5 concentration smaller than the Chinese National Ambient Air Quality Standard of 35 µg/m3. This indicates that the majority of people live in the high air polluted areas, and economic development contributes to air pollution. Our results are supported by the high correlation between population exposure and the corresponding GDP in each urban agglomeration. PMID:28671643
Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.
Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A
2010-04-01
To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.
Paul, John H.; McLaughlin, Molly R.; Griffin, Dale W.; Lipp, Erin K.; Stokes, Rodger; Rose, Joan B.
2000-01-01
Viral tracer studies have been used previously to study the potential for wastewater contamination of surface marine waters in the Upper and Middle Florida Keys. Two bacteriophages, the marine bacteriophage φHSIC and the Salmonella phage PRD1, were used as tracers in injection well and septic tank studies in Saddlebunch Keys of the Lower Florida Keys and in septic tank studies in Boot Key Harbor, Marathon, of the Middle Keys. In Boot Key Harbor, both phages were detected in a canal adjacent to the seeded septic tank within 3 h 15 min of the end of the seed period. The tracer was then detected at all sampling sites in Boot Key Harbor, including one on the opposite side of U. S. Highway 1 in Florida Bay, and at an Atlantic Ocean beach outside Boot Key Harbor. Rates of migration based on first appearance of the phage ranged from 1.7 to 57.5 m h-1. In Saddlebunch Keys, φHSIC and PRD1 were used to seed a residential septic tank and a commercial injection well. The septic tank tracer was not found in any surface water samples. The injection well tracer was first detected at a site most distant from the seed site, a channel that connected Sugarloaf Sound with the Atlantic Ocean. The rate of tracer migration from the injection well to this channel ranged from 66.8 to 141 m h-1. Both tracer studies showed a rapid movement of wastewater from on-site sewage treatment and disposal systems in a southeasterly direction toward the reef tract and Atlantic Ocean, with preferential movement through tidal channels. These studies indicate that wastewater disposal systems currently in widespread use in the Florida Keys can rapidly contaminate the marine environment.
Seibel, Jan; Molzberger, Almut F; Hertrampf, Torsten; Laudenbach-Leschowski, Ute; Degen, Gisela H; Diel, Patrick
2008-12-01
Inflammatory bowel disease (IBD) is very common in Europe and USA. Its incidence in East Asia has been traditionally low, albeit the risk of IBD increases in Asian immigrants adopting western lifestyles, suggesting a strong role of environmental/dietary factors in IBD. A lifelong exposure to phytoestrogen-rich diets has been associated with a decreased risk of developing breast cancer and might also be protective against IBD. We studied the influence of in utero and postnatal exposure to a phytoestrogen (PE)-rich diet on acute inflammation in an animal model of TNBS-induced colitis. Wistar rats were exposed in utero and postnatally to high (genistein: 240 microg/g feed; daidzein: 232 microg/g feed) or very low levels (genistein and daidzein <10 microg/g feed) of phytoestrogen isoflavones fed to pregnant dams with the diet and throughout nursing. After weaning, the offspring had free access to these diets. At the age of 11 weeks, colitis was induced with an enema of TNBS. After 3 days, animals were sacrificed and tissues were collected for histological evaluation and analysis of molecular markers of inflammation. Animals kept on a PE-rich diet (PRD) had higher colon weights than animals on low PE-levels (PDD), suggesting enhanced acute inflammation by phytoestrogens. This result was supported by histological findings and by analysis of myeloperoxidase activity. Interestingly, relative mRNA and protein expression of cyclooxygenase-2 (COX-2) were modulated in rats on PRD, providing evidence that COX-2, the inducible isoform of the enzyme, is involved in the management of colonic inflammation. Our results suggest that early-in-life exposure to PE might not protect against the development of IBD but enhances the extent of acute inflammation.
Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai
2018-01-01
Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.
Tritium Plume Dynamics in the Shallow Unsaturated Zone Adjacent to an Arid Waste Disposal Facility
NASA Astrophysics Data System (ADS)
Maples, S.; Andraski, B. J.; Stonestrom, D. A.; Cooper, C. A.; Michel, R. L.; Pohll, G. M.
2012-12-01
Previous studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in southern Nevada have documented two plumes of tritiated water-vapor (3HHOg) adjacent to a closed, commercial low-level radioactive waste disposal facility. Wastes were disposed on-site from 1962-92. Tritium has moved long distances (> 400 m) through a shallow (1-2-m depth) dry gravelly layer—orders of magnitude further than anticipated by standard transport models. Geostatistical methods, spatial moment analyses and tritium flux calculations were applied to assess shallow plume dynamics. A grid-based plant-water sampling method was utilized to infer detailed, field-scale 3HHOg concentrations at 5-yr intervals during 2001-11. Results indicate that gravel-layer 3HHOg mass diminished faster than would be expected from radioactive decay (~70% in 10 yr). Both plumes exhibited center-of-mass stability, suggesting that bulk-plume movement is minimal during the period of study. Nonetheless, evidence of localized lateral advancement along some margins, combined with increases in the spatial covariance of concentration distribution, indicates intra-plume mass redistribution is ongoing. Previous studies have recognized that vertical movement of tritiated water from sub-root-zone gravel into the root-zone contributes to atmospheric release via evapotranspiration. Estimates of lateral and vertical tritium fluxes during the study period indicate (1) vertical tritiated water fluxes were dominated by diffusive-vapor fluxes (> 90%), and (2) vertical diffusive-vapor fluxes were roughly an order of magnitude greater than lateral diffusive-vapor fluxes. This behavior highlights the importance of the atmosphere as a tritium sink. Estimates of cumulative vertical diffusive-vapor flux and radioactive decay with time were comparable to observed declines in total shallow plume mass with time. This suggests observed changes in plume mass may (1) be attributed, in considerable part, to these removal mechanisms, and (2) appreciable input from the adjacent disposal facility is not occurring at this time.
NASA Astrophysics Data System (ADS)
domec, J.; King, J. S.; Ogée, J.; Noormets, A.; Warren, J.; Meinzer, F. C.; Sun, G.; Jordan-Meille, L.; Martineau, E.; Brooks, R. J.; Laclau, J.; Battie Laclau, P.; McNulty, S.
2012-12-01
INVITED ABSTRACT: Deep root water uptake and hydraulic redistribution (HR) play a major role in forest ecosystems during drought, but little is known about the impact of climate change on root-zone processes influencing HR and its consequences on water and carbon fluxes. Using data from two old growth sites in the western USA, two mature sites in the eastern USA, one site in southern Brazil, and simulations with the process-based model MuSICA, our objectives were to show that HR can 1) mitigate the effects of soil drying on root functioning, and 2) have important implications for carbon uptake and net ecosystem exchange (NEE). In a dry, old-growth ponderosa pine (USA) and a eucalyptus stand (Brazil) both characterized by deep sandy soils, HR limited the decline in root hydraulic conductivity and increased dry season tree transpiration (T) by up to 30%, which impacted NEE through major increases in gross primary productivity (GPP). The presence of deep-rooted trees did not necessarily imply high rates of HR unless soil texture allowed large water potential gradients to occur, as was the case in the wet old-growth Douglas-fir/mixed conifer stand. At the Duke mixed hardwood forest characterized by a shallow clay-loam soil, modeled HR was low but not negligible, representing annually up to 10% of T, and maintaining root conductance high. At this site, in the absence of HR, it was predicted that annual GPP would have been diminished by 7-19%. At the coastal loblolly pine plantation, characterized by deep organic soil, HR limited the decline in shallow root conductivity by more than 50% and increased dry season T by up to 40%, which increased net carbon gain by the ecosystem by about 400 gC m-2 yr-1, demonstrating the significance of HR in maintaining the stomatal conductance and assimilation capacity of the whole ecosystem. Under future climate conditions (elevated atmospheric [CO2] and temperature), HR is predicted to be reduced by up to 50%; reducing the resilience of trees to droughts. Under future conditions, T is predicted to stay the same at the Duke mixed hardwood forest, but to decline slightly at the coastal loblolly pine plantation and slightly increase at the old-growth ponderosa pine stand and the eucalyptus plantation. As a consequence, water use efficiency in all sites was predicted to improve dramatically under future climate conditions. Our simulations also showed that the negative effect of drier nights on HR would be greater under future climate conditions. Assuming no increase in stomatal control with increasing drier nights, increased vapor pressure deficit at night under future conditions was sufficient to drive significant nighttime T at all sites , which reduced HR, because the plant and the atmosphere became a sink for hydraulically redistributed water . We concluded that the predicted reductions in HR under future climate conditions are expected to play an important regulatory role in land-atmosphere interactions by affecting whole ecosystem carbon and water balance. We suggest that root distribution should be treated dynamically in response to climate change and that HR and its interactions with rooting depth and soil texture should be implemented in soil-vegetation-atmosphere transfer models.
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
Decomposition of ECG by linear filtering.
Murthy, I S; Niranjan, U C
1992-01-01
A simple method is developed for the delineation of a given electrocardiogram (ECG) signal into its component waves. The properties of discrete cosine transform (DCT) are exploited for the purpose. The transformed signal is convolved with appropriate filters and the component waves are obtained by computing the inverse transform (IDCT) of the filtered signals. The filters are derived from the time signal itself. Analysis of continuous strips of ECG signals with various arrhythmias showed that the performance of the method is satisfactory both qualitatively and quantitatively. The small amplitude P wave usually had a high percentage rms difference (PRD) compared to the other large component waves.
Statistical performance evaluation of ECG transmission using wireless networks.
Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad
2013-07-01
This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.
Modulation of the formation and release of bovine SRS-A in vitro by several anti-anaphylactic drugs.
Burka, J F; Eyre, P
1975-01-01
Slow-reacting substance of anaphylaxis (SRS-A) is released immunologically from bovine lung in vitro. Various drugs known to protect calves and other animals during anaphylaxis were tested to investigate their modulation of the formation and release of SRS-A. The anti-inflammatory drugs, meclofenamate and aspirin, potentiated SRS-A release. Chlorphenesin and diethylcarbamazine citrate at high concentrations both inhibited SRS-A release. Two new anti-anaphylactic drugs, PR-D-92-EA and M&B 22,948, were particularly effective in inhibiting SRS-A release at low concentrations. The possible modes of actions of these drugs are discussed.
Anders, Robert; Yanko, William A.; Schroeder, Roy A.; Jackson, James L.
2004-01-01
Total and fecal coliform bacteria distributions in subsurface water samples collected at a research field site in Los Angeles County were found to increase from nondetectable levels immediately before artificial recharge using tertiary-treated municipal wastewater (recycled water). This rapid increase indicates that bacteria can move through the soil with the percolating recycled water over intervals of a few days and vertical and horizontal distances of about 3 meters. This conclusion formed the basis for three field-scale experiments using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human enteric viruses and bromide as a conservative tracer to determine the fate and transport of viruses in recycled water during subsurface transport under actual recharge conditions. The research field site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The three tracer experiments were conducted during August 1997, August-September 1998, and August 2000. For each experiment, prepared solutions of bacteriophage and bromide were sprayed on the surface of the water in the test basin and injected, using peristaltic pumps, directly into the feed pipe delivering the recycled water to the test basin. Extensive data were obtained for water samples collected from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 meters below the bottom of the test basin. The rate of bacteriophage inactivation in the recycled water, independent of any processes occurring in the subsurface, was determined from measurements on water samples from the test basin. Regression analysis of the ratios of bacteriophage to bromide was used to determine the attenuation rates for MS2 and PRD1, defined as the logarithmic reduction in the ratio during each experiment. Although the inactivation rates increased during the third tracer experiment, they were nearly two orders of magnitude less than the attenuation rates. Therefore, adsorption, not inactivation, is the predominant removal mechanism for viruses during artificial recharge. Using the colloid-filtration model, the collision efficiency was determined for both bacteriophage during the second and third field-scale tracer experiments. The collision efficiency confirms that more favorable attachment conditions existed for PRD1, especially during the third tracer experiment. The different collision efficiencies between the second and third tracer experiments possibly were due to changing hydraulic conditions at the research field site during each experiment. The field data suggest that an optimal management scenario might exist to maximize the amount of recycled water that can be applied to the spreading grounds while still maintaining favorable attachment conditions for virus removal and thereby ensuring protection of the ground-water supply.
An Analysis of Rocket Propulsion Testing Costs
NASA Technical Reports Server (NTRS)
Ramirez-Pagan, Carmen P.; Rahman, Shamim A.
2009-01-01
The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is generally performed within two arenas: (1) Production testing for certification and acceptance, and (2) Developmental testing for prototype or experimental purposes. The customer base consists of NASA programs, DOD programs, and commercial programs. Resources in place to perform on-site testing include both civil servants and contractor personnel, hardware and software including data acquisition and control, and 6 test stands with a total of 14 test positions/cells. For several business reasons there is the need to augment understanding of the test costs for all the various types of test campaigns. Historical propulsion test data was evaluated and analyzed in many different ways with the intent to find any correlation or statistics that could help produce more reliable and accurate cost estimates and projections. The analytical efforts included timeline trends, statistical curve fitting, average cost per test, cost per test second, test cost timeline, and test cost envelopes. Further, the analytical effort includes examining the test cost from the perspective of thrust level and test article characteristics. Some of the analytical approaches did not produce evidence strong enough for further analysis. Some other analytical approaches yield promising results and are candidates for further development and focused study. Information was organized for into its elements: a Project Profile, Test Cost Timeline, and Cost Envelope. The Project Profile is a snap shot of the project life cycle on a timeline fashion, which includes various statistical analyses. The Test Cost Timeline shows the cumulative average test cost, for each project, at each month where there was test activity. The Test Cost Envelope shows a range of cost for a given number of test(s). The supporting information upon which this study was performed came from diverse sources and thus it was necessary to build several intermediate databases in order to understand, validate, and manipulate data. These intermediate databases (validated historical account of schedule, test activity, and cost) by themselves are of great value and utility. For example, for the Project Profile, we were able to merged schedule, cost, and test activity. This kind of historical account conveys important information about sequence of events, lead time, and opportunities for improvement in future propulsion test projects. The Product Requirement Document (PRD) file is a collection of data extracted from each project PRD (technical characteristics, test requirements, and projection of cost, schedule, and test activity). This information could help expedite the development of future PRD (or equivalent document) on similar projects, and could also, when compared to the actual results, help improve projections around cost and schedule. Also, this file can be sorted by the parameter of interest to perform a visual review of potential common themes or trends. The process of searching, collecting, and validating propulsion test data encountered a lot of difficulties which then led to a set of recommendations for improvement in order to facilitate future data gathering and analysis.
Assimilation of Sentinel-1 and SMAP observations to improve GEOS-5 soil moisture
NASA Astrophysics Data System (ADS)
Lievens, Hans; Reichle, Rolf; Wagner, Wolfgang; De Lannoy, Gabrielle; Liu, Qing; Verhoest, Niko
2017-04-01
The SMAP (Soil Moisture Active and Passive) mission carries an L-band radiometer that provides brightness temperature observations at a nominal resolution of 40 km. These radiance observations are routinely assimilated into GEOS-5 (Goddard Earth Observing System version 5) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (potentially every 3 days for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into GEOS-5, either separately from or simultaneously with SMAP radiometer observations. The assimilation can be performed if either or both Sentinel-1 or SMAP observations are available, and is thus not restricted to synchronised overpasses. To facilitate the assimilation of the radar observations, GEOS-5 is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The model runs are performed at 9-km spatial and 3-hourly temporal resolution, over the period from May 2015 to October 2016. The impact of the assimilation on surface and root-zone soil moisture simulations is assessed using in situ measurements from SMAP core validation sites and sparse networks. The assimilation of Sentinel-1 backscatter is found to consistently improve surface and root-zone soil moisture, relative to the open loop (no assimilation). However, the improvements are less pronounced than those with the assimilation of SMAP observations, likely because of less frequent observations. The best performance was obtained with the simultaneous assimilation of Sentinel-1 and SMAP data, indicating the complementary value of both types of observations for improving hydrologic simulations.
Zhang, Rui Xue; Yang, Hong Qiang; Xu, Ying; Lyu, Ting Wen; Cao, Hui; Ning, Liu Fang; Zhou, Chun Ran; Fan, Wei Guo
2016-08-01
This study explored the effects of mulching straw mat, agricultural carpet, transparent-plastic film and horticultural fabric on nitrification-denitrification, nitrate reductase (NR), nitrite reductase (NiR), ammonium, nitrate and nitrite nitrogen in root-zone soil grown with three-year old apple trees (Malus domestica cv. Starkrimson) during summer and autumn. Results showed that the four treatments decreased nitrification intensity in summer soil, NiR activity in summer-autumn soil and the variation coefficient of nitrification-denitrification intensity and NR in both summer and autumn soil. The treatments increased the denitrification intensity, NR activity, ammonium nitrogen contents in summer-autumn soil and ammonium nitrogen contents in autumn soil. Straw mat treatment increased denitrification intensity and nitrate nitrogen contents in both summer and autumn soil and decreased the activity of NR and NiR in summer soil. The coefficient of variation of nitrification-denitrification intensity and NR activity treated by mulching straw mat was lower than those in the other treatments in both summer and autumn soil. Agricultural carpet increased the NR and NiR activity in summer soil, the nitrate nitrogen contents in summer-autumn soil and the denitrification intensity in autumn soil and decreased denitrification intensity in summer soil. Transparent-plastic film increased the nitrite nitrogen contents in summer soil, the contents of nitrate nitrogen in summer-autumn soil, the nitrification intensity and NiR activity in autumn soil, and decreased nitrate nitrogen contents in summer soil. Horticultural fabric increased denitrification intensity in summer soil, nitrification intensity in summer-autumn and autumn soil and the nitrate nitrogen contents in autumn soil. The four mulching treatments all promoted plant growth. In the four mulching treatments, the new shoot and trunk thickening growth were more under straw mat and horticultural fabric treatments. The four mulching treatments had different effects on nitrate metabolism in summer and autumn soil, but they were able to stabilize the soil nitrate metabolism and transformation. Among the treatments, straw mat had the best stable effect.
Multi-Frequency Investigation into Scattering from Vegetation over the Growth Cycle
NASA Technical Reports Server (NTRS)
Lang, R. H.; Kurum, M.; O'Neill, P. E.; Joseph, A. T.; Deshpande, M. D.; Cosh, M. H.
2016-01-01
In this investigation, we aim to collect and use time-series multi-frequency microwave data over winter wheat during entire growth cycle to characterize vegetation dynamics and to quantify its effects on soil moisture retrievals. We plan to incorporate C-band radar and VHF receiver within the existing L-band radarradiometer system called ComRAD (SMAPs ground based simulator). With C-bands ability to sense vegetation details and VHFs root-zone soil moisture within ComRADs footprint, we will be able to test our discrete scatterer vegetation models and parameters at various surface conditions. The purpose of this study is to determine optical depth and effective scattering albedo of vegetation of a given type (i.e. winter wheat) at various stages of growth that are need to refine soil moisture retrieval algorithms being developed for the SMAP mission.
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2016-06-01
Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na I D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.
Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing
2017-07-01
The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simmerman, James Mark; Suntarattiwong, Piyarat; Levy, Jens; Gibbons, Robert V; Cruz, Christina; Shaman, Jeffrey; Jarman, Richard G; Chotpitayasunondh, Tawee
2010-11-01
Rational infection control guidance requires an improved understanding of influenza transmission. We studied households with an influenza-infected child to measure the prevalence of influenza contamination, the effect of hand washing, and associations with humidity and temperature. We identified children with influenza and randomly assigned their households to hand washing and control arms. Six common household surfaces and the fingertips of the index patient and symptomatic family members were swabbed. Specimens were tested by real-time reverse-transcription polymerase chain reaction (rRT-PCR), and specimens with positive results were placed on cell culture. A handheld psychrometer measured meteorological data. Sixteen (17.8%) of 90 households had influenza A-positive surfaces by rRT-PCR, but no viruses could be cultured. The fingertips of 15 (16.6%) of the index patients had results positive for influenza A, and 1 virus was cultured. Index patients with seasonal influenza infections shed more virus than did patients with pandemic influenza infection. Control households had a higher prevalence of surface contamination (11 [24.4%] of 45) than did hand washing households (5 [11.1%] of 45); prevalence risk difference (PRD), 13.3%; [95% confidence interval {CI}, −2.2% to 28.9%]; P = .09). Households in which the age of the index patient was ≤8 years had a significantly higher prevalence of contamination (PRD ,19.1%; 95% CI, 5.3% -32.9%; P = .02). Within the strata of households with secondary infections, an effect of lower absolute humidity is suggested (P = .07). We documented influenza virus RNA contamination on household surfaces and on the fingertips of ill children. Homes with younger children were more likely than homes of older children to have contaminated surfaces. Lower absolute humidity favors surface contamination in households with multiple infections. Increased hand washing can reduce influenza contamination in the home.
Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site
NASA Astrophysics Data System (ADS)
Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne
2017-12-01
Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses (<0.64%). Virus breakthrough curves (BTCs) were successfully simulated using an advective-dispersive model that accounted for rates of attachment (katt), detachment (kdet), irreversible attachment or solid phase inactivation (μs), and blocking. Existing MAR guidelines only consider the removal of viruses via liquid phase inactivation (μl). However, our results indicated that katt > μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.
NASA Astrophysics Data System (ADS)
Fung, K. Y.; Tam, C. Y.; Wang, Z.
2017-12-01
It is well known that urban land use can significantly influence the local temperature, precipitation and meteorology through altering land-atmosphere exchange of momentum, moisture and heat in urban areas. In recent decades, there has been a substantial increase ( 5-10%) on the intensity of extreme rainfall over Southeast China; it is projected to increase further according to the latest IPCC reports. In this study, we assess how urbanization and global warming together might impact on heavy precipitation characteristics over the highly urbanized Pearl River Delta (PRD) megacity, located in southern China. This is done by dynamically downscaling GFDL-ESM2M simulations for the present and future (RCP8.5) climate scenarios, using the Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM). Over the PRD area, the WRF model is integrated at a resolution of 2km x 2km. To focus on extreme events, episodes covering daily rainfall intensity above the 99th percentile in Southeast China in the GFDL-ESM2M daily precipitation datasets were first identified. These extreme episodes were then dynamically downscaled in two parallel experiments with the following model designs: one with anthropogenic heat flux (AH) = 0 Wm-2 and the other with peak AH = 300 Wm-2 in the AH diurnal cycle over the urban domain. Results show that, with AH in urban area, the urban 2m-temperature can rise by about 2oC. This in turn leads to an increase of the mean as well as the extreme rain rates by 10-15% in urban domain. The latter is comparable to the impact of global warming alone, according to downscaling experiments for the RCP8.5 scenario. Implications of our results on urban effects on extreme rainfall under a warming background climate will be discussed.
NASA Astrophysics Data System (ADS)
Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.
2009-08-01
Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).
NASA Astrophysics Data System (ADS)
Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng
2016-04-01
Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three types of cases dominantly influenced by the PRD regional emission, long-range transport and marine exhaust were compared and discussed in detail.
Schulz, T; Papapostolou, G; Schenker, P; Kapischke, M
2005-03-01
Single-shot antithymocyte globulin (ATG) prior to reperfusion followed by tacrolimus (TAC), mycophenolate mofetil (MMF), and prednisolone (PRD) is an established induction therapy in simultaneous pancreas kidney transplant (SPK) recipients. We retrospectively analyzed 6-month data from 105 patients who received their first SPK. From January 1996 to December 2000, ATG-Fresenius was used. Since January 2001, Thymoglobulin has been administered. In the first group, 58 patients were treated with ATG-Fresenius (4-6 mg/kg body weight). In the second group, 47 patients received Thymoglobulin (1.5-2.5 mg/kg body weight). HLA-mismatch was comparable. After an observation period of 6 months, patients, kidney, and pancreas graft survival is 98.3%, 96.6%, and 93.1% in group I and 97.9%, 97.9%, and 85.1% in group II, respectively. In each group, one death with functioning graft (DWFG) was observed. Twenty (34.5%) acute rejection episodes (AR) were observed (18 patients) in group I. They were treated with steroids (n = 16) or steroids/OKT3 (n = 4). One kidney graft failure was observed due to rejection and one due to DWFG. Four pancreas grafts were lost (thrombosis, n = 2; AR, n = 1; DWFG, n = 1). In group II, 15 AR (31.9%) were seen in 12 patients and were treated with steroids (n = 12), steroids/ATG (n = 1), or steroids/OKT3 (n = 2). Seven pancreas (thrombosis, n = 5; rejection, n = 1; DWFG, n = 1) and one kidney (DWFG, n = 1) graft losses occurred. These data clearly establish that single-shot ATG prior to reperfusion, followed by TAC, MMF, and PRD results in a low incidence of AR (34.5% in group I and 31.9% in group II) after SPK. Only 6.9% (group I) and 6.4% (group II) of the patients received antibodies for rejection treatment.
Lu, Xingcheng; Lin, Changqing; Li, Ying; Yao, Teng; Fung, Jimmy C H; Lau, Alexis K H
2017-01-01
As the major engine of economic growth in China, the Pearl River Delta (PRD) region is one of the most urbanized regions in the world. Rapid development has brought great wealth to its citizens; however, at the same time, increasing emissions of ambient pollutants from vehicles and industrial combustions have caused considerable air pollution and negative health effects for the region's residents. In this study, the concentration response function method was applied together with satellite-retrieved particulate matter (PM 10 and PM 2.5 ) concentration data to estimate the health burden caused by this pollutant from 2004 to 2013. The value of statistical life was used to calculate the economic loss due to the negative health effects of particulate matter pollution. Our results show that in the whole PRD region, the estimated number of deaths from the four diseases attributable to PM 2.5 was the highest in 2012, at 45,000 (19,000-61,000); the number of all-cause hospital admissions due to PM 10 was the highest in 2013, reaching up to 91,000 (0-270,000) (excluding Hong Kong). Among the 10 cities, the capital city Guangzhou suffered the most from ambient particulate matter pollution and had the highest mortality and morbidity over the 10years. The cost of mortality in this region was the highest in 2012, at 46,000 million USD, or around 6.1% of local total gross domestic product (GDP). The positive spatial relationship between the degree of urbanization and the particulate matter concentration proves that the urbanization process does worsen air quality and hence increases the health risks of local urban citizens. It is recommended that local governments further enhance their control policies to better guarantee the health and wealth benefits of local residents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on Sources of Volatile Organic Compounds (CMB) in Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, C. J.; Wang, B.
2007-05-01
The profiles of major Volatile organic compounds (VOCs) sources including vehicle exhaust, gasoline vapor, painting, asphalt, liquefied petroleum gas (LPG), biomass burning and petrochemical industry in Pearl River Delta were experimentally determined. Source samples were taken by using dilution chamber for mobile and stationary sources, laboratory simulation for biomass burning. The concentrations of 108 VOC species of sources were quantified by using canister with pre-concentration-GC/MS system, from which 52 PAMS hydrocarbons and one kind of chlorinated hydrocarbon were deployed to build the source profiles for source apportionment of VOCs. Based the measurement of source profiles, the possible tracers for various emission sources were identified, e.g 2-methylbutane and 1,3-butadiene were the tracers for motor vehicle exhaust, the characteristic compounds of architectural and furnishing coatings are aromatics such as toluene and m/p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene and n-pentane, dominated the composition of gasoline vapor; and the nonane, decane and undecane are found to represent the asphalt emissions etc.. The CMB receptor model was applied to source apportionment of 58 hydrocarbons measured at seven sites during the PRD campaign, 2004. The 12 kinds of VOC sources include gasoline/diesel-powered vehicle exhaust, gasoline/diesel headspace vapor, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, painting vapors, asphalt emission from paved road, biomass burning, coal burning, chemical industry and petroleum refinery. Vehicle exhaust was the largest sources contributing over half of the ambient VOCs at the three urban sites (GuangZhou, FoShan and ZhongShan). LPG leakage played an important role with the percentage of 8- 16% in most sites in PRD. Contributions from solvents usage were highest at DongGuan, an industrial site. At XinKen, the solvents and coatings had the largest percentage of 31% probably due to the influence of its upwind area of DongGuan. The local biomass burning was also found to be a noticeable source at XK.
Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng
2015-01-01
Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. Copyright © 2014 Elsevier B.V. All rights reserved.
Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation
NASA Technical Reports Server (NTRS)
Girotto, Manuela
2018-01-01
Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
PROM7: 1D modeler of solar filaments or prominences
NASA Astrophysics Data System (ADS)
Gouttebroze, P.
2018-05-01
PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Fang, L.; Zhan, X.; Otkin, J.
2016-12-01
Abnormally dry conditions can adversely affect the health of agricultural crops if the dryness persists for an extended period of time or if it occurs at a sensitive stage of crop development. Depending on its severity and timing, drought can result in significant yield loss, with impacts on both local and global markets as signified by reduced economic output and higher grain and food prices. Due to changing climate conditions, we are moving into a regime where processes controlling drought evolution are becoming more variable and are shifting in intensity, frequency and duration. The unusually rapid increase in water stress during some of these drought events are not well predicted by standard drought indicators. Different remote sensing indicators sample moisture and vegetation conditions occurring on different time scales during the typical evolution of agricultural drought. It has been shown that the thermal-based Evaporative Stress Index (ESI), based on land surface temperature, has an early warning component where vegetation stress manifested through decreased root-zone soil moisture leads to detectable vegetation stress in the LST signal before degradation in vegetation health is observed in VIS/NIR drought indices (e.g., NDVI). To provide this data to a larger user community and address the needs of our project stakeholders, the GOES Evapotranspiration and Drought Product System (GET-D) has been developed to operationally generate daily ET and ESI maps over the North America. The core model in GET-D is the Atmosphere-Land Exchange Inverse model (ALEXI), which is built on the two-source energy (TSEB) approach and partitions the GOES land surface temperature into characteristic soil and canopy temperatures, based on the fraction of vegetation cover. The primary operational data products of the GET-D system include the daily clear-sky ET and daily 2, 4, 8 and 12 week composites of the Evaporative Stress Index (ESI) computed from the ET daily estimates over North America at a spatial resolution of 8 km. This talk will focus on the evaluation of the operational data products, lessons learned from the transition into operations and the planned global expansion of the GET-D system at NOAA.
Zhang, Lixin; Gao, Mei; Hu, Jingjiang; Zhang, Xifeng; Wang, Kai; Ashraf, Muhammad
2012-01-01
The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating BADH activity, and resulting in modulation of water relations and plant growth under drought, especially in the drought sensitive maize cultivar JD20. PMID:22489148
Ecophysiological response of Crambe maritima to airborne and soil-borne salinity
de Vos, Arjen C.; Broekman, Rob; Groot, Maartje P.; Rozema, Jelte
2010-01-01
Background and Aims There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses. Methods In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured. Key Results Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth. Conclusions Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mm NaCl. PMID:20354071
NASA Astrophysics Data System (ADS)
Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.
2006-12-01
Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of nutrients. The experiment required a specific geometry for the acquisition of ERT data using the heat-pulse water-content sensor's steel needles as electrodes. ERT data were analyzed using the sensed water contents and deriving pore-water resistivities using Archie's law. This design should provide a more optimal root-zone environment by maintaining a more uniform water content and on-demand supply of water than designs with one particle size at all column heights. The monitoring capability offers an effective means to describe the relationship between root-system performance and plant growth.
GLEAM v3: updated land evaporation and root-zone soil moisture datasets
NASA Astrophysics Data System (ADS)
Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko
2016-04-01
Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be distributed. The most important updates in GLEAM include the revision of the soil moisture data assimilation system, the evaporative stress functions and the infiltration of rainfall. In this presentation, we will highlight the changes of the methodology and present the new datasets, their validation against in situ observations and the comparisons against alternative datasets of terrestrial evaporation, such as GLDAS-Noah, ERA-Interim and previous GLEAM datasets. Preliminary results indicate that the magnitude and the spatio-temporal variability of the evaporation estimates have been slightly improved upon previous versions of the datasets.
NASA Astrophysics Data System (ADS)
Kostka, S.; Gadd, N.; Bell, D.
2009-04-01
Water repellent soils are documented to impact a range of hydrological properties, yet studies evaluating the consequences of soil water repellency (SWR) and its mitigation on crop yield and quality are conspicuously absent. With global concerns on drought and water availability and the projected impacts of climate change, development of novel strategies to optimize efficient rootzone delivery of water are required. Co-formulations of alkyl polyglycoside (APG) and ethylene oxide-propylene oxide (EO/PO) block copolymer surfactants have been shown to improve wetting synergistically. The objectives of this study were to determine if this surfactant technology: 1) increased soil water content and wetting front depth in mini-sprinkler irrigated, water repellent, Goulburn Valley clay loam soils and 2) assess the consequence of SWR mitigation on yield of Malus domestica Borkh. Three trials were conducted in the apple varieties 'Pink Lady' (2006/07 and 2007/08) and 'Gala' (2007/08) growing on Goulburn Valley clay loam soils in Victoria, AU. The test design was a randomized complete block with treatments replicated 5-6 times. Plot size varied by location. SWR was mitigated by applying surfactant at initial rates of 0, 5, or 10 L ha-1 in the spring, then at 0, 2.5, or 5 L ha-1 monthly for up to four months and compared to an untreated control. Treatments were applied to tree lines using a hand held small plot sprayer (118 liters of spray solution ha-1) followed by irrigation within 1-3 days of treatment applications. At each location, plots were irrigated by mini sprinklers and received the same irrigation volumes and management practices. Soil volumetric water content (VWC) was monitored at depths of 0-10 and 10-20 cm using a Theta probe (Delta-T Devices, Cambridge, UK). At harvest, fruit number and weights were measured and used for crop yield estimations. Data were analyzed using analysis of variance with mean values summarized and separated using Least Significant Test at 5% level of probability. As surfactant rate increased, wetting front depth increased and soil VWC increased for the surfactant treatments (p=0.05). Soil VWC was significantly lower (p=0.05) in untreated soils than in the surfactant treatments on each measurement date throughout the growing season. In the surfactant treatments, soil VWC at the 0-10 cm and 10-20 cm depths of the soil profile were 2-5 percentage points higher than at the same depths in the untreated control (p=0.05). Mean fruit size for the variety 'Pink Lady' was 17-33 g greater in the surfactant treatments than in the untreated control in the 2006/07 and 2007/08 seasons, respectively (p=0.05). Mean fruit size differences of 41 g were observed between surfactant treatments and the untreated control in the single year of results for the variety 'Gala'. Due to thinning, there were no differences in fruit number. Total yield (kg tree-1) differed significantly between the untreated and surfactant treated plots (p=0.05), however, yields between the two surfactant treatment rates were statistically equivalent. In the variety 'Pink Lady', surfactant treatment increased total yield by approximately 20% in each of the two test seasons. Yield increases in the surfactant treated 'Gala' were nearly 50% greater than the untreated control. When examining the yield differences on a hectare basis, yield increases of 3.7 - 6.0 Mg kg ha-1 were encountered between the surfactant treatments and the control in the two varieties tested. Mitigation of SWR resulted in increased net return of 6,000 - 9000 ha-1 for the variety 'Pink Lady' and 3,600 ha-1 for the cultivar 'Gala'. This study demonstrates that simple innovative management strategies such as low level surfactant treatments to water repellent soils resulted in improved infiltration, increased rootzone water reserves, and significant increases in apple yield and quality under deficit irrigation.
Evidence Report: Risk of Performance Errors Due to Training Deficiencies
NASA Technical Reports Server (NTRS)
Barshi, Immanuel
2012-01-01
The Risk of Performance Errors Due to Training Deficiencies is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that training content, timing, intervals, and delivery methods must support crew task performance, and given that training paradigms will be different for long-duration missions with increased crew autonomy, there is a risk that operators will lack the skills or knowledge necessary to complete critical tasks, resulting in flight and ground crew errors and inefficiencies, failed mission and program objectives, and an increase in crew injuries.
New Approach To Produce Water Free of Bacteria, Viruses, and Halogens in a Recyclable System▿
Ahmed, Abd El-Shafey I.; Cavalli, Gabriel; Bushell, Michael E.; Wardell, John N.; Pedley, Steve; Charles, Katarina; Hay, John N.
2011-01-01
The antimicrobial activity of a new cross-linked N-halamine polymer against bacteria and viruses was evaluated. The polymer achieved a 9-log10 reduction of bacteria (both Escherichia coli and Staphylococcus aureus) in 1.5 h and a 5-log10 reduction of bacteriophage PRD1 in 3 h. At the same time, the ability of the nonhalogenated polymer to trap halide ions was examined. The polymer was incorporated into a multifiltration system to study the ability to produce water free of bacteria, viruses, and halide ions. The antimicrobial activity, useful lifetime, halide ion level, and recycling possibilities of the system were quantified on a laboratory scale. A design for a large-scale multifiltration system based on this polymer is proposed. PMID:21115711
Development of Drag Reducing Polymer of FDR-SPC
NASA Astrophysics Data System (ADS)
Lee, Inwon; Park, Hyun; Chun, Ho Hwan
2015-11-01
In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.
Guo, Jianping; Xia, Feng; Zhang, Yong; Liu, Huan; Li, Jing; Lou, Mengyun; He, Jing; Yan, Yan; Wang, Fu; Min, Min; Zhai, Panmao
2017-02-01
PM 2.5 retrieval from space is still challenging due to the elusive relationship between PM 2.5 and aerosol optical depth (AOD), which is further complicated by meteorological factors. In this work, we investigated the diurnal cycle of PM 2.5 in China, using ground-based PM measurements obtained at 226 sites of China Atmosphere Watch Network during the period of January 2013 to December 2015. Results showed that nearly half of the sites witnessed a PM 2.5 maximum in the morning, in contrast to the least frequent occurrence (5%) in the afternoon when strong solar radiation received at the surface results in rapid vertical diffusion of aerosols and thus lower mass concentration. PM 2.5 tends to peak equally in the morning and evening in North China Plain (NCP) with an amplitude of nearly twice or three times that in the Pearl River Delta (PRD), whereas the morning PM 2.5 peak dominates in Yangtze River Delta (YRD) with a magnitude lying between those of NCP and PRD. The gridded correlation maps reveal varying correlations around each PM 2.5 site, depending on the locations and seasons. Concerning the impact of aerosol diurnal variation on the correlation, the averaging schemes of PM 2.5 using 3-h, 5-h, and 24-h time windows tend to have larger R biases, compared with the scheme of 1-h time window, indicating diurnal variation of aerosols plays a significant role in the establishment of explicit correlation between PM 2.5 and AOD. In addition, high cloud fraction and relative humidity tend to weaken the correlation, regardless of geographical location. Therefore, the impact of meteorology could be one of the most plausible alternatives in explaining the varying R values observed, due to its non-negligible effect on MODIS AOD retrievals. Our findings have implications for PM 2.5 remote sensing, as long as the aerosol diurnal cycle, along with meteorology, are explicitly considered in the future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, X.
2017-12-01
The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential future damages. Key words: Heavy rain storm; flood; damage assessment; Pearl River Delta; rural area
High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014.
Chen, Dongsheng; Wang, Xiaotong; Li, Yue; Lang, Jianlei; Zhou, Ying; Guo, Xiurui; Zhao, Yuehua
2017-12-31
Ship exhaust emissions have been considered a significant source of air pollution, with adverse impacts on the global climate and human health. China, as one of the largest shipping countries, has long been in great need of in-depth analysis of ship emissions. This study for the first time developed a comprehensive national-scale ship emission inventory with 0.005°×0.005° resolution in China for 2014, using the bottom-up method based on Automatic Identification System (AIS) data of the full year of 2014. The emission estimation involved 166,546 unique vessels observed from over 15billion AIS reports, covering OGVs (ocean-going vessels), CVs (coastal vessels) and RVs (river vessels). Results show that the total estimated ship emissions for China in 2014 were 1.1937×10 6 t (SO 2 ), 2.2084×10 6 t (NO X ), 1.807×10 5 t (PM 10 ), 1.665×10 5 t (PM 2.5 ), 1.116×10 5 t (HC), 2.419×10 5 t (CO), and 7.843×10 7 t (CO 2 , excluding RVs), respectively. OGVs were the main emission contributors, with proportions of 47%-74% of the emission totals for different species. Vessel type with the most emissions was container (~43.6%), followed by bulk carrier (~17.5%), oil tanker (~5.7%) and fishing ship (~4.9%). Monthly variations showed that emissions from transport vessels had a low point in February, while fishing ship presented two emission peaks in May and September. In terms of port clusters, ship emissions in BSA (Bohai Sea Area), YRD (Yangtze River Delta) and PRD (Pearl River Delta) accounted for ~13%, ~28% and ~17%, respectively, of the total emissions in China. On the contrast, the average emission intensities in PRD were the highest, followed by the YRD and BSA regions. The establishment of this high-spatiotemporal-resolution ship emission inventory fills the gap of national-scale ship emission inventory of China, and the corresponding ship emission characteristics are expected to provide certain reference significance for the management and control of the ship emissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Qomariyah, Siti Nurul; Braunholtz, David; Achadi, Endang L; Witten, Karen H; Pambudi, Eko Setyo; Anggondowati, Trisari; Latief, Kamaluddin; Graham, Wendy J
2010-11-17
The maternal mortality ratio (MMR) remains high in most developing countries. Local, recent estimates of MMR are needed to motivate policymakers and evaluate interventions. But, estimating MMR, in the absence of vital registration systems, is difficult. This paper describes an efficient approach using village informant networks to capture maternal death cases (Maternal Deaths from Informants/Maternal Death Follow on Review or MADE-IN/MADE-FOR) developed to address this gap, and examines its validity and efficiency. MADE-IN used two village informant networks - heads of neighbourhood units (RTs) and health volunteers (Kaders). Informants were invited to attend separate network meetings - through the village head (for the RT) and through health centre for the kaders. Attached to the letter was a form with written instructions requesting informants list deaths of women of reproductive age (WRA) in the village during the previous two years. At a 'listing meeting' the informants' understanding on the form was checked, informants could correct their forms, and then collectively agreed a consolidated list. MADE-FOR consisted of visits relatives of likely pregnancy related deaths (PRDs) identified from MADE-IN, to confirm the PRD status and gather information about the cause of death. Capture-recapture (CRC) analysis enabled estimation of coverage rates of the two networks, and of total PRDs. The RT network identified a higher proportion of PRDs than the kaders (estimated 0.85 vs. 0.71), but the latter was easier and cheaper to access. Assigned PRD status amongst identified WRA deaths was more accurate for the kader network, and seemingly for more recent deaths, and for deaths from rural areas. Assuming information on live births from an existing source to calculate the MMR, MADE-IN/MADE-FOR cost only $0.1 (US) per women-year risk of exposure, substantially cheaper than alternatives. This study shows that reliable local, recent estimates of MMR can be obtained relatively cheaply using two independent informant networks to identify cases. Neither network captured all PRDs, but capture-recapture analysis allowed self-calibration. However, it requires careful avoidance of false-positives, and matching of cases identified by both networks, which was achieved by the home visit.
Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong
2015-04-01
Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.
Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region
NASA Astrophysics Data System (ADS)
Tsai, Wai Yan
2007-12-01
Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in designing standards and strategies to improve the air quality in this region, and will certainly add substantially to the scientific database for the international community.
Poverty-related diseases (PRDs): unravelling complexities in disease responses in Cameroon.
Makoge, Valerie; Maat, Harro; Vaandrager, Lenneke; Koelen, Maria
2017-01-01
In Cameroon, poverty-related diseases (PRDs) are a major public health concern. Research and policies addressing PRDs are based on a particular understanding of the interaction between poverty and disease, usually an association between poverty indicators and health indicators for a specific country or region. Such indicators are useful but fail to explain the nature of the linkages between poverty and disease or poverty and health. This paper presents results of a study among university students, unravelling how they perceive diseases, the linkages with poverty, their responses to diseases and the motivations behind reported responses. Based on the health belief model, this cross-sectional study was carried out among 272 students at the universities of Buea and Yaoundé in Cameroon. Data were collected using questionnaires containing items matching the research objectives. The questionnaires were self-completed. Malaria was considered as the most common disease perceived and also a major PRD. Contrary to official rankings of HIV/AIDS and TB, cholera and diarrhoea were considered as other major PRDs. Also, typhoid fever was perceived to be more common and a PRD than HIV/AIDS and TB combined. The most prominently attributed cause for disease was (lack of) hygiene. In response, students deployed formal and/or informal healthcare strategies, depending on factors like available money, perceived severity of the disease and disease type. Discrepancies were observed in respondents' response to diseases generally and to malaria in particular. Even though, overall, respondents pre-dominantly reported a formal healthcare response toward diseases in general, for malaria, informal responses dominated. There was an overall strong awareness and (pro)activity among students for dealing with diseases. Although the high use of informal facilities and medication for malaria may well be a reason why eradication is problematic, this seems to be a deliberate strategy linked to an awareness of the limitations of the formal health system. In any intervention intended to foster health, it is therefore vital to consider people's perceptions toward diseases and their response strategies. Our results give important leads to health promotion interventions to develop group-specific programs.
Federsel, Hans-Jürgen
2010-08-15
Initially, the aim is to provide the big picture illustrating the as is situation in the pharmaceutical industry: a lack of productivity resulting in too few products reaching the market; a loss of billions in revenue over the next few years as some of the major megabrands go off patent; a spiraling cost for developing new drugs and taking them through clinical and safety studies. Following on, a look deeper into the organization will offer an insight into the state-of-the-art in a technical function accountable for chemical Process R&D (with a remit to develop scalable, robust, and cost efficient processes for small molecules). The vast majority of compounds already launched in the form of drug products on the market or still being pursued through the phases of discovery and development, fall within the category of small molecules (as opposed to biopharmaceuticals, e.g., proteins, monoclonal antibodies). This typically means molecular weights of <1000Da and puts organic synthesis in the widest sense of the word at the forefront of technologies needed to support R&D programs in the pharma industry. Understandably, the demands on Medicinal Chemistry are quite different to what applies in a Process R&D (PR&D) organization. In the former, making large numbers of potentially interesting molecules, many of which are discarded after testing, is a key driver and for this virtually any synthetic methodology will suffice. For PR&D, however, homing in on selected compounds there is an expectation that the best synthetic routes will be delivered that meet a number of tough criteria, for instance from an environmental and safety point of view, allowing operation on large scale, offering cost competitiveness, avoiding patent infringements, showing sustainability for long-term production, etc. The intention is to focus on issues to be addressed during this transition by providing examples of changes that had to be put in place in order to make the supply of larger amounts of material feasible. At the end some forward looking conclusions will be shared. Copyright 2010 Elsevier Ltd. All rights reserved.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
Abortion and politics in Mexico: 'context is all'.
Lamas, M; Bissell, S
2000-11-01
A strong collective pro-choice mentality was recently manifested in Mexico when a legislative initiative to revoke the legal right of rape survivor to abortion in the state of Guanajuato awakened national indignation. Pro-choice values were expressed in public opinion with such force that it sparked off the passage of liberalising law reforms in Mexico City and the state of Morelos. In this paper we trace the development of these manifestations of pro-choice views, beginning with the Democratic Revolution Party's (PRD) refusal in 1999 to modify abortion legislation within the context of penal code reform, and moving through the events surrounding the Guanajuato reform, and the pro-choice response of Mexico City and Morelos legislators. This analysis allows us to recognise the emergence of a pro-choice consciousness and to understand that, when it comes to abortion, 'context is all'.
NASA Astrophysics Data System (ADS)
Wang, J.; Baerenklau, K.
2012-12-01
Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being, policies targeting intermediate pollution and final pollution create incentives for the operator to examine the effects of other management practices to reduce pollution in addition to controlling the polluting inputs. Incentive-based mechanisms are slightly more cost-effective than quantity controls when seasonal emissions fluctuate. Our approach demonstrates the importance of taking into account the spatial & temporal dynamics in the rootzone and the integrated effects of water, nitrogen, and salinity on crop yield and nitrate emissions. It also highlights the significant role the environment can play in pollution control and the potential benefits from designing policies that acknowledge this role.oss of Total Net Farm Income Under Alternative Policies
Composting-derived organic coating on biochar enhances its affinity to nitrate
NASA Astrophysics Data System (ADS)
Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas
2017-04-01
Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron energy loss spectroscopy - STEM-EELS, scanning transmission X-ray microscopy STXM) revealed the formation of a nano-porous organic coating on co-composted biochar. This coating alters the interaction of biochar with water as evidenced by proton fast field cycling nuclear magnetic resonance (1H FFC NMR) relaxometry and might explain its distinct characteristics. Our findings offer a roadmap for future research to design sustainable slow-release nitrogen fertilizers based on biochar to reduce the environmental impact of agriculture. Further microscopic studies are necessary to understand the preconditions of the formation of organic coatings on biochar on a holistic basis to design biochar post-production treatments.
Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined
Malik, Al Imran; English, Jeremy Parker; Colmer, Timothy David
2009-01-01
Background and Aims When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat. Methods Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl−) concentrations were determined. Key Results Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl− also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl− concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat. Conclusions Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl− ‘exclusion’ even in an O2-deficient, saline rooting medium. PMID:18701600
Plants + soil/wetland microbes: Food crop systems that also clean air and water
NASA Astrophysics Data System (ADS)
Nelson, Mark; Wolverton, B. C.
2011-02-01
The limitations that will govern bioregenerative life support applications in space, especially volume and weight, make multi-purpose systems advantageous. This paper outlines two systems which utilize plants and associated microbial communities of root or growth medium to both produce food crops and clean air and water. Underlying these approaches are the large numbers and metabolic diversity of microbes associated with roots and found in either soil or other suitable growth media. Biogeochemical cycles have microbial links and the ability of microbes to metabolize virtually all trace gases, whether of technogenic or biogenic origin, has long been established. Wetland plants and the rootzone microbes of wetland soils/media also been extensively researched for their ability to purify wastewaters of a great number of potential water pollutants, from nutrients like N and P, to heavy metals and a range of complex industrial pollutants. There is a growing body of research on the ability of higher plants to purify air and water. Associated benefits of these approaches is that by utilizing natural ecological processes, the cleansing of air and water can be done with little or no energy inputs. Soil and rootzone microorganisms respond to changing pollutant types by an increase of the types of organisms with the capacity to use these compounds. Thus living systems have an adaptive capacity as long as the starting populations are sufficiently diverse. Tightly sealed environments, from office buildings to spacecraft, can have hundreds or even thousands of potential air pollutants, depending on the materials and equipment enclosed. Human waste products carry a plethora of microbes which are readily used in the process of converting its organic load to forms that can be utilized by green plants. Having endogenous means of responding to changing air and water quality conditions represents safety factors as these systems operate without the need for human intervention. We review this research and the ability of systems using these mechanisms to also produce food or other useful crops. Concerns about possible pathogens in soils and wastewater are discussed along with some methods to prevent contact, disease transmission and to pre-screen and decrease risks. The psychological benefits of having systems utilizing green plants are becoming more widely recognized. Some recent applications extending the benefits of plants and microbes to solve new environmental problems are presented. For space applications, we discuss the use of in situ space resources and ways of making these systems compact and light-weight.
Vegetative and Atmospheric Controls on the Bouchet-Morton Complementary Relationship Hypothesis
NASA Astrophysics Data System (ADS)
Pettijohn, J. C.; Salvucci, G. D.; Phillips, N. G.; Daley, M. J.
2006-12-01
The Bouchet-Morton Complementary Relationship (CR) hypothesis is a potentially-powerful analytic tool to help understand the feedback between evapotranspiring land surfaces and the atmospheric boundary layer (ABL), and how potential evaporation reflects this coupling on multiple time and length scales. In spite of advances in our ability to measure and model these processes, the heuristic CR hypothesis remains an unsolved, first-order problem. The leading theoretical models, i.e., Morton, Granger, and Szilagyi, of the coupled land surface atmosphere mechanisms responsible for CR focus primarily on vertical humidity (vapor pressure) profiles while assuming that vegetative and/or atmospheric diffusivities play an insignificant role in regulating CR. Further, whereas Granger and Szilagyi assume almost opposite vertical temperature profile boundary conditions, both derivations appear to validate CR. Contrary to these multiple working hypotheses' assumptions, our recent CR evaluation of 147 days (1987-1989) at the FIFE temperate grassland discovered that canopy conductance was an essential forcing variable in complementarity, and thus improved CR in application when included in the definition of potential evaporation. To isolate the exact forcing mechanisms of canopy and ABL conductances to complementarity, we evaluated CR in a mixed-deciduous forest at Harvard Forest (summers 2005-2006) by comparing daily averaged water-stressed (non-irrigated, regionally stressed soil moisture) and water-unstressed (irrigated, `potential') transpiration. Root-zone soil moisture of a red maple (Acer rubrum L.) sample set was elevated using a pulse-irrigation system. Whole-tree transpiration of the `potential` (water-unstressed) and a reference (water-stressed) set of maples was monitored at high frequency using heat-dissipation Granier-type sap flux sensors. To isolate physiological and/or atmospheric forcing of CR, we estimated isothermal Penman-Monteith transpiration models of both irrigated and non-irrigated time series using a Jarvis type multiplicative stress model of scaled canopy conductance to water vapor transport. Poorly-constrained model parameters (e.g., environmental stress boundary conditions) were estimated using a grid search routine; further, parameter confidence limits were inferred using bootstrap replacement sampling. Preliminary results suggest the following: (1) the absence of an unstressed canopy conductance in the Penman equation results in violation of fundamental CR assumptions (similar to FIFE); and (2) unlimited root-zone water availability does not reduce the leaf-level stomatal resistance enough to yield complementarity, i.e., the typical CR potential signal is also a function of other environmental stresses, e.g., vapor pressure deficit. In summary, our results yield valuable insight into the role of vertical atmospheric and vegetative conductances in CR.
Effect of irrigation techniques and strategies on water footprint of growing crops
NASA Astrophysics Data System (ADS)
Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.
2014-12-01
Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation technique. This rank though changes in non-moisture limiting condition (wet year) drip performing better in reducing the WF of growing crops than sub-surface drip. It was observed that with all range of irrigation techniques, strategies and field management practices there is more room in reducing the WF of growing crops in loam than sandy-loam soil.
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Liu, Keh-Fei
2012-03-01
It is argued by the author that the canonical form of the quark energy-momentum tensor with a partial derivative instead of the covariant derivative is the correct definition for the quark momentum and angular momentum fraction of the nucleon in covariant quantization. Although it is not manifestly gauge-invariant, its matrix elements in the nucleon will be nonvanishing and are gauge-invariant. We test this idea in the path-integral quantization by calculating correlation functions on the lattice with a gauge-invariant nucleon interpolation field and replacing the gauge link in the quark lattice momentum operator with unity, which corresponds to the partial derivative in the continuum. We find that the ratios of three-point to two-point functions are zero within errors for both the u and d quarks, contrary to the case without setting the gauge links to unity.
Heistad, A; Scott, T; Skaarer, A M; Seidu, R; Hanssen, J F; Stenström, T A
2009-01-01
Enhanced treatment of septic tank effluent can improve the hydraulic function and performance of infiltration systems and constructed wetlands. By intermittent spray application of septic tank effluent onto a coarse-grained filter media, an unsaturated flow regime beneficial for pathogen removal is created. A column filtration study showed an increase in PRD-1 removal by time of operation with corresponding biofilm accumulation in the filter material. The same increased removal was observed for 1 mum polystyrene beads, irrespective of their hydrophilic/hydrophobic surface properties. A control experiment with sorption of 1 mum hydrophobic and hydrophilic polystyrene beads to different glass surfaces with hydrophobic and hydrophilic properties indicate that mechanisms other than hydrophobic interactions may govern the rate of attachment to the filter media. For a given volumetric flow-rate in the columns, the presence of biofilm altered the hydrodynamic characteristics and this resulted in increased retention time and particle removal.
Small molecule compound logistics outsourcing--going beyond the "thought experiment".
Ramsay, Devon L; Kwasnoski, Joseph D; Caldwell, Gary W
2012-01-01
Increasing pressure on the pharmaceutical industry to reduce cost and focus internal resources on "high value" activities is driving a trend to outsource traditionally "in-house" drug discovery activities. Compound collections are typically viewed as drug discovery's "crown jewels"; however, in late 2007, Johnson & Johnson Pharmaceutical Research & Development (J PRD) took a bold step to move their entire North American compound inventory and processing capability to an external third party vendor. The authors discuss the combination model implemented, that of local compound logistics site support with an outsourced centralized processing center. Some of the lessons learned over the past five years were predictable while others were unexpected. The substantial cost savings, improved local service response and flexible platform to adjust to changing business needs resulted. Continued sustainable success relies heavily upon maintaining internal headcount dedicated to vendor management, an open collaboration approach and a solid information technology infrastructure with complete transparency and visibility.
Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response
NASA Technical Reports Server (NTRS)
Crucian, Brian; Sams, Clarence F.
2013-01-01
The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.
Summaries of FY16 LANL experimental campaigns at the OMEGA and EP Laser Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, Eric Nicholas; Merritt, Elizabeth Catherine; Montgomery, David
In FY16, Los Alamos National Laboratory carried out 22 shot days on the OMEGA and OMEGA- EP laser facilities in the areas of High Energy Density (HED) Science and Inertial Confinement Fusion (ICF). In HED our focus areas were on radiation flow, hydrodynamic turbulent mix and burn, warm dense matter equations of state, and coupled Kelvin-Helmholtz (KH)/Richtmyer- Meshkov (RM) instability growth. For ICF our campaigns focused on the Priority Research Directions (PRD) of implosion phase mix and stagnation and burn, specifically as they pertain to Laser Direct Drive (LDD). We also had several focused shot days on transport properties inmore » the kinetic regime. We continue to develop advanced diagnostics such as Neutron Imaging, Gamma Reaction History, and Gas Cherenkov Detectors. Below are a summary of our campaigns, their motivation, and main results from this year.« less
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Physical Review: a family of journals
NASA Astrophysics Data System (ADS)
Sprouse, Gene
2013-03-01
The expansion of research in physics in the last 100 years has been reflected in the expansion of the Physical Review(PR). Reviews of Modern Physics was the first ``new'' journal, starting in 1929. Physical Review Letters commenced in 1958, and was the first ``letters'' type of journal for important new results in all fields. By 1970 the Physical Review itself had grown so large that it was necessary to separate it by field into manageable volumes: PRA, PRB, PRC and PRD, and subsequently PRE, which was split off from PRA. More recently, two Special Topics journals for accelerator physics and physics education were pioneers of the open access business model, and the newest member of the family, Physical Review X, continues this trend. PRX is broad scope and very selective, setting it well above many of the new open access journals with a review standard of ``not incorrect.'' Some possible future directions for the Physical Review journals will be discussed.
Selected inversion as key to a stable Langevin evolution across the QCD phase boundary
NASA Astrophysics Data System (ADS)
Bloch, Jacques; Schenk, Olaf
2018-03-01
We present new results of full QCD at nonzero chemical potential. In PRD 92, 094516 (2015) the complex Langevin method was shown to break down when the inverse coupling decreases and enters the transition region from the deconfined to the confined phase. We found that the stochastic technique used to estimate the drift term can be very unstable for indefinite matrices. This may be avoided by using the full inverse of the Dirac operator, which is, however, too costly for four-dimensional lattices. The major breakthrough in this work was achieved by realizing that the inverse elements necessary for the drift term can be computed efficiently using the selected inversion technique provided by the parallel sparse direct solver package PARDISO. In our new study we show that no breakdown of the complex Langevin method is encountered and that simulations can be performed across the phase boundary.
Cardiac Care Assistance using Self Configured Sensor Network—a Remote Patient Monitoring System
NASA Astrophysics Data System (ADS)
Sarma Dhulipala, V. R.; Kanagachidambaresan, G. R.
2014-04-01
Pervasive health care systems are used to monitor patients remotely without disturbing the normal day-to-day activities in real-time. Wearable physiological sensors required to monitor various significant ecological parameters of the patients are connected to Body Central Unit (BCU). Body Sensor Network (BSN) updates data in real-time and are designed to transmit alerts against abnormalities which enables quick response by medical units in case of an emergency. BSN helps monitoring patient without any need for attention to the subject. BSN helps in reducing the stress and strain caused by hospital environment. In this paper, mathematical models for heartbeat signal, electro cardio graph (ECG) signal and pulse rate are introduced. These signals are compared and their RMS difference-fast Fourier transforms (PRD-FFT) are processed. In the context of cardiac arrest, alert messages of these parameters and first aid for post-surgical operations has been suggested.
Gong, Jian; Duan, Dandan; Yang, Yu; Ran, Yong; Chen, Diyun
2016-12-01
Endocrine disrupting chemicals (EDCs) were seasonally investigated in surface water, suspended particulate matter, and sediments of the Pearl River Delta (PRD), South China. EDC concentrations in the surface water were generally higher in the summer than in winter. The surface water in the investigated rivers was heavily contaminated by the phenolic xenoestrogens. Moreover, the in-situ log K soc and log K poc values and their regression with log K ow in the field experiments suggest that binding mechanisms other than hydrophobic interaction are present for the sedimentary organic carbon and particulate organic carbon (SOC/POC). The logK soc -logK ow and logK poc -logK ow regression analyses imply that higher complexity of nonhydrophobic interactions with EDCs is present on the SOC samples comparing with the POC samples, which is related to their different sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Condé, Claude; Rambout, Xavier; Lebrun, Marielle; Lecat, Aurore; Di Valentin, Emmanuel; Dequiedt, Franck; Piette, Jacques
2012-01-01
SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling. PMID:22815893
A corkscrew model for dynamin constriction
Mears, Jason A.; Ray, Pampa; Hinshaw, Jenny E.
2007-01-01
SUMMARY Numerous vesiculation processes throughout the eukaryotic cell are dependant on the protein dynamin, a large GTPase that constricts lipid bilayers. We have combined x-ray crystallography and cryo-electron microscopy (cryo-EM) data to generate a coherent model of dynamin-mediated membrane constriction. X-ray structures of mammalian GTPase and pleckstrin homology (PH) domains of dynamin were fit to cryo-EM structures of human ΔPRD dynamin helices bound to lipid in non-constricted and constricted states. Proteolysis and immunogold labeling experiments confirm the topology of dynamin domains predicted from the helical arrays. Based on the fitting, an observed twisting motion of the GTPase, middle and GTPase-effector domains coincides with conformational changes determined by cryo-EM. We propose a corkscrew model for dynamin constriction based on these motions and predict regions of sequence important for dynamin function as potential targets for future mutagenic and structural studies. PMID:17937909
NASA Astrophysics Data System (ADS)
Zhou, Jiabin; Xing, Zhenyu; Deng, Junjun; Du, Ke
2016-06-01
During the past decade, huge research resources have been devoted into studies of air pollution in China, which generated abundant datasets on emissions and pollution characterization. Due to the complex nature of air pollution as well as the limitations of each individual investigating approach, the published results were sometimes perplexing and even contradicting. This research adopted a multi-method approach to investigate region-specific air pollution characteristics and sources in China, results obtained using different analytical and receptor modeling methods were inter-compared for validation and interpretation. A year-round campaign was completed for comprehensive characterization of PM2.5 over four key emission regions: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). Atmospheric PM2.5 samples were collected from 10/2012 to 08/2013 at four regional sites, located on the diffusion paths of air masses from their corresponding megacities (i.e., Beijing, Shanghai, Guangzhou, and Chengdu). The annual average PM2.5 mass concentrations showed distinct regional difference, with the highest observed at BTH and lowest at PRD site. Nine water-soluble ions together contributed 33-41% of PM2.5 mass, with three dominant ionic species being SO42-, NO3-, NH4+, and carbonaceous particulate matter contributed 16-23% of PM2.5 mass. This implied that combustion and secondary formation were the main sources for PM2.5 in China. In addition, SO42-, NO3-, NH4+, and carbonaceous components (OC, EC) showed clear seasonal patterns with the highest concentration occurring in winter while the lowest in summer. Principal component analysis performed on aerosol data revealed that vehicular emissions, coal/biomass combustion, industry source, soil dust as well as secondary formation were the main potential sources for the ionic components of PM2.5. The characteristic chemical species combined with back trajectory analysis indicated that BTH was heavily influenced by air masses originating from Mongolia and North China Plain regions, whereas SB suffered from both local emissions of Sichuan Basin and biomass burning via long-range transport from South Asia. Sourcing conclusions from this study will be compared, validated and interpreted with those obtained using organic molecular marker and carbon isotope analyses to be presented parts II and III of this series.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China
NASA Astrophysics Data System (ADS)
Huang, X.
2015-12-01
X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the brown carbon contribution to the aerosol light absorption at shorter wavelengths is not negligible in the PRD region, with a rough magnitude of 10%. Key words: Light absorption, Absorption Angstrom Exponent (AAE), Brown carbon (BrC), Black carbon (BC)
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, S. H. L.; Lau, G.
2016-12-01
Part of organic carbon defined as brown carbon (BrC) has been found to absorb solar radiation, especially in near-ultraviolet and blue bands, but their radiation impact is far less understood than black carbon (BC). Rapid adjustment thought to occur within a few weeks, induced by aerosol radiative effect and thereby alter cloud cover or other climate components. These effects are particularly pronounced for absorbing aerosols. The data gathered is from an online coupled model, WRF-Chem. A two-simulation test is conducted from July 8 to July 15. The baseline simulation doesn't account for aerosol-radiation interactions, whereas the sensitivity run includes it. The differences between these two simulations represent total effects of the aerosol instantaneous radiative forcing and subsequent rapid adjustment. In Figure 1, without cloud effect (clear sky), at the top of atmosphere (TOA), the SW radiation changes are negative in the PRD region, representing an overall cooling effect of aerosols. However, in the atmosphere (ATM), aerosols heat the atmosphere by absorbing incoming solar radiation with an average of 2.4 W/m2 (Table 1). After including rapid adjustment (all sky), the radiation change pattern becomes significantly different, especially at TOA and surface (SFC). This may be caused by cloud cover change due to rapid adjustment. The magnitude of SW radiation changes for all sky at all levels is smaller than that for clear sky. This result suggests the rapid adjustment counteracts the instantaneous radiative forcing of aerosols. At TOA, the cooling effect of the aerosol is 74% lower for all sky compared with clear sky, highlighting an overall warming effect of rapid adjustment in the PRD region. Aerosol-induced changes (W/m2) TOA ATM SFC Clear Sky -9.2 2.4 -11.6 All Sky -2.4 1.9 -4.3 Table 1. Aerosol-induced averaged changes in shortwave radiation due to aerosol-radiation interactions in the Pearl River Delta. The test shows the rapid adjustment of aerosols offsets part of the aerosol instantaneous negative radiation forcing, especially at TOA and SFC. The only absorbing aerosol species included in the test is BC. If absorption effects of dust and BrC are considered, the contribution of instantaneous radiative forcing and rapid adjustment may change.
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing
2012-01-01
Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.
NASA Technical Reports Server (NTRS)
Yagci, Ali Levent; Santanello, Joseph A.; Rodell, Matthew; Deng, Meixia; Di, Liping
2018-01-01
The drought of 2012 in the North America devastated agricultural crops and pastures, further damaging agriculture and livestock industries and leading to great losses in the economy. The drought maps of the United States Drought Monitor (USDM) and various drought monitoring techniques based on the data collected by the satellites orbiting in space such as the Gravity Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the southeastern United States. The results indicated that spatial extent of drought reported by USDM were in general agreement with those reported by the MODIS-based drought maps. GRACE-based drought maps suggested that the southeastern US experienced widespread decline in surface and root-zone soil moisture and groundwater resources. Disagreements among all drought indicators were observed over irrigated areas, especially in Lower Mississippi region where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation response to changes in soil moisture and groundwater partly contributed to these disagreements, as well.
Farming of Vegetables in Space-Limited Environments
NASA Astrophysics Data System (ADS)
He, Jie
2015-10-01
Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.
Matching soil salinization and cropping systems in communally managed irrigation schemes
NASA Astrophysics Data System (ADS)
Malota, Mphatso; Mchenga, Joshua
2018-03-01
Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.
NASA Astrophysics Data System (ADS)
Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima
2018-04-01
Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.
Rooting for food security in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Guilpart, Nicolas; Grassini, Patricio; van Wart, Justin; Yang, Haishun; van Ittersum, Martin K.; van Bussel, Lenny G. J.; Wolf, Joost; Claessens, Lieven; Leenaars, Johan G. B.; Cassman, Kenneth G.
2017-11-01
There is a persistent narrative about the potential of Sub-Saharan Africa (SSA) to be a ‘grain breadbasket’ because of large gaps between current low yields and yield potential with good management, and vast land resources with adequate rainfall. However, rigorous evaluation of the extent to which soils can support high, stable yields has been limited by lack of data on rootable soil depth of sufficient quality and spatial resolution. Here we use location-specific climate data, a robust spatial upscaling approach, and crop simulation to assess sensitivity of rainfed maize yields to root-zone water holding capacity. We find that SSA could produce a modest maize surplus but only if rootable soil depths are comparable to that of other major breadbaskets, such as the US Corn Belt and South American Pampas, which is unlikely based on currently available information. Otherwise, producing surplus grain for export will depend on expansion of crop area with the challenge of directing this expansion to regions where soil depth and rainfall are supportive of high and consistent yields, and where negative impacts on biodiversity are minimal.
NASA Astrophysics Data System (ADS)
Xue, Jian
Work in this thesis focuses on half-hourly or hourly measurements of PM2.5 secondary inorganic aerosols (SIA) in two locations in Hong Kong (HK) using a continuous system, PILS (Particle-into-Liquid System) coupled to two ion chromatographs. The high-resolution data sets allow the examination of SIA temporal dynamics in the scale of hours that the filter-based approach is incapable of providing. (1) Impacts of local emissions, regional transports and their interactions on chemical composition and concentrations of PM2.5 SIA and other ionic species were investigated at the Hong Kong University of Science and Technology (HKUST), a receptor site, under three synoptic conditions. (2) Chemical compositions and size characteristics of ionic species were investigated at Tung Chung, a new town area located in the Southwest part of HK. The sampling period was from 17 to 26 December 2009, covering both normal conditions and an aerosol episode. The three major secondary inorganic ions, SO42, NH4+ and NO 3-, accounted for 47 +/- 6% of PM2.5 mass. Further examination of size characteristics of NO3 - shows that fine mode NO3- is more likely to occur in environments when the fine particles are less acidic and the sea-salt aerosol contributions are low. (3) The ionic chemical composition of PM2.5 and meteorological parameters (e.g., temperature, RH) obtained at the HKUST site under all three different synoptic conditions are input into Aerosol Inorganic Model (AIM-III) for estimation of in situ pH through calculation of H+ amount and aerosol liquid water content (LWC). The second part of this thesis work is to improve an observation-based model (OBAMAP) for SIA, which was first developed by Dr. Zibing Yuan (2006) to evaluate the sensitivity of formation of nitrate ad sulfate to changes in the emissions of their precursors (i.e., NOx, SO2, and VOCs). The improvement work includes incorporating updated chemical mechanisms, thermodynamic equilibrium for gas-aerosol phase apportionment and size distribution of SIA. The new OBM for SIA is applied to hourly gaseous and particulate composition data measured during a wintertime pollution episode encountered in Tung Chung for probing effectiveness of different precursor control strategies. The OBM is demonstrated to provide a relatively simple and cost-effective tool for analyzing the increasing database of high time resolution measurements of VOCs and major aerosol ionic species. In this thesis, we propose a new production regime of SO4 2- in which oxidation of S(IV) is dominated by NO 2 and O3 in the aqueous phase. Simulated with a simplified version of OBAMAP, it is shown elevation of NOx favors productions of SO42- in this regime, especially under high-SO 2 conditions. We then study the importance of NO2-derived and O3-derived SO42- during haze episodes in PRD and during winter at urban/suburban locations in PRD. Our findings reveal these two pathways account for >70% of SO42- productions. Since production of NO2-derived SO4 2- is independent on solar actinic fluxes while production by other pathways is, NO2-derived SO42- plays a more important role under low solar actinic fluxes conditions, even during the night time. In addition, it is noted that high levels of NO2-derived SO42- can only be expected under high-SO2 conditions (like in PRD) because level of atmospheric SO2 is the limiting parameter. (Abstract shortened by UMI.)
Determining and analyzing the strength and impact resistance of high modulus glass
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1972-01-01
A number of new glass compositions have been prepared with increased emphasis on compositions without beryllia. Glass preparations have been much more broadly based and have included the eutectic glass fields, and the mullite-rare earth glass systems. Of the new glasses, the best non-toxic composition is UARL 472 with a bulk modulus of only 18.20 million psi. A second experimental glass, UARL 417, was chosen for research in making large quantities of fiber in monofilament form. Tests of these UARL 417 epoxy resin samples in comparison to similar composites made with the DuPont organic fiber, PRD-49-1, show that the UARL composites have a compressive strength 41/2 times higher and a specific compressive strength at least 21/2 times greater. Much of the research effort attempted to answer the question of why a given glass should have an impact strength superior to other glasses. No definitive answer to the question was found.
Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing
NASA Astrophysics Data System (ADS)
Qu, H.; Wang, Y.; Zhang, R.
2017-12-01
We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.
[Exploring some clinical aspects of the issue of Québec paternity.].
Martinat, S
1985-01-01
This article is part of a P.R.D. Research in Clinical Psychology on the father and, on a broader base, on Fatherhood ir} Quebec. The research was initiated in 1979 by the Department of Psychology of Quebec University jointly with the creation of a research laboratory around the theme "the role of the father in the Quebec society in evolution". The question of the father's place and functions in the society of Quebec is raised. The emphasis of the maternal presence in the relationship between parents and children is examined as well as the function of certain cultural traditions, religious ones in particular, in the resolution of certain problems of fatherhood. According to the author, the socio-cultural past of Quebec has a distinct influence on the problem of fatherhood. In a Quebec family the father is traditionally absent and a figure of authority. What is the situation today? Some clinical examples taken from the research are used to illustrate better certain aspects of the paternal dynamics.
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-01-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. PMID:28537272
NASA Astrophysics Data System (ADS)
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-05-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.
Rissanen, Ilona; Grimes, Jonathan M.; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K.H.; Stuart, David I.
2013-01-01
Summary It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor. PMID:23623731
Liu, Shanshan; Li, Hao; Lv, Xiangzhang; Ahammed, Golam Jalal; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Asami, Tadao; Yu, Jingquan; Zhou, Yanhong
2016-01-01
Balancing stomata-dependent CO2 assimilation and transpiration is a key challenge for increasing crop productivity and water use efficiency under drought stress for sustainable crop production worldwide. Here, we show that cucumber and luffa plants with luffa as rootstock have intrinsically increased water use efficiency, decreased transpiration rate and less affected CO2 assimilation capacity following drought stress over those with cucumber as rootstock. Drought accelerated abscisic acid (ABA) accumulation in roots, xylem sap and leaves, and induced the transcript of ABA signaling genes, leading to a decreased stomatal aperture and transpiration in the plants grafted onto luffa roots as compared to plants grafted onto cucumber roots. Furthermore, stomatal movement in the plants grafted onto luffa roots had an increased sensitivity to ABA. Inhibition of ABA biosynthesis in luffa roots decreased the drought tolerance in cucumber and luffa plants. Our study demonstrates that the roots of luffa have developed an enhanced ability to sense the changes in root-zone moisture and could eventually deliver modest level of ABA from roots to shoots that enhances water use efficiency under drought stress. Such a mechanism could be greatly exploited to benefit the agricultural production especially in arid and semi-arid areas. PMID:26832070
Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone
NASA Astrophysics Data System (ADS)
Jabro, J.; Evans, R.
2009-04-01
In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.
NASA Astrophysics Data System (ADS)
Anders, R.; Chrysikopoulos, C. V.
2003-12-01
As the use of tertiary-treated municipal wastewater (recycled water) for replenishment purposes continues to increase, provisions are being established to protect ground-water resources by ensuring that adequate soil-retention time and distance requirements are met for pathogen removal. However, many of the factors controlling virus fate and transport (e.g. hydraulic conditions, ground-water chemistry, and sediment mineralogy) are interrelated and poorly understood. Therefore, conducting field-scale experiments using surrogates for human enteric viruses at an actual recharge basin that uses recycled water may represent the best approach for establishing adequate setback requirements. Three field-scale infiltration experiments were conducted at such a basin using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and recycled water. The specific research site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The first experiment was conducted over a 2-day period to determine the feasibility of conducting field-scale infiltration experiments using recycled water seeded with high concentrations of bacteriophage and bromide as tracers. Based on the results of the first experiment, a second experiment was completed when similar hydraulic conditions existed at the test basin. The third infiltration experiment was conducted to confirm the results obtained from the second experiment. Data were obtained for samples collected during the second and third field-scale infiltration experiments from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 m below the bottom of the test basin. These field-scale tracer experiments indicate bacteriophage are attenuated by removal and (or) inactivation during subsurface transport. To simulate the transport and fate of viruses during infiltration, a nonlinear least-squares regression program was used to fit a one-dimensional virus transport model to the experimental data. The model simulates virus transport in homogeneous, saturated porous media with first-order adsorption (or filtration) and inactivation. Furthermore, the model obtains a semi-analytical solution for the special case of a broad pulse and time-dependent source concentration using the principle of superposition. The fitted parameters include the clogging and declogging rate constants and the inactivation constants of suspended and adsorbed viruses. Preliminary results show a reasonable match of the first arrival of bacteriophage and bromide.
Escobar-Aguirre, Matias; Zhang, Hong; Jamieson-Lucy, Allison; Mullins, Mary C
2017-09-01
Animal-vegetal (AV) polarity of most vertebrate eggs is established during early oogenesis through the formation and disassembly of the Balbiani Body (Bb). The Bb is a structure conserved from insects to humans that appears as a large granule, similar to a mRNP granule composed of mRNA and proteins, that in addition contains mitochondria, ER and Golgi. The components of the Bb, which have amyloid-like properties, include germ cell and axis determinants of the embryo that are anchored to the vegetal cortex upon Bb disassembly. Our lab discovered in zebrafish the only gene known to function in Bb disassembly, microtubule-actin crosslinking factor 1a (macf1a). Macf1 is a conserved, giant multi-domain cytoskeletal linker protein that can interact with microtubules (MTs), actin filaments (AF), and intermediate filaments (IF). In macf1a mutant oocytes the Bb fails to dissociate, the nucleus is acentric, and AV polarity of the oocyte and egg fails to form. The cytoskeleton-dependent mechanism by which Macf1a regulates Bb mRNP granule dissociation was unknown. We found that disruption of AFs phenocopies the macf1a mutant phenotype, while MT disruption does not. We determined that cytokeratins (CK), a type of IF, are enriched in the Bb. We found that Macf1a localizes to the Bb, indicating a direct function in regulating its dissociation. We thus tested if Macf1a functions via its actin binding domain (ABD) and plectin repeat domain (PRD) to integrate cortical actin and Bb CK, respectively, to mediate Bb dissociation at the oocyte cortex. We developed a CRISPR/Cas9 approach to delete the exons encoding these domains from the macf1a endogenous locus, while maintaining the open reading frame. Our analysis shows that Macf1a functions via its ABD to mediate Bb granule dissociation and nuclear positioning, while the PRD is dispensable. We propose that Macf1a does not function via its canonical mechanism of linking two cytoskeletal systems together in dissociating the Bb. Instead our results suggest that Macf1a functions by linking one cytoskeletal system, cortical actin, to another structure, the Bb, where Macf1a is localized. Through this novel linking process, it dissociates the Bb at the oocyte cortex, thus specifying the AV axis of the oocyte and future egg. To our knowledge, this is also the first study to use genome editing to unravel the module-dependent function of a cytoskeletal linker.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.
2015-05-01
The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less
NASA Astrophysics Data System (ADS)
Xie, Min; Zhu, Kuanguang; Wang, Tijian; Feng, Wen; Gao, Da; Li, Mengmeng; Li, Shu; Zhuang, Bingliang; Han, Yong; Chen, Pulong; Liao, Jingbiao
2016-12-01
Anthropogenic heat (AH) emissions from human activities can change the urban circulation and thereby affect the air pollution in and around cities. Based on statistic data, the spatial distribution of AH flux in South China is estimated. With the aid of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem), in which the AH parameterization is developed to incorporate the gridded AH emissions with temporal variation, simulations for January and July in 2014 are performed over South China. By analyzing the differences between the simulations with and without adding AH, the impact of AH on regional meteorology and air quality is quantified. The results show that the regional annual mean AH fluxes over South China are only 0.87 W m-2, but the values for the urban areas of the Pearl River Delta (PRD) region can be close to 60 W m-2. These AH emissions can significantly change the urban heat island and urban-breeze circulations in big cities. In the PRD city cluster, 2 m air temperature rises by 1.1° in January and over 0.5° in July, the planetary boundary layer height (PBLH) increases by 120 m in January and 90 m in July, 10 m wind speed is intensified to over 0.35 m s-1 in January and 0.3 m s-1 in July, and accumulative precipitation is enhanced by 20-40 % in July. These changes in meteorological conditions can significantly impact the spatial and vertical distributions of air pollutants. Due to the increases in PBLH, surface wind speed and upward vertical movement, the concentrations of primary air pollutants decrease near the surface and increase in the upper levels. But the vertical changes in O3 concentrations show the different patterns in different seasons. The surface O3 concentrations in big cities increase with maximum values of over 2.5 ppb in January, while O3 is reduced at the lower layers and increases at the upper layers above some megacities in July. This phenomenon can be attributed to the fact that chemical effects can play a significant role in O3 changes over South China in winter, while the vertical movement can be the dominant effect in some big cities in summer. Adding the gridded AH emissions can better describe the heterogeneous impacts of AH on regional meteorology and air quality, suggesting that more studies on AH should be carried out in climate and air quality assessments.
Zhang, Hong; Jamieson-Lucy, Allison
2017-01-01
Animal-vegetal (AV) polarity of most vertebrate eggs is established during early oogenesis through the formation and disassembly of the Balbiani Body (Bb). The Bb is a structure conserved from insects to humans that appears as a large granule, similar to a mRNP granule composed of mRNA and proteins, that in addition contains mitochondria, ER and Golgi. The components of the Bb, which have amyloid-like properties, include germ cell and axis determinants of the embryo that are anchored to the vegetal cortex upon Bb disassembly. Our lab discovered in zebrafish the only gene known to function in Bb disassembly, microtubule-actin crosslinking factor 1a (macf1a). Macf1 is a conserved, giant multi-domain cytoskeletal linker protein that can interact with microtubules (MTs), actin filaments (AF), and intermediate filaments (IF). In macf1a mutant oocytes the Bb fails to dissociate, the nucleus is acentric, and AV polarity of the oocyte and egg fails to form. The cytoskeleton-dependent mechanism by which Macf1a regulates Bb mRNP granule dissociation was unknown. We found that disruption of AFs phenocopies the macf1a mutant phenotype, while MT disruption does not. We determined that cytokeratins (CK), a type of IF, are enriched in the Bb. We found that Macf1a localizes to the Bb, indicating a direct function in regulating its dissociation. We thus tested if Macf1a functions via its actin binding domain (ABD) and plectin repeat domain (PRD) to integrate cortical actin and Bb CK, respectively, to mediate Bb dissociation at the oocyte cortex. We developed a CRISPR/Cas9 approach to delete the exons encoding these domains from the macf1a endogenous locus, while maintaining the open reading frame. Our analysis shows that Macf1a functions via its ABD to mediate Bb granule dissociation and nuclear positioning, while the PRD is dispensable. We propose that Macf1a does not function via its canonical mechanism of linking two cytoskeletal systems together in dissociating the Bb. Instead our results suggest that Macf1a functions by linking one cytoskeletal system, cortical actin, to another structure, the Bb, where Macf1a is localized. Through this novel linking process, it dissociates the Bb at the oocyte cortex, thus specifying the AV axis of the oocyte and future egg. To our knowledge, this is also the first study to use genome editing to unravel the module-dependent function of a cytoskeletal linker. PMID:28880872
Cap’n’collar differentiates the mandible from the maxilla in the beetle Tribolium castaneum
2012-01-01
Background The biting mandible of the arthropods is thought to have evolved in the ancestor of the insects, crustaceans and myriapods: the Mandibulata. A unique origin suggests a common set of developmental genes will be required to pattern the mandible in different arthropods. To date we have functional studies on patterning of the mandibular segment of Drosophila melanogaster showing in particular the effects of the gene cap’n’collar (cnc), however, the dipteran head is far from representative of insects or of more distantly related mandibulates; Drosophila does not even possess a mandibular appendage. To study the development of a more representative insect mandible, we chose the red flour beetle Tribolium castaneum and investigated the function of the Tribolium orthologs of cap’n’collar (Tc-cnc) and the Hox gene Deformed (Tc-Dfd). In order to determine the function of Tc-cnc and Tc-Dfd, transcripts were knocked down by maternal RNA interference (RNAi). The effects of gene knockdown were examined in the developing embryos and larvae. The effect of Tc-cnc and Tc-Dfd knockdown on the expression of other genes was determined by using in situ hybridization on Tribolium embryos. Results Our analyses show that Tc-cnc is required for specification of the identity of the mandibular segment of Tribolium and differentiates the mandible from maxillary identity. Loss of Tc-cnc function results in a transformation of the mandible to maxillary identity as well as deletion of the labrum. Tc-Dfd and the Tribolium homolog of proboscipedia (Tc-mxp = maxillopedia), Hox genes that are required to pattern the maxillary appendage, are expressed in a maxilla-like manner in the transformed mandible. Tribolium homologs of paired (Tc-prd) and Distal-less (Tc-Dll) that are expressed in the endites and telopodites of embryonic appendages are also expressed in a maxilla-like manner in the transformed mandible. We also show that Tc-Dfd is required to activate the collar of Tc-cnc expression in the mandibular segment but not the cap expression in the labrum. Tc-Dfd is also required for the activation of Tc-prd in the endites of the mandible and maxillary appendages. Conclusions Tc-cnc is necessary for patterning the mandibular segment of Tribolium. Together, Tc-cnc and Tc-Dfd cooperate to specify mandibular identity, as in Drosophila. Expression patterns of the homologs of cnc and Dfd are conserved in mandibulate arthropods suggesting that the mandible specifying function of cnc is likely to be conserved across the mandibulate arthropods. PMID:23114106
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Water and soil conservation for food security in Niger and its constraints for adoption
NASA Astrophysics Data System (ADS)
Wildemeersch, Jasmien; Timmerman, Emma; Garba, Maman; Mazijn, Bernard; Sabiou, Mahamane; Ibro, Germaine; Cornelis, Wim
2013-04-01
Nigerien subsistence farmers increasingly rely on marginal degraded lands for food production as a result of ongoing soil degradation, limited fertile land availability and growing population pressure. These degraded lands, however, generally provide poor yields which are largely assigned to an increased vulnerability to drought as a major part of the rainfall is lost through inefficient rain water partitioning. More efficient use of rainwater can be achieved with the aid of water and soil conservation (WSC) techniques such as zaï (Z) and demi-lunes (DL) which positively alter the soil water-balance in favour of productive water and deliver a wide range of ecosystem services. The results of our in situ root-zone water balance experiment at Sadoré-village (2011-2012) confirm improved agronomical, hydrological and soil quality parameters under the Z and DL treatments. The highest grain yield is produced by the zaï, which is 3 times better than the grain yield of the demi-lunes. Zaï moreover reduce cumulative actual evaporation and both Z and DL increase soil water content in the catchment as measured by a neutron probe and biological soil quality indicated by an extended nematode population of free living species. The techniques therefore show promising potential to rehabilitate and to increase the agronomic efficiency of marginal land in Niger, but the adoption of the techniques has not been widespread and the dissemination generally encounters difficulties. To identify and quantify the importance and presence of several adoption obstacles in the Tillabéri region, we conducted 100 households surveys exploring farmers' erosion perception, WSC technique knowledge and resource availability. Although the important adoption triggers such as food insecurity and limited fertile land availability are present, the regions' adoption rate is low due to a general lack of manure availability and a profound knowledge of erosion and the techniques themselves, which indicates the need for an efficient and specialised policy focusing on more than yield alone. Just like every other agricultural undertaking in the Sahel, adoption with economic profit as sole goal contains a significant investment risk for an independent subsistence farmer due to the risk of drought and dry spells, which results even under WSC in low yields. Most farmers have little awareness of erosion causes and effects and therefore do not relate WSC techniques to the indirect benefits for their livelihoods besides higher yield such as re-greening and the prevention of flooding, which are to be taken into account to secure sustainable solutions to drought and food insecurity.
NASA Astrophysics Data System (ADS)
Kostka, Stanley; Lampe, Mark; van Mondfrans, Jan; Madsen, Matthew; McMillan, Mica
2015-04-01
Surfactant seed coating (SSC) is a technology being developed cooperatively by scientists at the USDA, Agricultural Research Service and Aquatrols to improve stand establishment in water repellent soils, particularly under arid conditions. Early SSC studies have demonstrated that surfactant coatings can dramatically increase soil water content, turfgrass density, cover, and biomass for Kentucky bluegrass, tall fescue and perennial ryegrass sown in water repellent soils under greenhouse conditions. However, in these studies, surfactant loads were excessive (≥ 40 wt% of seed mass). The objective of the current study was to ascertain if a lower surfactant treatment level (10 wt%) would improve emergence and stand establishment in a severely water repellent sandy soil under field conditions. Research was conducted on a golf course near Utrecht, NL. At the time of planting water drop penetration time (WDPT) of the soil was approximately 300 s, indicating severe water repellency. Chewings fescue (Festuca rubra subsp. commutata) seed was treated with ASET-4001 surfactant at a loading rate of 10 wt% using two different proprietary coating procedures (US Patent Application 20100267554). The two different ASET-4001 coatings were compared against untreated seed in a randomized complete block design with four replicates. In order to maximize abiotic stresses, the only applied water came from rainfall. Assessments of stand establishment were made every 7-14 days for three months using a subjective visual assessment of percent grass cover and sward quality based on a 1-10 scale (where 10 is best). At six months post-sowing, 20 mm x 300 mm soil cores were randomly removed from each plot and soil wetting front depth measured. Improved emergence of the surfactant coated seeds over the untreated seeds began to appear 7 days after sowing. However, there were no differences between the two SSC treatments. Establishment was influenced by weather conditions. From mid-June to early July, ratings were similar between all treatments. However, with the onset of warmer more stressful growing conditions in mid-July, stand establishment ratings for the SSC treatments were higher than for the untreated control. From 16 July to 18 August, stand establishment ratings for the SSC treatments were between 9.1 and 9.8. In the untreated control plots, 16 July ratings were at 7.1 and dropped precipitously to 5.3 by 18 August. The visual differences between treatments suggested that rootzone water may be greater in the SSC treatments. Mean wetting front depths in cores collected from the SSC plots were at minimum 2x greater than untreated controls (200 mm vs 100 mm) confirming that SSC resulted in greater rootzone water distribution. SSC improved emergence and stand establishment of Chewings fescue and modified the soil wetting pattern in severely water repellent sand for at least six months. SSC may provide a sustainable strategy to improve turfgrass establishment under water stress conditions or when irrigation is limited.
NASA Astrophysics Data System (ADS)
Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.
1997-03-01
It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.