Sample records for rossby vortex instability

  1. Elliptical Instability of Rotating Von Karman Street

    NASA Astrophysics Data System (ADS)

    Stegner, A.; Pichon, T.; Beunier, M.

    Clouds often reveal a meso-scale vortex shedding in the wake of mountainous islands. Unlike the classical bi-dimensional Von-Karman street, these observed vortex street are affected by the earth rot ation and vertical stratification. Theses effects could induce a selective destabilization of anticyclonic vortices. It is well known that inertial instability (also called centrifugal instability) induce a three- dimensional destabilization of anticyclonic structures when the absolute vorticity is larger than the local Coriolis parameter. However, we have shown, by the mean of laboratory experiments, that it is a different type of instability which is mainly responsible for asymmetric rotating Von-Karman street. A serie of experiments were performed to study the wake of a cylinder in a rotating fluid, at medium Reynolds number and order one Rossby number. We have shown that the vertical structure of unstable anticyclonic vortices is characteristic of an elliptical instability. Besides, unlike the inertial instability, the vertical unstable wavelength depends on the Rossby number.

  2. Critical Layers and Protoplanetary Disk Turbulence

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Shariff, Karim; Cuzzi, Jeffrey N.

    2016-10-01

    A linear analysis of the zombie vortex instability (ZVI) is performed in a stratified shearing sheet setting for three model barotropic shear flows. The linear analysis is done by utilizing a Green’s function formulation to resolve the critical layers of the associated normal-mode problem. The instability is the result of a resonant interaction between a Rossby wave and a gravity wave that we refer to as Z-modes. The associated critical layer is the location where the Doppler-shifted frequency of a distant Rossby wave equals the local Brunt-Väisälä frequency. The minimum required Rossby number for instability, {\\mathtt{Ro}}=0.2, is confirmed for parameter values reported in the literature. It is also found that the shear layer supports the instability in the limit where stratification vanishes. The ZVI is examined in a jet model, finding that the instability can occur for {\\mathtt{Ro}}=0.05. Nonlinear vorticity forcing due to unstable Z-modes is shown to result in the creation of a jet flow at the critical layer emerging as the result of the competition between the vertical lifting of perturbation radial vorticity and the radial transport of perturbation vertical vorticity. We find that the picture of this instability leading to a form of nonlinearly driven self-replicating pattern of creation and destruction is warranted: a parent jet spawns a growing child jet at associated critical layers. A mature child jet creates a next generation of child jets at associated critical layers of the former while simultaneously contributing to its own destruction via the Rossby wave instability.

  3. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  4. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    DTIC Science & Technology

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  5. Dust-trapping Rossby vortices in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Meheut, H.; Meliani, Z.; Varniere, P.; Benz, W.

    2012-09-01

    Context. One of the most challenging steps in planet formation theory is the one leading to the formation of planetesimals of kilometre size. A promising scenario involves the existence of vortices able to concentrate a large amount of dust and grains in their centres. Up to now this scenario has mostly been studied in 2D razor thin disks. A 3D study including, simultaneously, the formation and resulting dust concentration of the vortices with vertical settling, is still missing. Aims: The Rossby wave instability self-consistently forms 3D vortices, which have the unique quality of presenting a large-scale vertical velocity in their centre. Here we aim to study how this newly discovered effect can alter the dynamic evolution of the dust. Methods: We performed global 3D simulations of the RWI in a radially and vertically stratified disk using the code MPI-AMRVAC. After the growth phase of the instability, the gas and solid phases are modelled by a bi-fluid approach, where the dust is considered as a fluid without pressure. Both the drag force of the gas on the dust and the back reaction of the dust on the gas are included. Multiple grain sizes from 1 mm to 5 cm are used with a constant density distribution. Results: We obtain in a short timescale a high concentration of the largest grains in the vortices. Indeed, in 3 rotations the dust-to-gas density ratio grows from 10-2 to unity leading to a concentration of mass up to that of Mars in one vortex. The presence of the radial drift is also at the origin of a dust pile-up at the radius of the vortices. Lastly, the vertical velocity of the gas in the vortex causes the sedimentation process to be reversed, the mm size dust is lifted and higher concentrations are obtained in the upper layer than in the midplane. Conclusions: The Rossby wave instability is a promising mechanism for planetesimal formation, and the results presented here can be of particular interest in the context of future observations of protoplanetary disks.

  6. ROSSBY WAVE INSTABILITY AT DEAD ZONE BOUNDARIES IN THREE-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICAL GLOBAL MODELS OF PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org

    It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less

  7. DUST CAPTURE AND LONG-LIVED DENSITY ENHANCEMENTS TRIGGERED BY VORTICES IN 2D PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C., E-mail: clement.surville@physik.uzh.ch

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ϵ varies in the range of 10{sup −4}–10{sup −2}. Irrespective of the value of ϵ , we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside themore » vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity; they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.« less

  8. Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Surville, Clément; Mayer, Lucio; Lin, Douglas N. C.

    2016-11-01

    We study dust capture by vortices and its long-term consequences in global two-fluid inviscid disk simulations using a new polar grid code RoSSBi. We perform the longest integrations so far, several hundred disk orbits, at the highest resolution attainable in global disk simulations with dust, namely, 2048 × 4096 grid points. We vary a wide range of dust parameters, most notably the initial dust-to-gas ratio ɛ varies in the range of 10-4-10-2. Irrespective of the value of ɛ, we find rapid concentration of the dust inside vortices, reaching dust-to-gas ratios of the order of unity inside the vortex. We present an analytical model that describes this dust capture process very well, finding consistent results for all dust parameters. A vortex streaming instability develops, which invariably causes vortex destruction. After vortex dissipation large-scale dust rings encompassing a disk annulus form in most cases, which sustain very high dust concentration, approaching ratios of the order of unity they persist as long as the duration of the simulations. They are sustained by a streaming instability, which manifests itself in high-density dust clumps at various scales. When vortices are particularly long-lived, rings do not form but dust clumps inside vortices can survive a long time and would likely undergo collapse by gravitational instability. Rings encompass almost an Earth mass of solid material, while even larger masses of dust do accumulate inside vortices in the earlier stage. We argue that rapid planetesimal formation would occur in the dust clumps inside the vortices as well as in the post-vortex rings.

  9. On the evolution of vortices in massive protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  10. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solarmore » radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.« less

  11. Interpreting Brightness Asymmetries in Transition Disks: Vortex at Dead Zone or Planet-carved Gap Edges?

    NASA Astrophysics Data System (ADS)

    Regály, Zs.; Juhász, A.; Nehéz, D.

    2017-12-01

    Recent submillimeter observations show nonaxisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most-accepted explanation for the observed asymmetries is the accumulation of dust in large-scale vortices. Protoplanetary disks’ vortices can form by the excitation of Rossby wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet–carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ∼1.5 and ∼3.5 times larger for the dead-zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios; however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculated predictions for vortex observability in the submillimeter continuum with ALMA. We found that the azimuthal and radial extent of the brightness asymmetry correlates with the vortex formation process within the limitations of α-viscosity prescription.

  12. Transport out of the lower stratospheric Arctic vortex by Rossby wave breaking

    NASA Technical Reports Server (NTRS)

    Waugh, D. W.; Plumb, R. A.; Atkinson, R. J.; Schoeberl, M. R.; Lait, L. R.; Newman, P. A.; Loewenstein, M.; Toohey, D. W.; Avallone, L. M.; Webster, C. R.

    1994-01-01

    The fine-scale structure in lower stratospheric tracer transport during the period of the two Arctic Airborne Stratospheric Expeditions (January and February 1989; December 1991 to March 1992) is investigated using contour advection with surgery calculations. These calculations show that Rossby wave breaking is an ongoing occurrence during these periods and that air is ejected from the polar vortex in the form of long filamentary structures. There is good qualitative agreement between these filaments and measurements of chemical tracers taken aboard the NASA ER-2 aircraft. The ejected air generally remains filamentary and is stretched and mixed with midlatitude air as it is wrapped around the vortex. This process transfers vortex air into midlatitudes and also produces a narrow region of fine-scale filaments surrounding the polar vortex. Among other things, this makes it difficult to define a vortex edge. The calculations also show that strong stirring can occur inside as well as outside the vortex.

  13. Rossby Wave Instability in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard; Li, Hui

    2014-10-01

    A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.

  14. Modeling the quasi-biennial oscillation's effect on the winter stratospheric circulation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Young, Richard E.

    1992-01-01

    The influence of the equatorial quasi-biennial oscillation (QBO) on the winter middle atmosphere is modeled with a mechanistic global primitive equation model. The model's polar vortex evolution is sensitive to the lower stratosphere's tropical winds, with the polar vortex becoming more (less) disturbed as the lower stratospheric winds are more easterly (westerly). This agrees with the observed relationship between wintertime polar circulation strength and the phase of the QBO in the lower stratosphere. In these experiments it is the extratropical planetary Rossby waves that provide the tropical-extratropical coupling mechanism. More easterly tropical winds in the lower stratosphere act to confine the extratropical Rossby waves farther north and closer to the vortex at the QBO altitudes, weakening the vortex relative to the case of westerly QBO phase. While the QBO winds occur in the lower stratosphere, the anomaly in the polar vortex strength is strongest at higher levels.

  15. Slowly-growing gap-opening planets trigger weaker vortices

    NASA Astrophysics Data System (ADS)

    Hammer, Michael; Kratter, Kaitlin M.; Lin, Min-Kai

    2017-04-01

    The presence of a giant planet in a low-viscosity disc can create a gap edge in the disc's radial density profile sharp enough to excite the Rossby wave instability. This instability may evolve into dust-trapping vortices that might explain the 'banana-shaped' features in recently observed asymmetric transition discs with inner cavities. Previous hydrodynamical simulations of planet-induced vortices have neglected the time-scale of hundreds to thousands of orbits to grow a massive planet to Jupiter size. In this work, we study the effect of a giant planet's runaway growth time-scale on the lifetime and characteristics of the resulting vortex. For two different planet masses (1 and 5 Jupiter masses) and two different disc viscosities (α = 3 × 10-4 and 3 × 10-5), we compare the vortices induced by planets with several different growth time-scales between 10 and 4000 planet orbits. In general, we find that slowly-growing planets create significantly weaker vortices with lifetimes and surface densities reduced by more than 50 per cent. For the higher disc viscosity, the longest growth time-scales in our study inhibit vortex formation altogether. Additionally, slowly-growing planets produce vortices that are up to twice as elongated, with azimuthal extents well above 180° in some cases. These unique, elongated vortices likely create a distinct signature in the dust observations that differentiates them from the more concentrated vortices that correspond to planets with faster growth time-scales. Lastly, we find that the low viscosities necessary for vortex formation likely prevent planets from growing quickly enough to trigger the instability in self-consistent models.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; Lin, Min-Kai, E-mail: wlyra@caltech.edu, E-mail: mklin924@cita.utoronto.ca

    The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in thismore » paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties.« less

  17. Rossby wave breaking and Lagrangian structures inside the Antarctic stratospheric polar vortex during Vorcore and Concordiasi campaigns

    NASA Astrophysics Data System (ADS)

    de la Camara, Alvaro; Mechoso, Carlos R.; Mancho, Ana M.; Serrano, Encarna; Ide, Kayo

    2013-04-01

    The trajectories in the lower stratosphere of isopycnic balloons released from Antarctica by international field campaigns during the southern springs of 2005 and 2010 showed events of latitudinal transport inside the stratospheric polar vortex, both away and towards the poleward flank of the polar night jet. The present work applies trajectory-based diagnostic techniques to examine mechanisms at work during such events. Reverse domain filling calculations of potential vorticity (PV) fields from ECMWF ERA-Interim data set during the events show irreversible filamentation of the PV fields in the inner side of the polar night jet, which is a signature of planetary (Rossby) wave breaking. Balloons motions during the events are fairly consistent with the PV filaments. Events of both large (~15° of arch length) and small (~5° of arch length) balloon displacements from the vortex edge are associated to deep and shallow penetration into the core of the elongated PV contours. The function M is applied to study the configuration of Lagrangian coherent structures during the events. A close association is found between hyperbolic points and breaking waves inside the vortex. The geometric configuration of the invariant manifolds associated with the hyperbolic points helps to understand the apparent chaotic behavior of balloons motions, and to identify and analyze balloon transport events not captured by the Reverse Domain Filling calculations. The Antarctic polar vortex edge is an effective barrier to air parcel crossings. Rossby wave breaking inside the vortex, however, can contribute to tracer mixing inside the vortex and to occasional air crossings of the edge.

  18. Rossby wave instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-08-01

    A brief review is given of the Rossby wave instability in astrophysical discs. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disc surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (\\propto \\exp \\,({ { i}}m\\phi ) , m = 1,2,…) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in proto-planetary discs. The Rossby vortices in the discs around stars and black holes may cause the observed quasi-periodic modulations of the disc's thermal emission.

  19. The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Hallam, P. D.; Paardekooper, S.-J.

    2017-08-01

    It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.

  20. Vorticity Transport and Wave Emission in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.

  1. Vorticity Transport and Wave Emission In A Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; Davis, Sanford (Technical Monitor)

    2002-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.

  2. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  3. Waves in a Cloudy Vortex

    DTIC Science & Technology

    2007-02-01

    Waves in a Cloudy Vortex DAVID A. SCHECTER Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado MICHAEL T. MONTGOMERY...waves account for precessing tilts and elliptical (triangular, square, etc.) deformations of the vortex core. If the Rossby number of the cyclone ex...ceeds unity, its baroclinic VR waves can efficiently ex- Corresponding author address: Dr. David Schecter, NorthWest Research Associates, 14508 NE 20th

  4. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  5. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    31 May 2015 4. TITLE AND SUBTITLE VORTEX -SURFACE INTERACTIONS: VORTEX DYNAMICS AND INSTABILITIES Sa. CONTRACT NUMBER Sb. GRANT NUMBER N00014-12...new natural instabilities coming from vortex - vortex or vortex -surface interactions, but also ultimately the possibility to control these flows...design of vortex generators to modify surface pressures. We find a short wave instability of the secondary vortices that are created by the

  6. Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions

    NASA Astrophysics Data System (ADS)

    Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda

    2015-12-01

    A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from the drift waves as they grow. Eventually the turbulence is completely suppressed and the zonal flows saturate. The turbulence spectrum is shown to diffuse in a manner which has been mathematically predicted. The insights gained from this simple model could provide a basis for equivalent studies in more sophisticated plasma and geophysical fluid dynamics models in an effort to fully understand the zonal flow generation, the turbulent transport suppression and the zonal flow saturation processes in both the plasma and geophysical contexts as well as other wave and turbulence systems where order evolves from chaos.

  7. Rossby Waves in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sheehan, Daniel P.

    1998-01-01

    Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.

  8. A point vortex model for the formation of ocean eddies by flow separation

    NASA Astrophysics Data System (ADS)

    Southwick, O. R.; Johnson, E. R.; McDonald, N. R.

    2015-01-01

    A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

  9. The Hilsch Tube, Rossby Vortices, and a Carnot Engine: Angular Momentum Transport in Astrophysics

    NASA Astrophysics Data System (ADS)

    Beckley, Howard F.; Klein, B.; Milburn, M.; Schindel, P.; Westpfahl, D. J.; Teare, S.; Li, H.; Colgate, S. A.

    2008-05-01

    We are attempting to demonstrate that the common laboratory vortex or Hilsch tube is a paradigm for the angular momentum transport by Rossby vortices in Keplerian accretion disks, either in super massive black hole formation or in star formation. Near supersonic rotating flow is induced in a cylinder by gas pressure injected through a tangential nozzle in a typical Ranque vortex or Hilsch tube. The gas exits through both an on-axis hole and a peripheral radially-aligned hole. The surprising result, demonstrated in hundreds of class rooms, is that one of the exit gas streams is hot and the other is cold. Depressing is that the typical explanation is given in terms of a "Maxwell daemon” that separates hot molecules from cold molecules, just as is the basis of any perpetual motion machine that violates the second law of thermodynamics. Instead we believe that the rotational flow is unstable to the formation of Rossby vortices that co-rotate with the azimuthal flow and act like semi-ridged turbine vanes. These quasi-vanes act like a Carnot turbine engine to the flow that escapes on axis and is therefore cooled by doing work. With the resulting free-energy, the vortices accelerate the peripheral flow which in turn becomes hot by friction with the cylinder wall. As a first step we expect to demonstrate that a free-running turbine, where metal vanes form the Carnot engine, will demonstrate the temperature effect. Such a suggestive result may lead to funding of time-dependent Schlerian photography of a vortex tube that can demonstrate the formation and pressure distribution of the Rossby vortices and coherent transport of angular momentum. This work is supported by a cooperative agreement between the New Mexico Institute of Mining and Technology, the University of California, Los Alamos National Laboratory, and the U.S. Dept. of Energy.

  10. An Analysis of Numerical Weather Prediction of the Diabatic Rossby Vortex

    DTIC Science & Technology

    2014-06-01

    Forecast SLP Mean and Spread ...............................................................................................148   2.   DRV02 72 Hour...ECMWF Ensemble Forecast SLP Mean and Spread ...............................................................................................149   3...DRV03 72 Hour ECMWF Ensemble Forecast SLP Mean and Spread

  11. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  12. On the stability and control of a trailing vortex

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam M.

    Trailing vortices are both a fundamental and practical problem of fluid mechanics. Fundamentally, they provide a canonical vortex flow that is pervasive in finite aspect ratio lifting bodies, practically producing many adverse effects across aeronautical and maritime applications. These adverse effects coupled with the broad range of applicability make their active control desirable; however, they remain robust to control efforts. Experimental baseline results provided an explanation of vortex wandering, the side-to-side motion often attributed to wind-tunnel unsteadiness or a vortex instability. We extracted the wandering motion and found striking similarities with the eigenmodes, growth rates, and frequencies from a stability analysis of the Batchelor vortex. After concluding that wandering is a result of a vortex instability, we applied control to the trailing vortex flow field through blowing from a slot at the wingtip. We experimentally obtained modest reductions in the metrics, but found the parameter space for optimization unwieldy. With the ultimate goal of designing control, we performed a physics-based stability analysis in the wake of a NACA0012 wing with an aspect ratio of 1.25 positioned at a geometric angle of attack of 5 degrees. Numerically computing the base flow at a chord Reynolds number of 1000, we perform a parallel temporal and spatial stability analysis three chords downstream of the trailing edge finding seven instabilities: three temporal, four spatial. The three temporal contain a wake instability, a vortex instability, and a mixed instability, which is a higher-order wake instability. The primary instability localized to the wake results from the two-dimensional wake, while the secondary instability is the mixed instability, containing higher-order spanwise structures in the wake. These instabilities imply that although it may be intuitive to place control at the wingtip, these results show that control may be more effective at the trailing edge, which would excite these instabilities that result with the eventual break up of the vortex. Further, by performing a wave-packet analysis, we found the wave packets contained directivity, coming inward toward the vortex above and below the wing, and traveling outward in the spanwise directions. We conjecture that this directivity can be translated to receptivity, with free-stream disturbances above and below the wing being more receptive than spanwise disturbances. With this, we provide two methods for instability excitation: utilizing control devices on the wing to excite near-field instabilities directly and utilizing free-stream disturbances to such as a speaker to excite near-field instabilities through receptivity.

  13. Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005)

    NASA Astrophysics Data System (ADS)

    Abarca, Sergio F.; Corbosiero, Kristen L.

    2011-04-01

    An analysis is presented of two high-resolution hurricane simulations of Katrina and Rita (2005) that exhibited secondary eyewall formation (SEF). The results support the notion of vortex Rossby waves (VRWs) having an important role in SEF and suggest that VRW activity is a defining aspect of the moat. SEF occurs at a radius of ˜65 (80) km in Katrina (Rita), close to the hypothesized stagnation radius of VRWs. VRW activity appears to be the result of eye-eyewall mixing events, themselves a product of the release of barotropic instability. The convection in the radial region that becomes the moat is mainly in the form of VRWs propagating radially outward from the primary eyewall until the negative radial gradient of potential vorticity is no longer conducive for their propagation. These convectively coupled waves, originating and being expelled from the eyewall, are rotation dominated and have the coherency necessary to survive their passage through the strain-dominated region outside the eyewall.

  14. The dynamics of the Jovian White Ovals and the Great Red Spot in the presence of the East-West zonal flow

    NASA Astrophysics Data System (ADS)

    Youssef, Ashraf

    We characterize the history of Jupiter's three White Ovals as four distinct epochs: Formation (1939-41), Kármán Vortex Street (1941-94), Pre- Merger (1994-97), and Merger (1997-98). We use a quasi-geostrophic model. During Formation, the three anti-cyclonic White Ovals were created through the break up of a band of clouds that circled the planet at ~34°S. The Kármán Vortex Street Epoch is marked by longitudinal oscillations of the vortices. We show that for the White Ovals to oscillate and not merge, they must be in a Kármán vortex street, where the row of White Ovals is staggered with a row of cyclones slightly to their north. The Pre- Merger Epoch is marked by the White Ovals travelling as a closely spaced group. We found that if the eastern jet to the south of the row of White Ovals is a sharp gradient in background potential vorticity, it forms a Rossby wave that traps the White Ovals. During the Merger Epoch, in early 1998, the trapped White Ovals BC and DE approached a cyclone to their east, and they merged. Our numerical simulations show that the cyclone between BC and DE was forced to exchange places with DE for the merger to occur. We determine the energy requirements for exchange. The numerical simulations of the Great Red Spot (GRS) cannot reproduce its quiet central region unless it too is trapped by a Rossby wave. In order for the GRS to be a high speed circumferential jet surrounding a quiet center, it must be a hollow vortex with a minimum of potential vorticity at the center and a maximum at the edge. The GRS with sufficient hollowness is unstable to fragmentation and redistribution of its potential vorticity to a distribution which is peaked at the center rather than hollow. If the GRS rests in the trough of a Rossby wave, we show that a sufficiently hollow GRS is stabilized.

  15. Wing Wake Vortices and Temporal Vortex Pair Instabilities

    NASA Astrophysics Data System (ADS)

    Williamson, C. H. K.; Leweke, T.; Miller, G. D.

    In this presentation we include selected results which have originated from vortex dynamics studies conducted at Cornell, in collaboration with IRPHE, Marseille. These studies concern, in particular, the spatial development of delta wing trailing vortices, and the temporal development of counter-rotating vortex pairs. There are, as might be expected, similarities in the instabilities of both of these basic flows, as shown in our laboratory-scale studies. In the case of the spatial development of vortex pairs in the wake of a delta wing, either in free flight or towed from an XY carriage system in a towing tank, we have found three distinct instability length scales as the trailing vortex pair travels downstream. The first (smallest-scale) instability is found immediately behind the delta wing, and this scales on the thickness of the two shear layers separating from the wing trailing edge. The second (short-wave) instability, at an intermediate distance downstream, scales on the primary vortex core dimensions. The third (long-wave) instability far downstream represents the classical "Crow" instability (Crow, 1970), scaling on the distance between the two primary vortices. By imposing disturbances on the delta wing incident velocity, we find that the long-wave instability is receptive to a range of wavelengths. Our experimental measurements of instability growth rates are compared with theoretical predictions, which are based on the theory of Widnall et al. (1971), and which require, as input, DPIV measurements of axial and circumferential velocity profiles. This represents the first time that theoretical and experimental growth rates have been compared, without the imposition of ad-hoc assumptions regarding the vorticity distribution. The agreement with theory appears to be good. The ease with which a Delta wing may be flown in free flight was demonstrated at the Symposium, using a giant polystyrene triangular wing, launched from the back of the auditorium, and ably caught by Professor Sid Leibovich, in whose honour the Symposium was held. In the case of the temporal growth of vortex pairs, formed by the closing of a pair of long flaps underwater, we find two principal instabilities; namely, a longwavelength Crow instability, and a short-wavelength "elliptic" instability. Comparisons between experiment and theory for the growth rates of the long-wave instability, over a range of perturbed wavelengths, appears to be very good. The vortex pair "pinches off", or reconnects, to form vortex rings in the manner assumed to occur in contrails behind jet aircraft. We discover a symmetry-breaking phase relationship for the short wave disturbances growing in the two vortices, which we 380 C.H.K. Williamson et al. show to be consistent with a kinematic matching condition between the two disturbances. Further results demonstrate that this instability is a manifestation of an elliptic instability, which is here identified for the first time in a real open flow. We therefore refer to this flow as a "cooperative elliptic" instability. The long-term evolution of the flow involves the inception of secondary miniscule vortex pairs, which are perpendicular to the primary vortex pair.

  16. A Rossby whistle: A resonant basin mode observed in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Joanne; Hibbert, Angela; Boening, Carmen; Oram, James

    2016-07-01

    We show that an important source of coastal sea level variability around the Caribbean Sea is a resonant basin mode. The mode consists of a baroclinic Rossby wave which propagates westward across the basin and is rapidly returned to the east along the southern boundary as coastal shelf waves. Almost two wavelengths of the Rossby wave fit across the basin, and it has a period of 120 days. The porous boundary of the Caribbean Sea results in this mode exciting a mass exchange with the wider ocean, leading to a dominant mode of bottom pressure variability which is almost uniform over the Grenada, Venezuela, and Colombia basins and has a sharp spectral peak at 120 day period. As the Rossby waves have been shown to be excited by instability of the Caribbean Current, this resonant mode is dynamically equivalent to the operation of a whistle.

  17. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  18. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  19. Numerical Simulation of Protoplanetary Vortices

    NASA Technical Reports Server (NTRS)

    Lin, H.; Barranco, J. A.; Marcus, P. S.

    2003-01-01

    The fluid dynamics within a protoplanetary disk has been attracting the attention of many researchers for a few decades. Previous works include, to list only a few among many others, the well-known prescription of Shakura & Sunyaev, the convective and instability study of Stone & Balbus and Hawley et al., the Rossby wave approach of Lovelace et al., as well as a recent work by Klahr & Bodenheimer, which attempted to identify turbulent flow within the disk. The disk is commonly understood to be a thin gas disk rotating around a central star with differential rotation (the Keplerian velocity), and the central quest remains as how the flow behavior deviates (albeit by a small amount) from a strong balance established between gravitational and centrifugal forces, transfers mass and momentum inward, and eventually forms planetesimals and planets. In earlier works we have briefly described the possible physical processes involved in the disk; we have proposed the existence of long-lasting, coherent vortices as an efficient agent for mass and momentum transport. In particular, Barranco et al. provided a general mathematical framework that is suitable for the asymptotic regime of the disk; Barranco & Marcus (2000) addressed a proposed vortex-dust interaction mechanism which might lead to planetesimal formation; and Lin et al. (2002), as inspired by general geophysical vortex dynamics, proposed basic mechanisms by which vortices can transport mass and angular momentum. The current work follows up on our previous effort. We shall focus on the detailed numerical implementation of our problem. We have developed a parallel, pseudo-spectral code to simulate the full three-dimensional vortex dynamics in a stably-stratified, differentially rotating frame, which represents the environment of the disk. Our simulation is validated with full diagnostics and comparisons, and we present our results on a family of three-dimensional, coherent equilibrium vortices.

  20. The effect of topography on the evolution of unstable disturbances in a baroclinic atmosphere

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, their stability, and the long term evolution of incipient unstable waves. The flow is forced by latitudinally dependent radiative heating. Dissipation is in the form of Rayleigh friction. An analytical solution is found for the propagating finite amplitude waves which result from baroclinic instability of the zonal winds when topography is absent. The appearance of this solution for wavelengths just longer than the Rossby radius of deformation and disappearance of ultra-long wavelengths is interpreted in terms of the Hopf bifurcation theory. Simple dynamic and thermodynamic criteria for the existence of periodic Rossby solutions are presented. A Floquet stability analysis shows that the waves are neutral. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance.

  1. Initiation of Long-Wave Instability of Vortex Pairs at Cruise Altitudes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2011-01-01

    Previous studies have usually attributed the initiation of the long-wave instability of a vortex pair to turbulence in the atmosphere or in the wake of the aircraft. The purpose here is to show by use of observations and photographs of condensation trails shed by aircraft at cruise altitudes that another initiating mechanism is not only possible but is usually the mechanism that initiates the long-wave instability at cruise altitudes. The alternate initiating mechanism comes about when engine thrust is robust enough to form an array of circumferential vortices around each jet-engine-exhaust stream. In those cases, initiation begins when the vortex sheet shed by the wing has rolled up into a vortex pair and descended to the vicinity of the inside bottom of the combined shear-layer vortex arrays. It is the in-and-out (up and down) velocity field between sequential circumferential vortices near the bottom of the array that then impresses disturbance waves on the lift-generated vortex pair that initiate the long-wave instability. A time adjustment to the Crow and Bate estimate for vortex linking is then derived for cases when thrust-based linking occurs.

  2. Preventing Jupiter's Great Red Spot from Turning Itself Inside-Out

    NASA Astrophysics Data System (ADS)

    Shetty, Sushil; Asay-Davis, Xylar; Marcus, Philip

    2002-11-01

    Previous simulations of Jupiter's Great Red Spot (GRS) have failed to reproduce its most prominent feature: its hollowness. Unlike most laboratory 2D vortices, where vorticity is peaked at the center, the GRS has nearly no fluid motion in its interior. The coherent fluid motion is confined to a narrow ring at the outer edge of the GRS that moves counter-clockwise around the vortex. Simulations show that isolated 2D vortices that are as hollow as the GRS are violently unstable, turning themselves inside-out within a few rotations of the vortex. How than can one explain the long-lived, stable GRS? The answer is that the GRS is not isolated but instead embedded in a system of east-west jet streams. The eastward jet streams correspond to strong (potential) vorticity gradients which act as guides for Rossby waves. We show that the interaction between the GRS and the Rossby waves stabilize the GRS. Furthermore, we show that the hollowness of the GRS is near its critical limit, so that if it were any more hollow it would become unstable. We suggest a plausible mechanism through which this critical hollowness is maintained.

  3. Submesoscale Rossby waves on the Antarctic circumpolar current.

    PubMed

    Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo

    2018-03-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.

  4. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  5. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific

    NASA Technical Reports Server (NTRS)

    Eriksen, Charles C.; Richman, James G.

    1988-01-01

    Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.

  6. Viscous instabilities in the q-vortex at large swirl numbers

    NASA Astrophysics Data System (ADS)

    Fabre, David; Jacquin, Laurent

    2002-11-01

    This comunication deals with the temporal stability of the q-vortex trailing line vortex model. We describe a family of viscous instabilities existing in a range of parameters which is usually assumed to be stable, namely large swirl parameters (q>1.5) and large Reynolds numbers. These instabilities affect negative azimuthal wavenumbers (m < 0) and take the form of centre-modes (i.e. with a structure concentrated along the vortex centerline). They are related to a family of viscous modes described by Stewartson, Ng & Brown (1988) in swirling Poiseuille flow, and are the temporal counterparts of weakly amplified spatial modes recently computed by Olendraru & Sellier (2002). These instabilities are studied numerically using an original and highly accurate Chebyshev collocation method, which allows a mapping of the unstable regions up to Rey 10^6 and q 7. Our results indicate that in the limit of very large Reynolds numbers, trailing vortices are affected by this kind of instabilities whatever the value of the swirl number.

  7. Numerical studies of the Kelvin-Hemholtz instability in a coronal jet

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Le; Ni, Lei; Lin, Jun; Ziegler, Udo

    2018-04-01

    Kelvin-Hemholtz (K-H) instability in a coronal EUV jet is studied via 2.5D MHD numerical simulations. The jet results from magnetic reconnection due to the interaction of the newly emerging magnetic field and the pre-existing magnetic field in the corona. Our results show that the Alfvén Mach number along the jet is about 5–14 just before the instability occurs, and it is even higher than 14 at some local areas. During the K-H instability process, several vortex-like plasma blobs with high temperature and high density appear along the jet, and magnetic fields have also been rolled up and the magnetic configuration including anti-parallel magnetic fields forms, which leads to magnetic reconnection at many X-points and current sheet fragments inside the vortex-like blob. After magnetic islands appear inside the main current sheet, the total kinetic energy of the reconnection outflows decreases, and cannot support the formation of the vortex-like blob along the jet any longer, then the K-H instability eventually disappears. We also present the results about how the guide field and flux emerging speed affect the K-H instability. We find that a strong guide field inhibits shock formation in the reconnecting upward outflow regions but helps secondary magnetic islands appear earlier in the main current sheet, and then apparently suppresses the K-H instability. As the speed of the emerging magnetic field decreases, the K-H instability appears later, the highest temperature inside the vortex blob gets lower and the vortex structure gets smaller.

  8. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume I -- Wake Vortex Predictive System Study

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  9. Submesoscale Rossby waves on the Antarctic circumpolar current

    PubMed Central

    Bachman, Scott; Sallee, Jean-Baptiste

    2018-01-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations. PMID:29670936

  10. Review of the physics of enhancing vortex lift by unsteady excitation

    NASA Technical Reports Server (NTRS)

    Wu, J. Z.; Vakili, A. D.; Wu, J. M.

    1991-01-01

    A review aimed at providing a physical understanding of the crucial mechanisms for obtaining super lift by means of unsteady excitations is presented. Particular attention is given to physical problems, including rolled-up vortex layer instability and receptivity, wave-vortex interaction and resonance, nonlinear streaming, instability of vortices behind bluff bodies and their shedding, and vortex breakdown. A general theoretical framework suitable for handling the unsteady vortex flows is introduced. It is suggested that wings with swept and sharp leading edges, equipped with devices for unsteady excitations, could yield the first breakthrough of the unsteady separation barrier and provide super lift at post-stall angle of attack.

  11. Analysis of Predicted Aircraft Wake Vortex Transport and Comparison with Experiment Volume II -- Appendixes

    DOT National Transportation Integrated Search

    1974-04-01

    A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...

  12. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  13. The two-dimensional instability of an incompressible vortex in a tube with energy-absorbent walls

    NASA Astrophysics Data System (ADS)

    Broadbent, E. G.; Moore, D. W.

    1994-07-01

    We have previously shown that a Rankine vortex in a compressible fluid is unstable to a perturbation in cross section, e.g. to a slightly eccentric ellipse. This result is surprising, because compressibility leads to a loss of energy from the perturbed vortex by acoustic radiation. An explanation, valid for small swirl Mach numbers, was provided by Kop'ev and Leont'ev. For small Mach numbers the flow in the neighborhood of the vortex can be treated as incompressible, from which it follows that the kinetic energy is greater for the circular vortex than for any other nearby shape. Thus the loss of energy by acoustic radiation will result in increasing departures from a circular cross section. We assert here that the instability is not inherently acoustic, but that any mechanism which can remove energy will result in instability. To support our contention, we examine the Rankine vortex in a concentric circular tube which has compliant walls. Linear theory first establishes that the instability exists in this case and an approximate theory for a small region of vorticity shows that the distortion increases indefinitely. This is confirmed, without the restriction on size, by a numerical solution of the integro-differential equation based on contour dynamics.

  14. High-Frequency Planetary Waves in the Polar Middle Atmosphere as seen in a data Assimilation System

    NASA Technical Reports Server (NTRS)

    Coy, L.; Stajner, I.; DaSilva, A. M.; Joiner, J.; Rood, R. B.; Pawson, S.; Lin, S. J.

    2003-01-01

    This study examines the winter southern hemisphere vortex of 1998 using four times daily output from a data assimilation system to focus on the polar 2-day, wave number 2 component of the 4-day wave. The data assimilation system products are from a test version of the finite volume data assimilation system (fvDAS) being developed at Goddard Space Flight Center (GSFC) and include an ozone assimilation system. Results show that the polar 2-day wave dominates during July 1998 at 70 degrees. The period of the quasi 2-day wave is somewhat shorter than 2 days (about 1.7 days) during July 1998 with an average perturbation temperature amplitude for the month of over 2.5 K. The 2-day wave propagates more slowly than the zonal mean zonal wind, consistent with Rossby wave theory, and has EP flux divergence regions associated with regions of negative horizontal potential vorticity gradients, as expected from linear instability theory. Results for the assimilation-produced ozone mixing ratio show that the 2-day wave represents a major source of ozone variation in this region. The ozone wave in the assimilation system is in good agreement with the wave seen in the POAM (Polar Ozone and Aerosol Measurement) ozone observations for the same time period. Some differences with linear instability theory are noted as well as spectral peaks in the ozone field, not seen in the temperature field, that may be a consequence of advection.

  15. Lattice-Gas Automata Fluids on Parallel Supercomputers

    DTIC Science & Technology

    1993-11-23

    Kelvin-Helmholtz shear instabil- ity, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update... PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Phillips Laboratory,Hanscom Field,MA,01731 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...Helmholtz shear instability, and the Von Karman vortex shedding instability. Performance of the two machines in terms of both site update rate and

  16. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-07-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D self-gravitating vortex can grow on secular time-scales in spite of the elliptic instability. The vortex aspect ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as an interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  17. Vortex survival in 3D self-gravitating accretion discs

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Pierens, Arnaud

    2018-04-01

    Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities', which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre Q ≃ 5). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for ˜103 orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.

  18. Tricritical spiral vortex instability in cross-slot flow.

    PubMed

    Haward, Simon J; Poole, Robert J; Alves, Manuel A; Oliveira, Paulo J; Goldenfeld, Nigel; Shen, Amy Q

    2016-03-01

    We examine fluid flow through cross-slot devices with various depth to width ratios α. At low Reynolds number, Re, flow is symmetric and a sharp boundary exists between the two incoming fluid streams. Above an α-dependent critical value, Re(c)(α), a steady symmetry-breaking bifurcation occurs and a spiral vortex structure develops. Order parameters characterizing the instability grow according to a sixth-order Landau potential, and show a progression from second- to first-order transitions as α increases beyond a tricritical value of α ≈ 0.55. Flow simulations indicate the instability is driven by vortex stretching at the stagnation point.

  19. Influence of condensation and latent heat release upon barotropic and baroclinic instabilities of vortices in a rotating shallow water f-plane model

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir

    2017-01-01

    Analysis of the influence of condensation and related latent heat release upon developing barotropic and baroclinic instabilities of large-scale low Rossby-number shielded vortices on the f-plane is performed within the moist-convective rotating shallow water model, in its barotropic (one-layer) and baroclinic (two-layer) versions. Numerical simulations with a high-resolution well-balanced finite-volume code, using a relaxation parameterisation for condensation, are made. Evolution of the instability in four different environments, with humidity (i) behaving as passive scalar, (ii) subject to condensation beyond a saturation threshold, (iii) subject to condensation and evaporation, with three different parameterisations of the latter, are inter-compared. The simulations are initialised with unstable modes determined from the detailed linear stability analysis in the "dry" version of the model. In a configuration corresponding to low-level mid-latitude atmospheric vortices, it is shown that the known scenario of evolution of barotropically unstable vortices, consisting in formation of a pair of dipoles (dipolar breakdown) is substantially modified by condensation and related moist convection, especially in the presence of surface evaporation. No enhancement of the instability due to precipitation was detected in this case. Cyclone-anticyclone asymmetry with respect to sensitivity to the moist effects is evidenced. It is shown that inertia-gravity wave emission during the vortex evolution is enhanced by the moist effects. In the baroclinic configuration corresponding to idealised cut-off lows in the atmosphere, it is shown that the azimuthal structure of the leading unstable mode is sensitive to the details of stratification. Scenarios of evolution are completely different for different azimuthal structures, one leading to dipolar breaking, and another to tripole formation. The effects of moisture considerably enhance the perturbations in the lower layer, especially in the tripole formation scenario.

  20. On the secondary instability of the most dangerous Goertler vortex

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Denier, James P.

    1993-01-01

    Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.

  1. Shock modon: a new type of coherent structure in rotating shallow water.

    PubMed

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  2. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.

  3. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    NASA Astrophysics Data System (ADS)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific region (one perturbation experiment combines all regions). These regions correspond to sea-ice loss hotspots such as the Barents-Kara Seas and the Bering Sea. The differences between the control and perturbation runs yields the effects of the imposed sea-ice loss on the polar vortex. To detect and count SSWs for each run, we use the World Meteorological Organisation's definition of an SSW (a reversal in zonal mean zonal wind at 10 hPa and 60° N, and a reversal in zonal mean meridional temperature gradient at 10 hPa between 60° N and 90° N). The poster will present and discuss the initial results of this study. Implications of the results for future change in the lower latitude mid-troposphere will be discussed. References Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss. J. Climate, 28, 7824-7845, doi: http://dx.doi.org/10.1175/JCLI-D-15-0169.1.

  4. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  5. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    NASA Astrophysics Data System (ADS)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  6. An experimental investigation of bending wave instability modes in a generic four-vortex wake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babie, Brian M.; Nelson, Robert C.

    2010-07-15

    An experimental study of a planar wake consisting of four vortices that simulate the trailing vortex wakes generated by transport airplanes in either takeoff or landing configurations is presented. The objective of this study was to examine naturally occurring wake instabilities. Specifically, the focus of the study was centered on bending wave instabilities of which the Crow instability represents a particular case. A unique method of generating a four-vortex wake was developed for this study. The four-vortex wake generating device permitted direct variation of the spacing between vortices as well as control over the vortex circulation strength. Two quantitative flowmore » visualization experiments were instrumental in identifying wake configurations that were conducive to the rapid growth of bending wave modes and in the identification of the long-wavelength mode. Detailed experiments were also conducted to examine the flow structure in the near-field or roll-up region using a four sensor, hot-wire probe that could measure all three velocity components in the wake simultaneously. The results of both the flow visualization and hot-wire experiments indicate that the long-wavelength mode and the first short-wavelength mode likely dominate the far-field wake physics and may potentially be utilized in a wake control strategy.« less

  7. Vortex formation and instability in the left ventricle

    NASA Astrophysics Data System (ADS)

    Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.

  8. Strings, vortex rings, and modes of instability

    DOE PAGES

    Gubser, Steven S.; Nayar, Revant; Parikh, Sarthak

    2015-01-12

    We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scalemore » which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.« less

  9. Dynamics and Instabilities of Vortex Pairs

    NASA Astrophysics Data System (ADS)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  10. A new numerical model of the middle atmosphere. I - Dynamics and transport of tropospheric source gases

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Stordal, Frode; Solomon, Susan; Kiehl, Jeffrey T.

    1992-01-01

    Attention is given to a new model of the middle atmosphere which includes, in addition to the equations governing the zonal mean state, a potential vorticity equation for a single planetary-scale Rossby wave, and an IR radiative transfer code for the stratosphere and lower mesosphere, which replaces the Newtonian cooling parameterization used previously. It is shown that explicit computation of the planetary-scale wave field yields a more realistic representation of the zonal mean dynamics and the distribution of trace chemical species. Wave breaking produces a well-mixed 'surf zone' equatorward of the polar night vortex and drives a meridional circulation with downwelling on the poleward side of the vortex. This combination of mixing and downwelling produces shallow meridional gradients of trace gases in the subtropics and middle latitudes, and very steep gradients at the edge of the polar vortex. Computed distributions of methane and nitrous oxide are shown to agree well with observations.

  11. A Lagrangian analysis of a sudden stratospheric warming - Comparison of a model simulation and LIMS observations

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Remsberg, Ellis E.; Fairlie, T. D.; Blackshear, W. T.; Grose, William L.; Turner, Richard E.

    1992-01-01

    Lagrangian area diagnostics and trajectory techniques are used to investigate the radiative and dynamical characteristics of a spontaneous sudden warming which occurred during a 2-yr Langley Research Center model simulation. The ability of the Langley Research Center GCM to simulate the major features of the stratospheric circulation during such highly disturbed periods is illustrated by comparison of the simulated warming to the observed circulation during the LIMS observation period. The apparent sink of vortex area associated with Rossby wave-breaking accounts for the majority of the reduction of the size of the vortex and also acts to offset the radiatively driven increase in the area occupied by the 'surf zone'. Trajectory analysis of selected material lines substantiates the conclusions from the area diagnostics.

  12. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.

  13. The Integral Role of a Diabatic Rossby Vortex in a Heavy Snowfall Event

    DTIC Science & Technology

    2008-06-01

    anomalies are identified: 1) a low-level anomaly to the east of the Appalachian Mountains associated with the incipient surface cyclone and 2) an upper-level...diagnostic eddy available potential energy ( APE ) equa- tion, one can gain insight into the relative importance of FIG. 4. As in Fig. 3, but at 0600 UTC 25...More specifically, the con- version ratio of the diabatic to baroclinic generation of eddy APE has been shown to be a useful diagnostic for

  14. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas.

    PubMed

    Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.

  15. An enstrophy-based linear and nonlinear receptivity theory

    NASA Astrophysics Data System (ADS)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  16. Hub vortex helical instability as the origin of wake meandering in the lee of a model wind-turbine

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Iungo, Giacomo Valerio; Camarri, Simone; Porte-Agel, Fernando; Gallaire, Francois

    2012-11-01

    Wind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near wake region mainly oriented along the streamwise direction, which is denoted as hub vortex. The hub vortex is characterized by oscillations with frequencies lower than the one connected to the rotational velocity of the rotor, which are ascribed to wake meandering by previous works. This phenomenon consists in transversal oscillations of the wind turbine wake, which are excited by the shedding of vorticity structures from the rotor disc acting as a bluff body. In this work temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained through time-averaged wind tunnel velocity measurements. This study shows that the low frequency spectral component detected experimentally is the result of a convective instability of the hub vortex, which is characterized by a counter-winding single-helix structure. Simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one predicted from the linear instability analysis.

  17. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    DTIC Science & Technology

    2016-12-13

    plate and novel all-fiber fused coupler. Such work has laid the platform to demonstrate the mitigation of thermal mode instability through vortex beam...at IIT Madras to experimentally validate the above results as well as to explore the generation of vortex modes through a spiral phase plate and...modes through spiral phase plates and novel all-fiber fused couplers. We have demonstrated the excitation of a vortex mode with charge 1 through a

  18. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  19. Nonlinear Evolution of Azimuthally Compact Crossflow-Vortex Packet over a Yawed Cone

    NASA Astrophysics Data System (ADS)

    Choudhari, Meelan; Li, Fei; Paredes, Pedro; Duan, Lian; NASA Langley Research Center Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Hypersonic boundary-layer flows over a circular cone at moderate incidence angle can support strong crossflow instability and, therefore, a likely scenario for laminar-turbulent transition in such flows corresponds to rapid amplification of high-frequency secondary instabilities sustained by finite amplitude stationary crossflow vortices. Direct numerical simulations (DNS) are used to investigate the nonlinear evolution of azimuthally compact crossflow vortex packets over a 7-degree half-angle, yawed circular cone in a Mach 6 free stream. Simulation results indicate that the azimuthal distribution of forcing has a strong influence on the stationary crossflow amplitudes; however, the vortex trajectories are nearly the same for both periodic and localized roughness height distributions. The frequency range, mode shapes, and amplification characteristics of strongly amplified secondary instabilities in the DNS are found to overlap with the predictions of secondary instability theory. The DNS computations also provide valuable insights toward the application of planar, partial-differential-equation based eigenvalue analysis to spanwise inhomogeneous, fully three-dimensional, crossflow-dominated flow configurations.

  20. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  1. Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea

    NASA Astrophysics Data System (ADS)

    Cardona, Yuley; Bracco, Annalisa

    The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing. With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and 6-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and 6-hourly cases), then submesoscale fronts, vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those quasi- and near-inertial waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.

  2. Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.

    PubMed

    Sutyrin, Georgi G.

    1994-06-01

    Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.

  3. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE PAGES

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  4. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  5. Numerical Simulations of Instabilities in Single-Hole Office Elements

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Hitt, Matthew A.; Lineberry, David M.

    2013-01-01

    An orifice element is commonly used in liquid rocket engine test facilities either as a flow metering device, a damper for acoustic resonance or to provide a large reduction in pressure over a very small distance in the piping system. While the orifice as a device is largely effective in stepping down pressure, it is also susceptible to a wake-vortex type instability that generates pressure fluctuations that propagate downstream and interact with other elements of the test facility resulting in structural vibrations. Furthermore in piping systems an unstable feedback loop can exist between the vortex shedding and acoustic perturbations from upstream components resulting in an amplification of the modes convecting downstream. Such was the case in several tests conducted at NASA as well as in the Ariane 5 strap-on P230 engine in a static firing test where pressure oscillations of 0.5% resulted in 5% thrust oscillations. Exacerbating the situation in cryogenic test facilities, is the possibility of the formation of vapor clouds when the pressure in the wake falls below the vapor pressure leading to a cavitation instability that has a lower frequency than the primary wake-vortex instability. The cavitation instability has the potential for high amplitude fluctuations that can cause catastrophic damage in the facility. In this paper high-fidelity multi-phase numerical simulations of an orifice element are used to characterize the different instabilities, understand the dominant instability mechanisms and identify the tonal content of the instabilities.

  6. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  7. Domains of pulsational instability of low-frequency modes in rotating upper main sequence stars

    NASA Astrophysics Data System (ADS)

    Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga

    2017-07-01

    We determine instability domains on the Hertzsprung-Russell diagram for rotating main sequence stars with masses of 2-20 M⊙. The effects of the Coriolis force are treated wihin the traditional approximation. High-order g modes with harmonic degrees ℓ up to 4 and mixed gravity-Rossby modes with |m| up to 4 are considered. We include the effects of rotation in wider instability strips for a given ℓ compared to the non-rotating case and in an extension of the pulsational instability to hotter and more massive models. We present results for a fixed value of the initial rotation velocity as well as for a fixed ratio of the angular rotation frequency to its critical value. Moreover, we check how the initial hydrogen abundance, metallicity, overshooting from the convective core and opacity affect the pulsational instability domains. The effect of rotation on the period spacing is also discussed.

  8. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.

    PubMed

    Obabko, Aleksandr V; Cassel, Kevin W

    2005-05-15

    Numerical solutions of the flow induced by a thick-core vortex have been obtained using the unsteady, two-dimensional Navier-Stokes equations. The presence of the vortex causes an adverse pressure gradient along the surface, which leads to unsteady separation. The calculations by Brinckman and Walker for a similar flow identify a possible instability, purported to be an inviscid Rayleigh instability, in the region where ejection of near-wall vorticity occurs during the unsteady separation process. In results for a range of Reynolds numbers in the present investigation, the oscillations are also found to occur. However, they can be eliminated with increased grid resolution. Despite this behaviour, the instability may be physical but requires a sufficient amplitude of disturbances to be realized.

  9. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  10. The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip

    2014-11-01

    A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.

  11. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  12. A note on the effects of viscosity on the stability of a trailing-line vortex

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Khorrami, Mehdi R.

    1992-01-01

    The linear stability of the Batchelor (1964) vortex is examined with emphasis on new viscous modes recently found numerically by Khorrami (1991). Unlike the previously reported inviscid modes of instability, these modes are destabilized by viscosity and exhibit small growth rates at large Reynolds numbers. The analysis presented here uses a combination of asymptotic and numerical techniques. The results confirm the existence of the additional modes of instability due to viscosity.

  13. Aircraft wake vortex transport model

    DOT National Transportation Integrated Search

    1974-03-31

    A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...

  14. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  15. Wakes of lifting and non-lifting bodies: 1. Instabilities & turbulence in the wake of a delta wing. 2. Control of three-dimensional phase dynamics in the wake of a cylinder

    NASA Astrophysics Data System (ADS)

    Miller, Gregory Dennis

    1997-06-01

    In the first part of this work, we study the instabilities and turbulent structures in the wake of a delta wing, using extensive flow visualization, hot wire anemometry, and DPIV. We employ a novel free-flight technique in water, coupled with an image processing technique, to study the evolution of the long-wavelength instability of the primary vortex pair. Although secondary vortical structures have received little attention to date, we find that the 'braid wake' vorticity between the vortex pair imposes small lengthscale turbulence around the principal vortices, as well as influence the development of a 'curtain' of vorticity left far above the descending vortex pair. We study the long-wavelength instability of the trailing vortex pair by measuring growth rate and wavelength of the instability directly, and we also measure all of the critical parameters of the vortices (i.e. vortex core radius, vorticity distribution, axial velocity distribution, spacing and circulation), which provide what appears to be the first complete comparison to the theory describing the instability. We find excellent agreement between measured and theoretical growth rates and wavelengths. In the second part of the work, we have devised a method to control the spanwise end conditions and patterns in the wake of a cylinder using 'end suction', which is both continuously-variable and admits transient control. Classical steady-state patterns, such as parallel or oblique shedding, or the 'chevron' patterns, are simply induced. The wake, at a given Reynolds number (Re), is receptive to a continuous range of oblique shedding angles (θ), rather than to discrete angles, and there is excellent agreement with the 'cos θ' formula for oblique-shedding frequencies. We show that the laminar shedding regime exists up to Re of 194, and that the immense disparity among reported critical Re for wake transition (Re = 140-190) can be explained in terms of spanwise end contamination. Our transient experiments have resulted in the discovery of new phenomena such as 'phase shocks' and 'phase expansions', which have excellent agreement with predictions from a Ginzburg- Landau wake model (collaboration with Peter Monkewitz, Lausanne).

  16. Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru

    2016-04-15

    Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid abovemore » a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.« less

  17. Long-wavelength Instability of Trailing Vortices Behind a Delta Wing

    NASA Astrophysics Data System (ADS)

    Miller, G. D.; Williamson, C. H. K.

    1996-11-01

    The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.

  18. The effect of a dominant initial single mode on the Kelvin–Helmholtz instability evolution: New insights on previous experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimony, Assaf; Shvarts, Dov; Malamud, Guy

    2016-04-12

    This paper brings new insights on an experiment, measuring the Kelvin–Helmholtz (KH) instability evolution, performed on the OMEGA-60 laser facility. Experimental radiographs show that the initial seed perturbations in the experiment are of multimode spectrum with a dominant single-mode of 16 μm wavelength. In single-mode-dominated KH instability flows, the mixing zone (MZ) width saturates to a constant value comparable to the wavelength. However, the experimental MZ width at late times has exceeded 100 μm, an order of magnitude larger. In this work, we use numerical simulations and a statistical model in order to investigate the vortex dynamics of the KHmore » instability for the experimental initial spectrum. Here, we conclude that the KH instability evolution in the experiment is dominated by multimode, vortex-merger dynamics, overcoming the dominant initial mode.« less

  19. Long-wave instabilities of two interlaced helical vortices

    NASA Astrophysics Data System (ADS)

    Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.

    2016-09-01

    We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.

  20. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  1. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  2. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    PubMed

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  3. Kinks and vortex-twister dynamics in type-II superconductors

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Benoit, W.; Sémoroz, A.; Berseth, V.

    1997-02-01

    We report magneto-optical observations of moving helicoidal vortex structures in high purity YBa 2Cu 3O 7-δ single cyrstals. We found that the dynamics of these ‘vortex-twisters’ is mainly controlled by localized instabilities (kinks) which stream along the helices. The kinks allow the motion of the twisters, or the annihilation of twisters with opposite chirality.

  4. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.

    2018-02-01

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  5. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region.

    PubMed

    Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A

    2018-02-16

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  6. Evolution of inviscid Kelvin-Helmholtz instability from a piecewise linear shear layer

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Rahmani, Mona; Lawrence, Gregory

    2012-11-01

    Here we study the evolution of 2D, inviscid Kelvin-Helmholtz instability (KH) ensuing from a piecewise linear shear layer. Although KH pertaining to smooth shear layers (eg. Hyperbolic tangent profile) has been thorough investigated in the past, very little is known about KH resulting from sharp shear layers. Pozrikidis and Higdon (1985) have shown that piecewise shear layer evolves into elliptical vortex patches. This non-linear state is dramatically different from the well known spiral-billow structure of KH. In fact, there is a little acknowledgement that elliptical vortex patches can represent non-linear KH. In this work, we show how such patches evolve through the interaction of vorticity waves. Our work is based on two types of computational methods (i) Contour Dynamics: a boundary-element method which tracks the evolution of the contour of a vortex patch using Lagrangian marker points, and (ii) Direct Numerical Simulation (DNS): an Eulerian pseudo-spectral method heavily used in studying hydrodynamic instability and turbulence.

  7. Vortex line topology during vortex tube reconnection

    NASA Astrophysics Data System (ADS)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  8. Research of the rotation effect upon the hydrodynamics and heat and mass transport in a chemical reactor

    NASA Astrophysics Data System (ADS)

    Gicheva, Natalia I.

    2017-11-01

    The subject of this research is a chemical reactor for producing tungsten. A physical and mathematical model of fluid motion and heat and mass transfer in a vortex chamber of the chemical reactor under forced and free convection has been described and simulated using two methods. The numerical simulation was carried out in «vortex - stream functions and «velocity - pressure» variables. The velocity field, the mass and the temperature distributions in the reactor were obtained. The influence of a rotation effect upon the hydrodynamics and heat and mass transport was showed. The rotation is important for more uniform distribution of temperature and matter in the vortex chamber. Parametric studies on effects of the Reynolds, Prandtl and Rossbi criteria on the flow characteristics were also performed. Reliability of the calculations was verified by comparing the results obtained by the methods mentioned above. Also, the created model was applied for numerically solving of the classical test problem of the velocity distribution in an annular channel and that of a rotating infinite disk in a stationary liquid. The study findings showed a good agreement with the exact solutions.

  9. Vortex-Body Interactions: A Critical Assessment. Coupled Gap-Wake Instabilities/Turbulence: A Source of Noise

    NASA Technical Reports Server (NTRS)

    Rockwell, Donald

    1999-01-01

    This program has involved, first of all, a critical state-of-the-art assessment of vortex-body interactions. Then, efforts were focused on experimental investigation on coupled-wake instabilities and turbulence occurring in a two-cylinder system. An extensive review was undertaken on the effect of incident vortices on various types of bodies. These incident vortices have a length scale of the same order of magnitude as the scale of the body. The body can take on various forms, including, for example, a circular cylinder, a blade or a wing. The classes of vortex-body interaction that were critically assessed include: (1) Periodic distortion of the incident (primary) vortex and shedding of secondary vorticity from the surface of the body. (2) Modulated vortex distortion and shedding at a leading-edge or surface due to incidence of a complex system of vortices. (3) Vortex distortion and shedding in presence of body oscillation. (4) Three-dimensional vortex interaction and shedding. For all of these classes of vortex-body interaction, quantitative topologies of the vorticity distributions and streamline patterns were found to be central to a unified description of mechanisms of vortex distortion and shedding. In most cases, it was possible to define relationships between vortex interactions and unsteady loading at the body surface. This phase of the program was an experimental investigation of a two-cylinder system, which simulated a central aspect of a four-wheel bogie on a large-scale commercial aircraft. The overall aim of this experimental research program was to determine the crucial elements of the unsteadiness in the gap and near-wake regions as a function of time using cinema-based techniques. During the research program, various image evaluation techniques were employed. They involved assessment of instantaneous velocity fields, streamline topology and patterns of vorticity. Experiments were performed in a large-scale water channel using a high-resolution version of digital particle image velocimetry. The program has focused on acquisition of images of velocity and vorticity for varying gap widths between the two-cylinder system. As a result of analysis of a relatively large number of images, it is demonstrated that low frequency instabilities can occur in the gap region between the cylinder. These low frequency instabilities are hypothesized to influence the near-wake structure of the entire two-cylinder system. The nature of the unstable shear layers in the gap region involves generation of small-scale Kelvin-Helmholtz instabilities. These unsteady shear layers then impinge upon the upper and lower surfaces of the cylinders, thereby influencing both the unsteady structure and the time-averaged patterns of the near-wake. Initial efforts have focused on characterization of the patterns of instantaneous and averaged streamlines using topological concepts. The end result of this investigation is a series of documented instantaneous images. They will serve as a basis for various types of post-processing, which will lead to a fuller understanding of the instantaneous and time-averaged unstable-turbulent fields in the gap region and downstream of the two-cylinder system. This further assessment is the focus of a subsequent program.

  10. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  11. Inertia-gravity wave radiation from the elliptical vortex in the f-plane shallow water system

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko

    2017-04-01

    Inertia-gravity wave (IGW) radiation from the elliptical vortex is investigated in the f-plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone-anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f. A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone-anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature.

  12. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  13. Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids.

    PubMed

    Muñoz Mateo, A; Brand, J

    2014-12-19

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  14. Transmission of sound across a vortex layer enclosing a cylindrical column of jet

    NASA Technical Reports Server (NTRS)

    Luh, R.; Chao, C. C.

    1982-01-01

    An approximate solution to the problem of transmission of sound across a cylindrical vortex was obtained. Results are considerably different from the plane vortex sheet case because of the added role played by the curvature of the jet. In comparison with the plane case, the specularly transmitted waves are more complex and require some numerical integration. Resonance waves are identically predicted for M 2, but there is also a wave field whose modified effect appears to extend the region of resonance just as the instability waves cover a region in space and time. The instability waves are predicted to exist for all Mach numbers but vanish for wavelengths that are large compared to the jet radius. The region of propagation is similarly wavelength dependent.

  15. Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids

    NASA Astrophysics Data System (ADS)

    Muñoz Mateo, A.; Brand, J.

    2014-12-01

    Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.

  16. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  17. THE KELVIN-HELMHOLTZ INSTABILITY AT CORONAL MASS EJECTION BOUNDARIES IN THE SOLAR CORONA: OBSERVATIONS AND 2.5D MHD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moestl, U. V.; Temmer, M.; Veronig, A. M., E-mail: ute.moestl@uni-graz.at

    2013-03-20

    The Atmospheric Imaging Assembly on board the Solar Dynamics Observatory observed a coronal mass ejection with an embedded filament on 2011 February 24, revealing quasi-periodic vortex-like structures at the northern side of the filament boundary with a wavelength of approximately 14.4 Mm and a propagation speed of about 310 {+-} 20 km s{sup -1}. These structures could result from the Kelvin-Helmholtz instability occurring on the boundary. We perform 2.5D numerical simulations of the Kelvin-Helmholtz instability and compare the simulated characteristic properties of the instability with the observations, where we obtain qualitative as well as quantitative accordance. We study the absencemore » of Kelvin-Helmholtz vortex-like structures on the southern side of the filament boundary and find that a magnetic field component parallel to the boundary with a strength of about 20% of the total magnetic field has stabilizing effects resulting in an asymmetric development of the instability.« less

  18. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons.

    PubMed

    Cerfon, Antoine J

    2016-04-29

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  19. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2017-02-01

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar-Friedman-Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (I.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.

  20. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu

    We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitationalmore » waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.« less

  1. Instability of vortex pair leapfrogging

    NASA Astrophysics Data System (ADS)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 < α < 1 of vortex pair sizes at the time when one pair passes through the other. Leapfrogging occurs for α > σ2, where σ = sqrt{2}-1 is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys. 21, 269-273 (2000)], 10.1088/0143-0807/21/3/310 determined by numerical experiments that leapfrogging is linearly unstable for σ2 < α < 0.382, but apparently stable for larger α. Here we derive a linear system of equations governing small perturbations of the leapfrogging motion. We show that symmetry-breaking perturbations are essentially governed by a 2D linear system with time-periodic coefficients and perform a Floquet analysis. We find transition from linearly unstable to stable leapfrogging at α = ϕ2 ≈ 0.381966, where φ = 1/2(sqrt{5}-1) is the golden ratio. Acheson also suggested that there was a sharp transition between a "disintegration" instability mode, where two pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L. Tophøj and H. Aref, "Chaotic scattering of two identical point vortex pairs revisited," Phys. Fluids 20, 093605 (2008)], 10.1063/1.2974830. Both leapfrogging and "walkabout" motions can appear as intermediate states in chaotic scattering at the same values of linear impulse and energy.

  2. A Cloud-Resolving Simulation of Hurricane Bob (1991): Storm Structure and Eyewall Buoyancy

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A numerical simulation of Hurricane Bob (1991) is conducted using the Penn State University-National Center for Atmospheric Research mesoscale model MM5 with a horizontal grid spacing of 1.3 Km on the finest nested mesh The model produces a realistic hurricane that intensifies slowly during the period of fine-scale simulation. Time-averaged results reveal the effects of storm motion. vertical shear, beta gyres and deformation forcing on the structure of radial inflow, vertical motion, and precipitation. Instantaneous model fields show that radial inflow in the eyewall is very intense near the surface but transitions to strong low-level outflow near the top of the boundary layer. The low-level structure is modulated by a wavenumber 2 disturbance that rotates around the eyewall at half the speed of the maximum tangential winds and is consistent with a vortex Rossby edge wave. The statistical distribution of vertical velocity in the eyewall indicates that the eyewall is composed of a small number of intense updrafts that account for the majority of the upward mass flux rather than a more gradual and symmetric eyewall circulation, consistent with the concept of hot towers. Tongues of high equivalent potential temperature, Theta(sub e), are seen along the inner edge of the eyewall updraft and within the low-level outflow. This air originates from outside of the eyewall with the highest theta(sub e) air coming from the layer closest to the surface after penetrating closest to the center. Occasionally, high Theta(sub e), air within the eye is drawn into the eyewall updrafts. The high Theta(sub e), air rising within the eyewall is shown to be associated with positive eyewall buoyancy with sufficient convective available potential energy along its path to produce relatively strong convective updrafts. Although the requirements for conditional symmetric instability are met within the eyewall and the air parcel trajectories follow slanted paths, the radial displacement of air parcels in the low-level outflow moves the air parcel sufficiently far away from the upper- warm core that the air becomes unstable to vertical displacements. Hence, convective instability rather than symmetric instability accounts for the stronger updrafts in the eyewall.

  3. Dynamical Evolution of a Doubly Quantized Vortex Imprinted in a Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateo, A. Munoz; Delgado, V.

    2006-11-03

    The recent experiment by Shin et al. [Phys. Rev. Lett. 93, 160406 (2004)] on the decay of a doubly quantized vortex is analyzed by numerically solving the Gross-Pitaevskii equation. Our results demonstrate that the vortex decay is mainly a consequence of dynamical instability. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate.

  4. Three-dimensional short-wavelength instabilities in the near-wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Jethani, Yogesh; Kumar, Kamal; Sameen, A.; Mathur, Manikandan

    2017-11-01

    We perform local stability analysis of the near-wake region of two-dimensional flow past a circular cylinder for Reynolds number in the range Re ∈ [ 10 , 300 ] . The local stability equations that govern the leading-order amplitude of short-wavelength perturbations are solved along closed fluid particle trajectories in the numerically simulated flow-fields for both the steady (Re <= 45) and unsteady vortex-shedding (Re > 45) regimes; the study is further complemented with analysis on time-averaged flows for 50 <= Re <= 300 . For steady and time-averaged flow, the inviscidly most unstable regions occur either at the core or at the edge of the separation bubble, with elliptic instability as the dominant mode for all Re . The effectiveness of viscous damping in eliminating the inviscid instabilities and the validity of the WKBJ approximation in the present context are studied. In the unsteady vortex-shedding regime, two types (I and II) of closed trajectories are identified for all Re and the inviscid growth rates as a function of Re are plotted for both. For type I trajectory, a bifurcation occurs at Re 250 . Potential relevance of our results in understanding the transition from steady flow to vortex-shedding and the subsequent secondary instabilities are discussed.

  5. Vortical flow management for improved configuration aerodynamics: Recent experiences

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Recent progress in vortex-control applications for alleviating the adverse consequences of three dimensional separation and vortical interactions on slender body/swept wing configurations is reported. Examples include helical separation trip to alleviate the side force due to forebody vortex asymmetry; hinged strakes to avoid vortex breakdown effects; compartmentation of swept leading edge separation to delay the pitch-up instability; under wing vortex trip and vortex trip and vortex flaps for drag reduction at high lift; and an apex-flap trimmer to fully utilize the lift capability of trailing-edge flaps for take off and landing of delta wings. Experimental results on generic wind-tunnel models are presented to illustrate the vortex-management concepts involved and to indicate their potential for enhancing the subsonic aerodynamics of supersonic-cruise type vehicles.

  6. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  7. Mechanism of instabilities in turbulent combustion leading to flashback

    NASA Astrophysics Data System (ADS)

    Keller, J. O.; Vaneveld, L.; Ghoniem, A. F.; Daily, J. W.; Oppenheim, A. K.; Korschelt, D.; Hubbard, G. L.

    1981-01-01

    High-speed schlieren cinematography, combined with synchronized pressure transducer records, was used to investigate the mechanism of combustion instabilities leading to flashback. The combustion chamber had an oblong rectangular cross-section to model the essential features of planar flow, and was provided with a rearward facing step acting as a flameholder. As the rich limit was approached, three instability modes were observed: (1) humming - a significant increase in the amplitude of the vortex pattern; (2) buzzing - a large-scale oscillation of the flame; and (3) chucking - a cyclic reformation of the flame, which results in flashback. The mechanism of these phenomena is ascribed to the action of vortices in the recirculation zone and their interactions with the trailing vortex pattern of the turbulent mixing layer behind the step.

  8. Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, W. C.; Malamud, Guy; Shimony, A.

    Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less

  9. Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow

    DOE PAGES

    Wan, W. C.; Malamud, Guy; Shimony, A.; ...

    2017-04-25

    Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less

  10. Evolution of the magnetic field generated by the Kelvin-Helmholtz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modestov, M.; Bychkov, V.; Brodin, G.

    2014-07-15

    The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less

  11. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  12. On the Pathways of the Return Flow of the Meridional Overturning Circulation in the Tropical Atlantic

    NASA Technical Reports Server (NTRS)

    Jochum, Markus

    2002-01-01

    A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOO act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOO are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves.

  13. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ning; Liu, Kai-hua; Li, Jin-wei; Xian, Hai-zhen; Du, Xiao-ze

    2018-05-01

    Reversible pump turbines are widely employed in the pumped hydro energy storage power plants. The frequent shifts among various operational modes for the reversible pump turbines pose various instability problems, e.g., the strong pressure fluctuation, the shaft swing, and the impeller damage. The instability is related to the vortices generated in the channels of the reversible pump turbines in the generating mode. In the present paper, a new omega vortex identification method is applied to the vortex analysis of the reversible pump turbines. The main advantage of the adopted algorithm is that it is physically independent of the selected values for the vortex identification in different working modes. Both weak and strong vortices can be identified by setting the same omega value in the whole passage of the reversible pump turbine. Five typical modes (turbine mode, runaway mode, turbine brake mode, zero-flow-rate mode and reverse pump mode) at several typical guide vane openings are selected for the analysis and comparisons. The differences between various modes and different guide vane openings are compared both qualitatively in terms of the vortex distributions and quantitatively in terms of the areas of the vortices in the reversible pump turbines. Our findings indicate that the new omega method could be successfully applied to the vortex identification in the reversible pump turbines.

  14. Study of Transition Mechanism in a Wake Behind an Airfoil with a Small Angle of Attack by Using a Towing Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Morita, Toshiyuki; Maekawa, Hiroshi

    This paper describes an experimental investigation of the transitional mechanism of a wake generated behind a thin airfoil with a small angle of attack in a towing wind tunnel. A linear stability analysis shows that the wake is characterized by a region of absolute instability in the near wake (x=30mm) and one of convective instability further downstream. When the airfoil starts to run in the tunnel, boundary layers develop on the upper/lower airfoil surfaces with different thickness. Since the asymmetric wake is generated, starting vortices of a single row are observed first in the wake, which is different from the Karman vortex street. The experimental results show that time-harmonic fluctuations of the starting vortex sustain in the natural transition process due to a self sustained resonance in the absolutely unstable region behind the trailing edge. The wake profile in the saturation steady state yields the vortex street structure, where the fluctuation frequency defined as the fundamental unstable mode is found in the final saturation steady state. The growth of the fundamental unstable mode in the convectively unstable region suppresses the high frequency fluctuations associated with the starting vortex generation. On the other hand, low-frequency fluctuations in the quasi-steady state sustaining in the saturation state grow gradually during the vortex street formation, which lead to the vortex deformation downstream.

  15. Experimental investigation of large-scale vortices in a freely spreading gravity current

    NASA Astrophysics Data System (ADS)

    Yuan, Yeping; Horner-Devine, Alexander R.

    2017-10-01

    A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.

  16. Optimal Transient Growth of Submesoscale Baroclinic Instabilities

    NASA Astrophysics Data System (ADS)

    White, Brian; Zemskova, Varvara; Passaggia, Pierre-Yves

    2016-11-01

    Submesoscale instabilities are analyzed using a transient growth approach to determine the optimal perturbation for a rotating Boussinesq fluid subject to baroclinic instabilities. We consider a base flow with uniform shear and stratification and consider the non-normal evolution over finite-time horizons of linear perturbations in an ageostrophic, non-hydrostatic regime. Stone (1966, 1971) showed that the stability of the base flow to normal modes depends on the Rossby and Richardson numbers, with instabilities ranging from geostrophic (Ro -> 0) and ageostrophic (finite Ro) baroclinic modes to symmetric (Ri < 1 , Ro > 1) and Kelvin-Helmholtz (Ri < 1 / 4) modes. Non-normal transient growth, initiated by localized optimal wave packets, represents a faster mechanism for the growth of perturbations and may provide an energetic link between large-scale flows in geostrophic balance and dissipation scales via submesoscale instabilities. Here we consider two- and three-dimensional optimal perturbations by means of direct-adjoint iterations of the linearized Boussinesq Navier-Stokes equations to determine the form of the optimal perturbation, the optimal energy gain, and the characteristics of the most unstable perturbation.

  17. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    NASA Astrophysics Data System (ADS)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  18. The 17th JANNAF Combustion Meeting, Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

  19. Development and Breakdown of Goertler Vortices in High Speed Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; Wu, Minwei; Greene, Ptrick T.

    2010-01-01

    The nonlinear development of G rtler instability over a concave surface gives rise to a highly distorted stationary flow in the boundary layer that has strong velocity gradients in both spanwise and wall-normal directions. This distorted flow is susceptible to strong, high frequency secondary instability that leads to the onset of transition. For high Mach number flows, the boundary layer is also subject to the second mode instability. The nonlinear development of G rtler vortices and the ensuing growth and breakdown of secondary instability, the G rtler vortex interactions with second mode instabilities as well as oblique second mode interactions are examined in the context of both internal and external hypersonic configurations using nonlinear parabolized stability equations, 2-D eigenvalue analysis and direct numerical simulation. For G rtler vortex development inside the Purdue Mach 6 Ludwieg tube wind tunnel, multiple families of unstable secondary eigenmodes are identified and their linear and nonlinear evolution is examined. The computation of secondary instability is continued past the onset of transition to elucidate the physical mechanisms underlying the laminar breakdown process. Nonlinear breakdown scenarios associated with transition over a Mach 6 compression cone configuration are also explored.

  20. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  1. Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model

    NASA Technical Reports Server (NTRS)

    Martin, J. E.; Meiburg, E.

    1996-01-01

    The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.

  2. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  3. Active Stabilization of Aeromechanical Systems

    DTIC Science & Technology

    1993-01-05

    rotatingUsing the linearized forms of the equations of motion in the stall the compressed reverse flow comes from the annular space upstream and...and temperatures of the two opposite flows, I tential. This is a baroclinic instability deforms the ring into a wavy motion . I~dol)_ This front was...1989. Fig. 14, and 1990a, Fig, 17). The wavy motion of the S (2+ () front is then developed into Rossby waves, the velocity field If we define of which

  4. Helical vortices: linear stability analysis and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Selçuk, C.; Delbende, I.; Rossi, M.

    2018-02-01

    We numerically investigate, within the context of helical symmetry, the dynamics of a regular array of two or three helical vortices with or without a straight central hub vortex. The Navier-Stokes equations are linearised to study the instabilities of such basic states. For vortices with low pitches, an unstable mode is extracted which corresponds to a displacement mode and growth rates are found to compare well with results valid for an infinite row of point vortices or an infinite alley of vortex rings. For larger pitches, the system is stable with respect to helically symmetric perturbations. In the nonlinear regime, we follow the time-evolution of the above basic states when initially perturbed by the dominant instability mode. For two vortices, sequences of overtaking events, leapfrogging and eventually merging are observed. The transition between such behaviours occurs at a critical ratio involving the core size and the vortex-separation distance. Cases with three helical vortices are also presented.

  5. Interaction of vortex ring with a stratified finite thickness interface

    NASA Astrophysics Data System (ADS)

    Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi

    2017-09-01

    This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.

  6. Subharmonic mechanism of the mode C instability

    NASA Astrophysics Data System (ADS)

    Sheard, G. J.; Thompson, M. C.; Hourigan, K.

    2005-11-01

    The perturbation field of the recently discovered subharmonic mode C instability in the wake behind a ring is compared via a side-by-side comparison to the perturbation fields of the modes A and B instabilities familiar from past studies of the vortex street behind a circular cylinder. Snapshots of the wake are presented over a full shedding cycle, along with evidence from a linear stability analysis, to verify and better understand how the subharmonic instability is sustained.

  7. The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Susan-Resiga, Romeo

    2016-11-01

    The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.

  8. Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei; Venkatachari, Balaji

    2011-01-01

    Surface protuberances and cavities on a hypersonic vehicle are known to cause several aerodynamic or aerothermodynamic issues. Most important of all, premature transition due to these surface irregularities can lead to a significant rise in surface heating. To help understand laminar-turbulent transition induced by protuberances or cavities on a Crew Exploration Vehicle (CEV) surface, high-fidelity numerical simulations are carried out for both types of trips on a CEV wind tunnel model. Due to the large bluntness, these surface irregularities reside in an accelerating subsonic boundary layer. For the Mach 6 wind tunnel conditions with a roughness Reynolds number Re(sub kk) of 800, it was found that a protuberance with a height to boundary layer thickness ratio of 0.73 leads to strong wake instability and spontaneous vortex shedding, while a cavity with identical geometry only causes a rather weak flow unsteadiness. The same cavity with a larger Reynolds number also leads to similar spontaneous vortex shedding and wake instability. The wake development and the formation of hairpin vortices for both protuberance and cavity were found to be qualitatively similar to that observed for an isolated hemisphere submerged in a subsonic, low speed flat-plate boundary layer. However, the shed vortices and their accompanying instability waves were found to be slightly stabilized downstream by the accelerating boundary layer along the CEV surface. Despite this stabilizing influence, it was found that the wake instability spreads substantially in both wall-normal and azimuthal directions as the flow is evolving towards a transitional state. Similarities and differences between the wake instability behind a protuberance and a cavity are investigated. Computations for the Mach 6 boundary layer over a slender cylindrical roughness element with a height to the boundary layer thickness of about 1.1 also shows spontaneous vortex shedding and strong wake instability. Comparisons of detailed flow structures associated with protuberances at subsonic and supersonic edge Mach numbers indicate distinctively different instability mechanisms.

  9. Instabilities of mixed convection flows adjacent to inclined plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.

    1987-11-01

    The measurements by Sparrow and Husar and by Lloyd and Sparrow established that the onset of instability (transition from laminar to turbulent) in free convection boundary layer flow above an inclined heated plate is predominated by the wave mode of instability for inclination angles less than 14 deg, as measured from the vertical, and by the vortex mode of instability for angles greater than 17 deg. The transition Grashof number deceased as the angle of inclination increased. The predictions of Chen and Tzuoo for this flow provide trends that are similar to measured values, but the predicted critical Grashof numbersmore » deviate significantly (three orders of magnitude smaller) from measured values. The instability of mixed convection boundary layer flow adjacent to inclined heated plates have also been treated numerically by Chen and Mucoglu for wave instability and by Chen et al. for vortex instability. Comparisons with measurements of instability in mixed convection flow adjacent to inclined plates were not available in the literature. It is anticipated, however, that these predictions will underestimate the actual onset of instability, as in the free convection case. The lack of measurements in this flow domain for this geometry has motivated the present study. The onset of instability in mixed convection flow adjacent to an isothermally heated inclined plate was determined in this study through flow visualization. The buoyancy-assisting and buoyancy-opposing flow cases were examined for the flow both above and below the heated plate. The critical Grashof-Reynolds number relationships for the onset of instability in this flow domain are reported in this paper.« less

  10. The dynamics of magnetic Rossby waves in spherical dynamo simulations: A signature of strong-field dynamos?

    NASA Astrophysics Data System (ADS)

    Hori, K.; Teed, R. J.; Jones, C. A.

    2018-03-01

    We investigate slow magnetic Rossby waves in convection-driven dynamos in rotating spherical shells. Quasi-geostrophic waves riding on a mean zonal flow may account for some of the geomagnetic westward drifts and have the potential to allow the toroidal field strength within the planetary fluid core to be estimated. We extend the work of Hori et al. (2015) to include a wider range of models, and perform a detailed analysis of the results. We find that a predicted dispersion relation matches well with the longitudinal drifts observed in our strong-field dynamos. We discuss the validity of our linear theory, since we also find that the nonlinear Lorentz terms influence the observed waveforms. These wave motions are excited by convective instability, which determines the preferred azimuthal wavenumbers. Studies of linear rotating magnetoconvection have suggested that slow magnetic Rossby modes emerge in the magnetostrophic regime, in which the Lorentz and Coriolis forces are in balance in the vorticity equation. We confirm this to be predominant balance for the slow waves we have detected in nonlinear dynamo systems. We also show that a completely different wave regime emerges if the magnetic field is not present. Finally we report the corresponding radial magnetic field variations observed at the surface of the shell in our simulations and discuss the detectability of these waves in the geomagnetic secular variation.

  11. Vortex multiplication in applied flow: A precursor to superfluid turbulence.

    PubMed

    Finne, A P; Eltsov, V B; Eska, G; Hänninen, R; Kopu, J; Krusius, M; Thuneberg, E V; Tsubota, M

    2006-03-03

    A surface-mediated process is identified in 3He-B which generates vortices at a roughly constant rate. It precedes a faster form of turbulence where intervortex interactions dominate. This precursor becomes observable when vortex loops are introduced in low-velocity rotating flow at sufficiently low mutual friction dissipation at temperatures below 0.5Tc. Our measurements indicate that the formation of new loops is associated with a single vortex interacting in the applied flow with the sample boundary. Numerical calculations show that the single-vortex instability arises when a helical Kelvin wave expands from a reconnection kink at the wall and then intersects again with the wall.

  12. Stability of Mars' annular polar vortex

    NASA Astrophysics Data System (ADS)

    Seviour, W.; Waugh, D.; Scott, R.

    2016-12-01

    In common with the Earth and several other planetary bodies, the martian atmosphere exhibits regions of high potential vorticity (PV) near the winter pole, known as polar vortices. On Earth, PV increases monotonically from the equator to pole, however, on Mars there is a local minimum at the pole, with an annulus of high PV encircling it. Recently produced reanalyses of the martian atmospheric circulation have confirmed that this annular vortex is a persistent feature, forming in autumn and lasting until spring. This finding is surprising since an isolated band of PV is barotropically unstable, a result going back to Rayleigh. Here we investigate the stability of an annular vortex using numerical integrations of the rotating shallow water equations. We show that the mode of instability and its growth rate strongly depends upon the latitude and width of the annulus. By introducing thermal relaxation with a time scale similar to that of the instability we are able to simulate a persistent annular vortex with similar characteristics as that observed in the martian atmosphere. This time scale, typically 1-2 sols, is similar to thermal relaxation timescales which have been estimated for the martian atmosphere. We also demonstrate that the persistence of an annular vortex is robust to topographic forcing, as long as it is below a certain amplitude. We hence propose that the persistence of this barotropically unstable annular vortex is permitted due to the combination of short radiative relaxation time scales and relatively weak topographic forcing in the martian polar atmosphere.

  13. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-11-01

    An explanation of long-lived Saturn's North Polar hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at Saturn's South Pole is explained similarly. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (;jet-only; configuration), and (2) including (;jet + vortex; configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ;jet+vortex; system produces a long-living structure akin to the observed hexagon, which is not the case of the ;jet-only; system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's North Polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  14. On the dynamical nature of Saturn's North Polar hexagon

    NASA Astrophysics Data System (ADS)

    Rostami, Masoud; Zeitlin, Vladimir; Spiga, Aymeric

    2017-04-01

    An explanation of long-lived Saturn's North Pole hexagonal circumpolar jet in terms of instability of the coupled system polar vortex - circumpolar jet is proposed in the framework of the rotating shallow water model, where scarcely known vertical structure of the Saturn's atmosphere is averaged out. The absence of a hexagonal structure at the Saturn's South Pole is explained along the same lines. By using the latest state-of-the-art observed winds in Saturn's polar regions a detailed linear stability analysis of the circumpolar jet is performed (i) excluding (``jet-only" configuration), and (2) including (``jet+vortex" configuration) the north polar vortex in the system. A domain of parameters: latitude of the circumpolar jet and curvature of its azimuthal velocity profile, where the most unstable mode of the system has azimuthal wavenumber 6, is identified. Fully nonlinear simulations are then performed, initialized either with the most unstable mode of small amplitude, or with the random combination of unstable modes. It is shown that developing barotropic instability of the ``jet+vortex" system produces a long-living structure akin to the observed hexagon, which is not the case of the ``jet-only" system, which was studied in this context in a number of papers in literature. The north polar vortex, thus, plays a decisive dynamical role. The influence of moist convection, which was recently suggested to be at the origin of Saturn's north polar vortex system in the literature, is investigated in the framework of the model and does not alter the conclusions.

  15. Vortex cutting in superconductors

    DOE PAGES

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; ...

    2016-08-09

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  16. Vortex cutting in superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, in this paper, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details ofmore » the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Finally, our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.« less

  17. Hamiltonian bifurcation perspective on two interacting vortex pairs: From symmetric to asymmetric leapfrogging, period doubling, and chaos

    NASA Astrophysics Data System (ADS)

    Whitchurch, Brandon; Kevrekidis, Panayotis G.; Koukouloyannis, Vassilis

    2018-01-01

    In this work we study the dynamical behavior of two interacting vortex pairs, each one of them consisting of two point vortices with opposite circulation in the two-dimensional plane. The vortices are considered as effective particles and their interaction can be described in classical mechanics terms. We first construct a Poincaré section, for a typical value of the energy, in order to acquire a picture of the structure of the phase space of the system. We divide the phase space in different regions which correspond to qualitatively distinct motions and we demonstrate its different temporal evolution in the "real" vortex space. Our main emphasis is on the leapfrogging periodic orbit, around which we identify a region that we term the "leapfrogging envelope" which involves mostly regular motions, such as higher order periodic and quasiperiodic solutions. We also identify the chaotic region of the phase plane surrounding the leapfrogging envelope as well as the so-called walkabout and braiding motions. Varying the energy as our control parameter, we construct a bifurcation tree of the main leapfrogging solution and its instabilities, as well as the instabilities of its daughter branches. We identify the symmetry-breaking instability of the leapfrogging solution (in line with earlier works), and also obtain the corresponding asymmetric branches of periodic solutions. We then characterize their own instabilities (including period doubling ones) and bifurcations in an effort to provide a more systematic perspective towards the types of motions available to this dynamical system.

  18. Observation of the Kelvin–Helmholtz Instability in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan

    2018-04-01

    Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.

  19. Three-dimensional boundary layer stability and transition

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Li, F.

    1992-01-01

    Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.

  20. Topology and stability of a water-soybean-oil swirling flow

    NASA Astrophysics Data System (ADS)

    Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.

    2017-02-01

    This paper reveals and explains the flow topology and instability hidden in an experimental study by Tsai et al. [Tsai et al., Phys. Rev. E 92, 031002(R) (2015)], 10.1103/PhysRevE.92.031002. Water and soybean oil fill a sealed vertical cylindrical container. The rotating top disk induces the meridional circulation and swirl of both fluids. The experiment shows a flattop interface shape and vortex breakdown in the oil flow developing as the rotation strength R eo increases. Our numerical study shows that vortex breakdown occurs in the water flow at R eo=300 and in the oil flow at R eo=941 . As R eo increases, the vortex breakdown cell occupies most of the water domain and approaches the interface at R eo around 600. The rest of the (countercirculating) water separates from the axis as the vortex breakdown cells in the oil and water meet at the interface-axis intersection. This topological transformation of water flow significantly contributes to the development of the flattop shape. It is also shown that the steady axisymmetric flow suffers from shear-layer instability, which emerges in the water domain at R eo=810 .

  1. On Compressible Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    2005-05-01

    We introduce the main known results of the theory of incompressible and compressible vortex sheets. Moreover, we present recent results obtained by the author with J. F. Coulombel about supersonic compressible vortex sheets in two space dimensions. The problem is a nonlinear free boundary hyperbolic problem with two difficulties: the free boundary is characteristic and the Lopatinski condition holds only in a weak sense, yielding losses of derivatives. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the boundary value problem obtained by linearization around an unsteady piecewise solution.

  2. Active flow control for a blunt trailing edge profiled body

    NASA Astrophysics Data System (ADS)

    Naghib Lahouti, Arash

    Flow in the wake of nominally two-dimensional bluff bodies is dominated by vortex shedding, beyond a very small threshold Reynolds number. Vortex shedding poses challenges in the design of structures, due to its adverse effects such as cyclic aerodynamic loads and fatigue. The wake vortices are often accompanied by large- and small-scale secondary instabilities, which manifest as dislocations in the primary wake vortices, and/or pairs of counter-rotating streamwise vortices, depending on the dominant instability mode(s), which in turn depends on the profile geometry and Reynolds number. The secondary instabilities interact with the wake vortices through several mechanisms. Therefore, manipulation of the secondary instabilities can be used as a means to alter the wake vortices, in order to reduce their adverse effects. In the present study, flow in the wake of a blunt trailing edge profiled body, composed of an elliptical leading edge and a rectangular trailing edge, has been studied at Reynolds numbers ranging from Re(d) = 500 to 2150 where d is thickness of the body, to identify the secondary instabilities. Various tools, including numerical simulations, Laser Induced Fluorescence (LIF), and Particle Image Velocimetry (PIV) have been used for this study. Proper Orthogonal Decomposition (POD) has been applied to analyze the velocity field data. The results indicate the existence of small-scale instabilities with a spanwise wavelength of 2.0d to 2.5d in the near wake. The mechanism of the instability is similar to the Mode-A instability of a circular cylinder; however, it displays features that are specific to the blunt trailing edge profiled body. An active three-dimensional flow control mechanism based on the small-scale instabilities has been designed and evaluated. The mechanism comprises a series of trailing edge injection ports, with a spanwise spacing equal to the wavelength of the small-scale instabilities. Following preliminary evaluation of the control mechanism through numerical simulations, and experimental study of the effect of injection flow rate, extensive PIV experiments have been conducted to investigate the effectiveness of the flow control mechanism, and its effects on the wake flow structure, at Reynolds numbers ranging from Re(d ) = 700 to 1980. Measurements have been carried out at multiple spanwise locations, to establish a comprehensive image of the effect of the flow control mechanism on parameters such as drag force, wake width, and formation length. POD analysis and frequency spectrums are used to describe the process by which the mechanism affects the wake parameters and drag force. The results indicate that the flow control mechanism is able to reduce drag force by 10%. It is also shown that the best effectiveness in terms of suppression of the drag component resulting from velocity fluctuations is achieved when the flow control actuation wavelength closely matches the wavelength of the small-scale instabilities. KEYWORDS: Blunt Trailing Edge Profiled Body, Vortex Shedding, Wake Instability, Streamwise Vortex, Flow Control, Drag Reduction, Particle Image Velocimetry (PIV), Laser Induced Fluorescence (LIF), Flow Visualization, Numerical Simulation

  3. Experimental Study of the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Jacobs, Jeffrey W.

    2002-01-01

    The Richtmyer-Meshkov instability of a low Atwood number, miscible, two-liquid system is investigated experimentally. The initially stratified fluids are contained within a rectangular tank mounted to a sled that rides on a vertical set of rails. The instability is generated by dropping the sled onto a coil spring, producing a nearly impulsive upward acceleration. The subsequent freefall that occurs as the container travels upward and then downward on the rails allows the instability to evolve in the absence of gravity. The interface separating the two liquids initially has a well-defined, sinusoidal perturbation that quickly inverts and then grows in amplitude after undergoing the impulsive acceleration. Disturbance amplitudes are measured and compared to theoretical predictions. Linear stability theory gives excellent agreement with the measured initial growth rate, a(sub 0), for single-mode perturbations with the predicted amplitudes differing by less than 10% from experimental measurements up to a nondimensional time ka(sub 0)t = 0.7, where k is the wavenumber. Linear stability theory also provides excellent agreement for the individual mode amplitudes of multi-mode initial perturbations up until the interface becomes multi-valued. Comparison with previously published weakly nonlinear single-mode models shows good agreement up to ka(sub 0)t = 3, while published nonlinear single-mode models provide good agreement up to ka(sub 0)t = 30. The effects of Reynolds number on the vortex core evolution and overall growth rate of the interface are also investigated. Measurements of the overall amplitude are found to be unaffected by the Reynolds number for the range of values studied here. However, experiments carried out at lower values of Reynolds numbers were found to have decreased vortex core rotation rates. In addition, an instability in the vortex cores is observed.

  4. Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex problem

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi

    2018-05-01

    An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).

  5. Sound Generation by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Wang, Frank Y.

    2003-01-01

    This report provides an extensive analysis of potential wake vortex noise sources that might be utilized to aid in their tracking. Several possible mechanisms of aircraft vortex sound generation are examined on the basis of discrete vortex dynamic models and characteristic acoustic signatures calculated by application of vortex sound theory. It is shown that the most robust mechanisms result in very low frequency infrasound. An instability of the vortex core structure is discussed and shown to be a possible mechanism for generating higher frequency sound bordering the audible frequency range. However, the frequencies produced are still low and cannot explain the reasonably high-pitched sound that has occasionally been observed experimentally. Since the robust mechanisms appear to generate only very low frequency sound, infrasonic tracking of the vortices may be warranted.

  6. Nonlinear modeling of wave-topography interactions, shear instabilities and shear induced wave breaking using vortex method

    NASA Astrophysics Data System (ADS)

    Guha, Anirban

    2017-11-01

    Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.

  7. Single and multiple vortex rings in three-dimensional Bose-Einstein condensates: Existence, stability, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher

    In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less

  8. A pressure-gradient mechanism for vortex shedding in constricted channels

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  9. Single and multiple vortex rings in three-dimensional Bose-Einstein condensates: Existence, stability, and dynamics

    DOE PAGES

    Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher; ...

    2017-04-27

    In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less

  10. Dynamical Characterization of a Low Oxygen Submesoscale Coherent Vortex in the Eastern North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pietri, A.; Karstensen, J.

    2018-03-01

    A submesoscale coherent vortex (SCV) with a low oxygen core is characterized from underwater glider and mooring observations from the eastern tropical North Atlantic, north of the Cape Verde Islands. The eddy crossed the mooring with its center and a 1 month time series of the SCV's hydrographic and upper 100 m currents structure was obtained. About 45 days after, and ˜100 km west, the SCV frontal zone was surveyed in high temporal and spatial resolution using an underwater glider. Satellite altimetry showed the SCV was formed about 7 months before at the Mauritanian coast. The SCV was located at 80-100 m depth, its diameter was ˜100 km and its maximum swirl velocity ˜0.4 m s-1. A Burger number of 0.2 and a vortex Rossby number 0.15 indicate a flat lens in geostrophic balance. Mooring and glider data show in general comparable dynamical and thermohaline structures, the glider in high spatial resolution, the mooring in high temporal resolution. Surface maps of chlorophyll concentration suggest high productivity inside and around the SCV. The low potential vorticity (PV) core of the SCV is surrounded by filamentary structures, sloping down at different angles from the mixed layer base and with typical width of 10-20 km and a vertical extent of 50-100 m.

  11. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  12. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor. Part 2: High speed photographic study

    NASA Technical Reports Server (NTRS)

    Cary, Charles M.

    1987-01-01

    The interaction of a free vortex and a rotor was recorded photographically using oil smoke and stroboscopic illumination. The incident vortex is normal to the plane of the rotor and crosses the rotor plane. This idealized aerodynamic experiment most nearly corresponds to helicopter flight conditions in which a tip vortex from the main rotor is incident upon the tail rotor while hovering. The high speed photographs reveal important features not observed using conventional photography where the image is the time average of varying instantaneous images. Most prominent is the strong interaction between the rotor tip vortex system and the incident vortex, resulting in the roll-up of the incident vortex around the (stronger) tip vortices and the resulting rapid destabilization of the deformed incident vortex. The viscous interaction is clearly shown also. Other forms of instabilities or wave-like behavior may be apparent from further analysis of the photographs.

  13. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  14. On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Davis, Dominic A. R.; Smith, Frank T.

    1993-01-01

    The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.

  15. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  16. Manipulation of the swirling flow instability in hydraulic turbine diffuser by different methods of water injection

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Litera, Jiří; Alejandro Ibarra Bolanos, Germán; Štefan, David

    2018-06-01

    Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga's idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.

  17. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  18. Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, Christopher; ...

    2015-12-07

    Performing a systematic Bogoliubov–de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode,more » but we also observe the corresponding instability dynamics. Moreover, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions.« less

  19. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  20. Numeric and fluid dynamic representation of tornadic double vortex thunderstorms

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Marquart, E. J.; Frost, W.; Boaz, W.

    1980-01-01

    Current understanding of a double vortex thunderstorm involves a pair of contra-rotating vortices that exists in the dynamic updraft. The pair is believed to be a result of a blocking effect which occurs when a cylindrical thermal updraft of a thunderstorm protrudes into the upper level air and there is a large amount of vertical wind shear between the low level and upper level air layers. A numerical tornado prediction scheme based on the double vortex thunderstorm was developed. The Energy-Shear Index (ESI) is part of the scheme and is calculated from radiosonde measurements. The ESI incorporates parameters representative of thermal instability and blocking effect, and indicates appropriate environments for which the development of double vortex thunderstorms is likely.

  1. The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors

    NASA Astrophysics Data System (ADS)

    Ansari, Intikhab A.; Shahabuddin, M.; Ziq, Khalil A.; Salem, A. F.; Awana, V. P. S.; Husain, M.; Kishan, H.

    2007-08-01

    Nano-Al2O3 doped Mg1-xAlxB2 with 0<=x<=6% were synthesized by solid state reaction at 750 °C in Fe tube encapsulation under a vacuum of 10-5 Torr. Resistance measurement shows that the Tc decreases with x and zero resistivity for x = 0 and 6% are obtained at 38 and 35 K, respectively. XRD measurement shows that the lattice parameter and cell volume also decrease monotonically with increasing doping levels. From this we infer that the Al has been substituted in the lattice of MgB2 at Mg sites. Resistivity measurement shows a systematic decrease in Tc with doping which also confirms the substitution of Al. Magnetization studies in the temperature range from 4 to 35 K and in the magnetic field up to 9 T shows a significant increase in the irreversibility field (Hirr), critical current density (Jc) and remanent magnetization (MR) with increasing concentration of the Al2O3 nanoparticle. At low fields we have observed large vortex instabilities (known as a vortex avalanche) associated with all doped samples. The vortex-avalanche effect is reduced with increasing temperature and vanishes near 20 K. The results are discussed in terms of local-vortex instabilities caused by doping of Al2O3 nanoparticles.

  2. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  3. A Long-lived Cyclone In Saturn's Atmosphere: Observations And Models

    NASA Astrophysics Data System (ADS)

    Del Rio Gaztelurrutia, Teresa; Legarreta, J.; Hueso, R.; Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2009-09-01

    The atmospheres of the Giant Planets Jupiter and Saturn possess large numbers of atmospheric vortices. On Jupiter, anticyclones are generally long-lived structures while cyclones survive a much shorter time. A long term survey of images of Saturn atmosphere obtained by the Cassini ISS camera has revealed the presence of a long-lived cyclone in Saturn's southern hemisphere during at least four years, making this vortex the longest lived cyclone on either Jupiter or Saturn. We find that the vortex drifts following the wind profile, with changes in velocity following changes of latitude. During the four years of our survey its size remained essentially constant, and there was no other structure of comparable size at its latitude. Internal circulation is cyclonic, with a maximum velocity of 20±5 m/s and an average vorticity of 4·10-5 s-1, an order of magnitude lower than planetary vorticity, but only slightly higher than the ambient vorticity. Photometric analysis shows that the vortex is located at a slightly lower altitude than its surroundings, at an average of 10-20 mbar below adjacent clouds. Finally, EPIC simulations of the vortex that reproduce its behavior imply a Rossby deformation radius of 2000 km in the weather layer (1 - 10 bar), consistent with the size of the cyclone. The long-lifetime of this cyclonic spot is surprising in view of its low tangential velocity and it suggests that low dissipation conditions prevail at mid-latitudes in Saturn's upper troposphere. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  4. Vortex instabilities in 3D boundary layers: The relationship between Goertler and crossflow vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew; Hall, Philip

    1990-01-01

    The inviscid and viscous stability problems are addressed for a boundary layer which can support both Goertler and crossflow vortices. The change in structure of Goertler vortices is found when the parameter representing the degree of three-dimensionality of the basic boundary layer flow under consideration is increased. It is shown that crossflow vortices emerge naturally as this parameter is increased and ultimately become the only possible vortex instability of the flow. It is shown conclusively that at sufficiently large values of the crossflow there are no unstable Goertler vortices present in a boundary layer which, in the zero crossflow case, is centrifugally unstable. The results suggest that in many practical applications Goertler vortices cannot be a cause of transition because they are destroyed by the 3-D nature of the basic state. In swept wing flows the Goertler mechanism is probably not present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity problem for vortex instabilities in weakly 3-D boundary layers is given; it is shown that inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing viscous modes discussed recently by Denier, Hall, and Seddougui (1990). However the fact that the growth rates of the inviscid modes are the largest in most situations means that they are probably the most likely source of transition.

  5. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Momary, Thomas W.; Fletcher, Leigh N.; Showman, Adam P.; Roos-Serote, Maarten; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Philip D.

    2009-12-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter - using a thermal wavelength of 5.1 μm to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow - show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3° (planetocentric) latitude, and decreasing to <30 m/s at 89.7° near the vortex center and<20 m/s at 80.5°. High-speed winds, exceeding 125 m/s, were also measured for cloud features at depth near 76° (planetocentric) latitude within the polar hexagon consistent with the idea that the hexagon itself, which remains nearly stationary, is a westward (retrograde) propagating Rossby wave - as proposed by Allison (1990, Science 247, 1061-1063) - with a maximum wave speed near 2-bars pressure of ~125 m/s. Winds are ~25 m/s stronger than observed by Voyager, suggesting temporal variability. Images acquired of one side of the hexagon in dawn conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 μm images, indicating little windshear above the ~2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8°N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant atmospheres.

  6. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    USGS Publications Warehouse

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 ??m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3?? (planetocentric) latitude, and decreasing to <30 m/s at 89.7?? near the vortex center and<20 m/s at 80.5??. High-speed winds, exceeding 125 m/s, were also measured for cloud features at depth near 76?? (planetocentric) latitude within the polar hexagon consistent with the idea that the hexagon itself, which remains nearly stationary, is a westward (retrograde) propagating Rossby wave - as proposed by Allison (1990, Science 247, 1061-1063) - with a maximum wave speed near 2-bars pressure of ~125 m/s. Winds are ~25 m/s stronger than observed by Voyager, suggesting temporal variability. Images acquired of one side of the hexagon in dawn conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 ??m images, indicating little windshear above the ~2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8??N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant atmospheres. ?? 2009 Elsevier Ltd. All rights reserved.

  7. Zombie Vortex Instability: Effects of Non-uniform Stratification & Thermal Cooling

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph; Pei, Suyang; Marcus, Phil; Jiang, Chung-Hsiang

    2015-11-01

    The Zombie Vortex Instability (ZVI) is a nonlinear instability in rotating, stratified, shear flows, such as in protoplanetary disks (PPD) of gas and dust orbiting new stars. The instability mechanism is the excitation of baroclinic critical layers, leading to vorticity amplification and nonlinear evolution into anticyclonic vortices and cyclonic sheets. ZVI is most robust when the Coriolis frequency, shear rate, and Brunt-Väisälä (BV) frequency are of the same order. Previously, we investigated ZVI with uniform stratification and without thermal cooling. Here, we explore the role of non-uniform stratification as would be found in PPDs in which the BV frequency is zero in the disk midplane, and increases away from the midplane. We find that ZVI is vigorous 1-3 pressure scale heights away from the midplane, but the non-isotropic turbulence generated by ZVI can penetrate into the midplane. We also explore the effect of thermal cooling and find that ZVI is still robust for cooling times as short as 5 orbital periods. ZVI may play important roles in transporting angular momentum in PPDs, and in trapping dust grains, which may trigger gravitational clumping into planetesimals.

  8. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  9. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Vivek; Koshelev, Alexei E.

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  10. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE PAGES

    Mishra, Vivek; Koshelev, Alexei E.

    2015-08-13

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  11. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  12. Inertio-elastic mixing in a straight microchannel with side wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sun Ok; Cooper-White, Justin J.; School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD

    Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flowmore » rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.« less

  13. On the Nature of Oblique Instability Waves in Boundary Layer Transition.

    DTIC Science & Technology

    1986-05-23

    analogy with the starting vortex of a finite span airfoil , these vortices ." must also connect to some form of starting vortex system at the heater. The...quite suprising. %’ . .5 % *. % % .~%\\~, *-:. % % % % - 61 - For instance, a series of experiments involving forced oblique waves has shown that several...Morkovin, M. V. (1980). Dialog on Bridging Some Gaps in Stability and Transition Research. Laminar-Turbulent Transition (eds. R. Eppler and H. Fuel

  14. Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes

    NASA Astrophysics Data System (ADS)

    Karami, K.; Braesicke, P.; Kunze, M.; Langematz, U.; Sinnhuber, M.; Versick, S.

    2015-11-01

    Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over the polar regions of both hemispheres, where they can greatly disturb the chemical composition of the upper and middle atmosphere and contribute to ozone depletion in the stratosphere and mesosphere. The chemistry-climate general circulation model EMAC is used to investigate the impact of changed ozone concentration due to Energetic Particle Precipitation (EPP) on temperature and wind fields. The results of our simulations show that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes over a wide range of latitudes and altitudes. In both hemispheres, as winter progresses the temperature and wind anomalies move downward with time from the mesosphere/upper stratosphere to the lower stratosphere. In the Northern Hemisphere (NH), once anomalies of temperature and zonal wind reach the lower stratosphere, another signal develops in mesospheric heights and moves downward. Analyses of Eliassen and Palm (EP) flux divergence show that accelerating or decelerating of the stratospheric zonal flow is in harmony with positive and negative anomalies of the EP flux divergences, respectively. This results suggest that the oscillatory mode in the downwelling signal of temperature and zonal wind in our simulations are the consequence of interaction between the resolved waves in the model and the mean stratospheric flow. Therefore, any changes in the EP flux divergence lead to anomalies in the zonal mean zonal wind which in turn feed back on the propagation of Rossby waves from the troposphere to higher altitudes. The analyses of Rossby waves refractive index show that the EPP-induced ozone anomalies are capable of altering the propagation condition of the planetary-scale Rossby waves in both hemispheres. It is also found that while ozone depletion was confined to mesospheric and stratospheric heights, but it is capable to alter Rossby wave propagation down to tropospheric heights. In response to an accelerated polar vortex in the Southern Hemisphere (SH) late wintertime, we found almost two weeks delay in the occurrence of mean dates of Stratospheric Final Warming (SFW). These results suggest that the stratosphere is not merely a passive sink of wave activity from below, but it plays an active role in determining its own budget of wave activity.

  15. The effects of the Indo-Pacific warm pool on the stratosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang

    2017-03-01

    Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.

  16. On the scaling and dynamics of periodically generated vortex rings

    NASA Astrophysics Data System (ADS)

    Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team

    2017-11-01

    Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.

  17. Morse Theory and Relative Equilibria in the Planar n-Vortex Problem

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth E.

    2018-04-01

    Morse theoretical ideas are applied to the study of relative equilibria in the planar n-vortex problem. For the case of positive circulations, we prove that the Morse index of a critical point of the Hamiltonian restricted to a level surface of the angular impulse is equal to the number of pairs of real eigenvalues of the corresponding relative equilibrium periodic solution. The Morse inequalities are then used to prove the instability of some families of relative equilibria in the four-vortex problem with two pairs of equal vorticities. We also show that, for positive circulations, relative equilibria cannot accumulate on the collision set.

  18. Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection

    NASA Astrophysics Data System (ADS)

    Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun

    2018-02-01

    Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments demonstrated that the change in spring basic state before and after 1998 played a relatively minor role in exciting such a teleconnection pattern, when compared with the tropical precipitation anomaly pattern change.

  19. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    NASA Astrophysics Data System (ADS)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.

  20. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The amplitude of the disturbance during the experiment is measured and compared to theory. The results show good agreement (within 10%) with linear stability theory up to nondimensional amplitude ka = 0.7 (wavenumber x amplitude). These results hold true for an initial ka (before acceleration) of -0.7 less than ka less than -0.06, while the linear theory was developed for absolute value of ka much less than 1. In addition, a third order weakly nonlinear perturbation theory is shown to be accurate for amplitudes as large as ka = 1.3, even though the interface becomes double-valued at ka = 1.1. As time progresses, the vorticity on the interface concentrates, and the interface spirals around the alternating sign vortex centers to form a mushroom pattern. At higher Reynolds Number (based on circulation), an instability of the vortex cores has been observed. While time limitations of the apparatus prevent determination of a critical Reynolds Number, the lowest Reynolds Number this vortex instability has been observed at is 5000.

  1. Stability of barotropic vortex strip on a rotating sphere

    PubMed Central

    Sohn, Sung-Ik; Kim, Sun-Chul

    2018-01-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined. PMID:29507524

  2. Stability of barotropic vortex strip on a rotating sphere.

    PubMed

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  3. A factor involved in efficient breakdown of supersonic streamwise vortices

    NASA Astrophysics Data System (ADS)

    Hiejima, Toshihiko

    2015-03-01

    Spatially developing processes in supersonic streamwise vortices were numerically simulated at Mach number 5.0. The vortex evolution largely depended on the azimuthal vorticity thickness of the vortices, which governs the negative helicity profile. Large vorticity thickness greatly enhanced the centrifugal instability, with consequent development of perturbations with competing wavenumbers outside the vortex core. During the transition process, supersonic streamwise vortices could generate large-scale spiral structures and a number of hairpin like vortices. Remarkably, the transition caused a dramatic increase in the total fluctuation energy of hypersonic flows, because the negative helicity profile destabilizes the flows due to helicity instability. Unstable growth might also relate to the correlation length between the axial and azimuthal vorticities of the streamwise vortices. The knowledge gained in this study is important for realizing effective fuel-oxidizer mixing in supersonic combustion engines.

  4. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  5. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  6. Transient High-Pressure Fuel Injection Processes

    DTIC Science & Technology

    2012-11-21

    ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Fuel injection, hydrodynamic instability...nonlinear waves resulting from hydrodynamic instability form vortex structures that affect the shear layer near the interface. Pro- trusions (which are...to increase the length of the orifice channel; the orifice channel for case (a) is twice that of (b). The effects of cavitation and flow recirculation

  7. Shallow water simulations of Saturn's giant storms at different latitudes

    NASA Astrophysics Data System (ADS)

    García-Melendo, E.; Sánchez-Lavega, A.

    2017-04-01

    Shallow water simulations are used to present a unified study of three major storms on Saturn (nicknamed as Great White Spots, GWS) at different latitudes, polar (1960), equatorial (1990), and mid-latitude (2010) (Sánchez-Lavega, 2004; Sánchez-Lavega et al., 2011). In our model, the three GWS are initiated by introducing a Gaussian function pulse at the latitude of the observed phenomena with controlled horizontal size and amplitude. This function represents the convective source that has been observed to trigger the storm. A growing disturbance forms when the pulse reacts to ambient winds, expanding zonally along the latitude band of the considered domain. We then compare the modeled potential vorticity with the cloud field, adjusting the model parameters to visually get the closest aspect between simulations and observations. Simulations of the 2010 GWS (planetographic latitude ∼+40º, zonal velocity of the source ∼-30 m s-1) indicate that the Coriolis forces and the wind profile structure shape the disturbance generating, as observed, a long region to the east of the convective source with a high speed peripheral anticyclonic circulation, and a long-lived anticyclonic compact vortex accompanied by strong zonal advection on the southern part of the storm forming a turbulent region. Simulations of the equatorial 1990 GWS (planetographic latitude +12º-+5º, zonal velocity of the source 365-400 m s-1) show a different behavior because of the intense eastward jet, meridional shear at the equatorial region, and low latitude dynamics. A round shaped source forms as observed, with the rapid growth of a Kelvin-Helmholtz instability on the north side of the source due to advection and to the strong meridional wind shear, whereas at the storm latitude the disturbance grows and propagates eastward. The storm nucleus is the manifestation of a Rossby wave, while the eastward propagating planetary-scale disturbance is a gravity-Rossby wave trapped around the equator. The simulated 1960 GWS disturbance (planetographic latitude +56º, zonal velocity 4 m s-1) formed a chain of periodic oval spots that mimic the few available observations of the phenomenon. For the mid and high latitude storms, simulations predict a strong injection of negative relative vorticity due to divergence of the upwelling storm material, which may produce large anticyclones on the anticyclonic side of the zonal profile, and a quick turbulent expansion on the background cyclonic regions. In general, simulations indicate that negative relative vorticity injected by storms determines the natural reaction to zonal winds at latitudes where Coriolis forces are dominant.

  8. Modeling of vortex generated sound in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.

    1980-01-01

    There is considerable evidence based on both full scale firings and cold flow simulations that hydrodynamically unstable shear flows in solid propellant rocket motors can lead to acoustic pressure fluctuations of significant amplitude. Although a comprehensive theoretical understanding of this problem does not yet exist, procedures were explored for generating useful analytical models describing the vortex shedding phenomenon and the mechanisms of coupling to the acoustic field in a rocket combustion chamber. Since combustion stability prediction procedures cannot be successful without incorporation of all acoustic gains and losses, it is clear that a vortex driving model comparable in quality to the analytical models currently employed to represent linear combustion instability must be formulated.

  9. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  10. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  11. Cloud morphology and dynamics in Saturn's northern polar region

    NASA Astrophysics Data System (ADS)

    Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier

    2018-01-01

    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.

  12. Evolution and transition mechanisms of internal swirling flows with tangential entry

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Wang, Xingjian; Yang, Vigor

    2018-01-01

    The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.

  13. Polar-Tropical Coupling in the Winter Stratosphere

    NASA Astrophysics Data System (ADS)

    Scott, R.

    2017-12-01

    A distinct pattern of enhanced equatorial potential vorticitygradients during QBO westerly anomalies, enhanced subtropicalgradients during QBO easterlies, is used to motivate a new formulationof dynamical coupling between the tropics and winter polar vortexbased on remote transfer of finite amplitude wave activity defined interms of lateral potential vorticity displacements. While the weakpotential vorticity gradients in the surf zone imply laterallyevanescent Rossby waves, transfer of wave activity from the polarvortex edge to the subtropical barrier or to the QBO westerly phaseequatorial gradients arises from nonlocality of potential vorticityinversion and the large horizontal displacements of the vortex edge.Our approach goes beyond the traditional description of the effect ofQBO wind anomalies on linear wave propagation through the stratospherevia wave reflection at the zero wind line; linear wave theory isappealing but neglects the long horizontal and vertical wavelengthsinvolved and the inhomogeneous background potential vorticity. Aparticular issue of outstanding interest is whether and how therelatively shallow QBO anomalies can influence the deep verticallypropagating waves on the edge of the winter stratospheric polarvortex. Process studies with a mechanistic model with prescribed QBOand carefully controlled high-latitude wave forcing are analyzed,guided by a reexamination of meteorological reanalysis, to address howsuch a dynamical linkage may influence in particular the resonantexcitation of the winter vortex, and the occurrence ofvortex-splitting sudden warming events. We quantify the associatedtransfer of wave activity from vortex edge to the tropics, considerunder what conditions this becomes a significant source of easterlymomentum in the driving of the QBO itself, and how the structure ofthe Brewer-Dobson circulation varies in response to the location ofthe QBO westerly winds in any given winter.

  14. In search of discernible infrasound emitted by numerically simulated tornadoes

    NASA Astrophysics Data System (ADS)

    Schecter, David A.

    2012-09-01

    The comprehensive observational study of Bedard (2005) provisionally found that the infrasound of a tornado is discernible from the infrasound of generic cloud processes in a convective storm. This paper discusses an attempt to corroborate the reported observations of distinct tornado infrasound with numerical simulations. Specifically, this paper investigates the infrasound of an ordinary tornado in a numerical experiment with the Regional Atmospheric Modeling System, customized to simulate acoustic phenomena. The simulation has no explicit parameterization of microphysical cloud processes, but creates an unsteady tornado of moderate strength by constant thermal forcing in a rotational environment. Despite strong fluctuations in the lower corner flow and upper outflow regions, a surprisingly low level of infrasound is radiated by the vortex. Infrasonic pressure waves in the 0.1 Hz frequency regime are less intense than those which could be generated by core-scale vortex Rossby (VR) waves of modest amplitude in similar vortices. Higher frequency infrasound is at least an order of magnitude weaker than expected based on infrasonic observations of tornadic thunderstorms. Suppression of VR waves (and their infrasound) is explained by the gradual decay of axial vorticity with increasing radius from the center of the vortex core. Such non-Rankine wind-structure is known to enable the rapid damping of VR waves by inviscid mechanisms, including resonant wave-mean flow interaction and "spiral wind-up" of vorticity. Insignificant levels of higher frequency infrasound may be due to oversimplifications in the computational setup, such as the neglect of thermal fluctuations caused by phase transitions of moisture in vigorous cloud turbulence.

  15. Nonlinear self-sustained structures and fronts in spatially developing wake flows

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Huerre, Patrick

    2001-05-01

    A family of slowly spatially developing wakes with variable pressure gradient is numerically demonstrated to sustain a synchronized finite-amplitude vortex street tuned at a well-defined frequency. This oscillating state is shown to be described by a steep global mode exhibiting a sharp Dee Langer-type front at the streamwise station of marginal absolute instability. The front acts as a wavemaker which sends out nonlinear travelling waves in the downstream direction, the global frequency being imposed by the real absolute frequency prevailing at the front station. The nonlinear travelling waves are determined to be governed by the local nonlinear dispersion relation resulting from a temporal evolution problem on a local wake profile considered as parallel. Although the vortex street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute instability criterion applied to the local linear dispersion relation.

  16. Instability-driven frequency decoupling between structure dynamics and wake fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.

    2018-04-01

    Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.

  17. The Goertler vortex instability mechanism in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, P.

    1984-01-01

    The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.

  18. Role of electric discharges in the generation of atmospheric vortices

    NASA Astrophysics Data System (ADS)

    Sinkevich, O. A.; Maslov, S. A.; Gusein-zade, N. G.

    2017-02-01

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10-3-10-2 s-1 in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formed in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.

  19. A priori Estimates for 3D Incompressible Current-Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Coulombel, J.-F.; Morando, A.; Secchi, P.; Trebeschi, P.

    2012-04-01

    We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.

  20. The stability of a trailing-line vortex in compressible flow

    NASA Technical Reports Server (NTRS)

    Stott, Jillian A. K.; Duck, Peter W.

    1992-01-01

    We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories.

  1. Density engineering of an oscillating soliton/vortex ring in a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Levy, Shahar; Shomroni, Itay; Lahoud, Elias; Steinhauer, Jeff

    2008-05-01

    We study solitons in a Bose-Einstein condensate by engineering a density minimum on the healing length scale, using a far off-resonant laser beam. This results in a pair of counterpropagating solitons, which is the low collisional energy version of the celebrated matter wave interference pattern [M. R. Andrews et al., Science 275, 637 (1997)]. The solitons subsequently evolve into a pair of periodic soliton/vortex rings. We image the vortex rings and solitons in-situ on the healing length scale. This stable periodic evolution is in sharp contrast to the behavior of previous experiments in which the solitons decay irreversibly into vortex rings via the snake instability. The periodic oscillation between two qualitatively different forms seems to be a rare phenomenon in nature. We explain this phenomenon in terms of conservation of mass and energy in a narrow condensate.

  2. Simulations of Instabilities in Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.

    2006-01-01

    CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.

  3. Rossby wave activity in a two-dimensional model - Closure for wave driving and meridional eddy diffusivity

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Brasseur, Guy

    1988-01-01

    A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.

  4. Laboratory experiments on liquid fragmentation during Earth's core formation

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Deguen, R.; Olson, P.

    2013-12-01

    Buoyancy-driven fragmentation of one liquid in another immiscible liquid likely occurred on a massive scale during the formation of the Earth, when dense liquid metal blobs were released within deep molten silicate magma oceans. Another example of this phenomenon is the sudden release of petroleum into the ocean during the Deepwater Horizon disaster (Gulf of Mexico, 2010). We present experiments on the instability and fragmentation of blobs of a heavy liquid released into a lighter immiscible liquid. During the fragmentation process, we observe deformation of the released fluid, formation of filamentary structures, capillary instability, and eventually drop formation. We find that, at low and intermediate Weber numbers (which measures the importance of inertia versus surface tension), the fragmentation regime mainly results from the competition between a Rayleigh-Taylor instability and the roll-up of a vortex ring. At sufficiently high Weber numbers (the relevant regime for core formation), the fragmentation process becomes turbulent. The large-scale flow then behaves as a turbulent vortex ring or a turbulent thermal: it forms a coherent structure whose shape remains self-similar during the fall and which grows by turbulent entrainment of ambient fluid. An integral model based on the entrainment assumption, and adapted to buoyant vortex rings with initial momentum, is consistent with our experimental data. This indicates that the concept of turbulent entrainment is valid for non-dispersed immiscible fluids at large Weber and Reynolds numbers. Series of photographs, turbulent fragmentation regime, time intervals of about 0.2 s. Portions (red boxes) have been magnified (on the right).

  5. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  6. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.

    1999-05-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.

  7. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  8. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai

    2018-02-01

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

  9. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    NASA Astrophysics Data System (ADS)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  10. Instability due to trapped electrons in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Ferdous, T.; Duha, S. S.

    2015-05-01

    An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.

  11. Inertial instabilities in a mixing-separating microfluidic device

    NASA Astrophysics Data System (ADS)

    Domingues, Allysson; Poole, Robert; Dennis, David

    2017-11-01

    Combining and separating fluids has many industrial and biomedical applications. This numerical and experimental study explores inertial instabilities in a so-called mixing-separating cell micro-geometry which could potentiality be used to enhance mixing. Our microfluidic mixing-separating cell consists of two straight square parallel channels with flow from opposite directions with a central gap that allows the streams to interact, mix or remain separate (often referred to as the `H' geometry). A stagnation point is generated at the centre of symmetry due to the two opposed inlets and outlets. Under creeping flow conditions (Reynolds number [ Re 0 ]) the flow is steady, two-dimensional and produces a sharp symmetric boundary between fluids stream entering the geometry from opposite directions. For Re > 30 , an inertial instability appears which leads to the generation of a central vortex and the breaking of symmetry, although the flow remains steady. As Re increases the central vortex divides into two vortices. Our experimental and numerical investigations both show the same phenomena. The results suggest that the effect observed can be exploited to enhance mixing in biomedical or other applications. Work supported by CNPq Grant 203195/2014-0.

  12. Acoustic far-field of shroud-lip-scattered instability modes of supersonic co-flowing jets

    NASA Astrophysics Data System (ADS)

    Samanta, Arnab; Freund, Jonathan B.

    2013-11-01

    We consider the acoustic radiation of instability modes in dual-stream jets, with the inner nozzle buried within the outer shroud, particularly the upstream scattering into acoustic modes that occurs at the shroud lip. For supersonic core jets, several families of instability waves are possible, beyond the regular Kelvin-Helmholtz (K-H) mode, with very different modal shapes and propagation characteristics, which are candidates for changing the sound character of very high-speed jets. The co-axial shear layers are modeled as vortex sheets, with the Wiener-Hopf method used to compute these modes coupled with an asymptotic solution for the far-field radiation. A broadband mode spectra as well as single propagating modes are considered as incident and scattered waves. The resulting far-field directivity patterns are quantified, to show the efficiency of some of these radiation mechanisms, particularly in the upstream direction, which is not directly affected by the Mach-wave-like sound that is radiated from these modes irrespective of any scattering surface. A full Kutta condition, which provides the usual boundary condition at the shroud lip, is altered to examine how vortex shedding, perhaps controllable at the lip, affects the radiated sound.

  13. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  14. On the three-dimensional instability of laminar boundary layers on concave walls

    NASA Technical Reports Server (NTRS)

    Gortler, Henry

    1954-01-01

    A study is made of the stability of laminar boundary-layer profiles on slightly curved walls relative to small disturbances that result from vortices whose axes are parallel to the principal direction of flow. The result is an eigenvalue problem by which, for a given undisturbed flow at a prescribed wall, the amplification or decay is computed for each Reynolds number and each vortex thickness. For neutral disturbances (zero amplification) a critical Reynolds number is determined for each vortex distribution. The numerical calculation produces amplified disturbances on concave walls only.

  15. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June 2000 and then died out. The atmosphere off West African is dry and stable. It becomes less so between June and September, as the SST and convection heat up. QuikSCAT shows the African monsoon trough and shear zone extend westward over the ocean to nearly 30 degrees West. The evidence is strong that the two cyclones had in common multiple midlevel mergers, which extended to the surface keeping the surface vortex strong. These continued until both systems were designated TD's by NHC. In the June 2000 case, the main reason for failure was the lower SST and dry, stable atmosphere. This is shown by the comparison of the equivalent potential temperature maps and profiles with those from pre-Floyd. In the vortex which became Floyd, QuikSCAT shows continuous importation of high theta e (warm, moist) air from the south. From September 2-8, this air flowed around the vortex center, building up a high theta-e pool to the north. Then late on September 9, a 100-km wide jet of high theta-e air penetrated the vortex core, a major convective burst' was observed, and an intensifying, more elevated warm core was seen on AMSU. Rapid pressure fall and wind intensification were underway by 0000 UTC on September 10. Floyd became a Hurricane at 1200 UTC on Sept 10, 1999, with successive convective bursts running the hurricane thermodynamic engine by intensifying the warm core. TD2 was a strong African vortex, sustained by moderate convection (up to about 12.5 km) offshore of Africa. It peaked on June 23, showing an apparent "eye" on passive microwave composites. However, it could not assemble the ingredients for a convective burst. Thus it failed to get the thermodynamic hurricane engine going before it moved too far west of the region of lowered Rossby radius. By June 26, cloud systems were dying out. On June 25, a surface vortex was no longer seen on QuikSCAT, although one continued above the surface on model profiles until June 27. One of our main findings so far is showing the role of the mesoscale vortex interactions in sustaining some African vortices far out in to the mid Atlantic, where under adequate thermal/moisture conditions the hurricane heat engine can sometimes be started. We are working on similar studies of Cindy and Irene 1999. Cindy illustrates a case of wind shear working against an early-stage hurricane heat engine, while Irene formed from a Caribbean wave. An enormous value of combinations of satellite tools is that tropical cyclones can be studied in all parts of the global oceans where they occur. Detailed studies like ours are labor intensive but many statistical studies can be based on physical postulates developed. There are other new tools such as MODIS on TERRA of the Earth Observing System (EOS) which can be used to study the microphysics of tropical cyclones world wide, in particular to investigate the presence of mixed phase and the impact of atmospheric aerosols on the hydrometeor structure and rainfall from tropical cyclones.

  16. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  17. Characteristics of a wingtip vortex from an oscillating winglet

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Kumar, R.

    2017-01-01

    Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.

  18. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  19. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil

    2000-01-01

    The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.

  20. Bifurcation and stability of single and multiple vortex rings in three-dimensional Bose-Einstein condensates

    DOE PAGES

    Bisset, R. N.; Wang, Wenlong; Ticknor, C.; ...

    2015-10-01

    Here, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach and find good qualitative and quantitative agreement with our Bogoliubov–de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantifymore » their BdG spectra numerically. We found that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large-chemical-potential regime.« less

  1. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  2. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE PAGES

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  3. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  4. Control of tropical instability waves in the Pacific

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Lawrence, S. P.; Murray, M. J.; Mutlow, C. T.; Stockdale, T. N.; Llewellyn-Jones, D. T.; Anderson, D. L. T.

    Westward-propagating waves with periods of 20-30 days and wavelengths of ˜ 1,100km are a prominent feature of sea-surface temperatures (SSTs) in the equatorial Pacific and Atlantic Oceans. They have been attributed to instabilities due to current shear. We compare SST observations from the spaceborne Along Track Scanning Radiometer (ATSR) and TOGA-TAO moored buoys with SSTs from a model of the tropical Pacific forced with observed daily windstress data. The phases of the strongest “Tropical Instability Waves” (TIWs) in the model are in closer correspondence with those observed than we would expect if these waves simply developed from infinitesimal disturbances (in which case their phases would be arbitrary). If we filter out the intraseasonal component of the windstress, all phase-correspondence is lost. We conclude that the phases of these waves are not arbitrary, but partially determined by the intraseasonal winds. The subsurface evolution of the model suggests a possible control mechanism is through interaction with remotely-forced subsurface Kelvin and Rossby waves. This is supported by an experiment which shows how zonal wind bursts in the west Pacific can modify the TIW field, but other mechanisms, such as local feedbacks, are also possible.

  5. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  6. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  7. Crossflow Stability and Transition Experiments in Swept-Wing Flow

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. Ray; Saric, William S.

    1999-01-01

    An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.

  8. Transport with Reversed Er in Gamma -10, LAPD and the Sao Paulo Tokamak

    NASA Astrophysics Data System (ADS)

    Fu, Sean; Morrison, P. J.; Horton, W.; Caldas, Ibere

    2009-11-01

    The understanding of how and when the reversed radial electric field produces an internal transport barrier is still poorly understood. There are two linked aspects to the problem: (i) the change in the plasma instabilities and thus the fluctuation spectrum from changes away from or towards the generalized Rayleigh condition for destabilizing the drift wave/ Rossby wave instabilities and (2) for a fixed fluctuation spectrum the role of the Er reversal in creating a layer where the resonant surfaces do not overlap so the condition for the onset of diffusion from overlapping resonances in phase space is not satisfied. We look at a model that is representative of the externally controlled Er shear in the G-10 Tsukuba tandem mirror and in the wall biasing experiments in the LAPD and the Sao Paulo Tokamak to ask when the effects are dominant and how they may compete with each other to determine the conditions for the transport suppression that is reported in numerous plasma experiments.

  9. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1993-01-01

    The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  10. The Magnetohydrodynamic Kelvin-Helmholtz Instability. III. The Role of Sheared Magnetic Field in Planar Flows

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunju; Ryu, Dongsu; Jones, T. W.; Frank, Adam

    2000-01-01

    We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2.5 dimensions, extending our previous work by Frank et al. and Jones et al. In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength smoothly rotates across a thin velocity shear layer from the z-direction to the x-direction, aligned with the flow field. The sonic Mach number of the velocity transition is unity. Such flows containing a uniform field in the x-direction are linearly stable if the magnetic field strength is great enough that the Alfvénic Mach number MA=U0/cA<2. That limit does not apply directly to sheared magnetic fields, however, since the z-field component has almost no influence on the linear stability. Thus, if the magnetic shear layer is contained within the velocity shear layer, the KH instability may still grow, even when the field strength is quite large. So, here we consider a wide range of sheared field strengths covering Alfvénic Mach numbers, MA=142.9 to 2. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. There are a number of differences from our earlier simulations with uniform magnetic fields in the x-y plane. For the latter, simpler case we found a clear sequence of behaviors with increasing field strength ranging from nearly hydrodynamic flows in which the instability evolves to an almost steady cat's eye vortex with enhanced dissipation, to flows in which the magnetic field disrupts the cat's eye once it forms, to, finally, flows that evolve very little before field-line stretching stabilizes the velocity shear layer. The introduction of magnetic shear can allow a cat's eye-like vortex to form, even when the field is stronger than the nominal linear instability limit given above. For strong fields that vortex is asymmetric with respect to the preliminary shear layer, however, so the subsequent dissipation is enhanced over the uniform field cases of comparable field strength. In fact, so long as the magnetic field achieves some level of dynamical importance during an eddy turnover time, the asymmetries introduced through the magnetic shear will increase flow complexity and, with that, dissipation and mixing. The degree of the fluid mixing between the two layers is strongly influenced by the magnetic field strength. Mixing of the fluid is most effective when the vortex is disrupted by magnetic tension during transient reconnection, through local chaotic behavior that follows.

  11. Generation of large-scale intrusions at baroclinic fronts: an analytical consideration with a reference to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kuzmina, Natalia

    2016-12-01

    Analytical solutions are found for the problem of instability of a weak geostrophic flow with linear velocity shear accounting for vertical diffusion of buoyancy. The analysis is based on the potential-vorticity equation in a long-wave approximation when the horizontal scale of disturbances is considered much larger than the local baroclinic Rossby radius. It is hypothesized that the solutions found can be applied to describe stable and unstable disturbances of the planetary scale with respect, in particular, to the Arctic Ocean, where weak baroclinic fronts with typical temporal variability periods on the order of several years or more have been observed and the β effect is negligible. Stable (decaying with time) solutions describe disturbances that, in contrast to the Rossby waves, can propagate to both the west and east, depending on the sign of the linear shear of geostrophic velocity. The unstable (growing with time) solutions are applied to explain the formation of large-scale intrusions at baroclinic fronts under the stable-stable thermohaline stratification observed in the upper layer of the Polar Deep Water in the Eurasian Basin. The suggested mechanism of formation of intrusions can be considered a possible alternative to the mechanism of interleaving at the baroclinic fronts due to the differential mixing.

  12. Role of electric discharges in the generation of atmospheric vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkevich, O. A., E-mail: oleg.sinkevich@itf.mpei.ac.ru; Maslov, S. A., E-mail: sergm90@mail.ru; Gusein-zade, N. G., E-mail: ngus@mail.ru

    The existing thermohydrodynamic and hydroelectromagnetic models of tornado are considered. The potentialities of the humid atmosphere as a heat engine generating air vortices are analyzed in detail. The ability of long-term atmospheric electric discharges to form a tornado funnel and create an initial twist of up to 10{sup –3}–10{sup –2} s{sup –1} in it are estimated. The possible effect of a lightning discharge on the initiation and evolution of the tornado is discussed. It is shown that the electric current flowing along the lightning channel can lead to helical instability and generation of a weak primary vortex. The channel formedmore » in the atmosphere by a lightning discharge and the vortex motion of the parent thundercloud can enhance the primary vortex and promote its transformation into a tornado. Possible mechanisms of enhancement of the primary vortex created by a lightning discharge and the possibility of its transformation into a tornado in the postdischarge stage are discussed.« less

  13. Coherent structures in bypass transition induced by a cylinder wake

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Jin Jun; Zhang, Pan Feng; Feng, Li Hao

    Flat-plate boundary layer transition induced by the wake vortex of a two-dimensional circular cylinder is experimentally investigated. Combined visualization and velocity measurements show a different transition route from the Klebanoff mode in free-stream turbulence-induced transition. This transition scenario is mainly characterized as: (i) generation of secondary transverse vortical structures near the flat plate surface in response to the von Kn vortex street of the cylinder; (ii) formation of hairpin vortices due to the secondary instability of secondary vortical structures; (iii) growth of hairpins which is accelerated by wake-vortex induction; (iv) formation of hairpin packets and the associated streaky structures. Detailed investigation shows that during transition the evolution dynamics and self-sustaining mechanisms of hairpins, hairpin packets and streaks are consistent with those in a turbulent boundary layer. The wake vortex mainly plays the role of generating and destabilizing secondary transverse vortices. After that, the internal mechanisms become dominant and lead to the setting up of a self-sustained turbulent boundary layer.

  14. Stabilization of Inviscid Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  15. Dynamically stable multiply quantized vortices in dilute Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Virtanen, S. M. M.; Moettoenen, M.

    2006-12-15

    Multiquantum vortices in dilute atomic Bose-Einstein condensates confined in long cigar-shaped traps are known to be both energetically and dynamically unstable. They tend to split into single-quantum vortices even in the ultralow temperature limit with vanishingly weak dissipation, which has also been confirmed in the recent experiments [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)] utilizing the so-called topological phase engineering method to create multiquantum vortices. We study the stability properties of multiquantum vortices in different trap geometries by solving the Bogoliubov excitation spectra for such states. We find that there are regions in the trap asymmetry andmore » condensate interaction strength plane in which the splitting instability of multiquantum vortices is suppressed, and hence they are dynamically stable. For example, the doubly quantized vortex can be made dynamically stable even in spherical traps within a wide range of interaction strength values. We expect that this suppression of vortex-splitting instability can be experimentally verified.« less

  16. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  17. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  18. Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-06-01

    It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

  19. Vortex Rossby Waves in Hurricanes Katrina and Rita (2005)

    NASA Astrophysics Data System (ADS)

    Judt, F.; Chen, S. S.

    2007-12-01

    Radar observations in hurricanes reveal inner spiraling rainbands emanating from the eyewall and propagating outward. Theoretical analysis indicated that these inner bands are azimuthally and radially propagating vortex Rossby waves (VRW). The outward propagating waves convey PV from the inner core to outer regions and thus lead to PV redistribution within a hurricane. It has been hypothesized that the outward propogating VRWs may play a role in interacting with an existing secondary PV ring in the outer region of a hurricane, which could lead to a development of concentric eyewalls. However, the lack of simultaneous observations over the inner-core and rainband regions is a major difficulty in our understanding of the complex interaction. The importance of VRWs in hurricane intensity change remains to be a question. This study aims to address the question using high- resolution model (MM5) forecasts of Hurricanes Katrina and Rita during the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005. The two major hurricanes went through a similar rapid intensification over the Gulf of Mexico. Both RAINEX observations and model forecast fields showed that Rita developed a secondary eyewall and went through an eyewall replacement before landfall, whereas Katrina did not. We analyze the model output at 1.67 km grid-resolution with 12-min time intervals. Azimuthally and radially propagating VRWs were found in the PV, rainrate, and vertical velocity fields in both storms. In the case of Katrina, no secondary PV maximum exists due to the lack of highly circular rainbands. Thus the VRWs propagate outward smoothly over a relatively long distance. No VRW activity has been found beyond 80-100 km radius in Katrina. This result indicates that interaction between the VRWs and outer PV disturbance must take place within this region, otherwise no effect concerning the importance of VRW would occur. The stagnation radius depends on the background PV- gradient which itself can be changed by wave-redistributed PV. It is also a function of the azimuthal wavenumber. Higher wavenumbers generally propagate farther and are thus more likely to interact with outer PV disturbance in the first place. In contrast, Rita developed a PV ring in the outer rainband region. Detailed analysis of Rita is underway. The comparison between the two hurricanes may shed some lights on the interaction of VRWs and rainbands as well as its implication on hurricane intensity change.

  20. Integrated Physics-based Modeling and Experiments for Improved Prediction of Combustion Dynamics in Low-Emission Systems

    NASA Technical Reports Server (NTRS)

    Anderson, William E.; Lucht, Robert P.; Mongia, Hukam

    2015-01-01

    Concurrent simulation and experiment was undertaken to assess the ability of a hybrid RANS-LES model to predict combustion dynamics in a single-element lean direct-inject (LDI) combustor showing self-excited instabilities. High frequency pressure modes produced by Fourier and modal decomposition analysis were compared quantitatively, and trends with equivalence ratio and inlet temperature were compared qualitatively. High frequency OH PLIF and PIV measurements were also taken. Submodels for chemical kinetics and primary and secondary atomization were also tested against the measured behavior. For a point-wise comparison, the amplitudes matched within a factor of two. The dependence on equivalence ratio was matched. Preliminary results from simulation using an 18-reaction kinetics model indicated instability amplitudes closer to measurement. Analysis of the simulations suggested a band of modes around 1400 Hz were due to a vortex bubble breakdown and a band of modes around 6 kHz were due to a precessing vortex core hydrodynamic instability. The primary needs are directly coupled and validated ab initio models of the atomizer free surface flow and the primary atomization processes, and more detailed study of the coupling between the 3D swirling flow and the local thermoacoustics in the diverging venturi section.

  1. Time-delayed feedback technique for suppressing instabilities in time-periodic flow

    NASA Astrophysics Data System (ADS)

    Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz

    2017-11-01

    A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.

  2. PIV and LDA measurements of the wake behind a wind turbine model

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  3. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  4. Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dagenhart, John Ray

    1992-01-01

    An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.

  5. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Shomroni, I.; Lahoud, E.; Levy, S.; Steinhauer, J.

    2009-03-01

    When two Bose-Einstein condensates collide with high collisional energy, the celebrated matter-wave interference pattern appears. For lower collisional energies, the repulsive interaction energy becomes significant, and the interference pattern evolves into an array of grey solitons. But the lowest collisional energies, producing a single pair of solitons, have not been probed so far. Here, we report on experiments using density engineering on the healing length scale to produce such a pair of solitons. We see evidence that the solitons evolve periodically between vortex rings and solitons. The stable, periodic evolution is in sharp contrast to the behaviour seen in previous experiments in which the solitons decay irreversibly into vortex rings through the so-called snake instability. The evolution can be understood in terms of conservation of mass and energy in a narrow condensate.

  6. Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Evans, P. F.; Hackett, J. E.

    1976-01-01

    Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.

  7. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  8. Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian

    2015-01-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.

  9. Layering of sustained vortices in rotating stratified fluids

    NASA Astrophysics Data System (ADS)

    Aubert, O.; Le Bars, M.; Le Gal, P.

    2013-05-01

    The ocean is a natural stratified fluid layer where large structures are influenced by the rotation of the planet through the Coriolis force. In particular, the ocean Meddies are long-lived anticyclonic pancake vortices of Mediterranean origin evolving in the Atlantic Ocean: they have a saltier and warmer core than the sourrounding oceanic water, their diameters go up to 100 km and they can survive for 2 to 3 years in the ocean. Their extensive study using seismic images revealed finestructures surrounding their core (Biescas et al., 2008; Ruddick et al., 2009) corresponding to layers of constant density which thickness is about 40 m and horizontal extent is more than 10 km. These layers can have different origins: salt fingers from a double-diffusive instabilities of salt and heat (Ruddick & Gargett, 2003), viscous overturning motions from a double-diffusive instabilities of salt and momentum (McIntyre, 1970) or global modes of the quasi-geostrophic instability (Nguyen et al., 2011)? As observed by Griffiths & Linden (1981), sustained laboratory anticyclonic vortices created via a continuous injection of isodense fluid in a rotating and linearly stratified layer of salty water are quickly surrounded by layers of constant density. In the continuity of their experiments, we systematically investigated the double-diffusive instability of McIntyre by varying the Coriolis parameter f and the buoyancy frequency N of the background both in experiments and in numerical simulations, and studied the influence of the Schmidt number in numerical simulations. Following McIntyre's approach, typical length and time scales of the instability are well described by a linear stability analysis based on a gaussian model that fits both laboratory and oceanic vortices. The instability appears to be favoured by high Rossby numbers and ratios f/N. We then apply these results to ocean Meddies and conclude about their stability.

  10. Large-scale dynamos in rapidly rotating plane layer convection

    NASA Astrophysics Data System (ADS)

    Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.

    2018-05-01

    Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.

  11. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.

  12. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO

    NASA Technical Reports Server (NTRS)

    Takahashi, Masaaki; Holton, James R.

    1991-01-01

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.

  13. Soliton instabilities and vortex street formation in a polariton quantum fluid.

    PubMed

    Grosso, G; Nardin, G; Morier-Genoud, F; Léger, Y; Deveaud-Plédran, B

    2011-12-09

    Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas.

  14. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    PubMed

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

  15. Problems of simulation of large, long-lived vortices in the atmospheres of the giant planets (jupiter, saturn, neptune)

    NASA Astrophysics Data System (ADS)

    Nezlin, Michael V.; Sutyrin, Georgi G.

    1994-01-01

    Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude. We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary “waves”, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among the long-lived vortices in the atmospheres of the giant planets and also among the intrathermocline oceanic eddies. The effects of shear flows and differences between the properties of monopolar vortices in planetary flows and various laboratory experiments are discussed. General geostrophic (GG) theory of Rossby vortices is presented. It differs essentially from the traditional quasi-geostrophic (QG) and intermediate-geostrophic (IG) approximations by the account of (i) all scales between the deformation radius and the planetary scale and (ii) the arbitrary amplitudes of vortices. It is shown that, unlike QG- and IG-models, the GG-model allows for explaining the mentioned cyclonic-anticyclonic asymmetry not only in planetary flows, but also in laboratory modeling with vessels of near paraboloidal form.

  16. Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.

  17. Thermal relaxation and critical instability of near-critical fluid microchannel flow.

    PubMed

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  18. Thermal relaxation and critical instability of near-critical fluid microchannel flow

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  19. Investigation of Rossby-number similarity in the neutral boundary layer using large-eddy simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmstede, W.D.; Cederwall, R.T.; Meyers, R.E.

    One special case of particular interest, especially to theoreticians, is the steady-state, horizontally homogeneous, autobarotropic (PLB), hereafter referred to as the neutral boundary layer (NBL). The NBL is in fact a 'rare' atmospheric phenomenon, generally associated with high-wind situations. Nevertheless, there is a disproportionate interest in this problem because Rossby-number similarity theory provides a sound approach for addressing this issue. Rossby-number similarity theory has rather wide acceptance, but because of the rarity of the 'true' NBL state, there remains an inadequate experimental database for quantifying constants associated with the Rossby-number similarity concept. Although it remains a controversial issue, it hasmore » been proposed that large-eddy simulation (LES) is an alternative to physical experimentation for obtaining basic atmospherc 'data'. The objective of the study reported here is to investigate Rossby-number similarity in the NBL using LES. Previous studies have not addressed Rossby-number similarity explicitly, although they made use of it in the interpretation of their results. The intent is to calculate several sets of NBL solutions that are ambiguous relative to the their respective Rossby numbers and compare the results for similarity, or the lack of it. 14 refs., 1 fig.« less

  20. EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Wen; Liang, Edison; Li, Hui

    2014-11-10

    We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10{sup –4}-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gasmore » density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.« less

  1. Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.

    2000-01-01

    The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.

  2. Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer

    NASA Technical Reports Server (NTRS)

    Messiter, A. F.

    1995-01-01

    For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.

  3. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  4. High-Speed Linear Raman Spectroscopy for Instability Analysis of a Bluff Body Flame

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Fischer, David

    2013-01-01

    We report a high-speed laser diagnostics technique based on point-wise linear Raman spectroscopy for measuring the frequency content of a CH4-air premixed flame stabilized behind a circular bluff body. The technique, which primarily employs a Nd:YLF pulsed laser and a fast image-intensified CCD camera, successfully measures the time evolution of scalar parameters (N2, O2, CH4, and H2O) in the vortex-induced flame instability at a data rate of 1 kHz. Oscillation of the V-shaped flame front is quantified through frequency analysis of the combustion species data and their correlations. This technique promises to be a useful diagnostics tool for combustion instability studies.

  5. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Holton, J.R.

    1991-09-15

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less

  6. Baroclinic instability in the solar tachocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter; Dikpati, Mausumi, E-mail: gilman@ucar.edu, E-mail: dikpati@ucar.edu

    2014-05-20

    The solar tachocline is likely to be close to a geostrophic 'thermal wind', for which the Coriolis force associated with differential rotation is closely balanced by a latitudinal pressure gradient, leading to a tight relation between the vertical gradient of rotation and the latitudinal entropy gradient. Using a hydrostatic but nongeostrophic spherical shell model, we examine baroclinic instability of the tachocline thermal wind. We find that both the overshoot and radiative parts of the tachocline should be baroclinicly unstable at most latitudes. Growth rates are roughly five times higher in middle and high latitudes compared to low latitudes, and muchmore » higher in the overshoot than in the radiative tachocline. They range in e-folding amplification from 10 days in the high latitude overshoot tachocline, down to 20 yr for the low latitude radiative tachocline. In the radiative tachocline only, longitudinal wavenumbers m = 1, 2 are unstable, while in the overshoot tachocline a much broader range of m are unstable. At all latitudes and with all stratifications, the longitudinal scale of the most unstable mode is comparable to the Rossby deformation radius, while the growth rate is set by the local latitudinal entropy gradient. Baroclinic instability in the tachocline competing with instability of the latitude rotation gradient established in earlier studies should be important for the workings of the solar dynamo and should be expected to be found in most stars that contain an interface between radiative and convective domains.« less

  7. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to infer the height and internal stratification of some astrophysical and geophysical vortices because direct measurements of their vertical structures are difficult. In Chapter 3, we show numerically and experimentally that localized suction in rotating continuously stratified flows produces three-dimensional baroclinic cyclones. As expected from Chapter 2, the interiors of these cyclones are super-stratified. Suction, modeled as a small spherical sink in the simulations, creates an anisotropic flow toward the sink with directional dependence changing with the ratio of the Coriolis parameter to the Brunt-Vaisala frequency. Around the sink, this flow generates cyclonic vorticity and deflects isopycnals so that the interior of the cyclone becomes super-stratified. The super-stratified region is visualized in the companion experiments that we helped to design and analyze using the synthetic schlieren technique. Once the suction stops, the cyclones decay due to viscous dissipation in the simulations and experiments. The numerical results show that the vertical velocity of viscously decaying cyclones flows away from the cyclone's midplane, while the radial velocity flows toward the cyclone's center. This observation is explained based on the cyclo-geostrophic balance. This vertical velocity mixes the flow inside and outside of cyclone and reduces the super-stratification. We speculate that the predominance of anticyclones in geophysical and astrophysical flows is due to the fact that anticyclones require sub-stratification, which occurs naturally by mixing, while cyclones require super-stratification. In Chapter 4, we show that a previously unknown instability creates space-filling lattices of 3D turbulent baroclinic vortices in linearly-stable, rotating, stratified shear flows. The instability starts from a newly discovered family of easily-excited critical layers. This new family, named the baroclinic critical layer, has singular vertical velocities; the traditional family of (barotropic) critical layer has singular stream-wise velocities and is hard to excite. In our simulations, the baroclinic critical layers in rotating stably-stratified linear shear are excited by small-volume, small-amplitude vortices or waves. The excited baroclinic critical layers then intensify by drawing energy from the background shear and roll-up into large coherent 3D vortices that excite new critical layers and vortices. The vortices self-similarly replicate to create lattices of turbulent vortices. These vortices persist for all time and are called zombie vortices because they can occur in the dead zones of protoplanetary disks. The self-replication of zombie vortices can de-stabilize the otherwise linearly and finite-amplitude stable Keplerian shear and lead to the formation of stars and planets. (Abstract shortened by UMI.)

  8. Observation and excitation of magnetohydrodynamic waves in numerical models of Earth's core

    NASA Astrophysics Data System (ADS)

    Teed, R.; Hori, K.; Tobias, S.; Jones, C. A.

    2017-12-01

    Several types of magnetohydrodynamic waves are theorised to operate in Earth's outer core but their detection is limited by the inability to probe the fluid core directly. Secular variation data and periodic changes in Earth's length-of-day provide evidence for the possible existence of waves. Numerical simulations of core dynamics enable us to search directly for waves and determine their properties. With this information it is possible to consider whether they can be the origin of features observed in observational data. We focus on two types of wave identified in our numerical experiments: i) torsional waves and ii) slow magnetic Rossby waves. Our models display periodic, Earth-like torsional waves that travel outwards from the tangent cylinder circumscribing the inner core. We discuss the properties of these waves and their similarites to observational data. Excitation is via a matching of the Alfvén frequency with that of small modes of convection focused at the tangent cylinder. The slow magnetic Rossby waves observed in our simulations show that these waves may account for some geomagnetic westward drifts observed at mid-latitudes. We present analysis showing excitation of waves by the convective instability and we discuss how the detection of these waves could also provide an estimate of the strength of the toroidal component of the magnetic field within the planetary fluid core.

  9. Normal mode Rossby waves observed in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Hirooka, T.; Hirota, I.

    1985-01-01

    In recent years, observational evidence has been obtained for westward traveling planetary waves in the middle atmosphere with the aid of global data from satellites. There is no doubt that the fair portion of the observed traveling waves can be understood as the manifestation of the normal mode Rossby waves which are theoretically derived from the tidal theory. Some observational aspects of the structure and behavior of the normal model Rossby waves in the upper stratosphere are reported. The data used are the global stratospheric geopotential thickness and height analyses which are derived mainly from the Stratospheric Sounding Units (SSUs) on board TIROS-N and NOAA satellites. A clear example of the influence of the normal mode Rossby wave on the mean flow is reported. The mechanism considered is interference between the normal mode Rossby wave and the quasi-stationary wave.

  10. Particle rings and astrophysical accretion discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2016-03-01

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks and could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.

  11. The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows

    NASA Astrophysics Data System (ADS)

    Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam

    1997-06-01

    We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.

  12. Observation of the development of secondary features in a Richtmyer–Meshkov instability driven flow

    DOE PAGES

    Bernard, Tennille; Truman, C. Randall; Vorobieff, Peter; ...

    2014-09-10

    Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature ofmore » the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Furthermore, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).« less

  13. High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Joseph

    Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.

  14. Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.

    2016-01-01

    We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.

  15. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  16. A review of major progresses in mesoscale dynamic research in China since 1999

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoping; Lu, Hancheng; Ni, Yunqi; Tan, Zhemin

    2004-06-01

    Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. From the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models.

  17. Modern developments in shear flow control with swirl

    NASA Technical Reports Server (NTRS)

    Farokhi, Saeed; Taghavi, R.

    1990-01-01

    Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.

  18. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  19. Western boundary upwelling dynamics off Oman

    NASA Astrophysics Data System (ADS)

    Vic, Clément; Capet, Xavier; Roullet, Guillaume; Carton, Xavier

    2017-05-01

    Despite its climatic and ecosystemic significance, the coastal upwelling that takes place off Oman is not well understood. A primitive-equation, regional model forced by climatological wind stress is used to investigate its dynamics and to compare it with the better-known Eastern Boundary Upwellings (EBUs). The solution compares favorably with existing observations, simulating well the seasonal cycles of thermal structure, surface circulation (mean and turbulent), and sea-surface temperature (SST). There is a 1.5-month lag between the maximum of the upwelling-favorable wind-stress-curl forcing and the oceanic response (minima in sea-surface height and SST), which we attribute to onshore-propagating Rossby waves. A southwestward-flowing undercurrent (opposite to the direction of the near-surface flow) is also simulated with a core depth of 1000 m, much deeper than found in EBUs (150-200 m). An EKE budget reveals that, in contrast to EBUs, the upwelling jet is more prone to barotropic than baroclinic instability and the contribution of locally-generated instabilities to EKE is higher by an order of magnitude. Advection and redistribution of EKE by standing mesoscale features also play a significant role in EKE budget.

  20. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  1. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.

  2. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  3. Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations

    NASA Astrophysics Data System (ADS)

    Knio, Omar M.; Collorec, Luc; Juvé, Daniel

    1995-02-01

    The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.

  4. Spatial and Time Dynamics of Non-Linear Vortices in Plasma Lens for High-Current Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexei A.; Maslov, Vasyl I.; Onishchenko, Ivan N.; Tretyakov, Vitalij N.

    2002-11-01

    It is known from numerical simulation (see, for example, [1]) and from experiments (see, for example, [2]), that an electron density bunches as discrete vortices are long - living structures in vacuum. However, in laboratory experiments [2] it has been shown that the vortices are changed faster, when they are submersed in electrons, distributed around them. The charged plasma lens intended for a focussing of high-current ion beams, has the same crossed configuration of a radial electrical and longitudinal magnetic field [3], as only electron plasma. In this lens the vortical turbulence is excited [3]. The vortex - bunch and vortex - hole are rotated in the inverse directions in system of their rest. The instability development in initially homogeneous plasma causes that the vortices are excited by pairs. Namely, if the vortex - bunch of electrons is generated, near the vortex - hole of electrons is also generated. It is shown, that in nonuniform plasma the vortices behave is various in time. Namely, the vortex - bunch goes to area of larger electron density, and the vortex - hole goes to area of smaller electron density. The speed of the vortex - hole is less than speed of the vortex - bunch. It is shown, that the electron vortices, generated in the plasma lens, can result in to formation of spiral distribution of electron density. The physical mechanism of coalescence of electron vortices - bunches is proposed. 1.Driscoll C.F. et al. Plasma Phys. Contr. Fus. Res. 3 (1989) 507. 2.Kiwamoto Y. et al. Non-neutral plasma physics. Princeton. 1999. P. 99-105. 3.Goncharov A. et al. Plasma Phys. Rep. 20 (1994) 499.

  5. Life of a Six-Hour Hurricane

    NASA Technical Reports Server (NTRS)

    Shelton, Kay L.; Molinari, John

    2009-01-01

    Hurricane Claudette developed from a weak vortex in 6 h as deep convection shifted from downshear into the vortex center, despite ambient vertical wind shear exceeding 10 m/s. Six hours later it weakened to a tropical storm, and 12 h after the hurricane stage a circulation center could not be found at 850 hPa by aircraft reconnaissance. At hurricane strength the vortex contained classic structure seen in intensifying hurricanes, with the exception of 7-12 C dewpoint depressions in the lower troposphere upshear of the center. These extended from the 100-km radius to immediately adjacent to the eyewall, where equivalent potential temperature gradients reached 6 K/km. The dry air was not present prior to intensification, suggesting that it was associated with vertical shear-induced subsidence upshear of the developing storm. It is argued that weakening of the vortex was driven by cooling associated with the mixing of dry air into the core, and subsequent evaporation and cold downdrafts. Evidence suggests that this mixing might have been enhanced by eyewall instabilities after the period of rapid deepening. The existence of a fragile, small, but genuinely hurricane-strength vortex at the surface for 6 h presents difficult problems for forecasters. Such a "temporary hurricane" in strongly sheared flow might require a different warning protocol than longer-lasting hurricane vortices in weaker shear.

  6. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  7. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  8. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  9. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  10. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Sokolovskiy, M. A.; Belonenko, T. V.; Volkov, D. L.; Isachsen, P. E.; Carton, X.

    2017-10-01

    The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal decreases in amplitude while the radius increases by as much as 25-30% relative to the values in the core. Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard configurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography. The QG results show a number of common features with those of the primitive equation model. Thus, among the azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of perturbations, only 10-30% volume loss during the same period is detected. Taking into account the gently sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of development of instability close to that in the primitive equation model. Some remaining differences in the two models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.

  11. Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding

    NASA Astrophysics Data System (ADS)

    Michelin, Sebastien Honore Roland

    The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.

  12. Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results?

    NASA Astrophysics Data System (ADS)

    Watanabe, Wandrey B.; Polito, Paulo S.; da Silveira, Ilson C. A.

    2016-04-01

    The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.

  13. Pulsing Inertial Oscillation, Supercell Storms, and Surface Mesonetwork Data

    NASA Technical Reports Server (NTRS)

    Costen, R. C.; Miller, L. J.

    1998-01-01

    The pulsing inertial oscillation (PIO) model is a nonlinear, time-dependent, translating vortex solution of the inviscid, compressible fluid dynamic equations in the middle troposphere. The translation of this vortex during a pulse is strikingly similar to that of a supercell storm -- a rotating thunderstorm that can generate tornadoes and hail. Two studies were performed to test the hypothesis that some supercell storms are manifestations of a PIO pulse. The first study applied the model to an intense interior draft whose buoyancy was bounded by a temperature excess of +/- 12 K. The peak updraft speed achieved was 41.5 m/ s and the peak Rossby number was 92.9. The study also pointed to an advanced concept for attaining higher values. The second study applied the PIO model to a supercell storm as a whole and succeeded in replicating its bulk properties, such as mesocyclonic circulation, net mass and moisture influxes, and time track. This study also identified a critical feature of the PIO model that could be tested against storm data: The average vertical draft is downward before the turn in the storm track and upward afterwards. In the conventional theory, the average vertical draft is upward from storm inception until dissipation. These differing draft predictions were compared with the best available data, which are surface mesonetwork data. These data were found to support the PIO model. However, surface data alone are not conclusive, and further measurements are warranted.

  14. Aperiodic pressure pulsation under non optimal hydraulic turbine regimes at low swirl number

    NASA Astrophysics Data System (ADS)

    Skripkin, S. G.; Tsoy, M. A.; Kuibin, P. A.; Shtork, S. I.

    2017-09-01

    Off-design operating conditions of hydraulic turbines is hindered by pressure fluctuations in the draft tube of the turbine. A precessing helical vortex rope develops, which imperils the mechanical structure and limits the operation flexibility of hydropower station. Understanding of the underlying instabilities of precessing vortex rope at low swirl number is incomplete. In this paper flow regimes with different residual swirl is analysed, particular attention is paid to the regime with a small swirl parameter. Study defines upper and low boundaries of regime where aperiodic pressure surge is observed. Flow field at the runner exit is investigated by Laser Doppler Velocimetry and high-speed visualizations, which are complemented draft tube wall pressure measurements.

  15. Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes

    NASA Technical Reports Server (NTRS)

    Martin, Preston B.; Leishman, J. Gordon

    2003-01-01

    This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.

  16. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, M.; Asai, M.; Inasawa, A.

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less

  17. Crossflow Instability on a Wedge-Cone at Mach 3.5

    NASA Technical Reports Server (NTRS)

    Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.

    2012-01-01

    As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.

  18. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin–Helmholtz Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Lei; Lin, Jun; Zhang, Qing-Min

    2017-05-20

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . The islands have maximum temperatures of 8 MK,more » lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s{sup −1}. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin–Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin–Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.« less

  19. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.

  20. Calling computers names in Swedish

    DOE PAGES

    Carlsson, Johan

    2017-11-01

    I very much enjoyed reading Jim Fleming’s article on Carl-Gustaf Rossby and the seminal contributions Rossby made to meteorology. Furthermore, the otherwise excellent article has two errors. Something must have gotten lost in translation to cause Fleming to claim that “Rossby pursued numerical weather prediction in Sweden in an era in which there was no Swedish word for digital computer.” With applied mathematician Germund Dahlquist, Rossby developed a weather model for the Binär Elektronisk Sekvens Kalkylator (BESK; Binary Electronic Sequence Calculator). Designed and built in Sweden, BESK was the world’s fastest computer when it became operational in 1953. From Septembermore » 1954, BESK weather simulations enabled routine 24-hour national forecasts.« less

  1. Calling computers names in Swedish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson, Johan

    I very much enjoyed reading Jim Fleming’s article on Carl-Gustaf Rossby and the seminal contributions Rossby made to meteorology. Furthermore, the otherwise excellent article has two errors. Something must have gotten lost in translation to cause Fleming to claim that “Rossby pursued numerical weather prediction in Sweden in an era in which there was no Swedish word for digital computer.” With applied mathematician Germund Dahlquist, Rossby developed a weather model for the Binär Elektronisk Sekvens Kalkylator (BESK; Binary Electronic Sequence Calculator). Designed and built in Sweden, BESK was the world’s fastest computer when it became operational in 1953. From Septembermore » 1954, BESK weather simulations enabled routine 24-hour national forecasts.« less

  2. On the occurrence, the characterization and the dynamical processes associated with FrIAC's (Frozen In Anticyclones) events

    NASA Astrophysics Data System (ADS)

    Thiéblemont, R.; Huret, N.; Orsolini, Y.; Hauchecorne, A.; Drouin, M.

    2010-12-01

    During winter, the polar vortex forms in arctic stratosphere a dynamical barrier which prevents large scale exchanges between high latitude and tropical regions. However, thin tropical air mass intrusions at the edge of the polar vortex have already been detected and modelled. These structures could play an important role for the knowledge of the balance between chemistry and dynamical processes associated with ozone budget. During springtime, after the final stratospheric warming, the breakdown of the polar vortex occurs and the summer circulation starts to develop. Air mass intrusions from the tropics can be trapped into the polar latitudes in an anticyclone which can persist until August, advected by summer easterlies. These structures, named “Frozen In Anticyclones” (FrIAC’s), have already been observed in 2003 and 2005 by MIPAS-ENVISAT and MLS-AURA instruments. We present here a new case of FrIAC in 2007 highlighted using MLS-AURA measurements. Time evolution of N2O and H2O mixing ratios in the core of this FRIAC are compared with the 2005 similar event. In addition, we perform a climatology of tropical air mass intrusions during the last decade based on the results of the potential vorticity contour advection model MIMOSA (Hauchecorne et al., 2002) and MLS-AURA measurements. This climatology reveals a favourite path for exchanges between polar and tropical stratosphere allowing us to establish closed links between FrIAC’s occurrence and Rossby wave activity. Using wind and temperature fields from ECMWF, we performed a study to understand dynamical processes responsible of such dynamical structures. Discussion on the link between them and Sudden Stratospheric Warming, Final Stratsopheric Warming and Quasi Biennal Oscillation will be presented. This study is made in the framework the STRAPOLETE project which has started on January 2009 to study the Arctic stratosphere in the summertime.

  3. Measurements of the Early Development of Trailing Vorticity from a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Heineck, James T.

    2002-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.

  4. Partially filled Landau level at even denominators: A vortex metal with a Berry phase

    NASA Astrophysics Data System (ADS)

    You, Yizhi

    2018-04-01

    We develop a vortex metal theory for a partially filled Landau level at ν =1/2 n whose ground state contains a composite Fermi surface formed by the vortex of electrons. In the projected Landau-level limit, the composite Fermi surface contains a -π/n Berry phase. Such a fractional Berry phase is a consequence of Landau-level projection which produces the Girvin-MacDonald-Platzman [S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986), 10.1103/PhysRevB.33.2481] guiding center algebra and embellishes an anomalous velocity to the equation of motion for the vortex metal. Further, we investigate a particle-hole symmetric bilayer system with ν1=1/2 n and ν2=1 -1/2 n at each layer, and demonstrate that the -π/n Berry phase on the composite Fermi surface leads to the suppression of 2 kf backscattering between the particle-hole partner bilayer, which could be a smoking gun to detect the fractional Berry phase. We also mention various instabilities and competing orders in such bilayer systems, including a Z4 n topological order phase driven by quantum criticality.

  5. How to perform measurements in a hovering animal's wake: physical modelling of the vortex wake of the hawkmoth, Manduca sexta.

    PubMed Central

    Tytell, Eric D; Ellington, Charles P

    2003-01-01

    The vortex wake structure of the hawkmoth, Manduca sexta, was investigated using a vortex ring generator. Based on existing kinematic and morphological data, a piston and tube apparatus was constructed to produce circular vortex rings with the same size and disc loading as a hovering hawkmoth. Results show that the artificial rings were initially laminar, but developed turbulence owing to azimuthal wave instability. The initial impulse and circulation were accurately estimated for laminar rings using particle image velocimetry; after the transition to turbulence, initial circulation was generally underestimated. The underestimate for turbulent rings can be corrected if the transition time and velocity profile are accurately known, but this correction will not be feasible for experiments on real animals. It is therefore crucial that the circulation and impulse be estimated while the wake vortices are still laminar. The scaling of the ring Reynolds number suggests that flying animals of about the size of hawkmoths may be the largest animals whose wakes stay laminar for long enough to perform such measurements during hovering. Thus, at low advance ratios, they may be the largest animals for which wake circulation and impulse can be accurately measured. PMID:14561347

  6. Detection of Rossby Waves in Multi-Parameters in Multi-Mission Satellite Observations and HYCOM Simulations in the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, Bulusu; Heffner, David M.; Cromwell, David; Shriver, Jay F.

    2009-01-01

    Rossby waves are difficult to detect with in situ methods. However, as we show in this paper, they can be clearly identified in multi-parameters in multi-mission satellite observations of sea surface height (SSH), sea surface temperature (SST) and ocean color observations of chlorophyll-a (chl-a), as well as 1/12-deg global HYbrid Coordinate Ocean Model (HYCOM) simulations of SSH, SST and sea surface salinity (SSS) in the Indian Ocean. While the surface structure of Rossby waves can be elucidated from comparisons of the signal in different sea surface parameters, models are needed to gain direct information about how these waves affect the ocean at depth. The first three baroclinic modes of the Rossby waves are inferred from the Fast Fourier Transform (FFT), and two-dimensional Radon Transform (2D RT). At many latitudes the first and second baroclinic mode Rossby wave phase speeds from satellite observations and model parameters are identified.

  7. Flow-separation patterns on symmetric forebodies

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1986-01-01

    Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.

  8. Particle rings and astrophysical accretion discs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelace, R. V. E., E-mail: RVL1@cornell.edu; Romanova, M. M., E-mail: romanova@astro.cornell.edu

    Norman Rostoker had a wide range of interests and significant impact on the plasma physics research at Cornell during the time he was a Cornell professor. His interests ranged from the theory of energetic electron and ion beams and strong particle rings to the related topics of astrophysical accretion discs. We outline some of the topics related to rings and discs including the Rossby wave instability which leads to formation of anticyclonic vortices in astrophysical discs. These vorticies are regions of high pressure and act to trap dust particles which in turn may facilitate planetesimals growth in proto-planetary disks andmore » could be important for planet formation. Analytical methods and global 3D magneto-hydrodynamic simulations have led to rapid advances in our understanding of discs in recent years.« less

  9. Origins of Eddy Kinetic Energy in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Li, Yuanlong; Xie, Qiang; Wang, Dongxiao

    2018-03-01

    By analyzing satellite observational data and ocean general circulation model experiments, this study investigates the key processes that determine the spatial distribution and seasonality of intraseasonal eddy kinetic energy (EKE) within the Bay of Bengal (BOB). It is revealed that a complicated mechanism involving both local and remote wind forcing and ocean internal instability is responsible for the generation and modulation of EKE in this region. High-level EKE mainly resides in four regions: east of Sri Lanka (Region 1), the western BOB (Region 2), northwest of Sumatra (Region 3), and the coastal rim of the BOB (Region 4). The high EKE levels in Regions 1 and 2 are predominantly produced by ocean internal instability, which contributes 90% and 79%, respectively. Prominent seasonality is also observed in these two regions, with higher EKE levels in boreal spring and fall due to enhanced instability of the East Indian Coast Current and the Southwest Monsoon Current, respectively. In contrast, ocean internal instability contributes 49% and 52% of the total EKE in Regions 3 and 4, respectively, whereas the atmospheric forcing of intraseasonal oscillations (ISOs) also plays an important role. ISOs produce EKE mainly through wind stress, involving both the remote effect of equatorial winds and the local effect of monsoonal winds. Equatorial-origin wave signals significantly enhance the EKE levels in Regions 3 and 4, in the form of reflected Rossby waves and coastal Kelvin waves, respectively. The local wind forcing effect through Ekman pumping also has a significant contribution in Regions 3 and 4 (24% and 22%, respectively).

  10. Vortex Imprints at the Wall, But Not in the Bulk, Distinguish Ruptured from Unruptured Intracranial Aneurysms

    NASA Astrophysics Data System (ADS)

    Varble, Nicole; Meng, Hui

    2015-11-01

    Intracranial aneurysms affect 3% of the population. Risk stratification of aneurysms is important, as rupture often leads to death or permanent disability. Image-based CFD analyses of patient-specific aneurysms have identified low and oscillatory wall shear stress to predict rupture. These stresses are sensed biologically at the luminal wall, but the flow dynamics related to aneurysm rupture requires further understanding. We have conducted two studies: one examines vortex dynamics, and the other, high frequency flow fluctuations in patient-specific aneurysms. In the first study, based on Q-criterion vortex identification, we developed two measures to quantify regions within the aneurysm where rotational flow is dominate: the ratio of volume or surface area where Q >0 vs. the total aneurysmal volume or surface area, respectively termed volume vortex fraction (VVF) and surface vortex fraction (SVF). Statistical analysis of 204 aneurysms shows that SVF, but not VVF, distinguishes ruptured from unruptured aneurysms, suggesting that once again, the local flow patterns on the wall is directly relevant to rupture. In the second study, high-resolution CFD (high spatial and temporal resolutions and second-order discretization schemes) on 56 middle cerebral artery aneurysms shows the presence of temporal fluctuations in 8 aneurysms, but such flow instability bears no correlation with rupture. Support for this work was partially provided by NIH grant (R01 NS091075-01) and a grant from Toshiba Medical Systems Corp.

  11. NonBoussinesq effects on vorticity and kinetic energy production

    NASA Astrophysics Data System (ADS)

    Ravichandran, S.; Dixit, Harish; Govindarajan, Rama

    2015-11-01

    The Boussinesq approximation, commonly employed in weakly compressible or incompressible flows, neglects changes in inertia due to changes in the density. However, the nonBoussinesq terms can lead to a kind of centrifugal instability for small but sharp density variations, and therefore cannot be neglected under such circumstances (see, e.g., DIXIT & GOVINDARAJAN, JFM , 2010, 415). Here, we study the evolution of a light-cored Gaussian vortex and find that the nonBoussinesq terms can lead to significant changes in how vortices evolve. The problem is governed by three nondimensional numbers--Reynolds number (i.e. viscosity), Atwood number, and a ratio of gravitational and centrifugal Froude numbers. We find that the production of kinetic energy and vorticity in a light-cored Gaussian vortex are affected significantly by the nonBoussinesq terms, and varies non-monotonically with the parameters of the problem. In general, these nonBoussinesq effects depend both on the strength of gravity and on the Reynolds number associated with the initial vortex.

  12. Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.

  13. A three-dimensional numerical study on instability of sinusoidal flame induced by multiple shock waves

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Dong, Gang; Jiang, Hua

    2017-04-01

    The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.

  14. Taylor-Goertler instabilities of Tollmien-Schlichting waves and other flows governed by the interactive boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Bennett, James

    1986-01-01

    The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.

  15. Nonparallel linear stability analysis of unconfined vortices

    NASA Astrophysics Data System (ADS)

    Herrada, M. A.; Barrero, A.

    2004-10-01

    Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0

  16. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers, spontaneous absolute instability accompanying by sustained vortex shedding downstream of the roughness is likely to take place at subsonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for both a rectangular and a cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation from the top face of the roughness is observed, despite the presence of flow unsteadiness for the smaller post-shock Mach number case.

  17. Lessons Learned from Numerical Simulations of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Cook, Andrew

    2015-11-01

    Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instabilities serve as efficient mixing mechanisms in a wide variety of flows, from supernovae to jet engines. Over the past decade, we have used the Miranda code to temporally integrate the multi-component Navier-Stokes equations at spatial resolutions up to 29 billion grid points. The code employs 10th-order compact schemes for spatial derivatives, combined with 4th-order Runge-Kutta time advancement. Some of our major findings are as follows: The rate of growth of a mixing layer is equivalent to the net mass flux through the equi-molar plane. RT growth rates can be significantly reduced by adding shear. RT instability can produce shock waves. The growth rate of RM instability can be predicted from known interfacial perturbations. RM vortex projectiles can far outrun the mixing region. Thermal fluctuations in molecular dynamics simulations can seed instabilities along the braids in KH instability. And finally, enthalpy diffusion is essential in preserving the second law of thermodynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Experiments on two- and three-dimensional vortex flows in lid-driven cavities

    NASA Astrophysics Data System (ADS)

    Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.

    2009-11-01

    Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.

  19. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  20. SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Thompson, B. J.

    2011-01-01

    We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).

  1. Shear-flow driven dissipative instability and investigation of nonlinear drift-vortex modes in dusty plasmas with non-thermal ion population

    NASA Astrophysics Data System (ADS)

    Gul-e-Ali, Masood, W.; Mirza, Arshad M.

    2017-12-01

    The shear flow in dust dynamics driven waves in combination with the dust-neutral drag is studied in a plasma comprising of ions, electrons, and dust. Non-thermal population of ions is considered, which has been observed by many satellite missions. It is found that the dissipative instability produced by dust sheared flow and dust-neutral drag gets modified by the presence of nonthermal ions. It is found that the dissipative instability enhances for the Cairns distribution, whereas the kappa distribution arrests the growth of this instability. In the nonlinear regime, the formation of vortices in the system is studied. It is found that the nonthermal population of ions significantly alters these structures in comparison with their Maxwellian counterpart. The results obtained in this paper may have relevance in the planetary magnetospheres where the dust particles are present and non-Maxwellian distribution of particles have been observed by Freja and Viking satellites.

  2. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  3. Instability of 2D Flows to Hydrostatic 3D Perturbations.

    NASA Astrophysics Data System (ADS)

    Straub, David N.

    2003-01-01

    Considered here is the evolution of three-dimensional perturbations to the hydrostatic equations linearized about a two-dimensional base state U. Motivated by an argument by T. Warn, this study begins with the nonrotating, unstratified case, and draws analogies between the perturbation equations and equations describing evolution of material line elements and scalar gradients embedded in the same 2D flow. When U is chaotic, both scalar gradients and line elements are characterized by rapid growth, and this leads one to suspect that the perturbations behave similarly. A generalized Okubo-Weiss parameter is proposed, and it is argued that this gives a reasonable litmus test for identifying regions where growth is most probable. Rotation modifies the generalized Okubo-Weiss parameter and tends to curb growth of the perturbation fields, as expected. It is also pointed out that, in realistic geophysical settings, the stability parameter can be suggestive of growth locally, even when a globally defined Rossby number is small.Also considered is the effect of a constant stratification. The perturbation equations can then be separated into vertical modes that have simple sinusoidal structures. The equations describing the evolution of a given mode take a form analogous to the shallow water equations, linearized about U. Numerical simulations of these, assuming a simple but chaotic prescription of U, are carried out. For sufficiently strong stratification, a balance dynamics similar to that suggested by Riley, Metcalfe, and Weissman is recovered. For a given value of the buoyancy frequency N, however, this balance breaks down at high vertical wavenumbers. For high vertical wavenumbers, the modified Okubo-Weiss parameter once again appears to give a potentially useful indication of when growth should be expected. When the Rossby number is small, this criterion predicts stability, and growth occurs only when stratification effects are comparable to or larger than rotational effects. More specifically, growth is seen when the relevant Rossby radius is comparable to or larger than the characteristic length scale of U. It is also found in this limit that approximate geostrophic adjustment occurs prior to growth.

  4. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  5. Stationary Crossflow Breakdown due to Mixed Mode Spectra of Secondary Instabilities

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.

  6. Effects of the seasonal cycle on superrotation in planetary atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jonathan L.; Vallis, Geoffrey K.; Potter, Samuel F.

    2014-05-20

    The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the absence of a seasonal cycle. This case is somewhat unrealistic as it applies only ifmore » the planet has zero obliquity or if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn) all have obliquities of ∼25° and varying degrees of seasonality due to their differing thermal inertias and orbital periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars, and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the relevant parameter regimes, our seasonal model simulations compare favorably to large-scale, seasonal phenomena observed on Earth and Mars. In the Titan-like regime the seasonal cycle in our model acts to prevent superrotation from developing, and it is necessary to increase the value of a third parameter—the atmospheric Newtonian cooling time—to achieve a superrotating climatology.« less

  7. Structure and stability of the finite-area von Kármán street

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.

    2012-06-01

    By using a recently developed numerical method, we explore in detail the possible inviscid equilibrium flows for a Kármán street comprising uniform, large-area vortices. In order to determine stability, we make use of an energy-based stability argument (originally proposed by Lord Kelvin), whose previous implementation had been unsuccessful in determining stability for the Kármán street [P. G. Saffman and J. C. Schatzman, "Stability of a vortex street of finite vortices," J. Fluid Mech. 117, 171-186 (1982), 10.1017/S0022112082001578]. We discuss in detail the issues affecting this interpretation of Kelvin's ideas, and show that this energy-based argument cannot detect subharmonic instabilities. To find superharmonic instabilities, we employ a recently introduced approach, which constitutes a reliable implementation of Kelvin's stability ideas [P. Luzzatto-Fegiz and C. H. K. Williamson, "Stability of conservative flows and new steady fluid solutions from bifurcation diagrams exploiting a variational argument," Phys. Rev. Lett. 104, 044504 (2010), 10.1103/PhysRevLett.104.044504]. For periodic flows, this leads us to organize solutions into families with fixed impulse I, and to construct diagrams involving the flow energy E and horizontal spacing (i.e., wavelength) L. Families of large-I vortex streets exhibit a turning point in L, and terminate with "cat's eyes" vortices (as also suggested by previous investigators). However, for low-I streets, the solution families display a multitude of turning points (leading to multiple possible streets, for given L), and terminate with teardrop-shaped vortices. This is radically different from previous suggestions in the literature. These two qualitatively different limiting states are connected by a special street, whereby vortices from opposite rows touch, such that each vortex boundary exhibits three corners. Furthermore, by following the family of I = 0 streets to small L, we gain access to a large, hitherto unexplored flow regime, involving streets with L significantly smaller than previously believed possible. To elucidate in detail the possible solution regimes, we introduce a map of spacing L, versus impulse I, which we construct by numerically computing a large number of steady vortex configurations. For each constant-impulse family of steady vortices, our stability approach also reveals a single superharmonic bifurcation, leading to new families of vortex streets, which exhibit lower symmetry.

  8. Simulation of spiral instabilities in wide-gap spherical Couette flow

    NASA Astrophysics Data System (ADS)

    Abbas, Suhail; Yuan, Li; Shah, Abdullah

    2018-04-01

    We numerically study the wide-gap spherical Couette flow between two concentric spheres with the inner sphere rotating and the outer one stationary. Two wide-gap clearance ratios, β =({R}2-{R}1)/{R}1=0.33 and 0.50, are chosen to investigate the transition scenarios of the spiral instabilities with increasing Reynolds number ({{Re}}). For β =0.33, we first obtain the steady 1-vortex flow at {{Re}} = 700 by using the 1-vortex flow for a medium gap β =0.18 at {{Re}} = 700 as the initial condition. The 1-vortex flow for β =0.33 exists for {Re} \\in [450,2050] and it collapses back to the basic flow when {Re} > 2050. We then detect spiral instabilities by increasing the Reynolds number gradually. The basic flow becomes unstable at {{Re}}{{c}1} = 2900 where spiral waves of wavenumber m = 6 appear first. Increasing the Reynolds number further, the wavenumber decreases to 5 and 4 at {{Re}}{{c}2} = 3000 and {{Re}}{{c}3} = 4000 respectively. The flow becomes turbulent when {Re} > 4500. For β =0.50, no Taylor vortices are found. The basic flow becomes unstable at {{Re}}{{c}1} = 1280 where spiral waves of wavenumber m = 5 occur first. As the Reynolds number is increased, the wavenumber becomes 4 at {{Re}}{{c}2} = 1700, 5 again at {{Re}}{{c}3} = 1800, 4 at {{Re}}{{c}4} = 2000, and becomes 3 at {{Re}}{{c}5} = 2200 while the flow becomes turbulent for {Re} > 2200. The computed rotational frequencies as a function of the Reynolds number for spiral waves of wavenumber m = 5, 4 and 3 are in good agreement with previous experimental results. The present transition scenario of the spiral wavenumber with increasing Reynolds number for β =0.33 is the same as that of Egbers and Rath (1995 Acta Mech. 111 125-40), while for β =0.50, it is only partially similar to those of Wulf et al (1999 Phys. Fluids 11 1359-72) and Egbers and Rath (1995 Acta Mech. 111 125-40).

  9. Coherent Structures and Evolution of Vorticity in Short-Crested Breaking Surface Waves

    NASA Astrophysics Data System (ADS)

    Kirby, James; Derakhti, Morteza

    2017-11-01

    We employ a multi-phase LES/VOF code to study turbulence and coherent structures generated during breaking of short-crested surface water waves. We examine the evolution of coherent vortex structures evolving at the scale of the width of the breaking event, and their long-time interaction with smaller vortex loops formed by the local instability of the breaking crest. Long-time results are often characterized by the detachment of the larger scale vortex loop from the surface and formation of a closed vortex ring. The evolution of circulation for the vortical flow field is examined. The initial concentration of forcing close to the free surface leads to spatial distributions of both span-wise and vertical vorticity distributions which are concentrated close to the surface. This result, which persists into shallow water, is at odds with the basic simplicity of the Peregrine mechanism, suggesting that even shallow flows such as the surf zone should be regarded as being forced (in dissipative situations) by a wave-induced surface stress rather than a uniform-over-depth body force. The localized forcing leads to the development of a complex pattern of stream-wise vorticity, comparable in strength to the vertical and span-wise components, and also persist into shallow water. NSF OCE-1435147.

  10. Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Kalyana; Chakraborty, Debasis

    2017-07-01

    Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.

  11. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  12. The 'surf zone' in the stratosphere

    NASA Astrophysics Data System (ADS)

    McIntyre, M. E.; Palmer, T. N.

    Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.

  13. Stability of a family of uniform vortices related to vortex configurations before merging

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, P.; Williamson, C. H. K.

    2006-11-01

    Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).

  14. The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1993-01-01

    An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.

  15. Interaction of Saturn's dual rotation periods

    NASA Astrophysics Data System (ADS)

    Smith, C. G. A.

    2018-03-01

    We develop models of the interaction of Rossby wave disturbances in the northern and southern ionospheres of Saturn. We show that interhemispheric field-aligned currents allow the exchange of vorticity, modifying the background Rossby wave propagation speed. This leads to interaction of the northern and southern Rossby wave periods. In a very simple symmetric model without a plasma disk the periods merge when the overall conductivity is sufficiently high. A more complex model taking account of the inertia of the plasma disk and the asymmetry of the two hemispheres predicts a rich variety of possible wave modes. We find that merging of the northern and southern periods can only occur when (i) the conductivities of both hemispheres are sufficiently low (a criterion that is fulfilled for realistic parameters) and (ii) the background Rossby wave periods in the two hemispheres are identical. We reconcile the second criterion with the observations of a merged period that also drifts by noting that ranges of Rossby wave propagation speeds are possible in each hemisphere. We suggest that a merged disturbance in the plasma disk may act as an 'anchor' and drive Rossby waves in each hemisphere within the range of possible propagation speeds. This suggestion predicts behaviour that qualitatively matches the observed merging and splitting of the northern and southern rotation periods that occurred in 2013 and 2014. Low conductivity modes also show long damping timescales that are consistent with the persistence of the periodic signals.

  16. BAROCLINIC INSTABILITY IN THE SOLAR TACHOCLINE. II. THE EADY PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, Peter A., E-mail: gilman@ucar.edu

    2016-02-20

    We solve the nongeostrophic baroclinic instability problem for the tachocline for a continuous model with a constant vertical rotation gradient (the Eady problem), using power series generated by the Frobenius method. The results confirm and greatly extend those from a previous two-layer model. For effective gravity G independent of height, growth rates and ranges of unstable longitudinal wavenumbers m and latitudes increase with decreasing G. As with the two-layer model, the overshoot tachocline is much more unstable than the radiative tachocline. The e-folding growth times range from as short as 10 days to as long as several years, depending on latitude,more » G, and wavenumber. For a more realistic effective gravity that decreases linearly from the radiative interior to near zero at the top of the tachocline, we find that only m = 1, 2 modes are unstable, with growth rates somewhat larger than for constant G, with the same value as at the bottom of the tachocline. All results are the same whether we assume that the vertical velocity or the perturbation pressure is zero at the top of the layer; this is a direct consquence of not employing the geostrophic assumption for perturbations. We explain most of the properties of the instability in terms of the Rossby deformation radius. We discuss further improvements in the realism of the model, particularly adding toroidal fields that vary in height, and including latitudinal gradients of both rotation and toroidal fields.« less

  17. RANS computations for identification of 1-D cavitation model parameters: application to full load cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.

    2017-04-01

    Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self-excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models require a calibration of several parameters. The present work aims at identifying these parameters by using CFD results as objective functions for an optimization process. A 2-D Venturi and 3-D Francis turbine are considered.

  18. Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing

    NASA Technical Reports Server (NTRS)

    Oberleithner, Kilian; Lueck, Martin; Paschereit, Christian Oliver; Wygnanski, Israel

    2010-01-01

    We finally go back to the four swirl cases and see how the flow responds to either forcing m = -1 or m = -2. On the left we see the flow forced at m = -1 We see that the PVC locks onto the applied forcing also for lower swirl number causing this high TKE at the jet center. The amplification of this instability causes VB to occur at a lower swirl number. The opposite can be seen when forcing the flow at m=-2 which is basically growing in the outer shear layer causing VB to move downstream . There is no energy at the center of the vortex showing that the precessing has been damped. The mean flow is most altered at the swirl numbers were VB is unstable.

  19. Experimental investigation of the wake behind a model of wind turbine in a water flume

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Naumov, I. N.; Kabardin, I.; Mikkelsen, R.; Sørensen, J. N.

    2014-12-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories.

  20. Experimental Study of Flow in a Bifurcation

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2003-11-01

    An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.

  1. Plasma flow disturbances in the magnetospheric plasma sheet during substorm activations

    NASA Astrophysics Data System (ADS)

    Kozelova, T. V.; Kozelov, B. V.; Turyanskii, V. A.

    2017-11-01

    We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at 8.5 R E and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of 10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of 90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the B z component of the magnetic field on the satellite. Approximately 30-50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.

  2. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    NASA Technical Reports Server (NTRS)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.

  3. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    NASA Technical Reports Server (NTRS)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  4. DNS of unsteady, turbulent convection in a rotating stratified fluid

    NASA Astrophysics Data System (ADS)

    Pal, Anikesh; Chalmalla, Vamsi

    2017-11-01

    Turbulent convection under the influence of intense surface cooling and earth's rotation is a common phenomenon observed in the ocean. In the present study, direct numerical simulations are performed to understand this dynamics. The effect of rotation is represented by Rossby number Ro* which is defined in terms of ocean depth H, Coriolis parameter f and surface buoyancy flux B0, as Ro* =B01// 2 Hf 3 / 2 . Cooling at the surface results in the formation of unstable density configuration where denser fluid lies on top of the lighter fluid. These unstable density configuration leads to a turbulent front. When the turbulent front reaches a transition depth zc, it experiences the effect of rotation leading to the formation of quasi- 2D vortices beneath the 3D turbulent layer. If the surface cooling is strong enough, these vortices penetrate further downwards producing vortex columns. Qualitatively, DNS results agree well with the findings of experimental study by Maxworthy & Narimousa (1993). The motivation of this study is to understand the nonlinear dynamics and turbulence scaling as the surface cooling and Coriolis parameter are varied.

  5. Equatorial waves in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.

  6. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  7. On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Thess, A.; Zikanov, Oleg

    2004-01-01

    We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.

  8. Separated Flow Control with Actuated Membrane Wings

    NASA Astrophysics Data System (ADS)

    Bohnker, Jillian; Breuer, Kenneth

    2017-11-01

    By perturbing shear layer instabilities, some level of control over highly separated flows can be established, as has been demonstrated on rigid wings using synthetic jet actuators or acoustic excitation. Here, we demonstrate similar phenomena using sinusoidal actuation of a dielectric membrane wing. The effect of actuation on lift is examined as a function of freestream velocity (5-25 m/s), angle of attack (10°-40°), and actuation frequency (0.1

  9. Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2000-10-01

    The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.

  10. Unsteady forces on a circular cylinder at critical Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, O.; Rodríguez, I.; Borrell, R.; Chiva, J.; Oliva, A.

    2014-12-01

    It is well known that the flow past a circular cylinder at critical Reynolds number combines flow separation, turbulence transition, reattachment of the flow, and further turbulent separation of the boundary layer. The transition to turbulence in the boundary layer causes the delaying of the separation point and an important reduction of the drag force on the cylinder surface known as the drag crisis. In the present work, large-eddy simulations of the flow past a cylinder at Reynolds numbers in the range 2.5 × 105-6.5 × 105 are performed. It is shown how the pressure distribution changes as the Reynolds number increases in an asymmetric manner, occurring first on one side of the cylinder and then on the other side to complete the drop in the drag up to 0.23 at Re = 6.5 × 105. These variations in the pressure profile are accompanied by the presence of a small recirculation bubble, observed as a small plateau in the pressure, and located around ϕ = 105∘ (measured from the stagnation point). This small recirculation bubble anticipated by the experimental measurements is here well captured by the present computations and its position and size measured at every Reynolds number. The changes in the wake configuration as the Reynolds number increases are also shown and their relation to the increase in the vortex shedding frequency is discussed. The power spectra for the velocity fluctuations are computed. The analysis of the resulting spectrum showed the footprint of Kelvin-Helmholtz instabilities in the whole range. It is found that the ratio of these instabilities frequency to the primary vortex shedding frequency matches quite well the scaling proposed by Prasad and Williamson ["The instability of the separated shear layer from a bluff body," Phys. Fluids 8, 1347 (1996); "The instability of the shear layer separating from a bluff body," J. Fluid Mech. 333, 375-492 (1997)] (fKH/fvs ∝ Re0.67).

  11. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  12. Turbulence, Turbulence Control, and Drag Reduction.

    DTIC Science & Technology

    1987-08-01

    control (i.e., suppression) of disturbances in the wake and the boundary layer is achieved through different means, because the flows are governed by... different types of instabilities. For instance, vortex shedding behind circular cylinders can be suppressed (over a limited range of Reynolds number) by...alteration of the large structure was evident in the marked difference in the development of the wakes downstream of the two devices. We have also

  13. Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1997-01-01

    The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from this paper is that even in the presence of growing, unstable waves, the mixing barriers around

  14. Stability analysis of the onset of vortex shedding for wakes behind flat plates

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun

    2018-04-01

    Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.

  15. Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.

    NASA Astrophysics Data System (ADS)

    Neubauer, Juergen; Miraghaie, Reza; Berry, David

    2004-11-01

    The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.

  16. A climatology of Rossby wave generation in the middle atmosphere of the Southern Hemisphere from MERRA reanalysis

    NASA Astrophysics Data System (ADS)

    Rodas, Claudio; Pulido, Manuel

    2017-09-01

    A climatological characterization of Rossby wave generation events in the middle atmosphere of the Southern Hemisphere is conducted using 20 years of Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. An automatic detection technique of wave generation events is developed and applied to MERRA reanalysis. The Rossby wave generation events with wave period of 1.25 to 5.5 days and zonal wave number from one to three dominate the Eliassen-Palm flux divergence around the stratopause at high latitudes in the examined 20 year period. These produce an eastward forcing of the general circulation between May and mid-August in that region. Afterward from mid-August to the final warming date, Rossby wave generation events are still present but the Eliassen-Palm flux divergence in the polar stratopause is dominated by low-frequency Rossby waves that propagate from the troposphere. The Rossby wave generation events are associated with potential vorticity gradient inversion, and so they are a manifestation of the dominant barotropic/baroclinic unstable modes that grow at the cost of smearing the negative meridional gradient of potential vorticity. The most likely region of wave generation is found between 60° and 80°S and at a height of 0.7 hPa, but events were detected from 40 hPa to 0.3 hPa (which is the top of the examined region). The mean number of events per year is 24, and its mean duration is 3.35 days. The event duration follows an exponential distribution.

  17. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.

    1996-04-01

    We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic fluctuations within those features are closely aligned, representing Alfvén waves propagating locally downstream. The flux tubes surround a low-density channel of hot gas that contains most of the excess entropy generated through the relaxation process.

  18. Poleward Tropical Moisture Transport and its Link to Four Sequential Extreme Weather Events over North America in October 2007

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Cordeira, J. M.; Archambault, H. M.; Moore, B. J.

    2014-12-01

    A case of four sequentially linked extreme weather events (EWEs) during 22 - 31 October 2007 which included wildfires in southern California, cold surges in northern and eastern Mexico, widespread heavy rain in the eastern United Sates, and heavy rains in southern Mexico is presented. These EWEs were preceded by a rapid dynamically driven rapid amplification of the upper-level flow across the North Pacific and North America associated with the formation of a large-amplitude Rossby wave train (RWT) through downstream baroclinic development involving multiple tropical and polar disturbance interactions with the North Pacific jet stream. The primary contributors to the formation of the large-amplitude RWT were two sequential upper-level polar disturbances, a diabatic Rossby vortex, western North Pacific TC Kajiki, and migratory extratropical cyclones (ECs). Deep subtropical and tropical moisture plumes resembling "atmospheric rivers" drawn poleward along warm conveyor belts into the warm sectors of these ECs played a critical role in further amplifying the downstream upper-level ridges based on an Eulerian analysis of negative potential vorticity advection by the irrotational wind and a Lagrangian trajectory analysis of tropical and subtropical moisture sources. In particular, these atmospheric rivers extending poleward from TC Kajiki and from the subtropical eastern North Pacific into the warm sectors of polar disturbance-generated ECs over the western and eastern North Pacific, respectively, bolstered latent heat release and ridge building and contributed to additional upper-level flow amplification. The EWEs occurred subsequent to anticyclonic wave breaking over western North America and the concomitant downstream formation of a meridionally elongated potential vorticity streamer over the central United States. The resulting high-amplitude flow pattern over North America favored the formation of the aforementioned EWEs by promoting an extensive meridional exchange of air masses from high and low latitudes.

  19. The Stability of Outcropping Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Paldor, N.; Cohen, Y.; Dvorkin, Y.

    2017-12-01

    In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean eddies. These eddies are observed to persist in the ocean for periods of 2-3 years with little deformation. As eddy instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the eddy itself, the stability was attributed to some eddy structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed eddy structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the eddy and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the eddy while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian eddies for mathematical simplicity. Yet, the Gaussian eddy has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most eddies have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal eddies: constant PV-eddies and solidly rotating eddy. A complete account of the mean flow of the coupled eddy-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the eddy-ocean system are computed by a shooting method. Both eddies are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many eddy structures can be hypothesized there are only a handful of physical mechanisms for instability and in these eddies the assumed constant PV-ocean negates many of these physical mechanisms for instability. This implies that meso-scale eddies should be stable in a constant PV ocean, regardless to their structure, which is not precisely one of the above mentioned. This theory stimulates observations of the ocean under the eddies. To maintain the uniform PV value, relative vorticity must develop in the ocean under the eddy as it moves in the ocean.

  20. Inertial Wave Turbulence Driven by Elliptical Instability.

    PubMed

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J; Le Bars, Michael

    2017-07-21

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  1. Inertial Wave Turbulence Driven by Elliptical Instability

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J.; Le Bars, Michael

    2017-07-01

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  2. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  3. A low-speed wind tunnel study of vortex interaction control techniques on a chine-forebody/delta-wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A low speed wind tunnel evaluation was conducted of passive and active techniques proposed as a means to impede the interaction of forebody chine and delta wing vortices, when such interaction leads to undesirable aerodynamic characteristics particularly in the post stall regime. The passive method was based on physically disconnecting the chine/wing junction; the active technique employed deflection of inboard leading edge flaps. In either case, the intent was to forcibly shed the chine vortices before they encountered the downwash of wing vortices. Flow visualizations, wing pressures, and six component force/moment measurements confirmed the benefits of forced vortex de-coupling at post stall angles of attack and in sideslip, viz., alleviation of post stall zero beta asymmetry, lateral instability and twin tail buffet, with insignificant loss of maximum lift.

  4. Rotational superradiant scattering in a vortex flow

    NASA Astrophysics Data System (ADS)

    Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke

    2017-09-01

    When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% +/- 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole, as well as to hydrodynamics, due to the close relation to over-reflection instabilities.

  5. Subsonic investigations of vortex interaction control for enhanced high-alpha aerodynamics of a chine forebody/Delta wing configuration

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Bhat, M. K.

    1992-01-01

    A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.

  6. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  7. Wave Excitation in Accretion Disks by Protoplanets

    NASA Astrophysics Data System (ADS)

    Koller, J.; Li, H.

    2002-05-01

    The ongoing discoveries of extrasolar planets in the recent years revealed remarkable properties and unexpected results concerning the formation process. We studied the perturbation of a protostellar accretion disk by a companion utilizing APOLLO, a fast hydro disk code well tested in the case of accretion disks without a companion (Li et al. 2001, ApJ, 551, 874). We consider limiting cases where the companion's mass is much smaller than the central protostar and resides in a circular keplerian orbit. The gravitational field of the protoplanet, embedded in a numerically thin disk, generates spiral density waves and Rossby instabilities resulting in a non-axisymmetric density distribution. We present nonlinear hydro simulations to investigate those non-axisymmetric density distribution with different disk and planet parameters in order to understand how disks respond to a fixed companion in orbit. This work has been supported by IGPP at LANL (award # 1109) and NASA (grant # NAG5-9223).

  8. Computational and Experimental Study of the Transient Transport Phenomena in a Full-Scale Twin-Roll Continuous Casting Machine

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Li, Zhongyang; Wang, Zhaohui; Zhu, Miaoyong

    2017-02-01

    To gain a fundamental understanding of the transient fluid flow in twin-roll continuous casting, the current paper applies both large eddy simulation (LES) and full-scale water modeling experiments to investigate the characteristics of the top free surface, stirring effect of the roll rotation, boundary layer fluctuations, and backflow stability. The results show that, the characteristics of the top free surface and the flow field in the wedge-shaped pool region are quite different with/without the consideration of the roll rotation. The roll rotation decreases the instantaneous fluctuation range of the top free surface, but increases its horizontal velocity. The stirring effect of the roll rotating makes the flow field more homogenous and there exists clear shear flow on the rotating roll surface. The vortex shedding induced by the Kármán Vortex Street from the submerged entry nozzle (SEN) causes the "velocity magnitude wave" and strongly influences the boundary layer stability and the backflow stability. The boundary layer fluctuations or the "velocity magnitude wave" induced by the vortex shedding could give rise to the internal porosity. In strip continuous casting process, the vortex shedding phenomenon indicates that the laminar flow can give rise to instability and that it should be made important in the design of the feeding system and the setting of the operating parameters.

  9. a Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Cappietti, L.; Chopard, B.

    We study the applicability of the Lattice Boltzmann Method (LBM) to simulate the 2D laminar boundary layer induced by an oscillating flat plate. We also investigate the transition to the disturbed laminar regime that occurs with a rough oscillating plate. The simulations were performed in two cases: first with a fluid otherwise at rest and second in presence of superimposed current. The generation of coherent vortex structures and their evolution are commented. The accuracy of the method was checked by comparisons with the exact analytical solution of the Navier-Stokes equations for the so-called Stokes' Second Problem. The comparisons show that LBM reproduces this time varying flow with first order accuracy. In the case of the wavy-plate, the results show that a mechanism of vortex-jet formations, low speed-streak and shear instability sustain a systems of stationary vortices outside the boundary layer. The vortex-jet takes place at the end of the decelerating phase whereas the boundary layer turns out to be laminar when the plate accelerates. In the presence of the superimposed current, the vortex-jet mechanism is still effective but the vortices outside the boundary layer are only present during part of the oscillating period. During the remaining part, the flow turns out to be laminar although a wave perturbation in the velocity field is present.

  10. Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria

    NASA Astrophysics Data System (ADS)

    Reinaud, J. N.; Sokolovskiy, M. A.; Carton, X.

    2017-03-01

    We investigate equilibrium solutions for tripolar vortices in a two-layer quasi-geostrophic flow. Two of the vortices are like-signed and lie in one layer. An opposite-signed vortex lies in the other layer. The families of equilibria can be spanned by the distance (called separation) between the two like-signed vortices. Two equilibrium configurations are possible when the opposite-signed vortex lies between the two other vortices. In the first configuration (called ordinary roundabout), the opposite signed vortex is equidistant to the two other vortices. In the second configuration (eccentric roundabouts), the distances are unequal. We determine the equilibria numerically and describe their characteristics for various internal deformation radii. The two branches of equilibria can co-exist and intersect for small deformation radii. Then, the eccentric roundabouts are stable while unstable ordinary roundabouts can be found. Indeed, ordinary roundabouts exist at smaller separations than eccentric roundabouts do, thus inducing stronger vortex interactions. However, for larger deformation radii, eccentric roundabouts can also be unstable. Then, the two branches of equilibria do not cross. The branch of eccentric roundabouts only exists for large separations. Near the end of the branch of eccentric roundabouts (at the smallest separation), one of the like-signed vortices exhibits a sharp inner corner where instabilities can be triggered. Finally, we investigate the nonlinear evolution of a few selected cases of tripoles.

  11. Onset of chaos in helical vortex breakdown at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Pasche, S.; Avellan, F.; Gallaire, F.

    2018-06-01

    The nonlinear dynamics of a swirling wake flow stemming from a Graboswksi-Berger vortex [Grabowski and Berger, J. Fluid Mech. 75, 525 (1976), 10.1017/S0022112076000360] in a semi-infinite domain is addressed at low Reynolds numbers for a fixed swirl number S =1.095 , defined as the ratio between the characteristic tangential velocity and the centerline axial velocity. In this system, only pure hydrodynamic instabilities develop and interact through the quadratic nonlinearities of the Navier-Stokes equations. Such interactions lead to the onset of chaos at a Reynolds value of Re=220 . This chaotic state is reached by following a Ruelle-Takens-Newhouse scenario, which is initiated by a Hopf bifurcation (the spiral vortex breakdown) as the Reynolds number increases. At larger Reynolds value, a frequency synchronization regime appears followed by a chaotic state again. This scenario is corroborated by nonlinear time series analyses. Stability analysis around the time-average flow and temporal-azimuthal Fourier decomposition of the nonlinear flow distributions both identify successfully the developing vortices and provide deeper insight into the development of the flow patterns leading to this route to chaos. Three single-helical vortices are involved: the primary spiral associated with the spiral vortex breakdown, a downstream spiral, and a near-wake spiral. As the Reynolds number increases, the frequencies of these vortices become closer, increasing their interactions by nonlinearity to eventually generate a strong chaotic axisymmetric oscillation.

  12. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements

    NASA Astrophysics Data System (ADS)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.

    2017-10-01

    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  13. EDITORIAL: The FDR Prize The FDR Prize

    NASA Astrophysics Data System (ADS)

    Funakoshi, Mitsuaki

    2011-08-01

    From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.

  14. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames

    NASA Astrophysics Data System (ADS)

    Moeck, Jonas P.; Bourgouin, Jean-François; Durox, Daniel; Schuller, Thierry; Candel, Sébastien

    2013-04-01

    Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.

  15. Connections between centrifugal, stratorotational, and radiative instabilities in viscous Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.

    2016-10-01

    The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.

  16. Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Aohua; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Yasuaki

    2016-03-15

    The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantlymore » due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.« less

  17. Dynamics of circular arrangements of vorticity in two dimensions

    NASA Astrophysics Data System (ADS)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more orderly progression into a single vortex. Results from linear stability analysis agree with the nonlinear simulations, and predict the frequencies of the most unstable modes better than they predict the growth rates. It is hoped that the present findings, that multiple vortex merger is qualitatively different from the merger of two vortices, will motivate studies on how multiple vortex interactions affect the inverse cascade in two-dimensional turbulence.

  18. Field theoretical prediction of a property of the tropical cyclone

    NASA Astrophysics Data System (ADS)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  19. Multi-injector modeling of transverse combustion instability experiments

    NASA Astrophysics Data System (ADS)

    Shipley, Kevin J.

    Concurrent simulations and experiments are used to study combustion instabilities in a multiple injector element combustion chamber. The experiments employ a linear array of seven coaxial injector elements positioned atop a rectangular chamber. Different levels of instability are driven in the combustor by varying the operating and geometry parameters of the outer driving injector elements located near the chamber end-walls. The objectives of the study are to apply a reduced three-injector model to generate a computational test bed for the evaluation of injector response to transverse instability, to apply a full seven-injector model to investigate the inter-element coupling between injectors in response to transverse instability, and to further develop this integrated approach as a key element in a predictive methodology that relies heavily on subscale test and simulation. To measure the effects of the transverse wave on a central study injector element two opposing windows are placed in the chamber to allow optical access. The chamber is extensively instrumented with high-frequency pressure transducers. High-fidelity computational fluid dynamics simulations are used to model the experiment. Specifically three-dimensional, detached eddy simulations (DES) are used. Two computational approaches are investigated. The first approach models the combustor with three center injectors and forces transverse waves in the chamber with a wall velocity function at the chamber side walls. Different levels of pressure oscillation amplitudes are possible by varying the amplitude of the forcing function. The purpose of this method is to focus on the combustion response of the study element. In the second approach, all seven injectors are modeled and self-excited combustion instability is achieved. This realistic model of the chamber allows the study of inter-element flow dynamics, e.g., how the resonant motions in the injector tubes are coupled through the transverse pressure waves in the chamber. The computational results are analyzed and compared with experiment results in the time, frequency and modal domains. Results from the three injector model show how applying different velocity forcing amplitudes change the amplitude and spatial location of heat release from the center injector. The instability amplitudes in the simulation are able to be tuned to experiments and produce similar modal combustion responses of the center injector. The reaction model applied was found to play an important role in the spatial and temporal heat release response. Only when the model was calibrated to ignition delay measurements did the heat release response reflect measurements in the experiment. While insightful the simulations are not truly predictive because the driving frequency and forcing function amplitude are input into the simulation. However, the use of this approach as a tool to investigate combustion response is demonstrated. Results from the seven injector simulations provide an insightful look at the mechanisms driving the instability in the combustor. The instability was studied over a range of pressure fluctuations, up to 70% of mean chamber pressure produced in the self-exited simulation. At low amplitudes the transverse instability was found to be supported by both flame impingement with the side wall as well as vortex shedding at the primary acoustic frequency. As instability level grew the primary supporting mechanism shifted to just vortex impingement on the side walls and the greatest growth was seen as additional vortices began impinging between injector elements at the primary acoustic frequency. This research reveals the advantages and limitations of applying these two modeling techniques to simulate multiple injector experiments. The advantage of the three injector model is a simplified geometry which results in faster model development and the ability to more rapidly study the injector response under varying velocity amplitudes. The possibly faster run time is offset though by the need to run multiple cases to calibrate the model to the experiment. The model is also limited to studying the central injector effect and lacks heat release sources from the outer injectors and additional vortex interactions as shown in the seven injector simulation. The advantage of the seven injector model is that the whole domain can be explored to provide a better understanding about influential processes but does require longer development and run time due to the extensive gridding requirement. Both simulations have proven useful in exploring transverse combustion instability and show the need to further develop subscale experiments and companions simulations in developing a full-scale combustion instability prediction capability.

  20. Inertioelastic Flow Instability at a Stagnation Point

    NASA Astrophysics Data System (ADS)

    Burshtein, Noa; Zografos, Konstantinos; Shen, Amy Q.; Poole, Robert J.; Haward, Simon J.

    2017-10-01

    A number of important industrial applications exploit the ability of small quantities of high molecular weight polymer to suppress instabilities that arise in the equivalent flow of Newtonian fluids, a particular example being turbulent drag reduction. However, it can be extremely difficult to probe exactly how the polymer acts to, e.g., modify the streamwise near-wall eddies in a fully turbulent flow. Using a novel cross-slot flow configuration, we exploit a flow instability in order to create and study a single steady-state streamwise vortex. By quantitative experiment, we show how the addition of small quantities (parts per million) of a flexible polymer to a Newtonian solvent dramatically affects both the onset conditions for this instability and the subsequent growth of the axial vorticity. Complementary numerical simulations with a finitely extensible nonlinear elastic dumbbell model show that these modifications are due to the growth of polymeric stress within specific regions of the flow domain. Our data fill a significant gap in the literature between the previously reported purely inertial and purely elastic flow regimes and provide a link between the two by showing how the instability mode is transformed as the fluid elasticity is varied. Our results and novel methods are relevant to understanding the mechanisms underlying industrial uses of weakly elastic fluids and also to understanding inertioelastic instabilities in more confined flows through channels with intersections and stagnation points.

  1. Evaluating Models of The Neutral, Barotropic Planetary Boundary Layer using Integral Measures: Part I. Overview

    NASA Astrophysics Data System (ADS)

    Hess, G. D.; Garratt, J. R.

    Data for the cross-isobaric angle 0, the geostrophic drag coefficient Cg, and the functions A and B of Rossby number similarity theory, obtained from meteorological field experiments, are used to evaluate a range of models of the neutral, barotropic planetary boundary layer. The data give well-defined relationships for 0, Cg, and the integrated dissipation rate over the boundary layer, as a function of the surface Rossby number. Lettau's first-order closure mixing-length model gives an excellent fit to the data; other simple models give reasonable agreement. However more sophisticated models, e.g., higher-order closure, large-eddy simulation, direct numerical simulation and laboratory models, give poor fits to the data. The simplemodels have (at least) one free parameter in their turbulence closure that is matched toatmospheric observations; the more sophisticated models either base their closure onmore general flows or have no free closure parameters. It is suggested that all of theatmospheric experiments that we could locate violate the strict simplifying assumptionsof steady, homogeneous, neutral, barotropic flow required by the sophisticated models.The angle 0 is more sensitive to violations of the assumptions than is Cg.

    The behaviour of the data varies in three latitude regimes. In middle and high latitudes the observed values of A and B exhibit little latitudinal dependence; the best estimates are A = 1.3 and B = 4.4. In lower latitudes the neutral, barotropic Rossby number theory breaks down. The value of B increases towards the Equator; the determination of A is ambiguous - the trend can increase or decrease towards the Equator. Between approximately 5° and 30° latitude, the scatter in the data is thought to be primarily due to the inherent presence of baroclinicity. The presence of the trade-wind inversion, thermal instability and the horizontal component of the Earth's rotation ΩH also contribute.Marked changes in the values of A and B occur in the region between the Equator andapproximately 5° latitude, as the Coriolis parameter |f| approaches zero. Although the variation of A and B with latitude suggests some similarity to the results obtained from the direct numerical simulations, the presence of additional complexities in the real atmosphere that are not included in the numerical model, precludes a meaningful direct comparison.

  2. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.

  3. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less

  4. Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Li, Fei

    2013-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.

  5. Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Bing; Liang, X. San; Gan, Jianping

    2016-11-01

    Eddy-shedding is a highly nonlinear process that presents a major challenge in geophysical fluid dynamics. Using the newly developed localized multiscale energy and vorticity analysis (MS-EVA), this study investigates an observed typical warm eddy-shedding event as the Kuroshio passes the Luzon Strait, in order to gain insight into the underlying internal dynamics. Through multiscale window transform (MWT), it is found that the loop-form Kuroshio intrusion into the South China Sea (SCS) is not a transient feature, but a quasi-equilibrium state of the system. A mesoscale reconstruction reveals that the eddy does not have its origin at the intrusion path, but comes from the Northwest Pacific. It propagates westward, preceded by a cyclonic (cold) eddy, through the Kuroshio into the SCS. As the eddy pair runs across the main current, the cold one weakens and the warm one intensifies through a mixed instability. In its development, another cold eddy is generated to its southeast, which also experiences a mixed instability. It develops rapidly and cuts the warm eddy off the stream. Both the warm and cold eddies then propagate westward in the form of a Rossby wave (first baroclinic mode). As the eddies approach the Dongsha Islands, they experience another baroclinic instability, accompanied by a sudden accumulation of eddy available potential energy. This part of potential energy is converted to eddy kinetic energy through buoyancy conversion, and is afterward transferred back to the large-scale field through inverse cascading, greatly reducing the intensity of the eddy and eventually leading to its demise.

  6. Hairpin exact coherent states in channel flow

    NASA Astrophysics Data System (ADS)

    Graham, Michael; Shekar, Ashwin

    2017-11-01

    Questions remain over the role of hairpin vortices in fully developed turbulent flows. Studies have shown that hairpins play a role in the dynamics away from the wall but the question still persists if they play any part in (near wall) fully developed turbulent dynamics. In addition, the robustness of the hairpin vortex regeneration mechanism is still under investigation. Recent studies have shown the existence of nonlinear traveling wave solutions to the Navier-Stokes equations, also known as exact coherent states (ECS), that capture many aspects of near-wall turbulent structures. Previously discovered ECS in channel flow have a quasi-streamwise vortex structure, with no indication of hairpin formation. Here we present a family of traveling wave solutions for channel flow that displays hairpin vortices. They have a streamwise vortex-streak structure near the wall with a spatially localized hairpin head near the channel centerline, attached to and sustained by the near wall structures. This family of solutions emerges through a transcritical bifurcation from a branch of traveling wave solutions with y and z reflectional symmetry. We also look into the instabilities that lead to the development of hairpins also explore its connection to turbulent dynamics.

  7. Fragmentation of fast Josephson vortices and breakdown of ordered states by moving topological defects

    DOE PAGES

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less

  8. Flow past a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  9. A possible mechanism of interleaving at weak baroclinic fronts under stable-stable stratification in the Arctic Basin

    NASA Astrophysics Data System (ADS)

    Kuzmina, Natalia; Izvekova, Yulia N.

    2016-04-01

    Some analytical solutions are found for the problem of three-dimensional instability of a weak geostrophic flow with linear velocity shear taking into account vertical diffusion of buoyancy. The analysis is based on the potential vorticity equation in a long-wave approximation when the horizontal scale of disturbances is taken much larger than the local baroclinic radius Rossby. It is hypothesized that the solutions found can be applied to describe stable and unstable disturbances of planetary scale with respect, especially, to the Arctic basin where weak baroclinic fronts with typical temporal variability period of the order of several years or more are observed and the beta-effect is negligible. Stable (decreasing with time) solutions describe disturbances that, in contrast to the Rossby waves, can propagate both to the west and east depending on the sign of linear shear of geostrophic velocity. The unstable (growing with time) solutions are applied to describe large-scale intrusions at baroclinic fronts under stable-stable thermohaline stratification observed in the upper layer of the Polar Deep Water in the Eurasian basin. The proposed description of intrusive layering can be considered as a possible alternative to the mechanism of interleaving due to the differential mixing (Merryfield, 2002; Kuzmina et al., 2011). References Kuzmina N., Rudels B., Zhurbas V., Stipa T. On the structure and dynamical features of intrusive layering in the Eurasian Basin in the Arctic Ocean. J. Geophys. Res., 2011, 116, C00D11, doi:10.1029/2010JC006920. Merryfield W. J. Intrusions in double-diffusively stable Arctic Waters: Evidence for differential mixing? J. Phys. Oceanogr., 2002, 32, 1452-1439.

  10. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    PubMed

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  11. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-01-01

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. PMID:26080447

  12. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  13. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

    DOE PAGES

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; ...

    2015-06-15

    We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolvemore » into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less

  14. Cavitating vortices in the guide vanes region related to the pump-turbine pumping mode rotating stall

    NASA Astrophysics Data System (ADS)

    Ješe, U.; Skotak, A.; Mikulašek, J.

    2017-04-01

    Reversible pump-turbines used in Pumped Storage Power Plants are among the most cost-efficient solutions for storing and recovering large amount of energy in short time. Presented paper is focused on the pump-turbine pumping mode part-load instabilities, among them the rotating stall and the cavitating vortex in the distributor region. Rotating stall can be described as a periodic occurrence and decay of the recirculation zones in the distributor with its own rotational characteristics frequency. Unstable behaviour can result in high radial forces, high pressure fluctuations and local velocity fluctuations that can in some cases lead into the occurrence of the cavitating vortex in the distributor region, even though the distributor is located in the high pressure region. Computationally demanding calculations have been performed using commercial CFD code. Analysed results have been compared to the experimental data obtained in the ČKD Blansko Engineering hydraulic laboratory.

  15. On the zero-Rossby limit for the primitive equations of the atmosphere*

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Zhang, Ping

    2001-09-01

    The zero-Rossby limit for the primitive equations governing atmospheric motions is analysed. The limit is important in geophysics for large-scale models (cf Lions 1996 Int. Conf. IAM 95 (Hamburg 1995) (Math. Res. vol 87) (Berlin: Akademie) pp 177-212) and is in the level of the zero relaxation limit for nonlinear partial differential equations (cf Chen et al 1994 Commun. Pure Appl. Math. 47 787-830). It is proved that, if the initial data appropriately approximate data of geostrophic type, the corresponding solutions of the simplified primitive equations approximate the solutions of the quasigeostrophic equations with order ɛ accuracy as the Rossby number ɛ goes to zero.

  16. The Kepler Catalog of Stellar Flares

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    2016-09-01

    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ˜1035 erg. The net fraction of flare stars increases with g - I color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ˜0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.

  17. Effect of chemical heat release in a temporally evolving mixing layer

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Moser, R. D.

    1994-01-01

    Two-dimensional numerical simulations of a temporally evolving mixing layer with an exothermic infinitely fast diffusion flame between two unmixed reactants have been carried out in the limit of zero Mach number to study the effect of the heat release on the early stages of the evolution of the flow. Attention has been directed to relatively large values of the oxidizer-to-fuel mass stoichiometric ratio typical of hydrocarbon flames, and initial vorticity distributions thicker than the temperature and species distributions have been chosen to mimic the situation at the outlet of a jet. The results show that, during the stages of the evolution covered by the present simulations, enhancement of combustion occurs by local stretching of the flame without much augmentation of its area. The rate of product generation depends strongly on the initial conditions, which suggests the possibility of controlling the combustion by acting on the flow. Rollup and vortex amalgamation still occur in these reacting flows but are very much affected by the production of new vorticity by baroclinic torques. These torques lead to counter rotating vortex pairs around the flame and, more importantly, in thin layers of light fluid that leave the vicinity of the flame when the Kelvin-Helmholtz instability begins to develop. Propelled by the vortex pairs, these layers wind around, split on reaching high pressure regions, and originate new vortex pairs in a process that ends up building large-scale vortices with a vorticity distribution more complex than for a constant density fluid.

  18. Effects of boundary layer forcing on wing-tip vortices

    NASA Astrophysics Data System (ADS)

    Shaw-Ward, Samantha

    The nature of turbulence within wing-tip vortices has been a topic of research for decades, yet accurate measurements of Reynolds stresses within the core are inherently difficult due to the bulk motion wandering caused by initial and boundary conditions in wind tunnels. As a result, characterization of a vortex as laminar or turbulent is inconclusive and highly contradicting. This research uses several experimental techniques to study the effects of broadband turbulence, introduced within the wing boundary layer, on the development of wing-tip vortices. Two rectangular wings with a NACA 0012 profile were fabricated for the use of this research. One wing had a smooth finish and the other rough, introduced by P80 grade sandpaper. Force balance measurements showed a small reduction in wing performance due to surface roughness for both 2D and 3D configurations, although stall characteristics remained relatively unchanged. Seven-hole probes were purpose-built and used to assess the mean velocity profiles of the vortices five chord lengths downstream of the wing at multiple angles of attack. Above an incidence of 4 degrees, the vortices were nearly axisymmetric, and the wing roughness reduced both velocity gradients and peak velocity magnitudes within the vortex. Laser Doppler velocimetry was used to further assess the time-resolved vortex at an incidence of 5 degrees. Evidence of wake shedding frequencies and wing shear layer instabilities at higher frequencies were seen in power spectra within the vortex. Unlike the introduction of freestream turbulence, wing surface roughness did not appear to increase wandering amplitude. A new method for removing the effects of vortex wandering is proposed with the use of carefully selected high-pass filters. The filtered data revealed that the Reynolds stress profiles of the vortex produced by the smooth and rough wing were similar in shape, with a peak occurring away from the vortex centre but inside of the core. Single hot-wire measurements in the 2D wing wake revealed the potential origin of dominant length-scales observed in the vortex power spectra. At angles above 5 degrees, the 2D wing wake had both higher velocity deficits and higher levels of total wake kinetic energy for the rough wing as compared to the smooth wing.

  19. Asymmetric Relationship between the Meridional Displacement of the Asian Westerly Jet and the Silk Road Pattern

    NASA Astrophysics Data System (ADS)

    Hong, Xiaowei; Lu, Riyu; Li, Shuanglin

    2018-04-01

    In previous work, a significant relationship was identified between the meridional displacement of the Asian westerly jet (JMD) and the Silk Road Pattern (SRP) in summer. The present study reveals that this relationship is robust in northward JMD years but absent in southward JMD years. In other words, the amplitude of the SRP increases with northward displacement of the jet but shows little change with southward displacement. Further analysis indicates that, in northward JMD years, the Rossby wave source (RWS) anomalies, which are primarily contributed by the planetary vortex stretching, are significantly stronger around the entrance of the Asian jet, i.e., the Mediterranean Sea-Caspian Sea area, with the spatial distribution being consistent with that related to the SRP. By contrast, in southward JMD years, the RWS anomalies are much weaker. Therefore, this study suggests that the RWS plays a crucial role in inducing the asymmetry of the JMD-SRP relationship. The results imply that climate anomalies may be stronger in strongly northward-displaced JMD years due to the concurrence of the JMD and SRP, and thus more attention should be paid to these years.

  20. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei

    2018-03-01

    Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.

  1. Rayleigh- and Prandtl-number dependence of the large-scale flow-structure in weakly-rotating turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2015-11-01

    Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 < Pr < 35 and Rayleigh numbers in the range of 108 < Ra < 4 ×1011 . From these measurements we deduce changes of the flow structure. We learn about the stability and dynamics of the large-scale circulation (LSC), as well as about its breakdown and the onset of vortex formation close to the top and bottom plate. We shall examine correlations between these measurements and changes in the heat transport. This work was supported by NSF grant DRM11-58514. SW acknowledges support by the Deutsche Forschungsgemeinschaft.

  2. On the lifetime of a pancake anticyclone in a rotating stratified flow

    NASA Astrophysics Data System (ADS)

    Facchini, Giulio; Le Bars, Michael

    2016-11-01

    We present an experimental study of the time evolution of an isolated anticyclonic pancake vortex in a laboratory rotating stratified flow. Motivations come from the variety of compact anticyclones observed to form and persist for a strikingly long lifetime in geophysical and astrophysical settings combining rotation and stratification. We generate anticyclones by injecting a small amount of isodense fluid at the center of a rotating tank filled with salty water linearly stratified in density. Our two control parameters are the Coriolis parameter f and the Brunt-Väisälä frequency N. We observe that anticyclones always slowly decay by viscous diffusion, spreading mainly in the horizontal direction irrespective of the initial aspect ratio. This behavior is correctly explained by a linear analytical model in the limit of small Rossby and Ekman numbers, where density and velocity equations reduce to a single equation for the pressure. Direct numerical simulations further confirm the theoretical predictions. Notably, they show that the azimuthal shear stress generates secondary circulations, which advect the density anomaly: this mechanism is responsible for the slow time evolution, rather than the classical viscous dissipation of the azimuthal kinetic energy.

  3. Nonlinear Influence of Background Rotation on Iceberg Melting

    NASA Astrophysics Data System (ADS)

    Meroni, A. N.; McConnochie, C. D.; Cenedese, C.; Sutherland, B. R.; Snow, K.

    2017-12-01

    The Antarctic and Greenland Ice Sheets lose mass through direct melting from ice shelves and from the calving of icebergs. Once icebergs have calved they will drift in ocean currents and gradually melt. Where and how rapidly they melt will determine where the freshwater and nutrients contained in the iceberg will be released which can then affect sea ice formation and biological activity. Standard parameterizations of iceberg melting consider the fluid velocity and temperature but not the effect of planetary rotation. Particularly for large icebergs, such as that which recently calved from the Larson C ice shelf, rotation may also be important due to the formation of Taylor columns.We present the results of laboratory experiments investigating the effect of rotation on the melting of icebergs. In particular, the possible formation of Taylor columns underneath an iceberg is investigated. At high Rossby numbers, when rotation is weak compared to advection, iceberg melting is unaffected by the background rotation rate. However, as the Rossby number is decreased, the melt rate initially increases before decreasing as the Rossby number is further decreased.This non-monotonic dependence of iceberg melting on the Rossby number is explained by considering the integrated horizontal velocity under the iceberg. For moderate Rossby numbers the Taylor column that forms only occupies a small fraction of the iceberg bottom area. Although there is near-zero relative flow in the Taylor column, which reduces the melt rate, the effective blocking by the Taylor column causes an acceleration of the flow under the remainder of the iceberg and increases the total melt rate. However, for low Rossby numbers the Taylor column occupies a larger fraction of the iceberg bottom area and the flow acceleration no longer occurs underneath the iceberg, hence it is unable to increase the melt rate. We suggest an improved parameterization of iceberg melt that includes the effects of rotation.

  4. On the Possibility of Superconductivity in Bilayer Heterostructures

    NASA Astrophysics Data System (ADS)

    Iordansky, S. V.

    2018-04-01

    A model is created for bilayer heterostructures in a strong magnetic field which makes it possible to neglect the Coulomb interaction. The thermodynamic instability of states of the electron system in a strong magnetic field leads to the formation of a periodic vortex lattice. The case is considered where the electron density is close to the density of the half-filled Landau level. An electron spectrum is found and an analog of the Cooper effect appearing under the Bogoliubov canonical transformation for electron Fermi operators is studied.

  5. Solitons and Vortices of Shear-Flow-Modified Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Saeed, Usman; Saleem, Hamid; Shan, Shaukat Ali

    2018-01-01

    Shear-flow-driven instability and a modified nonlinear dust acoustic wave (mDAW) are investigated in a dusty plasma. In the nonlinear regime a one dimensional mDAW produces pulse-type solitons and in the two-dimensional case, the dipolar vortex solutions are obtained. This investigation is relevant to magnetospheres of planets such as Saturn and Jupiter as well as dusty interstellar clouds. Here, the theoretical model is applied to Saturn's F-rings, and shape of the nonlinear electric field structures is discussed.

  6. Magnetohydrodynamic effects in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Galindo, V.; Kasprzyk, C.; Landgraf, S.; Seilmayer, M.; Starace, M.; Weber, N.; Weier, T.

    2016-07-01

    Liquid metal batteries (LMBs) consist of two liquid metal electrodes and a molten salt ionic conductor sandwiched between them. The density ratios allow for a stable stratification of the three layers. LMBs were already considered as part of energy conversion systems in the 1960s and have recently received renewed interest for economical large-scale energy storage. In this paper, we concentrate on the magnetohydrodynamic aspects of this cell type with special focus on electro-vortex flows and possible effects of the Tayler instability.

  7. Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.; Finn, J. M.

    2002-11-01

    The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.

  8. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  9. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  10. Dynamic domains of the Derviche Tourneur sodium experiment: Simulations of a spherical magnetized Couette flow

    NASA Astrophysics Data System (ADS)

    Kaplan, E. J.; Nataf, H.-C.; Schaeffer, N.

    2018-03-01

    The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics experiment with liquid sodium as the medium and a dipole magnetic field imposed from the inner sphere, recently underwent upgrades to its diagnostics to better characterize the flow and induced magnetic fields with global rotation. In tandem with the upgrades, a set of direct numerical simulations were run to give a more complete view of the fluid and magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations reveal several dynamic regimes, determined by the Rossby number. At positive differential rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the outer sphere. Negative differential rotation shows a regime of what appear to be saturated hydrodynamic instabilities at low negative differential rotation, followed by a regime where filamentary structures develop at low latitudes and persist over five to ten differential rotation periods as they drift poleward. We emphasize that all these coherent structures emerge from turbulent flows. At least some of them seem to be related to linear instabilities of the mean flow. The simulated flows can produce the same measurements as those that the physical experiment can take, with signatures akin to those found in the experiment. This paper discusses the relation between the internal velocity structures of the flow and their magnetic signatures at the surface.

  11. A global MHD simulation study of the vortices at the magnetosphere boundary under the southward IMF condition

    NASA Astrophysics Data System (ADS)

    Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.

    2013-12-01

    One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8~10 minutes under the weak southward IMF and 4~8 minutes for strong southward IMF conditions. Magnetic reconnection favorably occurs in anti-parallel field region with slower shear velocity in the magnetosheath. The magnetic field lines are highly bent by parallel vorticity (Omega||) in the flanks of the magnetopause boundary. Also, similar vortices are formed in a grid spacing of 0.3Re and 0.2Re. A small structure vortices are generated in higher resolution (0.1Re) and two vortices are mixed after 1m30s We suggest that the reconnection is a mechanism of generating vortex with a periodicity in the dayside during the southward IMF.

  12. Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.

    PubMed

    Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J

    2017-06-16

    Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.

  13. Experimental study of the laminar-turbulent transition of a concave wall in a parallel flow

    NASA Technical Reports Server (NTRS)

    Bippes, H.

    1978-01-01

    The instability of the laminar boundary layer flow along a concave wall was studied. Observations of these three-dimensional boundary layer phenomena were made using the hydrogen-bubble visualization technique. With the application of stereo-photogrammetric methods in the air-water system it was possible to investigate the flow processes qualitatively and quantitatively. In the case of a concave wall of sufficient curvature, a primary instability occurs first in the form of Goertler vortices with wave lengths depending upon the boundary layer thickness and the wall curvature. At the onset the amplification rate is in agreement with the linear theory. Later, during the non-linear amplification stage, periodic spanwise vorticity concentrations develop in the low velocity region between the longitudinal vortices. Then a meandering motion of the longitudinal vortex streets subsequently ensues, leading to turbulence.

  14. A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin

    USGS Publications Warehouse

    White, Warren B.; Tourre, Y.M.; Barlow, M.; Dettinger, M.

    2003-01-01

    Biennial, interannual, and decadal signals in the Pacific basin are observed to share patterns and evolution in covarying sea surface temperature (SST), 18??C isotherm depth (Z18), zonal surface wind (ZSW), and wind stress curl (WSC) anomalies from 1955 to 1999. Each signal has warm SST anomalies propagating slowly eastward along the equator, generating westerly ZSW anomalies in their wake. These westerly ZSW anomalies produce cyclonic WSC anomalies off the equator which pump baroclinic Rossby waves in the western/central tropical North Pacific Ocean. These Rossby waves propagate westward, taking ???6, ???12, and ???36 months to reach the western boundary near ???7??N, ???12??N, and ???18??N on biennial, interannual, and decadal period scales, respectively. There, they reflect as equatorial coupled waves, propagating slowly eastward in covarying SST, Z18, and ZSW anomalies, taking ???6, ???12, and ???24 months to reach the central/eastern equatorial ocean. These equatorial coupled waves produce a delayed-negative feedback to the warm SST anomalies there. The decrease in Rossby wave phase speed with latitude, the increase in meridional scale of equatorial SST anomalies with period scale, and the associated increase in latitude of Rossby wave forcing are consistent with the delayed action oscillator (DAO) model used to explain El Nin??o. However, this is not true of the western-boundary reflection of Rossby waves into slow equatorial coupled waves. This requires modification of the extant DAO model. We construct a modified DAO model, demonstrating how the various mechanisms and the size and sources of their delays yield the resulting frequency of each signal.

  15. A teleconnection between subtropical convection and higher latitude wave activity in the Atlantic

    NASA Astrophysics Data System (ADS)

    Cruz, Antonio DeJesus

    Rossby waves are waves in potential vorticity that propagate along the extratropical tropopause and can be impacted by the advection of low-PV air originating from the subtropics. In this study, the subtropical precipitation influence on the extratropical Rossby wave activity during the Atlantic winter season is investigated for a ten year period. Using both TRMM and TIGGE 12-Hr forecasted precipitation data, heavy precipitation events were identified near the footprints regions of warm conveyor belts in the northern Atlantic, specifically in the Gulf of Mexico and Bermuda region. The extratropical Rossby waves were then analyzed using PV on a 320K surface. By use of wavelet transforms, the amplitude of the Rossby waves were analyzed as a function of wavelength and longitude. The interaction between a single heavy precipitation event and the extratropical Rossby waves was examined for the days preceding and the week following the event. A climatological analysis of heavy precipitation events was conducted on the winter seasons from 2006 - 2015. Case study and climatological analysis identified the following: A ridge in the Northern Atlantic undergoes amplification downstream of the heavy precipitation event in the days following the event. A southerly flow, likely associated with a warm conveyor belt, connects the region of the heavy precipitation event and the extratropical tropopause. The interaction was most prominent during the late winter season and during the heaviest of precipitation events. The teleconnection identified in this study highlights a mechanism by which cloud-scale subtropical precipitation is connected to synoptic scale extratropical dynamics in the Atlantic.

  16. Inertia critical layers and their impacts on nongeostrophic baroclinic instability

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen

    We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of maximum growth. For an isolated mountain ridge, the NG baroclinic lee wave is established in the beginning for flows with small Ri, which then develops its own upper ICL. The stability of Lindzen and Tung's (1976, hereafter LT76) type of three-layer nonrotating/rotating atmosphere is discussed in Chapter 6. We first investigate the transient dynamics of wave ducting by a numerical model. The adjustment time for waves to be ducted depends on the atmospheric structure and horizontal wavelength. Second, we study the effects of Coriolis force on LT76's wave ducting mechanism, and show that a wave with wavelength on the order of 100 km is hardly ducted. (Abstract shortened by UMI.)

  17. Global-scale equatorial Rossby waves as an essential component of solar internal dynamics

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Gizon, Laurent; Birch, Aaron C.; Schou, Jesper; Proxauf, Bastian; Duvall, Thomas L.; Bogart, Richard S.; Christensen, Ulrich R.

    2018-05-01

    The Sun’s complex dynamics is controlled by buoyancy and rotation in the convection zone. Large-scale flows are dominated by vortical motions1 and appear to be weaker than expected in the solar interior2. One possibility is that waves of vorticity due to the Coriolis force, known as Rossby waves3 or r modes4, remove energy from convection at the largest scales5. However, the presence of these waves in the Sun is still debated. Here, we unambiguously discover and characterize retrograde-propagating vorticity waves in the shallow subsurface layers of the Sun at azimuthal wavenumbers below 15, with the dispersion relation of textbook sectoral Rossby waves. The waves have lifetimes of several months, well-defined mode frequencies below twice the solar rotational frequency, and eigenfunctions of vorticity that peak at the equator. Rossby waves have nearly as much vorticity as the convection at the same scales, thus they are an essential component of solar dynamics. We observe a transition from turbulence-like to wave-like dynamics around the Rhines scale6 of angular wavenumber of approximately 20. This transition might provide an explanation for the puzzling deficit of kinetic energy at the largest spatial scales.

  18. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  19. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  20. Long-wavelength asymptotics of unstable crossflow modes, including the effect of surface curvature

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    Stationary vortex instabilities with wavelengths significantly larger than the thickness of the underlying three-dimensional boundary layer are studied with asymptotic methods. The long-wavelength Rayleigh modes are locally neutral and are aligned with the direction of the local inviscid streamline. For a spanwise wave number Beta much less than 1, the spatial growth rate of these vortices is O(Beta(exp 3/2)). When Beta becomes O(R(exp -1/7)), the viscous correction associated with a thin sublayer near the surface modifies the inviscid growth rate to the leading order. As Beta is further decreased through this regime, viscous effects assume greater significance and dominate the growth-rate behavior. The spatial growth rate becomes comparable to the real part of the wave number when Beta = O(R(exp -1/4)). At this stage, the disturbance structure becomes fully viscous-inviscid interactive and is described by the triple-deck theory. For even smaller values of Beta, the vortex modes become nearly neutral again and align themselves with the direction of the wall-shear stress. Thus, the study explains the progression of the crossflow-vortex structure from the inflectional upper branch mode to nearly neutral long-wavelength modes that are aligned with the wall-shear direction.

  1. Slow transition of the Osborne Reynolds pipe flow: A direct numerical simulation study.

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.; Baltzer, Jon R.

    2015-11-01

    Osborne Reynolds' pipe transition experiment marked the onset of fundamental turbulence research, yet the precise dynamics carrying the laminar state to fully-developed turbulence has been quite elusive. Our spatially-developing direct numerical simulation of this problem reveals interesting connections with theory and experiments. In particular, during transition the energy norms of localized, weakly finite inlet perturbations grow exponentially, rather than algebraically, with axial distance, in agreement with the edge-state based temporal results of Schneider et al. (PRL, 034502, 2007). When inlet disturbance is the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow produces small-scale hairpin packets. When inlet disturbance is near the wall, optimally positioned quasi-spanwise structure is stretched into a Lambda vortex, which grows into a turbulent spot of concentrated small-scale hairpin vortices. Waves of hairpin-like structures were observed by Mullin (Ann. Rev. Fluid Mech., Vol.43, 2011) in their experiment with very weak blowing and suction. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition. Further details of our simulation are reported in Wu et al. (PNAS, 1509451112, 2015).

  2. Vortex dynamics in the near-wake of tabs with various geometries using 2D and 3D PIV

    NASA Astrophysics Data System (ADS)

    Pagan-Vazquez, Axy; Khovalyg, Dolaana; Marsh, Charles; Hamed, Ali M.; Chamorro, Leonardo P.

    2016-11-01

    The vortex dynamics and turbulence statistics in the near-wake of rectangular, trapezoidal, triangular, and ellipsoidal tabs were studied in a refractive-index-matching channel at Re = 2000 and 13000, based on the tab height. The tabs share the same bulk dimensions including a 17 mm height, a 28 mm base width, and a 24.5o angle. 3D PIV was used to study the mean flow and dominant large-scale vortices, while high-spatial resolution planar PIV was used to quantify high-order statistics. The results show the coexistence of counter-rotating vortex pair (CVP) and hairpin structures. These vortices exhibit distinctive topology and strength across Re and tab geometry. The CVP is a steady structure that grows in strength over a significantly longer distance at the low Re due to the lower turbulence levels and the delayed shedding of the hairpin vortices. These features at the low Re are associated with the presence of K-H instability that develops over three tab heights. The interaction between the hairpins and CVP is measured in 3D for the first time and shows complex coexistence. Although the CVP suffers deformation and splitting at times, it maintains its presence and leads to significant spanwise and wall-normal flows.

  3. Arcjet thruster research and technology, phase 1

    NASA Technical Reports Server (NTRS)

    Knowles, Steven C.

    1987-01-01

    The objectives of Phase 1 were to evaluate analytically and experimentally the operation, performance, and lifetime of arcjet thrusters operating between 0.5 and 3.0 kW with catalytically decomposed hydrazine (N2H4) and to begin development of the requisite power control unit (PCU) technology. Fundamental analyses were performed of the arcjet nozzle, the gas kinetic reaction effects, the thermal environment, and the arc stabilizing vortex. The VNAP2 flow code was used to analyze arcjet nozzle performance with non-uniform entrance profiles. Viscous losses become dominant beyond expansion ratios of 50:1 because of the low Reynolds numbers. A survey of vortex phenomena and analysis techniques identified viscous dissipation and vortex breakdown as two flow instabilities that could affect arcjet operation. The gas kinetics code CREK1D was used to study the gas kinetics of high temperature N2H4 decomposition products. The arc/gas energy transfer is a non-equilibrium process because of the reaction rate constants and the short gas residence times. A thermal analysis code was used to guide design work and to provide a means to back out power losses at the anode fall based on test thermocouple data. The low flow rate and large thermal masses made optimization of a regenerative heating scheme unnecessary.

  4. Propeller tip and hub vortex dynamics in the interaction with a rudder

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Falchi, Massimo

    2011-11-01

    In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.

  5. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations

    NASA Astrophysics Data System (ADS)

    Hijlkema, J.; Prévost, M.; Casalis, G.

    2011-09-01

    Down-scaled solid propellant motors are a valuable tool in the study of thrust oscillations and the underlying, vortex-shedding-induced, pressure instabilities. These fluctuations, observed in large segmented solid rocket motors such as the Ariane 5 P230, impose a serious constraint on both structure and payload. This paper contains a survey of the numerous configurations tested at ONERA over the last 20 years. Presented are the phenomena searched to reproduce and the successes and failures of the different approaches tried. The results of over 130 experiments have contributed to numerous studies aimed at understanding the complicated physics behind this thorny problem, in order to pave the way to pressure instability reduction measures. Slowly but surely our understanding of what makes large segmented solid boosters exhibit this type of instabilities will lead to realistic modifications that will allow for a reduction of pressure oscillations. A "quieter" launcher will be an important advantage in an ever more competitive market, giving a easier ride to payload and designers alike.

  6. The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flows

    NASA Technical Reports Server (NTRS)

    Hall, P.; Smith, F. T.

    1987-01-01

    It is known that a viscous fluid flow with curved streamlines can support both Tollmien-Schlichting and Taylor-Goertler instabilities. In a situation where both modes are possible on the basis of linear theory a nonlinear theory must be used to determine the effect of the interaction of the instabilities. The details of this interaction are of practical importance because of its possible catastrophic effects on mechanisms used for laminar flow control. This interaction is studied in the context of fully developed flows in curved channels. A part form technical differences associated with boundary layer growth the structures of the instabilities in this flow are very similar to those in the practically more important external boundary layer situation. The interaction is shown to have two distinct phases depending on the size of the disturbances. At very low amplitudes two oblique Tollmein-Schlichting waves interact with a Goertler vortex in such a manner that the amplitudes become infinite at a finite time. This type of interaction is described by ordinary differential amplitude equations with quadratic nonlinearities.

  7. Absolute & Convective Instabilities in the Boundary Layer on a Rotating Sphere

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Peake, Nigel

    2001-11-01

    We are concerned with absolute (AI) and convective instabilities (CI) in the boundary-layer on a sphere rotating in an otherwise still fluid. Both AI and CI are found at every latitude within specific parameter spaces. The local Reynolds number at the predicted onset of AI matches experimental data well for the onset of turbulence at ψ =30^o from the axis of rotation, beyond this latitude the discrepancy increases but remains relatively small below ψ =70^o. We suggest that this AI may cause the onset of transition. The results of the CI analysis show that a crossflow instability mode is the most dangerous below ψ =66^o. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. Our predictions of the Reynolds number and vortex angle at the onset of CI are consistent with existing experimental measurements. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

  8. T-mixer operating with water at different temperatures: Simulation and stability analysis

    NASA Astrophysics Data System (ADS)

    Siconolfi, L.; Camarri, S.; Salvetti, M. V.

    2018-03-01

    In this paper we investigate the transition from the vortex to the engulfment regime in a T-mixer when the two entering flows have different viscosity. In particular we consider as working fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional symmetry, due to the nonhomogeneous distribution of the viscosity. Increasing the Reynolds number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration, usually called the engulfment regime, similar to what it is possible to observe in an isothermal case. This flow regime is associated with an increase of the mixing between the two inlet streams. It is shown by direct numerical simulation (DNS) and by stability analysis that the engulfment regime is promoted by the temperature difference. Starting from the DNSs, the resulting flow fields are analyzed in detail considering different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear stability analyses are carried out to investigate the instability mechanism associated with the occurrence of the engulfment regime. In particular, similarly to the case without temperature differences, the onset of engulfment is driven by the momentum equation, and the temperature field does not lead to any additional instability mechanism. However, the existence of a temperature field leads to quantitative changes of the stability characteristics and of the resulting flow fields via a variation of the viscosity coefficient.

  9. Rossby-gravity waves in tropical total ozone data

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Ziemke, J. R.

    1993-01-01

    Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.

  10. On a generating mechanism for Yanai waves and the 25-day oscillation

    NASA Technical Reports Server (NTRS)

    Kelly, Brian G.; Meyers, Steven D.; O'Brien, James J.

    1995-01-01

    A spectral Chebyshev-collocation method applied to the linear, 1.5 layer reduced-gravity ocean model equations is used to study the dynamics of Yanai (or mixed Rossby-gravity) wave packets. These are of interest because of the observations of equatorial instability waves (which have the characteristics of Yanai waves) and their role in the momentum and heat budgets in the tropics. A series of experiments is performed to investigate the generation of the waves by simple cross-equatorial wind stress forcings in various configurations and the influence of a western boundary on the waves. They may be generated in the interior ocean as well as from a western boundary. The observations from all the oceans indicate that the waves have a preferential period and wavelength of around 25 days and 1000 km respectively. These properties are also seen in the model results and a plausible explanation is provided as being due to the dispersive properties of Yanai waves.

  11. Experiments on point plumes in a rotating environment

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    Motivated by the Deepwater Horizon oil spill in the Gulf of Mexico we study the dynamics of point plumes in a stratified and homogeneous rotating environment. To this end, we conduct small-scale experiments in the laboratory on salt water and bubble plumes over a wide range of Rossby numbers. The rotation modifies the entrainment into the plume and also inhibits the lateral spreading of the plume fluid which leads to various instabilities in the flow. In particular, we focus on the plume behaviour in the near-source region (where the plume is dominated by the source conditions) and at intermediate water depths, e.g., lateral intrusions at the neutral buoyancy level in the stratified environment. One of the striking features in the rotating environment is the anticyclonic precession of the plume axis which leads to an enhanced dispersion of the plume fluid in the ambient and which is absent in the non-rotating system. In this talk, we present our experimental results and develop simple models to explain the observed plume dynamics.

  12. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  13. Order out of Randomness: Self-Organization Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.

    2018-03-01

    Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

  14. Prediction of a Francis turbine prototype full load instability from investigations on the reduced scale model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Maruzewski, P.; Dinh, T.; Wang, B.; Fedorov, A.; Iosfin, J.; Avellan, F.

    2010-08-01

    The growing development of renewable energies combined with the process of privatization, lead to a change of economical energy market strategies. Instantaneous pricings of electricity as a function of demand or predictions, induces profitable peak productions which are mainly covered by hydroelectric power plants. Therefore, operators harness more hydroelectric facilities at full load operating conditions. However, the Francis Turbine features an axi-symmetric rope leaving the runner which may act under certain conditions as an internal energy source leading to instability. Undesired power and pressure fluctuations are induced which may limit the maximum available power output. BC Hydro experiences such constraints in a hydroelectric power plant consisting of four 435 MW Francis Turbine generating units, which is located in Canada's province of British Columbia. Under specific full load operating conditions, one unit experiences power and pressure fluctuations at 0.46 Hz. The aim of the paper is to present a methodology allowing prediction of this prototype's instability frequency from investigations on the reduced scale model. A new hydro acoustic vortex rope model has been developed in SIMSEN software, taking into account the energy dissipation due to the thermodynamic exchange between the gas and the surrounding liquid. A combination of measurements, CFD simulations and computation of eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the vortex rope model parameters at the model scale. Then, transposition of parameters to the prototype according to similitude laws is applied and stability analysis of the power plant is performed. The eigenfrequency of 0.39 Hz related to the first eigenmode of the power plant is determined to be unstable. Predicted frequency of the full load power and pressure fluctuations at the unit unstable operating point is found to be in general agreement with the prototype measurements.

  15. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smitherman, D.P.

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}mmore » aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.« less

  16. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  17. Long-Range Statistical Forecasting of Korean Summer Precipitation

    DTIC Science & Technology

    2008-03-01

    in the equatorial Pacific during ENLN periods leads to tropical and extratropical atmospheric 10 circulation anomalies (e.g., Ford 2000). Part of...characteristic extratropical anomalies that occur during EN and LN events. Sardeshmukh and Hoskins (1988) proposed a mechanism by which anomalous tropical...forcing could induce an extratropical Rossby wave train response. Nitta (1987) and others identified a Rossby wave train response to off-equatorial

  18. Heat waves and jet stream relations - nature of dry and wet shifts around the 2.8 kyr BP event in Central Europe

    NASA Astrophysics Data System (ADS)

    Slowinski, M. M.; Persoiu, A.; Slowinska, S.; Marcisz, K.; Ionita, M.; Lamentowicz, M.

    2017-12-01

    Solar insolation was the main driver of N Hemisphere storm tracks changes, with significant impacts on European climate variability during the Holocene. Consequently, the Homeric solar minimum, which occurred between 2,750 and 2,550 cal BP, was characterized by cooling and increase in wind strength and humidity in W Europe. In contrast, environmental reconstructions from Central and E Europe show that the climatic changes during this period were often more complex, with increased hydrological instability and a shift towards drier conditions. These contrasting conditions could be explained by the blocking in a stationary position of a high-pressure system above Central and E Europe as a result of the behavior of the jet stream. In order to understand how these changes in the behavior of the jet stream were acting in the past, we have analyzed a modern analogue to better understand the climatic map of Europe during the Homeric minimum of the 9th century BC. Thus, in summer 2015, a northward extending meander of the jet stream led to dry and hot conditions in C Europe, blocking the transport of Atlantic-sourced moisture eastwards and leading to increased precipitation in W Europe. Contrary, in 2013, the position of the high-pressure cells associated with the meandering of the jet-stream was located over W Russia and E Europe (both affected by heat waves resulting from meridional advection of dry/hot air), leading to more Rossby waves breaking over C Europe and delivering record amounts of precipitation. To test whether a similar mechanism could act on longer times scales, we have analyzed two high-resolution palaeoclimate datasets from E Europe (Rąbień peatbog, Poland and Scăriloara Ice Cave, Romania), located in areas with both N Atlantic and Mediterranean climatic influences. At the time of the Homeric Solar Minimum, warm climatic conditions dominated in SE Europe, with advection of warm and dry air from the Mediterranean. W Europe was rather wet around that time and these contrasting conditions could have been the result of blocking conditions over C Europe, induced by a solar-influenced strongly meandering jet-stream. Our recent monitoring observation and paleoclimate data support studies that presents link between arctic polar vortex, jet streams, sea-ice formation in the Arctic and climate variability in Europe.

  19. Finite-Amplitude Local Wave Activity as a Diagnostic of Anomalous Weather Events

    NASA Astrophysics Data System (ADS)

    Huang, Shao Ying

    Localized large-amplitude Rossby wave phenomena are often associated with adverse weather conditions in the midlatitudes. There has yet been a wave theory that can connect the evolution of extreme weather anomalies with the governing dynamical processes. This thesis provides a quasi-geostrophic framework for understanding the interaction between large-amplitude Rossby waves and the zonal flow on regional scales. Central to the theory is finite-amplitude local wave activity (LWA), a longitude-dependent measure of amplitude and pseudomomentum density of Rossby waves, as a generalization of the finite-amplitude Rossby wave activity (FAWA) developed by Nakamura and collaborators. The budget of LWA preserves the familiar structure of the Transformed Eulerian Mean (TEM) formalism, and it is more succinct and interpretable compared with other existing wave metrics. LWA also captures individual large-amplitude events more faithfully than most other detection methods. The bulk of the thesis concerns how the budget of wave activity may be closed with data when Rossby waves attain large amplitude and break, and how one interprets the budget. This includes the FAWA budget in a numerical simulation of barotropic decay on a sphere and the column budget of LWA in the storm track regions of the winter Northern Hemisphere with reanalysis data. The latter reveals subtle differences in the budget components between the Pacific and Atlantic storm tracks. Spectral analysis of the LWA budget also reveals the importance of the zonal LWA flux convergence and nonconservative LWA sources in synoptic- to intraseasonal timescales. The thesis concludes by introducing a promising recent development on the mechanistic understanding of the onset of atmospheric blocking using the LWA framework.

  20. On the presence of equatorial waves in the lower stratosphere of a general circulation model

    NASA Astrophysics Data System (ADS)

    Maury, P.; Lott, F.

    2014-02-01

    To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.

  1. On the presence of equatorial waves in the lower stratosphere of a general circulation model

    NASA Astrophysics Data System (ADS)

    Maury, P.; Lott, F.

    2013-08-01

    To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".

  2. Vortex Chain in a Resonantly Pumped Polariton Superfluid

    PubMed Central

    Boulier, T.; Terças, H.; Solnyshkov, D. D.; Glorieux, Q.; Giacobino, E.; Malpuech, G.; Bramati, A.

    2015-01-01

    Exciton-polaritons are light-matter mixed states interacting via their exciton fraction. They can be excited, manipulated, and detected using all the versatile techniques of modern optics. An exciton-polariton gas is therefore a unique platform to study out-of-equilibrium interacting quantum fluids. In this work, we report the formation of a ring-shaped array of same sign vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a ℓ = 8 Laguerre-Gauss beam. In the linear regime, a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and eight vortices appear, minimizing the energy while conserving the quantized angular momentum. The radial position of the vortices evolves in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system. PMID:25784592

  3. Flow around circular cylinder oscillating at low Keulegan-Carpenter number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunahara, Shunji; Kinoshita, Takeshi

    1994-12-31

    This paper shows experimental results of hydrodynamic forces acting on a vertical circular cylinder oscillating sinusoidally at low frequencies in the still water and results of the flow visualization, to examine the flow around a circular cylinder, particularly the lift forces at low Keulegan-Carpenter number Kc. The instability of streaked flow of which section is mushroom shape is observed by flow visualization, and the flows are asymmetrical in some cases. The asymmetrical streaked flow may have a close relationship to the lift force at low Kc, Kc {le} 4 or 5. Asymmetrical mushroom vortex ring is visible for Kc {le}more » 1. The mushroom vortex ring is symmetrical, or the streaks of the rings arrange themselves alternately for 1 {le} Kc {le} 1.5. A clear ring of mushroom vortices is not formed due to diffusion of dye sheets, though a flow streaked with mushroom vortices is visible for 1.5 {le} Kc {le} 2.5 and for Kc {ge} 2.5 the flow is almost turbulent.« less

  4. Discrete-vortex simulation of pulsating flow on a turbulent leading-edge separation bubble

    NASA Technical Reports Server (NTRS)

    Sung, Hyung Jin; Rhim, Jae Wook; Kiya, Masaru

    1992-01-01

    Studies are made of the turbulent separation bubble in a two-dimensional semi-infinite blunt plate aligned to a uniform free stream with a pulsating component. The discrete-vortex method is applied to simulate this flow situation because this approach is effective for representing the unsteady motions of the turbulent shear layer and the effect of viscosity near the solid surface. The numerical simulation provides reasonable predictions when compared with the experimental results. A particular frequency with a minimum reattachment is related to the drag reduction. The most effective frequency is dependent on the amplified shedding frequency. The turbulent flow structure is scrutinized. This includes the time-mean and fluctuations of the velocity and the surface pressure, together with correlations between the fluctuating components. A comparison between the pulsating flow and the non-pulsating flow at the particular frequency of the minimum reattachment length of the separation bubble suggests that the large-scale vortical structure is associated with the shedding frequency and the flow instabilities.

  5. Vortex instability in turbulent free-space propagation

    NASA Astrophysics Data System (ADS)

    Lavery, Martin P. J.

    2018-04-01

    The spatial structuring of optical fields is integral within many next generation optical metrology and communication techniques. A verifiable physical model of the propagation of these optical fields in a turbulent environment is important for developing effective mitigation techniques for the modal degradation that occurs in a free-space link. We present a method to simulate this modal degradation that agrees with recently reported experimental findings. A 1.5 km free-space link is emulated by decomposing the optical turbulence that accumulates over a long distance link, into many, weakly perturbing steps of 10 m. This simulation shows that the high-order vortex at the centre of the helical phase profiles in modes that carry orbital angular momentum of | {\\ell }| ≥slant 2{\\hslash } are unstable and fracture into many vortices when they propagate over the link. This splitting presents issues for the application of turbulence mitigation techniques. The usefulness of pre-correction, post-correction, and complex field conjugation techniques are discussed.

  6. Imaging of super-fast dynamics and flow instabilities of superconducting vortices

    DOE PAGES

    Embon, L.; Anahory, Y.; Jelić, Ž. L.; ...

    2017-07-20

    Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. And while the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channelsmore » which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. Our work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications.« less

  7. Models for some aspects of atmospheric vortices

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1977-01-01

    A frictionless adiabatic model is used to study the growth of random vortices in an atmosphere with buoyant instability and vertical wind shear, taking account of the effects of axial drag, heat transfer and precipitation-induced downdrafts. It is found that downdrafts of tornadic magnitude may occur in negatively buoyant columns. The radial-inflow velocity required to maintain a given maximum tangential velocity in a tornado is determined by using a turbulent vortex model. A tornado model which involves a rotating parent cloud as well as buoyancy and precipitation effects is also discussed.

  8. Side-force alleviation on slender, pointed forebodies at high angles of attack

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1978-01-01

    A new device was proposed for alleviating high angle-of-attack side force on slender, pointed forebodies. A symmetrical pair of separation strips in the form of helical ridges are applied to the forebody to disrupt the primary lee-side vortices and thereby avoid the instability that produces vortex asymmetry. Preliminary wind tunnel tests at Mach 0.3 and Reynolds no. 5,250,000 on a variety of forebody configurations and on a wing-body combination at angles of attack up to 56 degrees, demonstrated the effectiveness of the device.

  9. Helical vortices: viscous dynamics and instability

    NASA Astrophysics Data System (ADS)

    Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team

    2014-11-01

    Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.

  10. Anomalous transport and generalized axial charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirilin, Vladimir P.; Sadofyev, Andrey V.

    For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less

  11. Dynamics of spiral waves rotating around an obstacle and the existence of a minimal obstacle

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Feng, Xia; Li, Teng-Chao; Qu, Shixian; Wang, Xingang; Zhang, Hong

    2017-05-01

    Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

  12. A note concerning the onset of three dimensionality and time dependence in Goertler vortices

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1989-01-01

    Recently Hall and Seddougui (1989) considered the secondary instability of large amplitude Goertler vortices in a growing boundary layer evolving into a three-dimensional flow with wavy vortex boundaries. They obtained a pair of coupled, linear ordinary differential equations for this instability which constituted an eigenproblem for the wavelength and frequency of this wavy mode. Investigations into the nonlinear version of this problem by Seddougui and Bassom have revealed several omissions in the numerical work of Hall and Seddougui. These issues are addressed in this note. In particular, it is found that many neutrally stable modes are possible. The properties of such modes are derived in a high wavenumber limit and it is shown that the combination of the results of Hall and Seddougui and the modifications made here lead to conclusions which are consistent with the available experimental observations.

  13. Anomalous transport and generalized axial charge

    DOE PAGES

    Kirilin, Vladimir P.; Sadofyev, Andrey V.

    2017-07-25

    For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less

  14. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Dzurnak, B.; Egorov, O. A.; Buonaiuto, G.; Walker, P. M.; Cancellieri, E.; Whittaker, D. M.; Clarke, E.; Gavrilov, S. S.; Skolnick, M. S.; Krizhanovskii, D. N.

    2017-07-01

    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g(2 )(0 ) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  15. Flow of viscoelastic fluids around a sharp microfluidic bend: Role of wormlike micellar structure

    NASA Astrophysics Data System (ADS)

    Hwang, Margaret Y.; Mohammadigoushki, Hadi; Muller, Susan J.

    2017-04-01

    We examine the flow and instabilities of three viscoelastic fluids—a semidilute aqueous solution of polyethylene oxide (PEO) and two wormlike micellar solutions of cetylpyridinium chloride and sodium salicylate—around a microfluidic 90∘ bend, in which shear deformation and streamline curvature dominate. Similar to results reported by Gulati et al. [S. Gulati et al., Phys. Rev. E 78, 036314 (2008), 10.1103/PhysRevE.78.036314; S. Gulati et al., J. Rheol. 54, 375 (2010), 10.1122/1.3308643] for PEO solutions, we report a critical Weissenberg number (Wi) for the onset of lip vortex formation upstream of the corner. However, the decreased aspect ratio (channel depth to width) results in a slightly higher critical Wi and a vortex that grows more slowly. We consider wormlike micellar solutions of two salt to surfactant concentration ratios R =0.55 and R =0.79 . At R =0.55 , the wormlike micelles are linear and exhibit strong viscoelastic behavior, but at R =0.79 , the wormlike micelles become branched and exhibit shear-banding behavior. Microfluidic experiments on the R =0.55 solution reveal two flow transitions. The first transition, at Wi =6 , is characterized by the formation of a stationary lip vortex upstream of the bend; at the second transition, at Wi =20 , the vortex fluctuates in time and changes size. The R =0.79 solution also exhibits two transitions. The first transition at Wi =4 is characterized by the appearance of two intermittent vortices, one at the lip and one at the far outside corner. Increasing the flow rate to Wi >160 results in a transition to a second unstable regime, where there is only a lip vortex that fluctuates in size. The difference in flow transitions in PEO and wormlike micellar solutions presumably arises from the additional contribution of wormlike micellar breakage and reformation under shear. The flow transitions in wormlike micellar solutions are also significantly affected by chain branching.

  16. Numerical Modeling Studies of Wake Vortex Transport and Evolution Within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua

    1998-01-01

    In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next section.

  17. Influence of Stationary Crossflow Modulation on Secondary Instability

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  18. North American Drought and Links to Northern Eurasia: The Role of Stationary Rossby Waves

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried D.; Koster, Randal D.

    2017-01-01

    This chapter provides an overview of the role of stationary Rossby waves in the sub-seasonal development of warm season drought over North America and subsequent downstream development of climate anomalies over northern Eurasia. The results are based on a case study of a stationary Rossby wave event that developed during 20 May 15 June 1988. Simulations with the NASA Goddard Earth Observing System (GEOS-5) atmospheric general circulation model highlight the importance of the mean jet streams in guiding and constraining the path and speed of wave energy propagation. In particular, convective anomalies that developed over the western Pacific in late May (in the presence of the strong North Pacific jet) produce a predilection for persistent upper-level high anomalies over central North America about ten days later, leading to the rapid development of severe dry conditions there. There are indications of continued downstream wave energy propagation that reaches northern Eurasia about two weeks later, leading to the development of dry conditions over eastern Europe and western Russia, and cool and wet conditions over western Europe and central northern Eurasia. The results suggest that stationary Rossby waves can serve as a source of predictability for sub-seasonal development of droughts over North America and northern Eurasia.

  19. Interaction of Environmental Moisture, Rainbands, and Inner-Core Dynamics in Hurricanes Katrina and Rita

    NASA Astrophysics Data System (ADS)

    Ortt, D.; Chen, S. S.

    2007-12-01

    The interaction of the environmental water vapor distribution around a tropical cyclone (TC), rainbands, and inner- core dynamics can affect hurricane structure and intensity change, which is not well understood. Although previous studies have addressed various aspects of this problem, a full three way interaction and its implications for hurricane intensity change has not been documented. Using data collected during the Hurricane Rainband and Intensity Experiment (RAINEX) in Hurricanes Katrina and Rita, the three way interaction of the environment moisture, rainbands, and inner-core dynamics can be evaluated. The TRMM TMI total precipitable water (PW) data with 1/4 degree horizontal resolution, TRMM TMI rainrate data with a 4 km horizontal resolution and the GPS dropsondes with a ½ second temporal resolution are used to characterize the environmental moisture. The high resolution model output from the real-time MM5 forecasts of Hurricanes Katrina and Rita are used to investigate the complex interactions in both storms. The model forecasts were made using a vortex-following nested grid with horizontal resolutions of 15, 5, and 1.67km, respectively. There were 28 vertical sigma levels. The Goddard microphysics scheme was used. The TRMM PW and the GPS dropsonde data show strong moisture gradients in the outer rainband region in Rita with a dry outer environment, which may contribute to the development of outer rainbands with a high circularity. It created a secondary ring of potential vorticity (PV). In addition, the vortex Rossby waves (VRW) propagating radialy outward from the eyewall were unable to propagate beyond the secondary ring of PV. The combination of these VRW and the environmental water vapor distribution may play a role in enhancing the rainbands that developed into a secondary eyewall, which leads to a temporary weakening of the hurricane. In contrast, Katrina had a relative weak moisture gradient surrounding the storm. There were not persistent outer rainbands with high circularity, which may explain the different evolution in Katrina compared with Rita.

  20. Effect of radius of gyration on a wing rotating at low Reynolds number: A computational study

    NASA Astrophysics Data System (ADS)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John; Thompson, Mark

    2017-06-01

    This computational study analyzes the effect of variation of the radius of gyration (rg), expressed as the Rossby number Ro=rg/C , with C the chord, on the aerodynamics of a rotating wing at a Reynolds number of 1400. The wing is represented as an aspect-ratio-unity rectangular flat plate aligned at 45 ∘ . This plate is accelerated near impulsively to a constant rotational velocity and the flow is allowed to develop. Flow structures are analyzed and force coefficients evaluated. Trends in velocity field degradation with increasing Ro are consistent with previous experimental studies. At low Ro the flow structure generated initially is mostly retained with a strong laminar leading-edge vortex (LEV) and tip vortex (TV). As both Ro and travel distance increase, the flow structure degrades such that at high Ro it begins to resemble that of a translating wing. Additionally, the present study has shown the following. (i) At low Ro the LEV and TV structure is laminar and steady; as Ro increases this structure breaks down, and the location at which it breaks down shifts closer to the wing root. (ii) For moderate Ro of 1.4 and higher, the LEV is no longer steady but enters a shedding regime fed by the leading-edge shear layer. (iii) At the lowest Ro of 0.7 the lift force rises during start-up and then stabilizes, consistent with the flow structure being retained, while for higher Ro a force peak occurs after the initial acceleration is complete, followed by a reduction in lift which appears to correspond to shedding of excess leading-edge vorticity generated during start-up. (iv) All rotating wings produced greater lift than a translating wing, this increase varied from ˜65 % at the lowest Ro=0.7 down to ˜5 % for the highest Ro examined of 9.1.

  1. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  2. Tropical waves and the quasi-biennial oscillation in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Angell, J. K.; Korshover, J.

    1976-01-01

    By means of spectrum analysis of 11 years of lower stratospheric daily winds and temperatures at Balboa, Ascension and Canton-Singapore, evidence is presented supporting the existence of two principal wave modes with periods of about 11-17 days (Kelvin waves) and about 4-5 days (mixed Rossby-gravity waves). The structure of the two wave modes, as well as the vertical eddy momentum flux by the waves, is shown to be related to the quasi-biennial cycle, although for the mixed Rossby-gravity waves this is obvious only at Ascension. In addition, the Coriolis term, suggested as a source of vertical easterly momentum flux for the mixed Rossby-gravity waves, is investigated and found to be of the same magnitude as the vertical eddy flux term. Finally, we have examined the mean meridional motion and the meridional eddy momentum flux for its possible association with the quasi- biennial variation.

  3. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konor, Celal S.; Randall, David A.

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  4. The role of barotropic oscillations within atmospheres of highly variable refractive index

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Paegle, J. N.; Yan, H.

    1983-01-01

    Among the various energy transfer mechanisms that might be relevant for teleconnections between tropical and higher latitudes, Rossby wave propagation is certainly one of the most important. In view of this, it is of interest to understand how the propagation of Rossby waves might be affected by ambient flows which locally may be unable to sustain oscillations due to vorticity gradients. This concept is re-examined based on the observation that there are large areas over the Pacific where the upper tropospheric absolute vorticity and its horizontal gradient are small. These key areas for teleconnections might be suspected to be unfavorable to the local propagation of Rossby waves. Results of integrations of the barotropic vorticity equation on the sphere are presented to show the role that regions with small absolute vorticity gradient play in this problem. Implications regarding the maintenance of blocks and the influence of divergent effects are also addressed.

  5. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations – Part 2: Quasi-geostrophic Rossby modes

    DOE PAGES

    Konor, Celal S.; Randall, David A.

    2018-05-08

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less

  6. Impacts of the horizontal and vertical grids on the numerical solutions of the dynamical equations - Part 2: Quasi-geostrophic Rossby modes

    NASA Astrophysics Data System (ADS)

    Konor, Celal S.; Randall, David A.

    2018-05-01

    We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia-gravity modes on a midlatitude f plane.The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.

  7. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  8. Rapid Water Transport by Long-Lasting Modon Eddy Pairs in the Southern Midlatitude Oceans

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Miller, Peter I.

    2017-12-01

    Water in the ocean is generally carried with the mean flow, mixed by eddies, or transported westward by coherent eddies at speeds close to the long baroclinic Rossby wave speed. Modons (dipole eddy pairs) are a theoretically predicted exception to this behavior, which can carry water to the east or west at speeds much larger than the Rossby wave speed, leading to unusual transports of heat, nutrients, and carbon. We provide the first observational evidence of such rapidly moving modons propagating over large distances. These modons are found in the midlatitude oceans around Australia, with one also seen in the South Atlantic west of the Agulhas region. They can travel at more than 10 times the Rossby wave speed of 1-2 cm s-1 and typically persist for about 6 months carrying their unusual water mass properties with them, before splitting into individual vortices, which can persist for many months longer.

  9. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  10. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  11. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE PAGES

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...

    2017-10-23

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  12. Gravity darkening in late-type stars. I. The Coriolis effect

    NASA Astrophysics Data System (ADS)

    Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.

    2018-02-01

    Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of the surface heat flux distribution.

  13. Variability of Jupiter's Five-Micron Hot Spot Inventory

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  14. Instability analysis of a model pump-turbine in vaneless space with different openings of guide vanes

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, S.; Zuo, Z.; Wu, Y.

    2014-03-01

    Pump-turbines were always running at partial condition with the power grid changing. Flow separations and stall phenomena were obvious in the pump-turbine. Most of the RANS turbulence models solved the shear stress by linear difference scheme and they were isotropous, so they couldn't capture all kinds of vortexes in the pump-turbine well. At present, Partially-Averaged Navier-Stokes (PANS) has been found better than LES in simulating flow regions especially those with poor near-wall resolution. In this paper, a new nonlinear PANS turbulence model was proposed, which was modified from RNG k-ε turbulence model and the shear stresses were solved by Ehrhard's nonlinear methods. The nonlinear PANS model was used to study the instability of "S" region of a model pump-turbine with misaligned guide vanes (MGV). The opening of pre-opened guide vanes had great influence on the "S" characteristics. Pressure fluctuations in the vaneless space for different opening of pre-opened guide vanes were analyzed. It is found that the "S" characteristics and instability can be improved when the relative pre-opening of MGV is 50%.

  15. Nonlinear dynamics of drift structures in a magnetized dissipative plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.

    2011-06-15

    A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. Anmore » analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.« less

  16. Extensions of Fundamental Flow Physics to Practical MAV Aerodynamics

    DTIC Science & Technology

    2016-05-01

    performances aérodynamiques. En cas de génération instable de la portance, certaines structures formées par la séparation de l’écoulement, telles...que le vortex du bord d’attaque, peuvent augmenter la portance bien au-delà des espérances à l’état stable. Le présent document étudie les rotations...une accélération dans le sens de l’écoulement à incidence constante (également lissée). Nous examinons de quelle façon la vitesse du mouvement

  17. Flow and coherent structures around circular cylinders in shallow water

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Constantinescu, George

    2017-06-01

    Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid situated at the wake edges (e.g., by transporting the near-bed, lower-velocity fluid toward the free surface and vice versa). The largest amplification of the bed shear stress in the near-wake region is observed beneath these horizontal vortices, which means that they would play an important role in promoting bed erosion behind the cylinder in the case of a loose bed. Simulation results suggest that these co-rotating vortices form as a result of the interactions between the legs of the main necklace vortices and the vortical eddies contained into the newly forming roller at the back of the cylinder. The paper also analyzes how D/H affects the separation angle on the cylinder, the size of the recirculation bubble, the bed friction velocity distributions, and turbulence statistics.

  18. IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, 10-14 March 2013, Fukuoka, Japan

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2014-06-01

    This special issue of Fluid Dynamics Research contains the first of a two-part publication of the papers presented at the IUTAM Symposium on Vortex Dynamics: Formation, Structure and Function, held at the Centennial Hall, Kyushu University School of Medicine, Fukuoka, Japan, during the week of 10-14 March 2013. Vortices are ubiquitous structures in fluid mechanics spanning the range of scales from nanofluidics and microfluidics to geophysical and astrophysical flows. Vortices are the key to understanding many different phenomena. As a result, the subject of vortex dynamics continues to evolve and to constantly find new applications in biology, biotechnology, industrial and environmental problems. Vortices can be created by the separation of a flow from the surface of a body or at a density interface, and evolve into coherent structures. Once formed, a vortex acquires a function, depending on its individual structure. In this way, for example, insects gain lift and fish gain thrust. Surprisingly, despite the long history of vortex dynamics, only recently has knowledge about formation, structure and function of vortices been combined to yield new perspectives in the subject, thereby helping to solve outstanding problems brought about by modern advances in computer technology and improved experimental techniques. This symposium is a continuation, five years on, of the IUTAM Symposium '50 Years of Vortex Dynamics', Lyngby, Denmark that took place between 12-16 October 2008, organized by the late Professor Hassan Aref. Originally, Professor Aref was a member of the International Scientific Committee of this symposium and offered his enthusiasm and great expertise, to support its organization. To our shock, he suddenly passed away on 9 September 2011. Furthermore, Professor Slava Meleshko, a leading scientist of fluid and solid mechanics and an intimate friend of Professor Aref, was expected to make an eminent contribution to the symposium. Soon after this sad loss, Professor Meleshko unexpectedly passed away in a tragic traffic accident on 14 November 2011. This symposium was dedicated to the memory of Professors Aref and Meleshko, and started with a session commemorating the legacy of their work, organized by Professors P K Newton and G J F van Heijst. Professors Aref (1950-2011) and Meleshko (1951-2011) made fundamental contributions to fluid mechanics and vortex dynamics throughout their respective distinguished careers. Although mathematical in their fundamental approaches, both sought the connections between theory and experiment and searched for physical explanations in their work. With strong, warm, and embracing personalities, they each played key roles in developing and enriching international collaborations in the field of vortex dynamics through their considerable organizational and cooperative skills, and both made enormous contribution to the development of the IUTAM. Their scientific interests and personal lives overlapped considerably, and their impact in the field of vortex dynamics was honoured in the memorial session. The following sessions presented the development of new mathematical methods and theoretical concepts, bringing in novel techniques in vortex dynamics, stimulated by the continuous development of numerical method and new experimental results, in such aspects as vortex equilibria, spectra, instability and nonlinear dynamics of vortices in barotropic and baroclinic fluids, chaos, classical and quantum turbulence, and wall turbulence, flow separation and vortex-body interactions. Topical applications include biological locomotion, environmental problems, and Bose-Einstein condensates in condensed matter theory. Central fundamental issues in theoretical, numerical and experimental aspects of vortex dynamics were also covered during the symposium such as (1) The dynamics of point vortices in domains of non-trivial topology, its Hamiltonian formulation and new statistical approaches, (2) 3D instability of vortices, with effects of compressibility and stratification, (3) Stratified vortices in the atmosphere and oceans and MHD vortices in astrophysics, (4) Numerical methods for calculating vortex equilibria, (5) Numerical methods for calculating separation of vortices and vortex-vortex interactions with their application to fish and insect locomotion and wind turbines. The symposium was attended by 128 registered participants. The official scientific participants came from 16 nations: Algeria (1), Brazil (1), Canada (3), China (3), France (12), Germany (1), India (1), Italy (2), Japan (63), The Netherlands (1), Poland (3), Russia (7), Spain (2), UK (10), Ukraine (2), and USA (16). Just a hundred papers were presented. The technical program consisted of eight invited lectures, 48 contributed papers and 44 poster presentations. The International Scientific Committee (ISC) of the symposium consisted of Professors D G Crowdy, S Le Dizès, S G Llewellyn Smith, P K Newton, R L Ricca, G J F van Heijst and YF as the chair. The members of the ISC are gratefully acknowledged. Sincere thanks are extended to the Advisory Board and also to all the members of the Domestic Organizing Committee and Local Organizing Committee for their effort in making the symposium very successful. Financial support for the symposium was provided by the IUTAM, the Commemorative Organization for the Japan World Exposition '70, the CREST offered by the Japan Science and Technology Agency (JST), the Global COE Program of the Graduate School of Mathematics, Kyushu University offered by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the Research Institute for Applied Mechanics and Institute of Mathematics for Industry, Kyushu University. All lecture presenters were strongly encouraged to submit papers for this IUTAM Symposium special issue of Fluid Dynamics Research. Poster presenters were also invited to do so. All the submitted papers were refereed, each by two reviewers, to the same standards applied for papers or review articles in regular issues of FDR. Some of the submitted papers do not appear in the special issue. The submitted papers were handled, for the reviewing procedure, by the three guest editors, Professors D G Crowdy, Y Hattori and S Le Dizès and YF, the associate editor of FDR. About 50 papers were accepted for publication in this special issue, which is published in two parts. This issue (vol 46, issue 3, June 2014) is part 1. Part 2 will be published as volume 46, issue 6, in December 2014. I hope that the special issue provides a sketch of the state of the art in the field of vortex dynamics and holds a key to open up future directions of study.

  19. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.

  20. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels with the tank. Figure 1 is as sequence of images showing the development of the instability from the initial sinusoidal disturbance far into the nonlinear regime which is characterized by the appearance of mushroom structures resulting from the coalescence of baroclinic vorticity produced by the impulsive acceleration. At later times in this sequence the vortex cores are observed to become unstable showing the beginnings of the transition to turbulence in this flow. The amplitude of the growing disturbance after the impulsive acceleration is measured and found to agree well with theoretical predictions. The effects of Reynolds number (based on circulation) on the development of the vortices and the transition to turbulence are also determined.

Top